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We introduce the notion of a monoidal category enriched in a braided monoidal category
V. We set up the basic theory, and prove a classification result in terms of braided oplax
monoidal functors to the Drinfeld centre of some monoidal Category T.

Even the basic theory is interesting; it shares many characteristics with the
theory of monoidal categories enriched in a symmetric monoidal category, but lacks
some features. Of particular note, there is no cartesian product of braided-enriched
categories, and the natural transformations do not form a 2-category, but rather satisfy
a braided interchange relation.

Strikingly, our classification is slightly more general than what one might have
anticipated in terms of strong monoidal functors V — Z(7). We would like to understand
this further; in a future article, we show that the functor is strong if and only if the
enriched category is ‘complete’ in a certain sense. Nevertheless it remains to understand
what non-complete enriched categories may look like.

One should think of our construction as a generalization of de-equivariantization,
which takes a strong monoidal functor Rep(G) — Z(7) for some finite group G and a
monoidal category 7, and produces a new monoidal category 7;¢. In our setting, given
any braided oplax monoidal functor V — Z(7T), for any braided V, we produce 7,y : this is
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3528 S. Morrison and D. Penneys

not usually an ‘honest’ monoidal category, but is instead V-enriched. If V has a braided
lax monoidal functor to Vec, we can use this to reduce the enrichment to Vec, and
this recovers de-equivariantization as a special case. This is the published version of
arXiv:1701.00567.

1 Introduction

While the symmetries of classical mathematical objects form groups, the symmetries
of ‘quantum’ mathematical objects such as subfactors and quantum groups form more
general objects which are best axiomatized as tensor categories. In turn, tensor cat-
egories have connections to many branches of mathematics, including representation
theory, topological and conformal field theory, and quantum information.

Early in the study of monoidal categories, Eilenberg and Kelly defined the notion
of a category enriched in a given monoidal category V [12] (see also [20]). An ordinary
category has objects and hom sets, while a V-enriched category C has objects, and for
every a,b € C, an associated hom object C(a — b) € V. The V-enriched category also
comes with distinguished identity elements Je € V(1 — C(c — ¢)) for everyc € C,and a
composition morphism —o; — : C(a — b)C(b — ¢) = C(a — c) for every a, b, c € C which
must satisfy certain compatibility and associativity axioms. From this perspective, we
may think of an ordinary category as enriched in the monoidal category Set, and a linear
category as enriched in the monoidal category Vec.

Braided monoidal categories were introduced in [19]. They play an essential role
as algebraic ingredients in three-dimensional quantum topology. This article introduces
the notion of a monoidal category enriched in a braided monoidal category. Linear
monoidal categories are of course the case when the enriching category V = Vec. The
special case when the enriching category V = sVec has received some recent attention
[1, 4, 27]. We will expand more on related work in Section 1.1 below.

We believe the notion of a monoidal category enriched in a symmetric closed
monoidal category is well-known to experts in the field. However, the fact that the enrich-
ing category need only be braided, not necessarily symmetric, has not been pursued.
The main difficulty in defining the monoidal structure of a V-monoidal category is the
exchange relation from an ordinary monoidal category. If fy e C(a — b), f» € C(b — ¢),
91 € C(d — e), and g, € C(e — f), we have

i®91)o(2®92) =(fiofa) ® (91 092).

Throughout this article, we choose to read composition left to right so that we do not
need to change the order of objects: that is, composition is a map C(a — b)C(b — ¢) —
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Braided enriched monoidal categories 3529

C(a — c¢). Indeed, we see the two morphisms g, and f; are transposed in the above
relation, which tells us that the enriching monoidal category should be braided. For
simplicity of notation, throughout this article, we omit tensor product symbols in C,
writing the tensor product of objects merely as ab rather than a ® b. As enriched cate-
gories do not have morphisms, but rather hom objects, we replace the ordinary exchange
relation with the following braided interchange relation, which we express using string

diagrams for morphisms in V:

C(ad — cf) C(ad = cf)

C(ad — be) C(be — cf)

Cla—b) Cd—e) Cb—oc) Cle— f) Cla—-b) Cd—e) Clb—oc) Cle—f) (1.1)

We refer the reader to Section 2 for the formal definition of a (strict) V-monoidal category.

In this article, we classify monoidal categories enriched in V in terms of braided
oplax monoidal functors from V to the Drinfeld center Z(T) of an ordinary monoidal
category 7. (The Drinfeld center was introduced in [18].) Recall that a functor F is oplax
monoidal if there is a family of morphisms Muy @ F(uv) - F(u)F(v), which need not
be isomorphisms, but must merely satisfy naturality and associativity conditions. (In
this article, we abuse nomenclature by taking oplax monoidal functors to be strictly
unital, that is, F(1,)) = 1,.) We call F braided oplax monoidal if u also intertwines the
braidings (see Proposition 5.4).

Our main result is:

Theorem1.1. Let)Vbeabraided monoidal category. There is a bijective correspondence

Rigid V-monoidal categories
C, such that x —» C(l; — x)
admits a left adjoint
Pairs (7, F?) with T a rigid monoidal category
= { and F# : ¥V — Z(7) braided oplax monoidal, such
that 7 := 77 o R admits a right adjoint
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3530 S. Morrison and D. Penneys

Here, R : Z(T) — T is the forgetful functor, and we use the superscript on F?
to distinguish it from F : V — 7. The notion of rigidity for V-monoidal categories is
introduced in Section 2.7.

One could dress this theorem up as an equivalence of 2-categories, but we do
not pursue this here. We also work with a strict notion of V-monoidal category for
convenience.

Theorem 1.1 thus gives us a powerful tool to construct V-monoidal categories.
Some examples of strong monoidal functors % : V — Z(T) as above are explored in
detail in [14, Section 3.3]. Additional examples of strong monoidal functors include the
presence of a full copy of Fib inside Z(Ad(E)) (by [2, Cor. 4.9], see also [11]) and a full copy
of Ad(SU(3);) inside Z(Ad(4442)) (using the modular data from [13], and the classification
from [7]). These examples seem very interesting, and we look forward to studying them
in detail.

For any braided V, there is an uninteresting braided oplax monoidal functor
MV — Z(Vec) = Vec, obtained as a left adjoint of the strong monoidal inclusion
Vec — V. Under the correspondence, this just interprets C as ‘trivially enriched’ in V
that is, the morphism objects of the resulting V-monoidal category are still just vector
spaces, but thought of as multiples of the identity object in V.

To proceed from left to right in Theorem 1.1, from a V-monoidal category C we
first extract an ordinary monoidal category C" (enriched in Vec) by replacing each Hom
object C(a — b) with the vector space V(1 — C(a — b)). (See Section 3 for more details on
CY). (This is a special case of a more general construction: given a braided lax monoidal
functor F : V — W, we can turn a V-monoidal category into a W-monoidal category by
applying F to each of the Hom objects. See Section A.1 for more details on this construc-
tion. The construction of C¥ uses the braided lax monoidal functor V1, — -).) We chose
the notation C¥ to hint at the idea of taking fixed points, akin to equivariantization. In
particular, if C is a monoidal category enriched in the symmetric monoidal category
Rep(G), for G a finite group, this just means that there is an action of G on the mor-
phisms of C, and CRP@ s the subcategory of G-invariant morphisms. We construct the
functor 7 : V — 7 in Section 4, and show that it lifts to the centre, giving 72 : Y — Z(7),
in Section 5.

To pass from right to left, we use the right adjoint of F together with rigidity
to define the hom objects of the V-enriched category 7;7- The category 7, has the same
objects as 7, and the hom objects are determined by the natural isomorphisms

V(v — Tjx(a - b)) =T (aF(v) — b).
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Braided enriched monoidal categories 3531

We describe this construction in full detail in Section 6.1. In the case that V is

semisimple, we get a more explicit description by

Tir@—>b= P T@Fw) - by

v; simple

The notation 7 is meant to evoke the feeling that the V-monoidal category is
some type of quotient of T by F, akin to de-equivariantization. The usual process of
de-equivariantization begins with a Tannakian subcategory, that is a copy of Rep(G),
for G a finite group, inside Z(7), for 7 some monoidal category. This can be viewed
as a fully faithful braided strong monoidal functor F : Rep(G) — Z(T). We can fac-
tor de-equivariantization into two steps: first applying our main theorem to obtain the
Rep(G)-monoidal category 7;, and second applying the the fibre functor (the underly-
ing vector space) to each Hom space. In this sense our construction is a generalization
of de-equivariantization, although when we ‘quotient out’ by V inside Z(7), there is in

general no subsequent ‘underlying vector space’ for the Hom objects in V.

1.1 Related work

As mentioned earlier, we have seen recent interest in monoidal categories enriched in
V = sVec. Brundan and Ellis defined a super tensor category in [1] (see also [25, Section 6]),
and Usher worked out many basic properties in [27]. Usher also indicated some interest-
ing examples (his Example 6.9) which were earlier announced by Walker in the language
of spin planar algebras. Recently, [4] defines the notion of a fermionic modular tensor
category as a pre-modular tensor category whose Miiger center is sVec. This latter con-
dition has also been called ‘slightly degenerate’ in [8]. The article [4] defines a procedure
similar to de-equivariantization which produces super tensor categories from fermionic
modular tensor categories.

We would like to acknowledge explicitly the work of Kevin Walker on enrich-
ment for 2-categories and higher categories; although much of this is unpublished, we
and others in the field have learnt a great deal from his ideas, disseminated in notes,
conversations, and seminars.

We also point out that recent work of Henriques, Penneys, and Tener [14] intro-
duces the notion of an anchored planar algebra internal to a braided pivotal tensor
category, and show that these are equivalent to braided pivotal strong (not merely
oplax) monoidal functors 72 : V — Z(7) for some pivotal tensor category 7, such that,
F = F? o R admits a right adjoint. The functor 7% endows 7 with the structure of a
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3532 S. Morrison and D. Penneys

module tensor category for V as studied in [15]. See also [16] for the related notion of a
para planar algebra.

In a similar vein, if we interpret a pivotal braided tensor category as a disklike
3-category, one can obtain an analogous classification for its disklike modules. In a
concurrent article, Morrison and Walker study super tensor categories from the point
of view of Spin-disklike 2-categories, in the sense of [26]. That article will also include
many examples of categories with objects of small dimension.

Also connected to this theorem is the MathOverflow question [24] which dis-
cusses the construction of V-enriched monoidal categories when V is symmetric and
closed from braided strong monoidal functors to the Drinfeld centre of monoidal cat-
egories. The activity there reinforces our belief that monoidal categories enriched in
symmetric closed monoidal categories are probably known to experts. Interestingly,
our theorem only requires the braided central functor be oplax monoidal, and not strong
monoidal. We only need an oplax functor to pass from right to left, and all we recover
when passing from left to right is the oplax structure.

All the examples we know about at this point, however, are either actually
strong monoidal functors, or left adjoints of strong monoidal functors (e.g., the ‘trivially
enriched’ examples discussed above). It would be very interesting to have ‘genuinely’
oplax examples.

Batanin and Markl have studied an even more general case than the situation
addressed here [5, 6]. They consider categories enriched in a duoidal category V; that is,
a category with two monoidal structures, and a not-necessarily-invertible interchange
relation between them.

Since this article was posted as arXiv:1701.00567, there have been several papers
based on our definition of a monoidal category enriched in a braided monoidal cat-
egory. One of these [22] makes the nice observation that one can define the Drinfeld
centre Z(C) of an enriched monoidal category C, and that if V is modular, then Z (17) =Y,
where V is the self-enrichment of V described in Section 2.3. Another [28] discusses the
construction of a 4-category of bimodules between enriched unitary fusion categories.
A third [23] provides an explanation of the importance of braided-enriched monoidal
categories for describing the physics of gapless edges of Two dimensional topological

matter.
1.2 Future research

In a subsequent paper, we will characterize strong monoidality of F : V — Z(7) in
terms of V-completeness of C. This is the appropriate generalization of IT-completeness
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introduced in [27] for super tensor categories, and is the analog of C being tensored over
V in the sense of [20]. We will explore V-completeness of V-monoidal categories in a fol-
lowup article. In particular, we will prove that under the bijective correspondence given
in Theorem 1.1, V-complete fusion categories correspond to braided strong monoidal
functors ¥V — Z(7) for some rigid monoidal category 7. Moreover, we will discuss the
V-completion of a V-monoidal category C, which generalizes the IT-envelope introduced
in [1] for super-tensor categories.

It would be interesting to see if one could weaken the rigidity assumption in
Theorem 1.1 to the assumption that the monoidal categories are merely closed. (e.g.,
this could hopefully improve the proof of Lemma 4.6 below, which appears in Appendix
2.) As we use rigidity for various other purposes, and as [14, 15] use pivotal categories,
we are content to remain in the rigid world for now.

In another direction, it seems that we use the fact that the braiding in V has an
inverse rather infrequently. Perhaps it is possible to generalize the setting throughout
to monoidal categories enriched in a category V equipped with a lax braiding uv — vu
as in [9, 10]. For now, however, we have no application of such a generalization, so we

have not pursued it.

2 Basic Notions

Suppose V is a monoidal category. We suppress all unitors and associators in V to ease
the notation. Tensor products are indicated by juxtaposition, that is, omitting all ®-
symbols, while all compositions are written explicitly with o. We write composition
left-to-right throughout.

Recall from [20] that a V-enriched category C associates to each pair a,b € C a
hom object C(a — b) € V. For each a € C, there is a distinguished identity element j, €
V(1y — C(a — a). For each a, b, c € C, there is a distinguished composition morphism
—oc—€V(C(a— b)C(b— c)— C(a— c)).

These data must satisfy the following two axioms. (We have two options for
describing such axioms, either as commutative diagrams or as string diagrams [17]
in V. Throughout this introduction, we use both, to ensure all readers find some-
thing they are comfortable with; later in the article, we use whichever is most

convenient.)

. (identity) For all a, be C, Ualc(a_)b)) o ('— Oc —) = lc(a_,b) and (lc(a_,b)jb) [¢] (— O¢

-) = le@—b):
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3534 S. Morrison and D. Penneys

C(a — a)C(a — b) C(a - b)C(b - b)
jalcV lc(ay
C(a — b) —oc- and  C(q - b) ~oc-
w—‘)b) \IC(H—'I))
C(a—b) C(a—b)

In string diagrams the above axiom reads as:

C(a—b) Cla—Db)

C(a—Db) C(a— D) C(a—b)
« (associativity) For all a, b, ¢, d € C, the following diagram commutes:

Cla — b)C(b — c)C(c —» d) —=¢2 3 C(a = b)C(b — d)

l(—%’—)l l(—oc-)

C(a = ¢)Clc = d) Foe) s Cla— d)

which in string diagrams becomes:

C(a—d) C(a—d)

Cla—b) Cb—=c) C(c—4d) Cla—b) C(b—c) C(c—ad)

From this point onward, we assume V is a braided monoidal category where the

braiding in V is denoted by B, : uv — vu forall u,v € V.

Definition 2.1. A (strict) V-monoidal category C is a V-enriched category C together
with the following data:

* aunit object 1. €C,
» foreverya,b e, an object ab € C, and
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* foralla,b,c,d € C, a tensor product morphism - ®: — € V(C(a — ¢)C(b —»
d) — C(ab — cd))

which satisfy the following axioms:

* (strict unitor for objects) For alla € C, 1.a = al; =a.

* (strict associator for objects) For all a, b, ¢ € C, (ab)c = a(be).

* (unitality) Foralla,b € C, (ji, legony)o(—®c—) = Le@—byr (Lesbiig)o(—®c—) =
Lea—by, and (Jojp) o (— ®c =) = jab.

* (associativity of — ®. —) For all a,b,c,d,e, f € C, the following diagram

commutes:

1(-®c-)

C(a—> d)C(b - e)C(c > f) ——— C(a — d)C(bc - ef)

\L(—®c*)1 l(—®c -)

C(ab — de)C(c — f) B2 o Clabe — def)

* (braided interchange) For all a,b,c,d,e,f € C, the following diagram

commutes:

(=®c-)(-8c)

C(a > b)C(d — e)C(b — c)C(e = f) ——"% C(ad > be)C(be — cf)

—og—
1Bc(a—e)cip-e)l C(ad - cf)
o ge

(—o¢=)(~oc-)

Cla—b)C(b—c)C(d - e)C(e » f) ———""13 Cla—> c)C(d — f)

The corresponding string diagram for the braided interchange relation was

already given in (1.1). a

It would be wonderful for someone to work out the axioms for a non-strict -
monoidal category! One can motivate this definition by taking the usual notion of a
V-enriched category, at first not using the braiding, then giving A x B, for A and B V-
enriched categories, the structure of a V-enriched category by defining the composition
using the braiding in V in the inevitable way. After this, the definition above is just the
usual definition of a (strict) monoidal category. Perhaps someone will prove a coherence
theorem for not-necessarily-strict monoidal categories enriched in a braided monoidal

category, but for now we stay in the strict setting.
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3536 S. Morrison and D. Penneys
2.1 v-graded morphisms

As the objects of the enriching category V do not necessarily have underlying sets, we
must be careful when talking about ‘morphisms in a V-enriched category’. A 1,-graded
morphism from a to b in a V-monoidal category C is a morphism 1, - C(a — b) of
V, and a v-graded morphism, for v an object of V, is a morphism v — C(a — b). We
can compose (or tensor) a u-graded morphism with a v-graded morphism to obtain a
uv-graded morphism.

A 1y,-graded morphism f : 1, - C(a — b) is invertible if there is a morphism

g: 1y — C(b — a) called an inverse such that the maps

1, Bc@— b)ew - a) =5 ca — a)

1, Lc - a)C@ - b) =5 C(b — b)

are identity elements, that is, (fg) o (— o¢ —) = j, and (gf) o (— o¢ —) = jp. Notice that if f
is invertible, the usual proof shows its inverse is unique and can be denoted f~!:

h = (hjz) o (—oc =) = (hfg) o (—oc —oc =) = (Jog) 0 (—0oc =) = g.

There are obvious notions of monomorphisms and epimorphisms which we leave to the

reader.

2.2 V-functors

A V-functor F : C — D between V-enriched categories is just a function between the
objects, and for each a,b € C, an element F,,;, € V(C(a — b) —» D(F(a) — F(b)), such
that

Cla = b)C(b = c) e y C(a — c)

lﬂ—)b%—)c iﬂ-—)c

D(F (a) - F (B)D(F (b) - F () —— D(F (@ = F (@) (1
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commutes, as does

C(a — a)

ig

1y Fo-sa

1D
ﬁ

D(F (a) = F(a)) (2.2)

Given V-functors 7 : C - D and G : D — &, we define the V-functor Fo G : C —» £ by
(F0G)asb = Fasb © Gr@y—r@ forall a,b € C.

A v-graded natural transformation XA (again, for v € V) between V-functors
F,G :C — D is acollection A, : v - D(F(a) - G(a)) so that the following diagram

commutes for all objects a, b:

vC(a - b) 298 D(F (a) > G(a)D(G(a) — G (b))

—op—

p D(F (a) = G(b))

Cla — byo 72 D(F (a) > F () D(F (b) — G (b))

(This is just ‘the naturality square, viewed from outside’.) We write A : F = G.

Notice that, we are only talking about natural transformations for V-enriched
categories rather than V-monoidal categories, and yet the braiding in V is essential to
the definition!

Lemma 2.2. Suppose A : F = § is a u-graded natural transformation, and u : ¢ = H is
a v-graded natural transformation. Then there is a uv-graded natural transformation
Aou : F = H, called the vertical composite, defined by

(ho e : uv 24 D(F(a) - G(a)D(EG(a) - H(@)))

—25D(F(a) - H(a)).
Vertical composition is associative. a

The proof is sufficiently straightforward that we leave it as an exercise.
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3538 S. Morrison and D. Penneys

Similarly, horizontal composition follows the usual formula:

Lemma 2.3. Suppose « : F = § is a u-graded natural transformation where F,G : C —
D, and A : H = I is v-graded where H,Z : D — £. The following formula defines a
uv-graded natural transformation called the horizontal composite: kA : FoH = GoZ

by

kalG(a)

((A)e : uv ——D(F(a) - G(@)E(H(G(a) — Z(G(a)))
Tras90) ¢ (H(F (@) - HG@))EH(G(a) - Z(G(a)))

—SEHF@) > TG(@)).
Again, horizontal composition is associative. a

Lemma 2.4. Natural transformations themselves satisfy a braided interchange. Given
V-monoidal categories, functors, and natural transformations
H K
gy SN
> D > &
NN e
F I

C

where «, A, i, v are respectively u, v, w, x-graded natural transformations, we have
((kA) o (uv))e = (LuBrwlx) o ((k o w)(A 0 v)), : uvwx — EI(F(a)) - K(H(a))). O
We defer the proofs of Lemmas 2.3 and 2.4 to Appendix A.2,

Remark 2.5. It would be interesting to show that V-categories, V-functors, and V-
natural transformations form a V-enriched 2-category. In doing so, one would define a
Hom-object Nat(F = G) € V for V-functors F,G : C - D. We could then express vertical
composition as a morphism — oy, — : Nat(F = G)Nat(§ = &) — Nat(F = &) and

6102 AInr 9z U0 Jesn AusiaAiun s1eIS 0140 AQ 98229/ L2SE /L L/6LOZAIRASTR-BIoE/UILIWI0D AN OluIBPESE/:SdY WO PSPEO|UMOC]



Braided enriched monoidal categories 3539

horizontal composition as a morphism — @y, — : Nat(F = G) Nat(H = I) - Nat(FI =
G7). One would then prove that these morphims satisfied a braided interchange. a

2.3 Self-enriched categories

Given a braided rigid category V, we can construct a V-monoidal category V with the
same objects as V, and V(u — v) & wrv. The composition and tensor product maps are

given by

- -~ * -
—o5—:V(u—-0v)V(w-w) =u*vv*w-'-‘—w—vw—>u*w="V(u—>w)

| 2/

u*v, w*

-®p —: V(u— )V (w — x) = urow'x ——— wrutux = (V(uw - vx)
/
o= N

(Our convention for duals is opposite the usual one: we have ev, : vv* — 1,,. See Remark
2.12.) It is an enjoyable exercise to discover that these satisfy the braided exchange law:

This example is related to the canonical functor V — Z(V) when V is braided, via our
main theorem. It is the analogue in the braided rigid setting of the example in Section 1.6
of [20].

The category Tangle of (unoriented, framed) tangles is a braided rigid monoidal
category. It has a faithful functor from Braid, the free braided monoidal category on one
object. The objects of Tangle and of Braid are just the natural numbers. We denote the
standard generators of the braid group by ;.

We can form ‘@, the category of tangles enriched in itself. This allows us to

prove the following useful result.
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Lemma 2.6. Suppose that an equation of the form

C(ad — cf) C(ad = cf)

C(ad = be (be > cf) = C(ad — be (be = cf)

Cla—b) Cld—e) Cb—c) Cle—f) Cla—b) Cd—e) Clb—c) Cle— f)
I I I I l l | |

Il lyl IIII |Y,| II

where y and y’ are 4-strand braids with the same underlying permutation, holds for all
V-enriched categories, and all choices of objects a, b, ¢, d, e,f.Then y =y, a

Proof. Wepicka=c=d =f =1, andb=e=0in'l'a/ng\ka.ThenTzFlg\le(1 - 0) =
Ta/ng\le(o — 1) =1, and (abbreviating Tangle to T)

T2 - 2)

Al

T1—-0 T(1-0) TO->1) T(O-1)

Thus the equation reduces to yo;! = y'o;" in Tangle, which is equivalent to y = y’. Since
braids map faithfully into tangles, we have the conclusion. [

2.4 The rotation of a V-monoidal category

Given a monoidal category C enriched in a symmetric monoidal category, we can take the
opposite composition or the opposite tensor product, obtaining a new enriched monoidal
category. When the enrichment is merely braided, we find that this is not the case.
Nevertheless there is something which we call the 7 -rotation of C, which is formed by
simultaneously modifying the composition and the tensor product. This is another point

of departure from the theory for symmetric enrichments.
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Lemma 2.7. Suppose thatC is a V-monoidal category. Let k, [ € Z, and attempt to define
a new V-monoidal category C* as follows. If k is even C¥(a — b) = C(a — b), while if
k is odd C*(a — b) = C(b — a). At the level of objects, the tensor product is given by
a®.b=a®:bifliseven, and a® kb = b®a if l is odd. Consider a new composition

and tensor product on C*! given by

= i =

ﬂk

for some k, [ € Z. These always satisfy associativity, but satisfy the braided interchange

axiom if and only if k = I. (W

Proof. The braided interchange axiom becomes (by pulling composition or tensor

product morphisms through the twists)

| I | I I = /
Aa(B)* Ba(B)*

]

where Ay(B) = >/< = 0,071030, denotes the two strand cabling of 8. By Lemma 2.6,

we have that

1 k k__k l_-1
0,03(02010302)" = 020,04 (02010302) 0,

(recall that the o; are the standard generators of the braid group). We then apply the
Burau representation to this identity. Looking at the first column of the last row of the

resulting 4-by-4 matrices, we obtain

((—l)k + (__l)l-H) tk+l+2 + ((—l)k + (_1)l+l) tk+l+4 _ 2(—1)kt2k+3 'l 2(—1)lt2l+3 =0.

6102 AInr 9z U0 Jasn Ayisiaaiun s1els o0 Ad 98229zv//2SE/ L L/6LOZ/ARBISqR-B(0iLE/UIWY/ WO dNo-OILISPEOR//:SAI WO PSPEO|UMO(]
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It is relatively straightforward to see that this polynomial in ¢ only vanishes identically
when k = [ or when k = [ &+ 1. We now take the second column of the second row, and
after setting k =1+ 1 and clearing a denominator, obtain

2-D'¢ -2+ 1) (EF+1)t#* =0

which is impossible. Thus we must have k = [, and an isotopy verifies that the braided

interchange axiom indeed holds. u

Note in the above that if the enriching category were symmetric, the integers k
and [ would only have appeared modulo 2, and indeed all four choices would have given

new enriched monoidal categories.

Definition 2.8. We define C™* to be the V-monoidal category obtained taking k = [ = 1

in the above Lemma. O

Again, note that in the symmetrically enriched case, (C™')** = C. Generally, this
is not the case, so we obtain an integer family of rotations of the original category. When
we discuss rigidity below, we will see that a choice of duality functor is a choice of an

isomorphism C = Cr,

2.5 Products of V-monoidal categories (only?) exist when V is symmetric

We now point out a significant difference between the theory of monoidal categories
with a braided enrichment, and the theory of monoidal categories with a symmetric
enrichment.

If C and D are V-monoidal categories enriched in a symmetric monoidal category
V, we can define their Cartesian product C x,, D, which is also a V-monoidal category.
First, we produce the (V x V)-enriched monoidal category C x D by (C x D)((a,c) —
(b,d)) =C(a - b)D(c — d), and composition is given by

Cla—c)D(d - f) Cla—c) DA-f)

I l
[Foc -] [Zon-]

Cla—>b)D(d—e) Cb—-c)D(e— f) Cla—b) Dd—e) Cb—oc) D(e— f)
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with a similar formula for tensor product. We then apply the braided lax monoidal
functor M : V x ¥V — V given by (u, v) — uv to transport the V x V enrichment to V as
in A.1, obtaining the V-enriched monoidal category C x,, D := M,(C x D).

We now observe that it is not possible to follow this construction in the setting
where V is merely braided. We can still form the V x V-enriched monoidal category C x D,
but there is no braided lax monoidal functor V x V — V.

Nevertheless, we can attempt to define a composition and tensor product on C xD

by the formulas

Cla—c) DA-f)

Cl@a—c) Dd- f) [-oc—| [=°p-]
v 7%
[ o ] I P I
Clamb) Dd—e) Clb—c) Die—f) Clamb) Dd—e) Cb—c) Die— f)
C(ac — bd) D(eg — fh)

AN Z
C(ac - bd) D(eg — fh) I—®c—| |—®9—|

T

Cla—b) D(e—f) Clc—d) Dg—h  Cla—b) De—f) Clc—d Dg—h

where p and g are each some 4-strand pure braid. One can readily check that these defi-
nitions are associative if p and q are either the identity or o, 2. In general, associativity

reduces to the equation in the braid group

[ Bwap | [ Aswp |

where A, ;p denotes p with the first two strands doubled, and similarly A;,p denotes
p with the last two strands doubled. We have not found any other solutions, nor been
able to rule them out. This seems to be an interesting problem in braid theory! In order
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3544 S. Morrison and D. Penneys

to have braided interchange, we see that p and g must satisfy the equation

/r\\ l\\

A1234p

// IA\”“/ql \\
TS %ﬁ
= TR <

and one readily shows that this is not the case for p,q € {1,0,%}.
Thus at this point, we can only say that the obvious approaches to forming the
product of V-monoidal categories do not work, and ruling out any product requires some

progress on equations in braid groups.

2.6 V-monoidal functors

A (strictly unital) V-monoidal functor (F,«) between V-monoidal categories F : C — D
has an underlying V-functor F : C — D such that F(1;) = 1, and Fre»1, = Jip, along
with a family of 1,-graded isomorphisms a,y : 1, = D(F(ab) — F(a)F (b)) with A1 1e =
J1p satisfying the naturality condition

Cla— ¢)C(b — d) 5% s C(ab — cd)
\l/ﬂ—tcﬂﬂd
D(F (a) = F(c))D(F (b) — F(d)) D(F (ab) — F (cd))

x l—oac_d

D(F @)F (b) » F ()F (d) =25 D(F (ab) » F(¢)F (d))

Fab—rcd

(2.3)
and the associativity condition
D(F (abc) — F (a)F (be))D(F (a)F (be) — F (a)F (b)F (c))
a,be (7 (@)@,c)o(-®p~)) —op—
1q D(F (abc) = F(a)F (b)F (c))
ab,c ((aa,biF () °(-®D-)) —-op—
D(F (abe) = F (ab)F (c))D(F (ab)F (c) = F (a)F (b)F (c))
(2.4)

We say (F,a) is strict if a,5 = jr@p for all a,b; in this case the associativity

condition holds automatically.
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We will see in Lemma A.2 below that the naturality condition above is equivalent

to two separate naturality conditions, which are easier to verify.

Remark 2.9. Usually one thinks of a monoidal functor as a functor F : C — D together
with a natural isomorphism between the functors CKC — D given by (FRF) o (—®p —)
and (— ®¢ —) o F.

Unfortunately, this point of view is not available in the braided enriched set-
ting. As discussed in Section 2.5, there is no suitable notion of product of V-monoidal
categories, unless V happens to be symmetric.

Nevertheless, by the separate naturality conditions given in Lemma A.2, we see
a monoidal functor is a functor F : C — D together with a family of isomorphisms
Up i 1y = D(F(ab) — F(a)F (b)) such that for every a,

A~ F(a) ®p F(=) = F(a®c —)
is a natural isomorphism between functors C — D, and similarly for every b,
a_p  F(=) ®p F(b) = F(— ®c b)
is a natural isomorphism. a

Lemma 2.10. The composite of V-monoidal functors (Fa):C—>Dand (G,y):D— &
given by (FoG,$) : C —» £ with

8ap = 1y —2ZOTO 1 (Fab) — F(a)F(B)EG(F(@)F(b)) — G(F(@)G(F(a)))
9F @) F@F®)!
——————EG(F(@ab)) — G(F(@FD))EG(F(@)FB) - G(F(@)G(F(a)))
—E5E(G(F(ab)) — G(F(@)G(F(a)))

is a V-monoidal functor, and this composition is associative. O

Proof. We can check two separate naturality conditions for 8, by Lemma A.2. These are
then automatic: if we fix @, then é,_ is exactly the horizontal composition of «,_ and
YF@,-. SO it is natural by Lemma 2.3; similarly when we fix b.

To check associativity, suppose we have three V-monoidal functors

F, (G.A) (H,p)
BYS ¢ p B o
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3546 S. Morrison and D. Penneys

We see ((F,k)o(G,A)o(H,u) =(FoGoH,¢)and (F,k) o ((G,A)o(H,u)) = (FoGoH,¥)

where

and =

These two morphisms are equal by associativity of composition and functoriality
of H. [

There are similar notions of oplax and lax V-monoidal functor, which we will
not pursue here. For now, we omit a discussion of natural transformations between

V-monoidal functors.

2.7 Rigidity

A V-monoidal category C is rigid if for every c¢ € C there is:

* adual object ¢* € C and 1,-graded morphisms ev, : 1,, - C(cc* — 1.) and
coev, : 1y, — C(l¢ — c*c) which satisfy the zig-zag axioms: the identity
element j. : 1, —» C(c — c) is equal to the composite

Jeccoeveeve e
_

1, C(c —> c)C(1¢ — c*c)C(cc* — 1.)C(c — ©)

(-®c-)(~8¢-)
<R C(c — cc*e)Clectc — ¢)

e, C(c — o),
and similarly j« = (coevejejor €ve) o ((— ®c —)(— Q¢ —)) o (— oc —).
* a predual object ¢, € C so that ¢} = c. (Equivalently, we have 1,-graded
morphisms ev, : 1, - C(c,c — 1¢) and coev, : 1, - C(1 — cc,) which

satisfy similar zig-zag axioms.)

Remark 2.11. For the purposes of this article, we assume that (ba)* = a*b* for all
a,b € C. As with ordinary rigid monoidal categories, it is easy to see that the dual is
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unique up to unique isomorphism. Thus one can always arrange the choices of dual

objects in this way. _ a

Notice that this means there is an equivalence of V-monoidal categories x : C —
C™*, where C™ is the rotation of C discussed in Section 2.4. Here, %, : C(a —> b) —

C(b* — a*) is given by

CoevVg jyxjox Ljpxjgx evy

C(a — b) C(l¢ — a*a)C(b* — b*)
C(a@* — a")C(a — b)C(b* — b*)C(a* — a*)C(bb* — 1;)

(=®c-)(=®c—-®¢c—)(—8¢c~) C(b* N a*ab*)c(a*ab* - a*bb*)c(a*bb* - a*)

—=5C0" > a),
and there is a similar formula
*;*1_,,1* = (Ja CO€V} Jo Ljb €V i) © ((— ®c —)(— ®c — ®c —)(— ®¢ —)) o (—oc—o0c—).

By Remark 2.11, these are strict V-monoidal functors.
The reader may like to verify that when we are merely enriched in Vec, the map

1-3)

As in ordinary rigid monoidal categories, we have Frobenius reciprocity; one can
build natural isomorphisms C(a — c¢b,) = C(ab — c¢) = C(b — a*c). It is important to
note that the verification that these maps are invertible uses the interchange relation.

*qp 1S just

We leave this enjoyable exercise to the reader.

Remark 2.12. It may appear as though our convention for duals is opposite to the
usual one. The usual convention for duals is determined by the fact that in the category of
vector spaces, the evaluation map is given by the action of a linear functional on a vector,
and in the usual convention for composition, this is the map (¢ Qv > ¢ (v)) : V*@V — k.
As we reverse the order of composition, to avoid needing a symmetry, functions are
naturally written to the right of their arguments. Thus our convention should really be

thought of as the usual convention in disguise! ad
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3 The Underlying Monoidal Category CV

Suppose C is a V-monoidal category for a braided monoidal category V. Recall that in
the introduction, we defined the ordinary monoidal category C¥ by

CV(@— b)y=V(1y — C(a — b)).

The identity morphism 1, € C¥(a — a) = V(1, = C(a — a)) is the identity element j,.
Composition of the morphisms f € C¥(a — b) and g € C¥(b — c¢) is given by

1, L8 C(a — b)C(b — ¢©) =<5 C(a — ©).
Tensor product of the morphisms f € C¥(a — b) and g € CV(c — d) is given by
1, B c@a - bee - dy =25 cac — ba).
3.1 Properties of CV
It is straightforward to verify that CY is an ordinary monoidal category.
Lemma 3.1. If C is rigid, then CV is rigid. QO
Proof. The (co)evaluation maps for ¢ € CV are the same as those for ¢ € C. n

Definition 3.2. Suppose C, D are V-monoidal categories, and (G,«) : C — D is a strong
V-monoidal functor. We construct a functor G¥ : C¥ — DY by GY(c) = G(c) and

GV(f:a—b)=[ly 5 Ca— b) 228 D@ — b))

We see that G is a functor from the axioms of a V-functor. Notice that o), = agp €
V(1, — D(G(ab) — G(a)G(b))) = DY(G(ab) - G(a)G(b)) endows GY with the structure
of a strong monoidal functor. If (G, «) is a lax or oplax V-monoidal functor, then so is
(G, a"). O

3.2 The categorified ‘trace’

Definition 3.3. For all a € C, we define a functor R, : C¥ — V as follows. On objects,
we define R,(b) = C(a — b), and for a morphism f € C¥Y(b — ¢) = V(1 — C(b — ¢)), we
define R,(f) as the composite

Ca—b) L ca— b)em - ¢) =5 Ca - o).
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It is straightforward to verify that R, is a functor using the axioms of a V-enriched

category. O

The functor R, which we also denote by Tr,, is of special importance because

it is lax monoidal with laxitor given by
C(le - a)C(l¢ — b) =55 C(1c — ab). (3.1)

Remark 3.4. We use the notation Tr), in the spirit of [15]; when C is 1,-graded pivotal,
that is, there is a 1,,-graded natural isomorphism 1. = *x, we get a 1,,-graded traciator

isomorphism 7, : Try(ab) — Try(ba) by the composite
Try(ab) =C(le — ab) =CB* — a) =C(1l¢ — b*a) = C(l; — ba) = Try(ba).

When C is merely rigid, we only get an isomorphism Tr,,(ab) - Try(b*a). When C is not
rigid, we get no such isomorphism. Since our main theorem requires rigidity of C, using
Try is only a slight abuse of notation. O

4 Adjunctions, Mates, and Evaluations

Suppose we have an adjunction A(L(v) — b) = B(v — R(b)). Recall that the mate of
f € A(v — R(b)) is the corresponding map in B(v — R(b)). We record the following

remark for later use:

Remark 4.1. A straightforward calculation using naturality shows that the mate of f
is equal to L(f) precomposed with the mate of 1z € B(R(b) = R(b)). More generally,
for fi € A(v — R(b)) and f; € A(R(b) - R(c)), we have mate(f; o f2) = L(f1) o mate(f).
Similarly, the mate of g € B(L(v) — b) is equal to R(g) postcomposed with the
mate of 1.4 € A(L(v) — L(v)). More generally, for g, € B(L(u) - L(v)) and g, €
B(L(v) — b), we have mate(g, o g,) = mate(g;) o R(g2). a

4.1 Left adjoints of the trace

We now assume that the categorified trace Try, : C¥ — V given by Try(c) = C(1¢ = ©)
has a left adjoint, which we denote by F : V — CV. This means we have an adjunction

given by

CY(F(v) = ¢) EV(v — Try(c). 4.1)
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Remark 4.2. In the future, we hope to develop the theory of semisimplicity for V-
enriched categories to the point that one can say that if V is fusion, and C is V-fusion,

then this left adjoint F automatically exists, and

Fw) = @ V(v — Try(c))c,

celrr(cV)

suitably interpreted. a

Definition 4.3. Setting ¢ = F(v) in Adjunction (4.1), the mate of 1z € CY(F(v) = F(v))
is a canonical map 7, € V(v — Try,(F(v))) called the unit of the adjunction. O

Lemma 4.4. The functor 7 comes equipped with the structure of a strictly unital oplax

monoidal functor. O

Proof. Oplaxity is well-known; the left adjoint of a lax monoidal functor is oplax, and
the right adjoint of an oplax monoidal functor is lax [21]. For the reader’s convenience,
the oplaxitor map p,, € CV(F(uv) - F(u)F(v)) is given explicitly as the mate of

laxitor from (3.1)

uv 25 Try (FW)) Try(F(©)) =020 Try (FW)F())

under Adjunction (4.1). (Observe that there’'s no way to build a map in the other direction.)
Associativity of the oplax structure comes from the associativity of the tensor products
in C and V, and associativity of the laxitor.

To prove strict unitality, observe that setting v = 1,, in adjunction (4.1), we get

a natural isomorphism
CY(F(1y) = ¢) =V(1y - C(l¢ - ¢)) =: CV(1¢ — ©).

Thus the representable functors C¥(F(1y) - —) and C¥(l¢ — —) are naturally iso-
morphic, giving an isomorphism F(1,) = 1.. (We'll suppress this isomorphism from

here on.) [ ]

4.2 Extra structure from rigidity

We now assume that C is rigid, so CV is also rigid by Lemma 3.1. We then see that the
functor R, : C¥Y — V given by R,(b) = C(a — b) has left adjoint £, : V — CV given by
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v = aF(v). Indeed,

CY(La(v) = b) =CY(@aF(v) = b)
= CY(F(v) — a*b)
=VY(v = Try(a*b))
(4.2)
=V({v = C(lc = a*b))
=V — C(a— b))

=V(V = Ra(D)).
We introduce the following notation to make our diagrams easier to read:

{a— b ¥ F@— b)).

{a—>bc—d-- ) ¥ FC@—bCic—d--).

Definition 4.5. The evaluation morphism (or counit) ¢,,; € C¥(a{a — b} — b) is the
mate of the identity V(C(a — b) — C(a — b)) under Adjunction (4.2). O

4.3 Computing mates

We now compute the mates of the composition and tensor product morphisms. The
proof of the following lemma is surprisingly difficult compared to the simplicity of its

statement. We defer its proof to Appendix 2.
Lemma 4.6. The mate of 1,7, € C¥(aF(v) - aF(v)) is given by
Jatv) 0 (= ®c =) € V(v = C(a — aF())). 0
By the second half of Remark 4.1, we get the following corollary.

Corollary 4.7. The mate of f € CY(aF(v) — b) is given by

mate(lgrw)) o Try(f) =
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Corollary 4.8. As a particular instance of Corollary 4.7, we have

Cla—b)

= le@sb)- O

[Mc@—t) | [€ab]
|
C(a—b)
Proof. By the previous corollary, the mate of ¢,_,, is given by the diagram on the left.

But the mate of ¢, is 1¢,—p by definition. [ |

The proof of the following proposition is also quite involved and deferred to

Appendix 2.
Proposition 4.9. The mate of the composition map (— o —) € V(C(a - b)C(b — ¢) —
C(a — c)) under Adjunction (4.2) with v = C(a — b)C(b — c¢) and b = c is given by

c

| Ep—c l

| Hla—b),(b—c) |

a f{a-bb-c} O

We use these examples to prove the following helpful lemma.

Lemma 4.10. Suppose f € C¥(aF(u) - b) and g € CY(bF(v) — ¢) have mates under
Adjunction (4.2) given respectively by f €V@u —> Ca—b))and g € V(v - C(b — 0)).
Then the mate of (f§) o (— oc —) under Adjunction (4.1) is equal to (1,uuv) o (flrw) 0 g.
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Proof. By Remark 4.1 and Proposition 4.9, the mate of () o (— oc —) is given by

Fre ﬁ
g
= [ [fol= [7]
F(f) Huv
Hu a F (uv)
a F (wv)

In the second equality above, we again used two instances of Remark 4.1 for the
equalities L‘,,(f) 0&ap =f and Ly(§) o epc = g. |

5 Braided Oplax Monoidal Functors From Enriched Monoidal Categories

As in the previous section, we assume Try, : C¥ — V has left adjoint F : V — CY, and
that C is rigid, so CV is also rigid by Lemma 3.1. We now show that we can lift Fto a
braided oplax monoidal functor FZ:V — Z(CY).

5.1 Half-braidings

First, we need half-braidings €,rw : CF(v) - F(v)c. The following lemma is in the
spirit of [3, Prop. 5] and [15], but we need only work in the rigid setting rather than the

pivotal setting.

Definition 5.1. For ¢ € C and v € V, we define the half-braiding e; r, € CY(cF(v) —
F(v)c) as the mate of the map

v 2B c(1 > Fw)ee - o) =5 clc » Fw)e) (5.1)
inV — C(c > F(v)e) =V — Rc(F(v)c)) under Adjunction (4.2). O

Lemma 5.2. The maps e ry, are half-braidings for F (v), that is, they are natural

isomorphisms which satisfy the hexagon axiom ey 7y, = (1 b€c,7w)) © (€p, 7w 1c). O

Proof. First, it is easily verified that e; r¢, = 1 Fw), since the mate of 7, is exactly 1.
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Next, we verify naturality. Suppose that f € C¥(a - b) = V(1, — C(a — b)).
Then the mate of e, o (174,)f) is given by

C(a - F(v)b) C(a — F(v)b)
Cla - F
o) Eeed = Bl |

DR G ¢

using the exchange relation. We now add identity elements and use the exchange

relation, followed by Corollary 4.7 for e 7, to obtain

Cla — F(v)b)
C(a - F (v)b) C(a - F(v)b)
[=oc=] [zec-] = [-8-] [-8-] =
m#ﬁm 7] [7] [ [
v v

Now applying associativity of composition and applying another exchange relation

(after adding an identity), we obtain

C(a - F(v)b) C(a — F(v)b)
C(a — F (v)b)

Finally, we claim that the right hand side above is exactly the mate of (1)) o € 7).
Indeed, taking its mate using Remark 4.1 and Corollary 4.7 and applying the exchange
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relation, we get

C(a - 7 (v)b) C(a = F (v)b)

C(a — ¥ (v)b)

l—®c_| |_®C_| o |_°C—| |-‘°c—l =
¢ v

Next, we verify the hexagon axiom. Since jzp = (Jojb) 0 (— ®c —), the mate of e, #v)

is equal to
C(ab — ab¥ (v))

C(ab — ab¥F (v)) C(ab — ab¥F (v))

The first equality above follows by associativity of tensor product, and the second fol-
lows by Corollary 4.7 applied to e, »«). Applying the exchange relation (after adding an
identity) and then using associativity of tensor product again, we obtain

C(ab — ab¥F (v)) C(ab — ab¥F (v))

o] [Eoe]

(%

which is exactly the mate of (1,ep 7)) © (€a,7w)15)-
Finally, the fact that e; () is invertible follows formally from naturality, the
hexagon relation, and that ey, rv) = 17y together with rigidity in the usual way. We

BL0C AInr g uo Jesn AjsieAiun S1BIS OO AQ 98229ZY/L2SE/ L L /6L OZ/ADBNSAe-0[o1IE/UIWY WO dNo DIWaPESE//:SARY WOy papeoumoq



3556 S. Morrison and D. Penneys

have
¢ F(v)
¢ F(v)
- AR —
¢ F) ¢ ¥
and similarly for the composite the other way. |

Thus F : ¥V — CV lifts to an oplax monoidal functor 7% : ¥ — Z(CV). With these
half-braidings in hand, we state the following proposition, whose proof is omitted as it

is similar to that of Proposition 4.9.

Proposition 5.3. The mate of the tensor product map (—®. —) € V(C(a — b)C(c — d) —
C(ac — bd)) under Adjunction (4.2) with v = C(a — b)C(c — d) and @ = ac and b = bd
is given by

I H{a—sb),(c—d) I

a ¢ {a-bc—od) (]

Proposition 5.4. The functor 7 is braided, that is, F(By,v) o vy = Huy © €xw) F) for all
u,vev. O

Proof. We prove these maps are equal by taking mates under Adjunction (4.1). By
Remark 4.1, the mate of F(B,,,) o iy, is equal to By, 0o (ny7y) 0 (— ®c —). We may compose
with identity elements at no extra cost and then use the interchange relation together
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with naturality of the braiding in V to obtain

C(1 = F(0)F (u)) C(1 = F (0)F ()
mate(F (Bup) © pou) = [zoc=] [Foc-] = =% | [-8 -] = (n.8)0(-oc-)

ASEE BHdE

where & is the mate of er,), 7« as in (5.1) under Adjunction (4.2). Now applying Lemma
4.10 with f = n, and g = &, we see that the above map is none other than the mate of
[ |

Muy O €xrw),Fwv)-

Combining Sections 3, 4, and 5, starting with a rigid V-monoidal category C
such that Try = C(1¢ — —) admits a left adjoint F, we get an ordinary rigid monoidal
category C¥ and a strictly unital braided oplax monoidal functor 77 : } — Z(CV) such
that 7 = 7% o R admits a right adjoint.

6 The Enriched Monoidal Category From a Braided Oplax Monoidal Functor

We now consider the other direction. Suppose we have a rigid monoidal category 7 and
a strictly unital braided oplax monoidal functor FZ : ) — Z(T). Suppose further that
F:=F?oR:V — T admits a right adjoint, where as before R is the forgetful functor
Z(T) - 7. We now begin the construction of a V-monoidal category, which we call 7.

Remark 6.1. Suppose F7 is strong monoidal, and F = FZ o R has adjoint Try, : 7 — V.
In this scenario, we may construct 7,7 using the graphical calculus of [15]. One sets
7)7(@ — b) = Try,(a*b), and composition and tensor product are given by

(—o=)= Ma*bprc © Try(1g+ €vy 1)

(—®-) =g lbt * d) O Ua*p,dc* © Ta*bd,c* -

Here, ugp : Try(a) Try(b) — Try(abd) is the laxitor of Try discussed in (3.1), and 7,5 :
Try(ab) — Try(b**a) is the traciator discussed in Remark 3.4. That these maps satisfy
the braided interchange relation is a challenging exercise with the graphical calculus
developed in [15] using only the relations therein, but it becomes an easy calculation
using the anchored planar algebra technology developed in [14]. We note that pivotality
is not required as every traciator is paired with an inverse traciator. a
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6.1 The V-monoidal category 7=

We now construct 7, as a V-monoidal category only assuming F? : C¥ — Z(7) is a
braided oplax monoidal functor. The category 7, has the same objects as 7. To define
the hom objects, we first note that, similar to Adjunction (4.2), for all a € 7 the functor
L, :V — T given by £L,(v) = aF(v) has a right adjoint Ro : T — V. Indeed, let 7@17 :
7 — V be the right adjoint of 7 : V — 7, and define R.(b) = ’le,, (a*b). Observe that for
allae7,veV,and b € T, we have

T (Le(v) — b) =T (aF(v) — b)
= T(F(v) = a*b)
= V(v — Ri,(a*h))
= V(v = Ra(b)).

We define 7,-(a — b) := Ra(b) € V. Thus T,7(a — D) satisfies the adjunction
V(v — Tyx(a — b)) = T(aF(v) - b). (6.1)

Definition 6.2. The identity element j, € V(1y — 7Tjz(a — a)) is the mate of 1, €
T(a — a). (Here, we suppress the isomorphism F(1,) = 17.) a

We introduce the following notation to make our diagrams easier to read:

la — b] € F(T)r(a — b)).

la— bic—d;- 1% FTyra— b)Tjr(c —> d)---).

Definition 6.3. The evaluation morphism &, : al[a = b] — b in T is the mate of the
identity V(7;)r(a — b) — T;x(a — b)) under (6.1). a

6.2 Composition

Definition 6.4. Following Proposition 4.9, we define the composition map

(= o7y x =) : Tyr(@— b)Ty#(b — ¢) = Tyr(a — ¢)
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as the mate of the following map in 7 (a[a — b][b — c] — c) under the adjunction (6.1):

Hla—b),[b—c)

a [a-bb—c] |

Lemma 6.5. Composition is compatible with evaluation, in the sense that the following

diagram commutes:

°Ty5 =)

ala - b;b — c] ————) ala - c]

1” \ c
ala = b][b — ¢c] —2t1 3 p[b - (] .

Proof. This follows from (6.1) and Remark 4.1 by taking A = 7, B =V, £ = L, and
R =R, v="Tx@— b)T;»(b — c), and f = (- o7, =) 1V = Ra(C) = Tyr(a = ©). u

Lemma 6.6. Composition is associative. a
Proof. By Remark 4.1 and Lemma 6.5, the mate of
(1(— oz, r —)) o (— o1y s -) : Tjr(@ = b)Tjx(b — OTyr(c - d) - Tyx(a — d)

is given by

Epsc

Tz =)

Hla—b],[b—d]

17 (= o755 -)
1]

a [a—-bb->cc—od] a [a—b;b— c;c—d]

Hla—b),[b—cic—d]
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by naturality of u. Now using Lemma 6.5, the right hand side above is equal to

l Easb I |I-l[b—>c],[c—-)d] l =

Hla—b],[b—c]

Hla—b],[b—c;e—d] Hla—bb—cl,[c—d]

a [a > b;b— c;c— d] a [a — b;b — c;c — d]
which is the mate of ((— o1 5 —)1) o (— o1 5 —), again using the naturality of u. |

6.3 Tensor product

Definition 6.7. Following Proposition 5.3, we define the tensor product morphism
T)y7(@ - b)Tyx(c - d) — T;r(ac — bd) as the mate of the following map under the

adjunction (6.1):

b d

NS

I Hla—b),[c—d] I

a ¢ [a—>bc—od]

Since 7;r(a — b) is an object of V, the functor 7% : V — Z(7T) includes data to commute

[a — b] past the object ¢ € 7. (]

We omit the proofs of the following two lemmas, which are similar to Lemmas
6.5 and 6.6.

Lemma 6.8. The mate of the tensor product map (— ®1yr —) ¢ Tyr(@a — b)Tyr(c - d) >
Ty7(ac — bd) is also given by (1,.F(— ®1)r —)) © Eac—sbd- 0

Lemma 6.9. Tensor product is associative. (i
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6.4 Braided interchange

We now prove that the braided interchange law is satisfied. As in the previous sections,
this is checked by taking mates. We use the shorthand notation of one rectangle labelled
p for composites of 1's, since the oplaxitor is associative. After expanding the left hand
side of the braided interchange law (1.1), we get the following diagram:

¢ f ¢ f
l I _1
I Epse I I Ee-—»f l I e I | Eenf |
i P
l Ea—b I | Ed—e I | Ea-b I I Ed—e l
~— Hlbsclle—f] \
l Hla—b],[d—e] ! a
Lll[a-ab;d—ve],[b—w;e-—)f] | H
m
a d [a—bid—eb—oce— f] a d [a—b;d—eb—oce— f]

Now we perform isotopy to move &4, closer to &..r, which braids the [d — e] strand
over the [b — c] strand using the half-braiding ej4_, . Using naturality of u, and
that F is braided oplax monoidal, we have

o (ledsepoal) = f(lﬂT,f(d—»e),Tﬂ..-(b—»c)l) o U,

so the diagram on the right hand side above is equal to the following diagram:

Il

a d [a—>b;d—e;b—ce— f] a d [a——?b;d——)e;b—)c;e—>f]

The diagram on the right is the mate of the other diagram in the interchange law after

unpacking. |
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6.5 Rigidity and a left adjoint

Lemma 6.10. If 7 is rigid, so is 7. g

Proof. For ¢ € 7, we define ev, € V(lv — Tyx(cc* —» 17—)) to be the mate of ev, €
T (cc* — 17) under Adjunction (6.1) with @ = cc*, v = 1,,, and b = 1,. The coevaluation
is defined similarly. That these maps satisfy the zig-zag relations is straightforward. B

We now show that Try, = T/f(lf,/f - —): ’I}‘} — V admits a left adjoint 7' : V —

7). We begin with constructing an equivalence between 7)-and T.
Definition 6.11. We define G : 7)), — T as follows. Recall that 7 and 7,7 have the same
objects, so we define G(a) = a foralla € T)z-For f € T).(a - b) =V(1y, - Tyz(a > b)),

we define G(f) by

b

G(f) = (la?—(f)) 0 &gsh = La(f) 0 €gp =

Notice that G(f) € T(a — b) is the mate of f under the adjunction (6.1) with v = 1,,:
T)w(a— b) =V(1y, - Tyz(a — b)) = T(a — b). (6.2)
(Again, we suppress the isomorphism F(1,) = 1,.) O

Proposition 6.12. The assignment G is a monoidal equivalence of categories, where the
tensorator G(ab) — G(a)G(b) is the identity. O

Proof. Since 7 and 7% have the same objects G will automatically be essentially sur-
jective provided it is a functor. By (6.2), G will automatically be fully faithful provided
it is a functor.

We show G is a functor. Since we defined j, € V(1,, — T)r(a — a)) to be the
mate of the identity 1, € 7(a — a), we see that G preserves identities. Suppose now

f €T)z(a— b)and g € T).(b — c). Recall that the composite of f and g in 7% is given
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by (f9) o (= o7, —). We calculate using naturality of u that

G((fg) © (- o7y -)) =

which proves G is a functor. Thus G is an equivalence of categories.

We now endow G with the structure of a strong monoidal functor by taking
the tensorator G(ab) — G(a)G(b) to be the identity. Indeed, for f € ’1}‘;(a — b) and
g € 7)-(c — d), by naturality of 4, together with Lemma 6.8, we see that

= G(f)G(9)

Thus G is a monoidal equivalence of categories. |

Now since 7 and 7, have the same objects, and since G : 7> — 7T is a monoidal
equivalence which is the identity on objects, we may unambiguously define G : T —
7,7 We now use G™! to define 7' : V — T as the composite F o G™'. Thus we see that
starting with a braided oplax monoidal functor 72 : V — Z(7) where 7 is rigid, we get
a rigid V-monoidal category 7, such that the functor 7;(1+ — —) admits a left adjoint

F'. Indeed,
T (F(v) = ¢) % T(F(v)—c) (;_"i) V(v = Tyz(l7 = ©)). (6.3)

7 Equivalence

Finally, we shall prove that the constructions described in the previous two sections are

inverses. Theorems 7.3 and 7.4 below combine to prove Theorem 1.1.
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As in the previous sections, we assume V is braided. Before stating Theorem 7.3,
we recall the definition of a morphism between two pairs (7, F) and (7, F') from [14,
Def. 3.2], suitably modified for oplax monoidal functors.

Definition 7.1. Suppose we have two rigid monoidal categories 7,7’ equipped with
braided oplax monoidal functors (F%,u) : V — Z(T) and (FZ, ') : V = Z(T'). A mor-
phism (G,v,y) : (T', F%) — (T, F?) consists of an oplax monoidal functor (G,v) : 7' - T
and an action coherence monoidal natural isomorphism y : 7' o G = F. This consists of
a family of natural isomorphisms y, : G(F'(v)) = F(v) such that the following diagram

commutes:

G(F'(wv)) —L2 F (uv) —22 F () F (v)

lG(u{,,u) YquT

G(F" (u)F" (v)) TOTO s G(F (u)G(F (v)) 7.1)

We also require that y is strictly unital, that is, y1, : G(F'(1y)) = 17 - F(1ly) = 17 is
equal to the identity.
Moreover, we require the following compatibility with the half-braidings. For

allceT and v eV,

16(c)Yo

G(eF " (v)) —L2 3 G(c)G(F"(v)) —2° 3 G(c)F (v)

lG(ec,mv)) leo(c), F ()

YvlG(c)

G(F" (v)e) — =223 G(F'(v))G(c) ——2— F(v)G(c) (7.2)

A morphism (G, v, y) : (T', F?) = (T, F?) is called an equivalence if G is a strong

monoidal equivalence of categories. O

Remark 7.2. Following [14, Section 3.1], there is a 2-category of pairs (7, F%) where T
is a monoidal category and F7 is a braided oplax monoidal functor V — Z(7). One can
then discuss what it means for a 1-morphism to be an isomorphism in this 2-category.
However, we will not pursue this here, and we will be content to show a morphism is

an equivalence as defined above. O

Recall that in Proposition 6.12, we constructed a monoidal equivalence G : 7))z —
7 which allowed us to define 7/ = FoG™!, which is a left adjoint of the functor 7;+(17 —
—). By Section 4, F’ lifts to a braided oplax monoidal functor Feu): V- Z(’I}‘}).
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Theorem 7.3. Suppose 7 is rigid and 7% : V — Z(7T) is a strictly unital braided
oplax monoidal functor which admits a right adjoint. The pairs (’1}‘},]—"2) and (7, F?)
are equivalent in the sense of Definition 7.1 above. a

Proof. For v € V, we define the action coherence morphism y, : G(F'(v)) - F(v) to be
the identity 1x.,. We must now prove that Equations (7.1) and (7.2) hold. To do so, we
note that the braided oplax monoidal lift 7/? of 7' is defined using Adjunction (4.1), which
in our case, is Adjunction (6.3). Thus (6.3) factors through G and (6.1) witha = l7,-. This
means that to calculate G(u, ,) and G(e = «,)), it suffices to calculate the mates of T
and e, () respectively under Adjunction (6.1).

To prove (7.1) holds, we must show that u,,, and G(u,,,), which are both maps in
T(F(uv) — F(uw)F(v)), are equal on the nose. Recall from Lemma 4.4 that the oplaxitor
Wy € T)5(F(uv) - F'(u)F'(v)) is defined as the mate of (n,1,) o (— Q7 =) € V(uv —
7)s(1r — F(u)F(v))) under Adjunction (4.1). By the above paragraph, we have that
G(uy,,) is given by the mate of (,ny) o (— ®7)r —) € V(Uv — T;s(1r —> F(u)F(v))) under
Adjunction (6.1). Thus by Proposition 5.3 and Remark 4.1,

F (u) F (v) F(u) F(v)
[Er-7w | 7o | l&r7w || &7 0 |
) = \\\ - \ \ " e
"_."""“‘Iﬂ[lr—'T(u)l.[erT(u)]I .:."’:'IT(%)I [7 (7o) |
1y 1y F (uv) 1o i F (uv)

since for allv e V, F(n,) 0 &1, 7(v) = Lrw).

Finally, proving (7.2) reduces to showing that the half-braidings e, sy, and
G(ec 7)), which are both maps in T(aF(v) — F(v)a), are equal on the nose. Recall
from (5.1) that e, 7/, is the mate of (n,j,) o (— Q1) =) under Adjunction (4.2). Again by
the first paragraph in the proof, we have that G(e; 7)) is the mate of (,j;) o (— ®1y5 —)
under Adjunction (6.1). By Proposition 5.3 and Remark 4.1,
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F (v) c

F(v) ¢

G(ec,T’(v)) =

: 1;— c F (v)
19 c F(v)

since F(ny) 0 &1, 7wy = Lrw) and (1cF(Jc)) 0 Ecre = Le(fe) 0 8cc = 1o. We are finished. W

As before, we have V is a fixed braided monoidal category. Suppose C is arigid V-
monoidal category such that the categorified ‘trace’ Try = C(l¢ —» —) : C¥Y — V admits a
left adjoint F : V — CY. Following Section 5, F lifts to a braided oplax monoidal functor
FZ:V = Z({CV).

Theorem 7.4. There is a V-monoidal equivalence between C and C. O

Before we begin the proof, we give some helpful notation and lemmas. Thinking

of CY as 7, as before, we define

def

[a — b] € F(CJx(a — b))

def

[a—>bic—>d;-- 1= F(C/r(a— b)C/r(c—>ad)-)

def

{a - b} = F(C(a — b))

(a—>b;c—>d;-} ¥ FCla— b)C(c—>d)---).

We have two adjunctions: (4.2) and (6.1) with 7 = CV.

CY(aF () = b) = V(v — C(a — b)) (7.3)
CY(aF(v) —» b) = V(v — C/z(a — b)) (7.4)

The first adjunction uses the right adjoint R, : C¥ — V of £, given by b — C(a — b)
from Section 4.2. The second adjunction uses the right adjoint R, : C¥ — V of £, given
by Ra(v) = C}r(a — b) from Section 6.1.

As in the previous sections, ¢, : a{a - b} — b is the mate of 1 € V(C(a —
b) — C(a — b)) under (7.3), and &,.,p : ala — b] — b is the mate of 1 € V(C/z(a — b) —
C)r(a — b)) under (7.4).
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We now use Adjunctions (7.3) and (7.4) to construct V-monoidal functors G :
C)z = Cand H : C — C}- which witness an equivalence of V-monoidal categories.

Definition 7.5. We define G : C - Cy= by G(c) = ¢ on objects and we define G, €
V(C(a — b) — C}’f(a — b)) as the mate of ¢,_,; under Adjunction (7.4) with v = C(a — b).
We define the tensorator a9 by

v
aZ, = 7ol : 1y = C}r(G(@b) - G@G(®)) = Cl(ab — ab).

We define H : C)> — C by H(c) = c on objects and we define H,_., € V(C)r(a —
b) — C(a — b)) as the mate of &,_,, under Adjunction (7.3) with v = C}’f_(a — b) . We
define the tensorator
a;fb =Jj5 : 1y > C(H(ab) - H(a)H(b)) = C(ab — ab).

In summary, the definition of G, is given by taking mates as follows:

V(Cla—b) = Cla— b)) = C (ala— b} - b) +=> V (Cla > b) - C.(a > b))

1C’(a—)b) < Ea—b £ > Gaosb
(7.5)

and for H,_,; as:

V(Clrla—b) » Cl(a— b)) = CV (ala— b] - b) <= V (Ch(a > b) - Cla - b))
1

C/(/Vy,-(a—)b) < > Eamsb € > a—b

a

Applying Remark 4.1 with A=CY,B=V,L=L,and R =R,, v =C(a — b), and

f = Gap gives us the formula:

b
= €4b = (1aF (Gasb)) © Eqmsp =

Ea—b

a {a—b}

(7.6)
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Similarly, applying Remark 4.1 with A=CY,B=V, L =L, and R = R,, v =C} (a — b),

and f = H,-.p gives us the formula:

b
- =E&4p = (1af(7{a—>b)) O €&qp =

Eab

a [a—>b]

(7.7)

Proof of Theorem 7.4. First, we need to check that the diagrams (2.1) and (2.2) for G
commute. We only show (2.1) as the other calculation is easier. By Remark 4.1, the mate

of (GamsbGpc) © (— ocy, —) is given by

Hattbore] a {a-bb-c)

a {a—>bb-c}

a {a-bb—c} a {a—> b;b—c)

which is the mate of (— oc —) 0 G-, . The first equality follows by the naturality of u, the
second by (7.6), and the last from Proposition 4.9.

That the tensorator o9 satisfies the naturality and associativity axioms is clear,
since all the maps are identity elements. Proving that H is a V-monoidal functor is
similar, and the proof is omitted.

Finally, it remains to show that G and H witness an equivalence. We see that
Gasb © Hasp = le@asp € V(C(a — b) - C(a — b)) by taking mates. Indeed, mate(G,_,, o
Hesp) € CV(afa — b} — b) is exactly the right hand side of (7.6)! Thus it is equal to
€a-b, Which is the mate of 1¢,-p) by (7.5). That H,p 0 Gosp = lc};f(a_,b) is similar using
(7.7). [ |
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Appendix 1. Technical Details
A.l. Transporting enrichment

Suppose C is a V-monoidal category, and (F,u) : V — W is a braided lax monoidal
functor. (This means that (F, u) is lax monoidal, and also satisfies the compatibility
Huy © F(BY,) = B 7o) © Mrw. o) for allu,v e V).

We may form a WW-monoidal category, denoted F,.C, whose objects are the same
as those of C, whose hom objects are given by F.C(a — b) = F(C(a — b)), and whose
composition and tensor product are given by o F(—o¢ —) and po F(— Q¢ —) respectively.
Since (F,u) is lax monoidal, we easily see that composition and tensor product are
associative. The interchange relation uses the compatibility with the braiding. Indeed,

We see

F(C(ad = cf))

F.C(ad - cf)

FiCla—b) FCd—e) FClb-c) FCl—f) FCa-b) F(Cd—e) FCE-c) FCle- /)

7 ) 5() Sos
p— OC — p— ®C -
7’((— oc =)(-o¢ —))

F((-8c-)-8c-))| |F((=oc-)(-oc-))

[l
i
] F((= oc =)= oc -))
= = = F (B) = i
H
L+ | LA |

A
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F.C(ad - cf)

h

FCl@a—b)  FCME-e) FCb—c) FCle— f)

Example A.1. The functor V — Vec given by V(1,, - —) is braided lax monoidal.

Transporting enrichment using this functor yields the underlying monoidal category
cv, O

A.2. Proofs for V-natural transformations
We now prove naturality of horizontal composition of V-natural transformations.

Proof of Lemma 2.3. To verify naturality of the horizontal composition, we calculate

E(H(F (a)) - I(G(b))) & (H(F (@) —» I(G(P)))

Hy (a)~6(a)

functoriality Hoa-60) | |Pow |
[ Gass | | Bo) I = \

S

u v C(a—b) u v C(a—b)

naturality
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naturality

associativity |

He (a)-6(a)

[ o

I (Z © GFasp l
' I
u v Cla—- D) u v C(a — b)

Associativity is now straightforward. If we have

G I %
AN AN Sy N
5 <] Te i) T e
N N U
F H J

then,

We now prove that V-natural transformations satisfy a braided interchange

relation.
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Proof of Lemma 2.4. We have

functoriality
and

associativity

gz o ((kop)(Aov)) =

<

naturality
of A

A.3. Separate naturality conditions for V-monoidal functors

The following lemma is useful for proving naturality for a V-monoidal functor.

Lemma A.2. The naturality condition (2.3) is equivalent to two separate naturality

conditions, one in each factor: for all @ € C

Cla— c) “Sch s C(ab — cb)
lﬁ_;c T;zb—vcb
D(F (a) = F(c)) D(F (ab) — F (cb))

—®DjF(b) \L
—Ol¢ b

D(F(@)F (b) = F()F (b)) =25 D(F (ab) = F(c)F (b))
(A.1)

and forallb e C
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C(b— d) Jo®0"  \ C(ab — ad)
lﬁ_.d 7’:zb—-md
D(F (b) — F(d)) D(F (ab) — F (ad))

o Dy
JF(a)®D l—Oaa,d

D(F (@) F (b) —» F(@F (d)) =25 D(F (ab) - F (a)F (d))
(A.2)

a

Proof. Thenaturality condition (2.3) gives the pair of conditions (A.1) and (A.2) by taking
b = d and precomposing with 1j;, or by taking a = ¢ and precomposing with j,1. We
give a terse calculation that (2.3) follows from (A.1) and (A.2), without fully labelling all

the boxes.

D(F (ab) — F (c)F (d)

Cla—c) C(b—d)

|~ op |

functoriality ~ [-® ~] [-® -]  associativity = [-®-| [-8c-]

A 1A 1

C(a—-c¢) C(b—d) Cla—¢) Cb—d)

Ndn
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Equation (A.2)

Equation (A.1)

]

Feodl oo

mterchange y ‘,—/ i 1dent1t1es

Cla—c) C(b—d) Cla—c) Cb—d |

Appendix 2. Proofs Using Adjunctions and Mates

Lemma 4.6 The mate of 1,5, € C¥(aF(v) — aF(v)) is given by
Uanv) 0 (= ®c =) € V(v = C(a — aF(v))).

Proof. We begin with 1,54, € C¥(aF(v) - aF(v)) and perform the first isomorphism
in Adjunction (4.2) to obtain (coev, 15w))(— Q¢ —) € C¥(F(v) — a*aF(v)). Applying the
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next isomorphism gives us its mate

C(l¢ = a*aF (v))

€ V(v — C(l¢c — a'aF (v))

under Adjunction 4.1, which we computed using Remark 4.1. We now apply Frobenius
reciprocity in C to obtain the following map in V(v — C(a — aF(v))), which we need to

show is equal to (J,n,)(— Q¢ —):

C(a - aF (v))

Applying the exchange relation allows us to simplify the lower right side. We then use
associativity of tensor product in two places to obtain

C(a = aF (v))
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We are now in the position to use the interchange relation again, obtaining

C(a — a¥F (v))

Now using the zig-zag relation and simplifying, we have exactly (j,n,) o (— ®¢ —). [

Proposition 4.9 The mate of the composition map (—o—) : C(a — b)C(b — ¢) — C(a — ¢)
under Adjunction (4.2) with v = C(a — b)C(b — c¢) and b = c is given by

H{a—b),(b—c)

a {a—-byb->c})

Proof. By Corollary 4.7, the mate of the diagram in the statement of Proposition 4.9 is
given by

Cla—c)

Ij(b—»c) I

[Mc@b) | |Tee-e | [Eaab]
|

Cla—b) Cb—-rc)
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We may apply the interchange relation to obtain the map

Cla—>c)

[Mc@n) | [easb]  [Hct-0)] lj[b—vc}l
I I

C(a— b) Cb—-c)

We may now apply Corollary 4.8 and simplify to obtain

C(a—c) Cla—¢)

[ Ceed]

l Ep—rc l /ﬁ I ,,C(b—w) I I Eb—c I

Ca—b) Cb—-o) C(a - b) C(b —¢)

since we may add identity elements to the diagram at no cost. Now applying the

interchange relation and using associativity of composition, we obtain

Cla—c¢)

Cla —c)

I ne-c) I I Eboc l

C(a — b) Ccb—rc¢) Cla—b) Cb—rc)

by applying Corollary 4.8 again. |
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