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ABSTRACT: Nano biochar (N-BC) attracts increasing interest due
to its unique environmental behavior. However, understanding of its
formation, physicochemical characteristics, and stability of N-BC is
limited. We therefore examined N-BC formation from bulk biochars
(B-BCs) produced from peanut shell, cotton straw, Chinese medicine
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PBCs contained 19.2—31.8% higher oxygen and fewer aromatic
structures than the bulk ones, leading to lower carbon stability, but
better dispersibility in water. Heteroaggregation of N-PBCs with goethite/hematite destabilized initially and then restabilized
with increasing concentrations of N-PBCs. Compared with stacked complexes of N-PBCs-hematite, the association of goethite
with N-PBCs could form interlaced heterostructures, thus shielding positive charges on goethite and causing greater
heteroaggregation. These findings are useful for better understanding the formation of N-BCs and their environmental fate and
behavior in soil and water.
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B INTRODUCTION

Biochar (BC) produced from biomass pyrolysis has gained
increasing attention from scientists, policymakers, farmers, and
investors. ~ Generally, bulk BCs (B-BCs, 0.04—20 mm) are
often employed for agronomic and environmental benefits.”
Recently, several studies reported the physical degradation of
B-BCs into nanoscale particles.”® In comparison with B-BC,
nano BC (N-BC) with size smaller than 100 nm was declared
to have excellent mobility in natural soils and even transport
into groundwater.é’7 As a carrier, N-BC could facilitate the

animals, and microorganisms. The toxic effect of NPs is
generally considered to be higher than that of bulk particles."’
Similar to engineered carbon nanomaterials, N-BC exposure
may also trigger risks to organisms in waters and soils.
Moreover, with increasing application of BCs into soils, more
N-BCs will form and accumulate, thus making their environ-
mental impact more significant. Therefore, the formation of N-
BC and its potential fate in natural environments should be
carefully examined and understood. However, current under-
standing on the formation pathways of N-BC is rather limited.

migration of natural solutes and contaminants, in contrast with
positive effects of B-BC such as holding nutrients and
immobilizing hazardous chemicals.”® For instance, Chen et
al. reported that BC nanoparticles (NPs) undesirably increased
P leaching in alkaline soil.® Kim et al. also reported the
enhancement of desorption and mobility of As in soil by BC
fraction below 0.45 yum.” There are reports on the toxicity of
carbonaceous nanomaterials such as carbon nanotubes
(CNTs)," fullerene,'" and graphene oxide (GO)'” to plants,
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The physicochemical properties of B-BCs, depending on
feedstock and pyrolytic temperature, have been extensively
characterized.'* However, limited studies pay attention to the
characteristics of BC particulates with small size, especially N-
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BCs. Spokas et al. reported that hardwood BC fragments at
microscale and nanoscale resulted from water erosion showed
no detectable alteration on O/C atomic ratio relative to the B-
BC (500 °C).> Conversely, others observed that BC fractions
below 0.45 pm contained more polar groups and less aromatic
clusters than the larger BCs (1—150 ym) from rice straw or
bamboo produced at 400 °C."* Wang et al. also reported that
wheat straw-derived N-BCs (350 °C and 550 °C) carried more
negative charges than the micrometer-particles at pH 6.8.° The
differences in the properties of these N-BCs may be associated
with the original characteristics of their B-BCs. Thus, it is
essential to systematically investigate the Ehysicochemical
characteristics of N-BCs. Braadbaart et al."> reported that
physical fragmentation of B-BCs into small pieces was more
pronounced for low-temperature BCs (<400 °C). Keiluweit et
al.'” proposed the transition from scattered amorphous char
(aliphatic and aromatic units incorporated with oxygen-
containing groups) into ordered and dense tubostratic char
(graphitic crystallites) as charring temperature increases. We
therefore hypothesize that amorphous matrix in B-BCs may be
more readily degraded into N-BCs than graphitic components.
Moreover, the amorphous fraction with higher O content has
been commonly considered to be more labile and easily
decomposed,'® thus, N-BCs likely exhibit lower carbon
sequestration potential than B-BCs.

Aggregation between different colloids plays an important
role in their environmental behaviors.'” In water and soil
environments, N-BCs will inevitably contact with natural
minerals. Thus, heteroaggregation of N-BCs with mineral
particles merits investigation. Deposition of clay-Ag/TiO,
NPs*® and hematite-SiO,”" after heteroaggregation was
extensively reported. In contrast, no interaction occurred
between graphene oxide (GO) and montmorillonite/kaolin-
ite,””*> and GO even facilitated goethite dispersion.””> These
heteroaggregation behaviors between engineered NPs and
minerals are primarily governed by electrostatic interaction.
Indeed, electrostatic attraction-induced heteroaggregation
could also be highly influenced by mass ratio of the two
types of particles. For example, Feng et al. recently reported
the heteroaggregation rate of GO-hematite first increased and
then decreased with increasing GO concentrations.”* For N-
BCs, heteroaggregation with minerals (e.g, goethite and
hematite) may also vary with N-BCs at different concen-
trations. As a result, N-BCs likely display different environ-
mental fates in natural environments.

The main objectives of this study were therefore to (1)
explore the pathways of N-BC formation, (2) characterize the
differences between N-BCs and B-BCs, and (3) examine the
chemical and colloidal stability of N-BCs. These findings can
provide new insights toward understanding the degradation of
B-BCs during the production and application, and the
environmental behavior of N-BCs.

B MATERIALS AND METHODS

Preparation of BC Samples. Peanut shell, cotton straw,
Chinese medicine residues (mixture of polygonatum sibiricum
and other herbs after pharmaceutical production), and furfural
residues predried (80 °C) were respectively carbonized at
300—600 °C for 2 h under 500 mL/min N, flow in a tube
furnace (O-KTF1200, Chunlei, China) into BC (PBC, CBC,
MBC, and FBC).” B-BCs (75—150 um) were sifted out from
these BC samples, which are hereafter named as B-PBCX, B-
CBCX, B-MBCX, and B-FBCX, respectively, where X is the

pyrolytic temperature. All the B-BCs were rinsed with
deionized water to remove excessive water-soluble minerals.

Extraction of N-BCs. A 0.7 ¢ B-BC with 35 mL deionized
water in a 40 mL vial was dispersed for 15 min at 25 °C under
sonication at 120 W (FB120, Fisher Scientific, U.S.A.).
Considering the neutral pH of most soils and their strong
buffering capacity, the suspension pH was adjusted to 6.8 + 0.1
by adding either 0.1 M HCI or NaOH solution. The
suspension was set quiescently for 24 h to settle the particles
larger than 1000 nm,"® and the N-BC with size <100 nm was
retained by centrifugation of the remaining suspension at
4200g for 30 min based on the Stokes’ Law.”® The settled and
centrifuged BC fractions were defined as residual BC (R-BC, >
1000 nm) and colloidal BC (C-BC, 100—1000 nm),
respectively. The above process was repeated five times, and
the N-BC suspension was carefully pipetted and collected.

Hydrodynamic diameters (D;,) of C-BCs and N-BCs were
measured by a Zetasizer (Nano ZS90, Malvern, UK.). The
extracted suspension (3 mL) was carefully moved to a quartz
cuvette and examined at 800 nm (ODgy) using a UV—vis
spectrophotometer (Lambda 33, PerkinElmer, U.S.A.).”* Total
C concentration of the suspension before and after filtrating
through regenerated cellulose membrane (pore size, ~3 nm)
(Millipore, Germany) was determined by a TOC-VCSN
(Shimadzu, Japan) for calculating the yield of N-BCs. The
yield calculation of R-BCs, C-BCs, and N-BCs is presented in
the Supporting Information (SI). All the treatments were
conducted in triplicate at least.

Characterization of BC Samples. The pH, ash content,
and surface area (SA) of R-BC, C-BC, and N-BC fractions
extracted from B-PBCs (R-PBCX, C-PBCX, and N-PBCX,
where X represents the charring temperature) were charac-
terized.”” Total C, H, N, and O content were measured with an
elemental analyzer (MicroCube, Elementar, Germany). Scan-
ning electron microscopy (SEM, $4800, Hitachi, Japan),
transmission electron microscopy (TEM, H-7650, Hitachi,
Japan), and atomic force microscopy (AFM, 5400, Agilent,
U.S.A.) were employed to observe the morphology of N-PBCs.
The samples were further characterized using Fourier trans-
form infrared spectroscopy (FTIR, Tensor 27, Bruker Optics,
Germany), X-ray photoelectron spectroscopy (XPS, ESCALAB
250Xi, Thermo scientific, U.S.A.), Raman spectroscopy (DXR
Raman Microscope, Thermo Scientific, U.S.A.), and X-ray
diffraction (XRD, D8 Advance, Bruker, Germany). The details
of these characterization methods are provided in the SI

Measurement of BC Carbon Stability. The carbon
chemical stability of B-PBCs, R-PBCs, C-PBCs, and N-PBCs
was evaluated by oxidation with hydrogen peroxide (H,0,).”"
Briefly, 0.1 g of BC was added into a 40 mL glass vial with 7
mL of 5% H,0,, and treated at 80 °C for 48 h. Subsequently,
the C content in BC before and after H,0, oxidation was
measured by the elemental analyzer, and their mass was
weighed. As an indicator of BC stability, residual C percentage
was calculated on the basis of the mass and C content. In
addition, mass loss of BC varying with temperature was
performed by a thermogravimetric analyzer (TGA, STA-449-
F3, Netzsch-Geratebau GmbH, Selb, Germany) at a rate of 10
°C/min from 30 °C to 700 °C under air atmosphere at 100
mL/min.

Aggregation Kinetic of N-PBC in Aqueous Phase. The
aggregation of N-PBCs was investigated using NaCl as
destabilization electrolyte.”* The N-PBC suspension was
sonicated for S min to achieve stability and diluted to a
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Figure 1. Release of nano biochar (N-BC) from (A) peanut shell-derived biochars (PBCs, 75—150 ym) during the five consecutive extraction
processes and (B) the pulverized PBCs for 0.5 and S min, respectively. (C) Possible pathways of N-BC formation from B-BC: (a) pore collapse and
carbon matrix fracturing during pyrolysis, breakup due to grinding, and (c) sonication. For a given temperature, the different letters indicate
significant difference among the N-BC release in the five consecutive extraction processes, and the asterisk represents significant difference between

the N-BC release from PBCs ground for 0.5 and S min (n = 3, p < 0.0S).

desired concentration (100 mg C/L). One milliliter of the
suspension was mixed with 1 mL NaCl solution (0—800 mM)
in a cuvette, and immediately analyzed by dynamic light
scattering (DLS) (100 measurements, 15 s autocorrelation
accumulation time, S s delay between measurements) using the
ZS90 for monitoring the D, values. Critical coagulation
concentration in NaCl solution (CCCy,c) of N-PBCs was
calculated by normalizing initial growth rate of Dy.”*
Heteroaggregation of N-PBC with Natural Mineral
Particles. Goethite (Goe) was treated by ultrasonic dispersion
and centrifugation.”” Briefly, the slurry of Goe (Sigma-Aldrich)
fines in deionized water was sonicated for 30 min and
centrifuged at 1900g for 24 min to obtain its colloidal
suspension. Then the suspension was freeze-dried into Goe
powders. Hematite NPs (Hem) was purchased from Aladdin
Reagent Co. (China). The Na-saturated minerals were
obtained via cation exchange in 0.5 M NaCl and washing
with deionized water.”> These Na-saturated minerals were
employed to avoid possible influence of mixed exchangeable
cations (e.g,, Na*, K*, and Ca") on the interaction of minerals
with N-PBCs. The suspensions of minerals (20 mg/L) were
prepared by suspending the two minerals in deionized water
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under sonication at 120 W for S min, respectively. Goe or Hem
suspension was injected with the same volume of N-PBC300
or N-PBC600 suspension in a cuvette, and then measured
immediately by DLS after shaking. Under the conditions of
present work, the scattered-light intensity of minerals is much
greater than that of N-PBCs during the DLS measurement.
That is, the measured Dy in the binary systems mainly
represents that of free minerals and the minerals incorporated
in heteroaggregates. Thus, the heteroaggregation of minerals
with N-PBCs can be studied by this technique.”*

B RESULTS AND DISCUSSION

N-BC Formation. The extraction from B-PBC300 and B-
PBC600 turned from brown to much lighter-colored or even
colorless after filtration through regenerated cellulose mem-
brane (pore size, ~3 nm) (Figure S1A, B), indicating that the
extracted suspensions contained fine PBC particles. The
tyndall effect, an effect of light scattering in colloidal
dispersion, was used to further confirm the existence of PBC
particulates in the suspensions (Figure SIC). Their D, values
were ~180—350 nm (Figure S2A), close to that of GO (~267
nm)** and CNTs (160 nm).*’ The ODy,, values of these
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Figure 2. TEM images of (A) N-PBC300 and (B) N-PBC600. AFM images of (C) N-PBC300 and (D) N-PBC600. The diameter (lateral size, x-
axis) and thickness (height profile, y-axis) analysis of (E) N-PBC300 and (F) N-PBC600 particles on the dotted line in panel (C) and (D).

suspensions ranged from 0.11 to 0.75 during the five
consecutive extraction processes (Figure 1A), significantly
greater than those of their ultrafiltrates (<0.002). Thus, the
ODyg, values were primarily resulted from the dispersion of N-
PBCs, and the contribution from DOC could be ignored.
These results demonstrated the release of N-PBCs from B-
PBCs. Similarly, N-BC release from B-CBCs, B-MBCs, and B-
FBCs also occurred (Figures S2B—D and S3-5).

SEM images showed fine fragments scattered on the surface
and inner pores of untreated B-PBCs (Figure S6A, B), and
obvious crevices were observed in the carbon matrix of B-
PBC600 (Figure S6B). Much is known about pore collapse of
BCs at relatively high temperatures (>300 °C).*” Presumably,
N-BC is generated from the destruction of pores and carbon
matrix during BC production. The higher ODg, values of the
suspensions extracted from heavily ground PBCs (S min) than
those from slightly ground PBCs (0.5 min) indicated the
formation of higher amount of N-PBCs with longer grinding
time (Figure 1B). Previous work by Manikandan et al.* also
reported that the size of B-BC (<0.5 mm) reduced to
nanoscale level (D, 260 nm) after 6 h ball milling. The
negligible turbidity of the supernatants without Tyndall effect
suggested that little N-PBCs released from all the B-PBCs in
the nonsonication treatment (Figure S4). However, N-PBCs
were dramatically released after sonication (Figure SS). The
fine fragments adhered to the surface or were embedded in the
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pores of B-PBCs were exfoliated by sonication (Figure S6A—
D), leading to N-PBC release. Interestingly, numerous sites of
the carbon matrix in R-PBC300 were eroded, while the erosion
was not observed in R-PBC600 (Figure S6C—F), suggesting
that B-PBC300 appeared to degrade more easily than B-
PBC600. More N-PBCs were extracted from smaller B-PBCs
(75—150 pm) than larger ones (0.85—2 mm) due to more
surface exposure of fragile matrixes (Figure S7). Additionally,
N-PBC release initially increased and then decreased following
the repeated extraction (Figure 1A), indicating that longer
sonication likely triggered more N-PBC formation, whereas R-
PBCs became more stable and difficult to physically
disintegrate. This may be related to heterogeneous carbon
categories in B-PBCs (e.g., aliphatic, aromatic, and graphitic
components), which is discussed later.

Overall, three pathways of N-BC formation were identified:
(a) pore collapse and matrix fracture during biomass charring,
(b) breakup due to grinding, and (c) sonication (Figure 1C). If
particle size has to be reduced (e.g, BC produced from large
wood pieces), mild grinding is commonly used for minimizing
physical disintegration, which is also a good management
practice to avoid wind loss.”* The latter two processes are
commonly used to mimic physical weathering of charcoal and
minerals.”*”*> Natural weathering such as drying—wetting and
freeze—thaw cycles could cause physical stress (e.g., abrasion
and swelling) on fossil charcoal and geologic minerals. For BC
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Figure 3. Chemical stability of different biochars. (A) Residual C
content of the different fractions of peanut shell-derived biochars
(PBCs) after H,0, oxidation for 48 h. (B) Correlations between the
residual C content and O/C atomic ratio for different biochar
fractions. (C) Correlations between the residual C content and
surface area (Sppy) for different biochar fractions. In panel (A),
different letters indicate significant difference among the biochar
fractions (n = 3, p < 0.05). In panels (B and C), black dashed lines
represent the correlations based on the data of all the biochar
samples; for a given temperature, the correlations are presented by
different color dashed ellipses; and for a biochar fraction, yellow solid
ellipses indicate the correlations between the residual C content and
pyrolytic temperature. The correlation coefficients (r and p value)
were obtained from Pearson correlation analysis.

particles, this weathering process could also occur in natural
environments, thus leading to their physical disintegration into
smaller fragments such as N-BC. Therefore, processes (b) and
(c) are the effective approaches to simulate physical weath-
ering of BC in natural conditions,”">*® and the physiochemical
properties of the obtained N-BCs could be close to those of N-
BCs formed under natural conditions. It should be noted that
abiotic and microbial aging can mineralize unstable organic
components in BC. *” In the BC—root interface, fine roots and
root hairs stress the physical structure of BC through extending
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Figure 4. Dispersibility of N-PBCs in water. (A) Aggregation
attachment efficiencies of N-PBCs in the presence of NaCl at pH
6.8. (B) Aggregation kinetics of N-PBC300 and N-PBC600 in natural
waters. (C) Correlations between critical coagulation concentrations
of NaCl (CCCy,c1) of N-PBCs and their bulk and surface O/C
atomic ratios, or zeta potentials at pH 6.8, respectively. The natural
waters from Licun river, Jihongtan lake, and Laoshan spring in
Qingdao (China) were employed in this study.

or exploring across BC surface and pores;”® root-derived
organic acids may erode BC matrix.*> The role of biological
reactions in the fragmentation of BC needs further
investigation.

Yield of N-BCs. The yield of N-PBCs from B-PBCs
followed an order: N-PBC300 (1.41-2.36%) > N-PBC400
(1.06—1.95%) > N-PBCS00 (0.54—1.05%) > N-PBC600
(0.47—0.87%), opposite that of R-PBCs (Table 1), implying
that N-BC formation may be closely associated with the
temperature-dependent heterogeneities of B-BCs. With in-
creasing temperature, graphitic crystallites in BC incrementally
grew at the expense of amorphous components (e.g., aliphatics
and small (poly)aromatic units),** and the graphitic crystallites
are ordered denser, and rigid relative to the amorphous
phase.'®"” Thus, we speculate that the less carbonized fractions
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Figure S. SEM images of (A) Hem+N-PBC600 and (B) Goe+N-PBC600 at the peak heteroaggregation concentration. EDX spectra of the
heteroaggregates were collected from pink frames. (C) Possible configurations of the heteroaggregates of Hem or Goe and N-PBC at different N-

PBC concentrations.

in B-BCs are prone to be physically disintegrated into N-BCs,
as illustrated in Figure lc. To test this hypothesis, activated
carbons from coal and coconut husk and natural graphite with
different carbon categories were selected to examine the release
of NPs. Expectedly, few NPs were released from graphite and
coal activated carbon, but the NP release was clearly observed
from coconut husk activated carbon that contains abundant
amorphous units (Figure S7). It is noted that the yields of C-
PBCs were much higher than those of N-PBCs (6.89—14.4%
vs 0.47—2.36%, Table 1). Consequently, special attention is
warranted on the environmental behavior (e.g, transport,
transformation, and biological effects) of C-PBCs under
natural conditions.

The release of nano FBCs (N-FBCs) from B-FBCs was
negligible in initial three extraction treatments (ODg,, < 0.03,
Figures S3A and SSB). The N-FBC release occurred at the
fourth extraction, but their ODygy, values were significantly
lower than those from B-PBCs, B-CBCs, and B-MBCs (Figures
1A and S3), thus lower level of N-FBC formation. It was
ascribed to more graphitic structures in B-FBCs from
carbonizing higher content of lignin (45.2% vs 12.1—23.4%)

and less cellulose (22.1% vs 38.9—48.2%) in FR compared with
those in other feedstocks (Figure S8A).'”*" This was well
supported by much lower O/C ratios of B-FBCs than B-PBCs,
B-CBCs, and B-MBCs in Van Krevelen diagram (Figure S8B)
and lower intensity ratios of D to G band (ID/IG) in Raman
analyses (Tables 1 and S1). The lower formation of N-FBCs
further confirmed higher friability of carbon fraction with lower
degree of carbonization. Oppositely, Spokas et al.’ reported
that wood-derived B-BC was readily broken into N-BC than
those produced from grass and corn stalk with higher-cellulose
content after being rinsed with water for 24 h. The differences
in N-BC formation are possibly associated with physical
parameters (e.g., hardness and abrasion resistance) of B-BCs,
mostly depending on morph-physiological diversity of feed-
stock and pyrolysis condition (mainly temperature), which
deserves further investigation. N-PBC, N-CBC, and N-MBC
were much easier to be formed than N-FBC as indicated by
ODyg values. To simplify the following experimental systems,
N-PBC was selected as a representative N-BC for the
characterization, carbon stability, and heteroaggregation
investigations.
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Characterization of N-PBCs. TEM images showed that
N-PBC300 and N-PBC600 were nanoscale solids (Figure 2A,
B). AFM observation further confirmed the nanoscale size of
N-PBC300 ((17.4 + 4.2) nm) and N-PBC600 ((25.3 + 11.9)
nm) (Figure 2C—F). The diameter of N-PBC300 and N-
PBC600 was comparable with (or even smaller than)
commercial nano graphite ((56.4 = 15.1) nm, Figure S9)
and pecan shell N-BC (30—500 nm) reported by Yi et al."”’
Notably, the thickness (height profile) of N-PBC300 and N-
PBC600 was in the range of 0.69—1.61 nm and 0.36—1.22 nm,
respectively, which is very close to that of GO (0.5—1.2
nm).”>***> C-PBC300 and C-PBC600 had flake-like morphol-
ogy with the lateral size at ~0.46—2.6 and ~0.23—2.1 um,
respectively. Some of C-PBCs were smooth and globular
features (red arrows, Figure SI0A—D), but others showed
angular and sharp-edged shapes (blue arrows, Figure SI0A—
D). Moreover, the thickness of C-PBC300 and C-PBC600 was
at nanometer level (<4 nm, Figure SIOE—H).

Both total and surface C contents of R-PBCs were markedly
higher than those of B-PBCs, and N-PBCs contained the
highest O and lowest C contents (Tables 1 and S2). The O/C
ratios of N-PBCs were much higher than those of R-PBCs,
indicating more O-containing functional groups (OFGs) on N-
PBCs. This was supported by stronger peaks of C—O-C
stretching or aliphatic —OH (1030 cm™'), phenolic —OH
(~1375 cm™), and C—O (~1261 cm™") in N-PBCs (Figure
S11).">'7 Consistently, N-PBCs contained more surface
OFGs, including phenolic or ether C—O, ketone C=0, and
carboxylic COO, than R-PBCs (Figure S12, Table S3). The
relative contents of aromatic C (C—C/C=C/C—H) in N-
PBC300 ((41.6 + 0.27)%) and N-PBC600 ((73.4 & 0.43)%)
were significantly lower than those in R-PBC300 ((55.8 +
0.17)%) and R-PBC600 ((81.1 + 0.33)%) (Table S3). B-
PBCs, similar to natural graphite, exhibited a sharp symmetric
peak of graphite crystallite at ~26.5° in their XRD spectra
(Figures S13 and S14). In comparison with B-PBCs,
undifferentiated graphite peak was observed in R-PBCs,
whereas the intensity and pattern of graphite peak, closely
related with abundance and size of graphitic C, were weakened
and broadened in N-PBCs. Also, the greater ID/IG ratios of N-
PBCs than R-PBCs implied more amorphous phase and fewer
graphitic crystallites in N-PBCs using the Raman analyses
(Table 1 and Figure S15). Our results were supported by the
data from Qu et al."” that BC colloids possessed more OFGs
and fewer aromatics than B-BC. Furthermore, the ash content
in R-PBCs was lower than B-PBCs (Table 1), suggesting the
minerals were separated from B-PBCs and/or dissolved during
the N-PBC extraction. Compared with B-PBCs, N-PBCs had
lower pH values due to more acidic OFGs (e.g.,, —-COOH) and
lower ash content. The dominant minerals in N-PBCs were
$i0,, CaC,0,, and CaCOj; (Figure S13). These PBC fractions
with heterogeneous properties probably display different
carbon stability and colloidal behavior, which are discussed
below.

Carbon Stability of N-PBCs. The chemical oxidation by
H,0, is usually employed to evaluate antioxidative capacity of
BCs, reflecting long-term stability in natural environments.”®
The C loss with H,0, oxidation followed the order: N-PBC >
C-PBC > B-PBC > R-PBC (Figure 3A). The C loss percentage
of N-PBC300 was 70.2%, for instance, 1.91, 1.81, and 1.05
times of those of R-PBC300, B-PBC300, and C-PBC300,
respectively. The lower chemical stability of N-PBCs could be
ascribed to their richer OFGs, and the highest aromatic

fraction in R-PBCs were responsible for their greatest stability
(Figures S11 and S15). These were supported by the negative
relationship between the residual C content in the PBC
fractions and their O/C or H/C ratios (Figures 3B and S17).
In contrast with aromatic C, the C bonded with O (e.g, C—
O-C and C=O0) is more easily pyrolyzed in TGA
measurement.** Thus, the highest mass loss of N-PBCs as a
function of temperature (30—SS0 °C) relative to other
fractions further suggested their lowest carbon stability (Figure
S16). Taking the yields of N-PBCs and C-PBCs into
consideration, their C loss in the H,0, oxidation accounted
for 0.81—4.72% and 9.54—29.3% of total C loss of B-PBCs,
respectively, implying that the disintegration of B-PBCs to C-
PBCs largely weakened the C sequestration potential in soils
compared to N-PBCs. N-PBCs with strikingly greater SA
(Table 1) may expose more active carbon sites than other
fractions, leading to higher C loss.”® However, for different
PBC fractions, poor correlations were observed between
residual C contents and SA (Figure 3C), implying that higher
SA of N-PBCs was not the dominant factor for their lower
chemical stability. Notably, for the same fraction, there were
positive correlations between the residual C content and
pyrolytic temperature (Figure 3C), suggesting that the carbon
stability of PBCs was primarily controlled by the temperature-
dependent chemical properties.

Dispersibility of N-PBCs in Aqueous Phase. D, values
of N-PBC suspensions increased with increasing concen-
trations of NaCl (Figure S18). Carbon fraction is the dominant
ingredient ((90.84—93.11)%) of N-PBCs (Table 1). Thus, this
Dy, growth was primarily caused by the homoaggregation of C-
containing particles rather than mineral particles in N-PBCs.
The CCCp,q values of N-PBC300, N-PBC400, N-PBC500,
and N-PBC600 were 355, 165, 105, and 51.5 mM (Figure 4A),
respectively, close to or even higher than the reported CCCy,(
values for CNTs (25 mM),* fullerene (120 mM),*® GO (200
mM),*” and pecan shell N-BC (250 mM)."” The dispersion of
N-PBCs in natural surface waters was further examined in the
present work. Initially, the D, of N-PBC300 and N-PBC600
increased slightly in river and lake waters (Figure 4B), perhaps
because of cations (e.g,, Na*, Ca**, and Mg*") (Table S4), but
after 1 h or even 5 days, these values still remained stable
(~300 nm, Figure S19). These results indicated high
dispersibility of N-PBCs in aquatic environments. Electrostatic
repulsion is the major force for a stable colloid system."® The
lower-temperature N-PBC had more negative charges (Figure
$20) mainly resulting from the ionization of more —COOH
groups at pH 6.8 (Table S3), thus showing better colloidal
stability. This was well supported by the significant and
negative correlation between the CCCy,¢; values and the zeta
potentials (Figure 4C). The positive correlation of the
CCCyucr values with the surface O/C ratios (Figure 4C)
further confirmed the temperature-dependent dispersibility of
N-PBCs.

Heteroaggregation of N-PBCs with Natural Minerals.
The heteroaggregation of N-PBCs with Goe/Hem depended
strongly on the concentrations of N-PBC300 and N-PBC600
(Figure S21). For example, Dy and Dj, growth rate of Goe
increased with increasing N-PBC300 concentrations from 0.05
to 0.5 mg C/L, while beginning to decline when N-PBC300
concentrations were above 0.5 mg C/L. For N-PBC300
concentrations higher than 25 mg C/L, Goe once again
became stable. Smith et al. observed a similar destabilization—
restabilization trend in the binary system of Hem and Au NPs
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as a function of Au NP concentrations.*’ Further, in the
present work, large solid complexes of Goe/Hem with N-
PBC300/N-PBC600 were clearly observed (Figures SA, B and
$22), which can explain the sedimentation of Goe/Hem (100
mg/L) with N-BC (25 mg C/L) as reported in our previous
study.”

For N-PBC600, the concentrations for the peak of Dy
growth rate of Goe and Hem (heteroaggregation peak
concentration) were 2.5 and 12.5 mg C/L, respectively, 4
and 3.2 times higher than that of N-PBC300 (Figure S22).
Lower surface OFG content as indicated by XPS data (Table
S3) and less negative charges on N-PBC600 than N-PBC300
(Figure S20) can explain the higher heteroaggregation peak
concentration of N-PBC600. The heteroaggregation peak of
Hem with N-PBC300 and N-PBC600 occurred at 3.0 and 12.5
mg C/L (Figure S22), respectively, much higher than the
heteroaggregation peak concentrations of Goe+N-PBC300 and
Goe+N-PBC600 (0.5 and 2.5 mg C/L). This is due to the
difference in geometric dimension and shape of Hem and Goe.
Thus, SEM was employed to investigate the configuration of
Hem+N-PBCs and Goe+N-PBCs. After heteroaggregation, the
stacked complexes of Hem+N-PBC300 and Hem+N-PBC600
were observed (Figures SA and S22A), suggesting that Hem, as
nanosphere with Dy, of ~128 nm, is likely to aggregate with N-
PBCs through bridging. Dissimilarly, rod-shaped Goe particles
(Dn, ~473 nm) formed interlaced heteroaggregates with N-
PBCs (Figures SB and S22B), thus shielding a large proportion
of positively charged sites on Goe and causing stronger
heteroaggregation than Hem+N-PBCs. This “charge shielding”
mechanism was proposed schematically in Figure S5C.
Similarly, Sarpong et al. also found a crossed-network
heteroaggregates between curled CNTs and spherical ZnS
NPs.”" The above heteroaggregation results confirmed that the
association of two types of oppositely charged particles was
largely influenced by the geometric characteristics of particles
and specific particle—particle configuration.

B ENVIRONMENTAL IMPLICATIONS

This study demonstrated that N-BCs could be generated from
pore collapse and matrix fracturing during BC production and
weathering process in the environment, and the fewer
carbonized B-BCs were more easily degraded into N-BCs. N-
BC formation may be susceptible to attachment of soil
components onto B-BCs, such as pore blocking and particle
wrapping by microorganism colonization and fine minerals
adhesion.””® The carbon matrixes that can be easily
fragmentized are readily mineralized via chemical and
microbial oxidation,”* thus the priority or synergy among
physical, chemical, and microbial aging on B-BCs deserves
further investigation in field-incubation experiments. From our
observations, the degradation of B-BCs into C-BCs and N-BCs
was counted against BC longevity within soil systems. Higher
pyrolytic temperatures (>500 °C) favor the C sequestration
potential of BCs not only because of more stable structural
properties,'® but also due to their lower friability in soils. Also,
we observed the interaction of N-BCs with natural minerals
(e.g, Goe and Hem) into stable complexes, which are well-
known to protect organic carbon against being mineralized.>”
Furthermore, vertical transport of N-BCs in soil profile may be
retarded by heteroaggregation, thus the N-BCs-facilitated
migration of soil contaminants is probably weaker than
predicted.® However, given high dispersion of N-BCs in
natural waters, they and associated contaminants may trigger

exposure risk to aquatic or§anisrns, similar to engineered
carbonaceous nanomaterials.”®”” The information presented
here will be helpful for better understanding the aging
processes of BCs and the fate and transport of N-BCs in
natural environments.
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