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RECOVERY OF MATERIAL PARAMETERS IN TRANSVERSELY

ISOTROPIC MEDIA

MAARTEN V. DE HOOP, GUNTHER UHLMANN AND ANDRÁS VASY

Abstract. In this paper we show that in anisotropic elasticity, in the par-
ticular case of transversely isotropic media, under appropriate convexity con-
ditions, knowledge of the qSH wave travel times determines the tilt of the
axis of isotropy as well as some of the elastic material parameters, and the
knowledge of qP and qSV travel times conditionally determines a subset of
the remaining parameters, in the sense if some of the remaining parameters
are known, the rest are determined, or if the remaining parameters satisfy a
suitable relation, they are all determined, under certain non-degeneracy condi-
tions. Furthermore, we give a precise description of the additional issues, which
are a subject of ongoing work, that need to be resolved for a full treatment.

1. Introduction

In this paper we show that in anisotropic elasticity, in the particular case of
transversely isotropic media, under appropriate convexity conditions, knowledge of
the qSH wave travel times determines the tilt of the axis of isotropy as well as
some of the elastic material parameters, and the knowledge of qP and qSV travel
times conditionally determines a subset of the remaining parameters, in the sense
if some of the remaining parameters are known, the rest are determined, or if the
remaining parameters satisfy a suitable relation, they are all determined, under
certain non-degeneracy conditions. Furthermore, we give a precise description of
the additional issues, which are a subject of ongoing work, that need to be resolved
for a full treatment.

The problem addressed in this paper has one of its primary application in seis-
mic tomography. In Earth’s interior, the presence of anisotropy has been widely
recognized. In a classical (review) paper, Silver described the seismic anisotropy
beneath the continents [17]. More recently, Romanowicz and Wenk [14] described
anisotropy in the deep interior. The assumption of transverse isotropy with tilted
symmetry axis has played a dominant role in many studies ranging from Earth’s
sedimentary basins, continental dynamics and subduction, deep mantle flow and
inner core.

The fundamental result of this paper is that the spatially varying symmetry axis
of a transversely isotropic elastic medium can be locally recovered, under certain
geometric conditions. However, in the present analysis, the full recovery of elas-
tic parameters requires some interrelationships between them. Such relationships
may be best motivated by considering models that effectively generate these pa-
rameters; these then provide possible physically, mechanically or geologically based
reductions of independent parameters. We briefly mention a selection of examples
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of modeling procedures of this kind, omitting references to a vast literature on
the subject: (i) differential effective medium theories, for which we refer to Norris
[12]; effective-medium-averaging techniques to estimate the effective properties of
a random sphere pack while considering contact laws for adhesive contacts, rough
contacts, and smooth contacts, which were developed by Digby [4] and Walton
[24], which later culminated in the modeling of elastic properties of shales [9] in
sedimentary basins; (ii) (sedimentary) layering-induced anisotropy in a simple cal-
culus formulated by Schoenberg and Muir [15], and more general shape preferred
orientation (SPO), considered by Garnero and Moore [7], in its most basic form
originating from the study of a deformable elastic ellipsoid in a far-field loaded ma-
trix with different properties by Eshelby [5, 6]; and (iii) strain-induced formation of
lattice preferred orientation (LPO). Indeed in Earth’s upper mantle it is generally
accepted that seismic anisotropy results from LPO produced by dislocation creep
of olivine [25], while the mechanisms causing anisotropy in the inner core are still
under debate.

In order to state the results precisely, we work in an invariant setting based on
Riemannian geometry since this enables a cleaner and conceptually clearer state-
ment. Thus, there is a given background metric g0, which is typically the Euclidean
metric; we denote the dual metric and the dual metric function by G0. In general,
anisotropic elasticity is described by a system whose principal symbol, a tensor
(matrix)-valued function on phase space, i.e., the cotangent bundle, is non-scalar,
i.e. is not a multiple of the identity map. It can be diagonalized; the eigenvalues
are the speed of the various elastic waves. In isotropic elasticity, there are two kinds
of waves, P and S waves, with S waves corresponding (in spatial dimension 3) to a
multiplicity 2 (and P waves a simple) eigenvalue. In anisotropic elasticity typically
the S wave eigenspace is broken up, at least in most parts of the cotangent bundle.
In transversely isotropic elasticity there is a preferred axis, with respect to which
the principal symbol is rotationally symmetric relative to the background metric
G0 lifted to the cotangent bundle. There are three waves then, the qP waves, as
well as the qSV and qSH waves, with the latter corresponding to the ‘breaking up’
of the S-waves. Of these, the qSH waves behave much like in isotropic elasticity
in the sense that they are given the dual metric function of a Riemannian metric,
while the qP and qSV waves have a very different character.

One common parameterization of transversely isotropic materials, see [2, 22],
is via the material constants a11, a13, a33, a55 and a66, which are functions on the
underlying manifold. In addition, there is an axis of isotropy, which can be encoded
by a vector field, or better yet a one form ω. The qSH ‘energy function’ (dual
metric function) then depends on a55, a66 > 0 and ω. Concretely, using orthogonal
coordinates relative to the metric g0 (with G0 the dual metric), and aligning the
axis of isotropy with the third coordinate axis, which is possible at any given point,
the wave speed of the qSH waves is given by a (squared!) Riemannian dual metric

G = GqSH = a66(x)|ξ
′|2 + a55(x)ξ

2
3 = a66(x)G0 + (a55(x) − a66(x))ξ

2
3 .

This corresponds to a Riemannian metric

g = gqSH = a66(x)
−1 |dx′|2+a55(x)

−1 dx2
3 = a66(x)

−1g0+(a55(x)
−1−a66(x)

−1) dx2
3,

again at the point in question. Thus, invariantly it has the form

g = αg0 + (β − α)ω ⊗ ω,
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i.e., the metric is a rank one perturbation of a conformal multiple of the background
(say, Euclidean) metric, with α = a−1

66 , β = a−1
55 functions on the base manifold.

Note that here β − α could be incorporated into ω up to a sign; this formulation
keeps the sign unspecified, but then one should keep in mind that only the direction
of ω matters. There is another reason to keep this form as explained below. Note
also that g determines the span of ω if β 6= α, for the kernel of ω is well-defined
(at any point in the manifold) as the 2-dimensional subspace of the tangent space
restricted to which g is a constant multiple of g0.

Now, under appropriate assumptions, e.g. locally near the strictly convex bound-
ary, a Riemannian metric, g, can be recovered from its boundary distance function
up to diffeomorphisms, as shown by Stefanov, Uhlmann and Vasy, recalled here in
Section 2, see [20] for details. More precisely, see Section 2, the local determination
indeed only uses the boundary distance function, while the global result uses the
lens relation, which also keeps track of the direction of the geodesics at the two
points on the boundary at which they enter and exit the domain; in many cases
these are equivalent. Thus, if we know the qSH wave travel times, then in fact we
know g above up to diffeomorphisms (which are the identity at the boundary). A
natural question is whether this arbitrary diffeomorphism freedom is present in our
problem for the qSH wave travel times.

Formal dimension counting indicates that the space of Riemannian metrics is 6
dimensional at each point, that of vector fields (or one forms) is 3 dimensional at
each point, so formally the space of Riemannian metrics modulo diffeomorphisms
is 3 dimensional. Now, above, α, β are arbitrary functions, and ω is arbitrary but
only its direction matters, which means that the parameter space at each point is
4 dimensional. This indicates that it is unlikely that one can recover these four
parameters from knowing the corresponding Riemannian metric up to diffeomor-
phisms.

On the other hand, if one assumes that ω satisfies additional conditions, this
pointwise parameter space can be cut down, and the problem may become formally
determined. For instance, if ω always lies in the dx1-dx3 plane, this would be the
case. (Note that this includes the case when ω = dx3, in which case the pointwise
above form holds at least locally.)

An important property of a one-form, such as ω, is its integrability, or more
precisely whether its kernel is an integrable hyperplane distribution, which means
that Kerω is the tangent space of a smooth family of submanifolds, which are thus
locally level sets of a function f , so ω is a smooth multiple of df . In this case,

g = αg0 + γ df ⊗ df.

In geological terms, this corresponds to a layered material with layers given by the
level sets of f . The integrability condition is natural though not globally (that is,
on planetary scale). LPO is one mechanism that is consistent with this assumption
while sedimentary processes, compaction and deformation would yield the condition
to also hold true.

Our first theorem is:

Theorem 1.1. Consider the class of elastic problems in which Kerω = Kerdf
is an integrable hyperplane distribution on a manifold with boundary M , with ω
not conormal to ∂M (so level sets of f locally intersect ∂M non-degenerately)
and not orthogonal to N∗∂M relative to G0. Then, under the local, resp. global,
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convexity conditions for Riemannian determination (up to diffeomorphisms), stated
here in Theorem 2.1 and Theorem 2.2 of Section 2, f, α, β are locally, resp. globally,
determined by the qSH travel times, resp. qSH lens relations, and the labelling of
the level sets of f at the boundary.

Thus, there is no diffeomorphism freedom in this problem, unlike for the bound-
ary rigidity problem in Riemannian geometry.

Since the qSH-wave speed does not depend on the remaining material param-
eters, a11, a13, a33, in order to go further we need to consider qSV and qP waves.
Now, at a point with coordinates g0-orthogonal at the point and such that the
isotropy axis is aligned with the x̃3 axis the Hamiltonians for the other waves take
the form (with ± corresponding to the choice of qP vs. qSV, and G being twice
what gives the actual wave speeds)
(1.1)

GqP/qSV = (a11 + a55)|ξ̃
′|2 + (a33 + a55)ξ̃

2
3

±

√

(

(a11 − a55)|ξ̃′|2 + (a33 − a55)ξ̃23
)2

− 4E2|ξ̃′|2ξ̃23 ,

where
E2 = (a11 − a55)(a33 − a55)− (a13 + a55)

2,

see [16]. (We will make the physically natural assumption that max{a55, a66} <
min{a11, a33} throughout the paper.) If one uses another coordinate system, xj ,
often chosen orthogonal at the point in question, and corresponding dual variables
ξj , the actual wave speed is given by the corresponding change of variables. Thus,
these wave speeds are no longer given by a quadratic polynomial in the fibers of
the cotangent bundle, and thus are not the wave speeds of a Riemannian metric
unless E = 0, i.e., E measures the departure from the Riemannian case (which is
sometimes called the ‘elliptic case’ due to the quadratic polynomial nature). (One
can say that they are the wave speeds of a co-Finsler metric due to the homogeneity
with respect to dilations in the fibers of the cotangent bundle, cf. [3] for the termi-
nology and for a detailed discussion.) Correspondingly, the Riemannian result, [20],
is not applicable. Nevertheless, the analysis of that paper is based on the study of a
class of transforms which are microlocally weighted X-ray transforms along curves,
and even these general wave speeds fall in this class, with the techniques introduced
by Uhlmann and Vasy [23] being applicable.

Following [23], in this paper we work with a function on M with strictly con-
vex level sets, and localize to super-level sets of this function. We show that the
modified and localized ‘normal operators’ that arise from the Stefanov-Uhlmann
pseudolinearization formula, which is valid for all Hamiltonian flows and goes back
to [18], are scattering pseudodifferential operators in Melrose’s scattering pseudo-
differential algebra [10], with the level set of the function at which we stop playing
the role of the boundary. (Thus, this artificial boundary is the only one with an-
alytic significance, while the original boundary of M simply constrains supports.)
In this algebra, whose properties are summarized in [20, Section 3.2], there are two
different (and somewhat coupled) notions of ellipticity: that of the standard prin-
cipal symbol and that of the boundary principal symbol; the boundary principal
symbol at infinity in the fibers of the (scattering) cotangent bundle is the same
as the standard principal symbol at the boundary, explaining the coupling. The
standard principal symbol corresponds to differentiable regularity, the boundary
principal symbol to decay.
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Now, there are three quantities we would still like to determine: a11, a33 and E,
and we have two different wave speeds, the qSV and the qP waves that we can use.
While ideally one would like to determine all of these at the same time, it is at
this point natural to formulate a theorem in which two of these three are regarded
as known, and the the third as unknown. Due to multiple points in the cotangent
space potentially corresponding to the same tangent vector via the Hamilton map (a
phenomenon that causes ‘wave triplication’), we make an additional non-degeneracy
hypothesis for the material, for which we refer to Definition 3.1.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 hold, and that ∇f is
neither parallel, nor orthogonal to the artificial boundary with respect to g0. (This is
automatic near ∂M if the convex function is a boundary defining function for ∂M ,
or a sufficiently small perturbation of such.) Assume moreover that the transversely
isotropic material is non-degenerate relative to a convex foliation if qSV data are
used below, with convexity of the foliation always understood with respect to GqP ,
resp. GqSV , if qP, resp. qSV data are used below.

Then the modified and localized ‘normal operators’ arising from the Stefanov-
Uhlmann formula are in Melrose’s scattering pseudodifferential operator algebra.
Furthermore, the boundary principal symbol is elliptic at finite points of the scat-
tering cotangent bundle for any one of E2, a11, a33 from the qP travel data, and for
E2 (as well as a11 and a33 if E2 > 0) from the qSV travel data. Furthermore, for
a11 from the qP-travel time data standard principal symbol ellipticity also holds.

Note that the assumption that df is not conormal to the artificial boundary, i.e.,
∇f is not orthogonal to it, means that the span of df has a non-degenerate image
in the scattering cotangent bundle; if ρ defines the artificial boundary, this is that
of the scattering one-form ρ−1 df .

An immediate corollary, using the methods of [23, 19], is:

Corollary 1.1. Suppose that we are given the qSH-travel time data so that ω, a55
and a66 are determined already, and assume that the hypotheses of Theorem 1.2
hold. Given E2 and a33, the material parameter a11 can be recovered from qP-
travel time data.

Motivated by the discussion in the introduction on possible parameter set reduc-
tion, by elimination we may invoke a functional relationship where a11 determines
a33 and E2. This yields an alternative to the corollary above:

Corollary 1.2. Suppose that we are given the qSH-travel time data so that ω, a55
and a66 are determined already, and assume that the hypotheses of Theorem 1.2
hold for both the qP and qSV waves with the same convex foliation. Suppose also
that we are given C∞ functions F,H : R → R with F ′ ≥ 0 such that a33 = F (a11)
and E2 = H(a11). Then a11 can be recovered from the qP- and qSV-travel time
data jointly.

Finally, we show the precise nature of the obstruction to full invertibility via
elliptic analysis:

Theorem 1.3. For a33, E
2 from the qP or qSV travel data, as well as for E2 and

one of a11 and a33 jointly from the qP and qSV data, the standard principal symbol
is not elliptic, rather vanishes in a non-degenerate quadratic manner along the span
of df at fiber infinity in the scattering cotangent bundle.
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The explanation of the lack of ellipticity is very simple: In general, for the
normal operator’s standard principal symbol computation at a point ζ ∈ T ∗

xM , one
takes a weighted average of certain quantities evaluated at covectors for which the
Hamilton vector field for the relevant wave speed is annihilated by ζ. Now, if ζ = df
is in the axis direction, the tangent vectors involved in the integration correspond
to covectors in the g0-orthogonal plane, i.e. with vanishing ξ̃3 coordinate, and
there the qP and qSV wave speeds are insensitive to a33, E

2 as these appear with a
prefactor ξ̃23 above. The quadratic non-degeneracy also corresponds to this: namely

the relevant coefficient is a non-degenerate multiple of ξ̃23 .
This means that the analytic framework for this inverse problem involves dou-

ble characteristics, which were studied in the paper of Guillemin and Uhlmann [8].
However, here these need to be analyzed in the context of scattering pseudodiffer-
ential operators, and the analysis must be global on the manifold cut out by the
artificial boundary.

Of course, we would like to determine all three of the remaining parameters
ideally. One may set up a system by adding a third row and using different pre-
multipliers, as was done in [20] to treat the normal gauge, but one will certainly
still have the double characteristic phenomena at the minimum.

The authors thank Joey Zou for pointing out an incorrect statement in Lemma 3.2 in an

earlier version of the paper. The authors are very grateful to the Hong Kong University

of Science and Technology (HKUST) and the University of Jyväskylä for their hospitality

during stays which led to this work. The authors also gratefully acknowledge partial

support from the National Science Foundation, and G.U. is grateful for partial support

from a Si Yuan professorship from the Institute for Advanced Study of HKUST, while

M.V.d.H. and A.V. thank the Simons Foundation for partial support.

2. Proof of Theorem 1.1

At the beginning of this section we recall the results of Stefanov, Uhlmann and
Vasy [20]. The simplest result to formulate is the local boundary rigidity result in
Riemannian geometry.

Theorem 2.1. ([20, Theorem 1.1]) Suppose that (M, g) is an n-dimensional Rie-
mannian manifold with boundary, n ≥ 3, and assume that ∂M is strictly convex (in
the second fundamental form sense) with respect to each of the two metrics g and ĝ
at some p ∈ ∂M . If dg|U×U = dĝ|U×U , for some neighborhood U of p in ∂M , then
there is a neighborhood O of p in M and a diffeomorphism ψ : O → ψ(O) fixing
∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

Furthermore, if the boundary is compact and everywhere strictly convex with
respect to each of the two metrics g and ĝ and dg|∂M×∂M = dĝ|∂M×∂M , then there
is a neighborhood O of ∂M in M and a diffeomorphism ψ : O → ψ(O) fixing
∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

The same paper also proves a global consequence of the local results, assuming
that M is connected with non-trivial boundary. This global statement requires
a globally defined function x with level sets which are strictly concave from the
superlevel sets and which is ≥ 0 at a subset of ∂M ; such functions necessarily exist
near the boundary but not necessarily globally. (One can take for instance the
negative of a boundary defining function as a local example near the boundary,
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though this does not localize within ∂M . See [23] for more examples.) One also
has global existence of such a function under appropriate curvature conditions; see
[20] for more details and references. (As an example, for domains in non-positively
curved simply connected manifolds, the distance to a point outside the domain
satisfies the concavity requirements.) This theorem uses the lens relation, which in
addition to the distance between boundary points keeps track of the directions at
these points of geodesics connecting them. For simple manifolds (strictly convex
boundary and the geodesic exponential map around each point is a diffeomorphism)
the knowledge of the boundary distance function dg|∂M×∂M and of the lens relation
is equivalent, see [11].

Theorem 2.2. ([20, Theorem 1.3]) Suppose that (M, g) is a compact n-dimensional
Riemannian manifold, n ≥ 3, with strictly convex boundary, and x is a smooth
function with non-vanishing differential whose level sets are strictly concave from
the superlevel sets, and {x ≥ 0} ∩M ⊂ ∂M .

Suppose also that ĝ is a Riemannian metric on M and suppose that the lens
relations of g and ĝ are the same.

Then there exists a diffeomorphism ψ : M → M fixing ∂M such that g = ψ∗ĝ.

We start the proof of Theorem 1.1 by discussing some consequences of its inte-
grability hypothesis.

As we already mentioned, in general Kerω, thus in this case Ker df is well-
defined, and so is its g-orthocomplement, which is the same as the
g0-orthocomplement, since if a vectorW is g0 orthogonal to an element V of Kerdf ,
then df ⊗ df(V,W ) = df(V ) df(W ) = 0 shows the g-orthogonality, and conversely.
Moreover, taking y3 = f , one can introduce local coordinates in which ∂y1 , ∂y2

are orthogonal to ∂y3 : one does this by defining yj on a level set of f , and then
extending them to be constant along integral curves of ∇gf . Indeed, in this case
∂y1 , ∂y2 are tangent to the level sets of f , for ∂yj

y3 = 0, j = 1, 2, while ∂y3 is a
multiple of ∇gf , which is orthogonal to the f level sets, hence to the ∂yj

, j = 1, 2.
Correspondingly, in these coordinates, the metric takes the form

g =

2
∑

i,j=1

aij dyi ⊗ dyj + a33 dy3 ⊗ dy3.

Notice that by the above remark, one has the same result if ∇g0f -integral curves
are used, since they are also orthogonal to the level sets of f , thus are simply
reparameterizations of the ∇gf -integral curves. Furthermore, one can take any
hypersurface transversal to ∇g0f to define y1 and y2 originally. Thus, if ∇g0f is
not tangent to the boundary, i.e., ω is not G0-orthogonal to N∗∂M , as we have
assumed, one can use the boundary for this purpose.

Now suppose that two metrics g and g̃ of this form are the same up to a diffeo-
morphism Φ fixing the boundary, i.e.

α̃g0 + γ̃ df̃ ⊗ df̃ = Φ∗(αg0 + γ df ⊗ df).

Since Kerdf is determined by g, and Ker df̃ is determined by g̃, Φ preserving the
metrics implies that the differential of Φ then will take Kerdf and its g, thus g0-
orthocomplement to Kerdf̃ and its g̃, thus g̃0-orthocomplement. Using coordinates
yj and ỹj as above this means that DΦ is block-diagonal, with the (12) and (3)
blocks being non-trivial. This says that ∂jΦ3 = 0, j = 1, 2, and ∂3Φj = 0, j = 1, 2.
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Thus, Φ1 and Φ2 are independent of y3, while Φ3 is independent of y1 and y2. So if
one can make the argument that (Φ1,Φ2) is the identity at some point each y3-curve
then it is so globally; moreover Φ3 simply relabels the level sets, i.e., ỹ3 = Φ3(y3).
But one can achieve this by choosing y1 and y2 on the boundary (locally), using that

∇g0f,∇g0 f̃ are transversal to the boundary by our assumption, and then choosing
ỹ1 and ỹ2 to be the same as y1, y2 there – then at the boundary, the (12) block of
DΦ is the identity matrix. Moreover, as ∇f is not orthogonal to ∂M , i.e., ω is not
conormal to ∂M , by our assumption, the labelling of the level sets of f is determined
by their value at the boundary (since they intersect the boundary, and they do so

non-degenerately), and the same for f̃ . Thus, in this case the diffeomorphism is the
identity, and thus g is determined from the boundary distance function (locally).
Since g in turn determines α, γ = β − α, this proves Theorem 1.1.

3. Proof of Theorem 1.2 and Theorem 1.3

3.1. The pseudolinearization formula and its basic properties. To proceed,
consider the Stefanov-Uhlmann pseudolinearization formula which, as we recalled
already, is valid for all Hamiltonian flows and goes back to [18]; recall that in the
isotropic setting one uses the momentum, ∂ξ, component of the Hamilton vector
field to recover the unknown wave speed. This in turn involves the position, x,
derivative of the effective Hamiltonian. Concretely, see [20, Section 7.2.2], the ξ-
component of this formula for two Hamilton vector fields Hp and Hp̃ corresponding
to two effective Hamiltonians p and p̃, denoting their flows by (X,Ξ) (with corre-

sponding integral curve γ, exit time τ = τ(x, ξ)), resp. (X̃, Ξ̃), with f = p− p̃, takes
the form
(3.1)

Jif(γ)=

∫

(Aj
i (X(t),Ξ(t))∂xjf(X(t),Ξ(t))+Bij(X(t),Ξ(t))∂ξjf(X(t),Ξ(t))) dt = 0

with

Aj
i (x, ξ) = −

∂Ξ̃i

∂ξj
(τ(x, ξ), (x, ξ)),

Bij(x, ξ) =
∂Ξ̃i

∂xj
(τ(x, ξ), (x, ξ)).

Thus, at the boundary,

Aj
i (x, ξ) = −δji , Bij(x, ξ) = 0.

Now suppose there is a function P = P (x, ξ, ν1, . . . , νk) depending on parameters
νj , which are here the material parameters aij , and corresponding to either wave
speed GqP/qSV , and suppose that

p(x, ξ) = P (x, ξ, ν1, . . . , νk), p̃(x, ξ) = P (x, ξ, ν̃1, . . . , ν̃k),

for two media with particular parameters ν1, . . . , νk, resp. ν̃1, . . . , ν̃k. Then

p(x, ξ) − p̃(x, ξ) =

k
∑

j=1

(νj(x)− ν̃j(x))E
j(x, ξ),

with

Ej(x, ξ) =

∫ 1

0

∂P

∂νj
(sν1(x) + (1− s)ν̃1(x), . . . , sνk(x) + (1 − s)ν̃k(x), x, ξ) ds.
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Now, if these two media have the same lens relations (and thus locally if they simply
have the same travel times), the Stefanov-Uhlmann identity gives with fl(x) =
νl(x) − ν̃l(x), and now f = (f1, . . . , fk),

(3.2) Jif(γ) =

k
∑

l=1

∫

(Âjl
i (X(t),Ξ(t))∂xjfl(X(t)) + B̂l

i(X(t),Ξ(t))fl(X(t)) dt = 0

with

Âjl
i (x, ξ) = −

∂Ξ̃i

∂ξj
(τ(x, ξ), (x, ξ))El(x, ξ),

B̂l
i(x, ξ) = −

∂Ξ̃i

∂ξj
(τ(x, ξ), (x, ξ))∂xjEl(x, ξ) +

∂Ξ̃i

∂xj
(τ(x, ξ), (x, ξ))∂ξjE

l(x, ξ).

Thus, at the boundary, where the νl and ν̃l are equal,

Âjl
i (x, ξ) = −δji

∂P

∂νl
(ν1(x), . . . , νk(x), x, ξ),

B̂l
i(x, ξ) = −δji ∂xj

∂P

∂νl
(ν1(x), . . . , νk(x), x, ξ).

Notice that now this is a linear transform in the fl.
A convex foliation, by level sets of a function x, often plays a role in this paper.

The level sets of a function x on M are concave, or concave from the superlevel sets,
or convex from the sublevel sets for a Hamiltonian p if along integral curves γ(t) =

(X(t),Ξ(t))) of Hp,
d
dt(x ◦X)(t) = 0 implies d2

dt2 (x ◦X)(t) > 0. This corresponds
to the assumptions in Section 3.2 of [23] above Equation (3.1). Convexity from the
superlevel sets is defined similarly, with the strict inequality reversed.

Instead of using the cotangent space for parameterizing the bicharacteristics, one
may want to use the tangent space instead. For this one considers the Hamilton
vector field map of the Hamiltonian function p: the tangent vector to a projected
bicharacteristic γ(t) = X(t) corresponding to the bicharacteristic (X(t),Ξ(t)) is
γ̇(t) = HX(t)(Ξ(t)), where Hx is the push-forward of the Hamilton vector field to
the base

Hx(ξ) =
∑

j

∂p

∂ξj
(x, ξ)∂xj

,

where the notation indicates that for each base point x we consider it as a map

ξ 7→ Hx(ξ).

When p(x, .) is a quadratic polynomial (i.e. p is a quadratic polynomial in ξ), thus
for Riemannian geometry and the qSH transversely isotropic waves, this is a linear
map, but in general it is nonlinear. In order to parameterize the bicharacteristics,
this should be a map with a smooth inverse, at least locally along the bicharacter-
istics we wish to use. This holds if DHx is invertible. Explicitly, this differential

is the Hessian matrix with ij entry ∂2p
∂ξi∂ξj

. If p(x, .) is a positive definite quadratic

polynomial, such as in Riemannian geometry and qSH waves, then the Hessian
matrix is positive definite, thus invertible. Positive definiteness of the Hessian cor-
responds to strict convexity of the level sets of p from the side of the sublevel sets.
In general, for interesting examples of p arising from qSV waves in transversely
isotropic materials, such as for the Greenhorn shale, see e.g. [16, Figure 2], the
strict convexity may fail.
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Since the general method of [23] uses curves that are almost tangential to the
level sets of the convex foliation, and in many examples (supported by geodynamical
considerations) the tangent space of the level sets of the convex foliation may lie
close to the orthogonal plane to the isotropy axis, we start by remarking that under
easy to formulate conditions the qSV (and qP) level sets are strictly convex there.
(This is guaranteed if E2 is not exceedingly negative, while in Earth materials,
typically, E2 ≥ 0 [21].) In the following lemma, the tilded coordinates correspond
to the transverse isotropy with the third coordinate corresponding to its axis, as in
the introduction; note that the Hamilton vector field being invariantly defined, it
makes no difference in what coordinates we consider the map Hx. (We also recall
the standing assumption max{a55, a66} < min{a11, a33} here.)

Lemma 3.1. Suppose that either p = p+ = GqP , or instead p = p− = GqSV and

a33(a11 − a55) > (a13 + a55)
2.

Then the map ξ̃ 7→ Hx̃(ξ̃) =
∑

j
∂p

∂ξ̃j
∂x̃j

has an invertible differential at ξ̃3 = 0, and

indeed the level sets of p are strictly convex (from the sublevel sets) nearby.

Remark 3.1. This lemma also plays an important role below in studying the precise
degeneracy in determining various material parameters from various waves.

Remark 3.2. Notice that if E2 ≥ 0, the right-hand side is ≤ (a11 − a55)(a33 − a55),
so the inequality in the statement of the lemma is automatically true.

Proof. We just need to compute the Hessian matrix 1
2

∂2p±

∂ξ̃i∂ξ̃j
and show that it is

positive definite when ξ̃3 = 0. But this Hessian is diagonal, with a multiplicity 2
entry for the first 2 components. At ξ̃3 = 0 the multiplicity two entry is particularly
easy to evaluate as one may simply set ξ̃3 = 0 prior to differentiation to obtain

(a11 + a55)± (a11 − a55),

which are positive. So it remains to evaluate the multiplicity one entry, namely
1
2
∂2p±

∂ξ̃23
. Again, this simplifies as after the first differentiation we may set all terms

with a ξ̃23 factor to 0, i.e., we just need to differentiate

(a33 + a55)ξ̃3 ±
(a33 − a55)(a11 − a55)|ξ̃

′|2 − 2E2|ξ̃′|2

(a11 − a55)|ξ̃′|2
ξ̃3,

which is

(a33 + a55)±
(a33 − a55)(a11 − a55)− 2E2

a11 − a55
.

As E2 = (a11 − a55)(a33 − a55)− (a13 + a55)
2, this simplifies to

(a33 + a55)±
2(a13 + a55)

2 − (a11 − a55)(a33 − a55)

a11 − a55
,

which is

2a55 +
2(a13 + a55)

2

a11 − a55
,

thus always positive, for the + sign, and is

2a33 −
2(a13 + a55)

2

a11 − a55
,
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for the − sign, which is positive if

a33(a11 − a55) > (a13 + a55)
2.

This completes the proof. �

In general, as already mentioned, we do not have strict convexity of the level sets,
and as the Hessian changes signature, Hx ceases to have an invertible differential
along some submanifolds. Globally, this results in Hx not being injective, giving
rise to phenomena such as triplication (higher multiplicities cannot occur in the
case of transverse isotropy) where a given (normalized) tangent vector is the image
of multiple covectors. However, for qP waves strict convexity (from sublevel sets)
always holds [1, p.168], [13], and in general this phenomenon motivates the following
definition:

Definition 3.1. A transversely isotropic material is non-degenerate relative to a
convex foliation (concave from the superlevel sets for GqSV ) if for each point x and
each vector v tangent to the convex foliation at the point x there is a covector ξ
in the cotangent space over x such that Hx(ξ) = v and the map Hx has invertible
differential at ξ, with Hx arising from GqSV . A transversely isotropic material is
non-degenerate provided the statement above holds for all v (and not just v tangent
to a particular convex foliation).

Lemma 3.1, under the assumed condition, thus shows that if the transverse
isotropy orthogonal planes are close to the tangent spaces to a convex foliation,
then the material is non-degenerate relative to the convex foliation.

In a non-degenerate, relative to a convex foliation, material, one may always con-
sider, at least locally, the bicharacteristics to be parameterized by tangent vectors.
This is useful both in order to localize to almost tangent to the convex foliation vec-
tors and also to analyze the transform: stationary phase computations, discussed
below, use the natural pairing between covectors at which principal symbols are
evaluated and tangent vectors to the projected bicharacteristics being used. This
approach also has the advantage of connecting better to the notation of [23, 19, 20].

Thus, from now on, we assume that the material is non-degenerate relative to
the fixed convex foliation. We then define a transform L̃ from the cotangent space,
which is a transform of the form

L̃ =
∑

i

ΨiLiΨ
−1
i φ̃i,

φ̃i a cutoff supported in a region on a neighborhood of which Hx is smoothly
invertible, and Li is a transform, discussed below, from the tangent space, where
the local identification Ψi is given by pull-back by the Hamilton vector field map
Hx, and Ψ−1

i is the pull-back by the local inverse H−1
x . Concretely, we cover a

neighborhood of the tangent space of the convex foliation with open sets Oi on each
of which H−1

x exists as a smooth map with image Õi in the cotangent space, and
take a corresponding partition of unity φi (so

∑

i φi = 1 on a smaller neighborhood

of the tangent space of the convex foliation), and let φ̃i be defined as H∗
xφi on Õi

(with support in a compact subset of Õi) and 0 outside.
In order to avoid overburdening the notation, since all arguments below are local

we drop the index i, and simply write L, and understand that H−1
x refers to the

localized inverse for Hx : Õi → Oi.
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Following [23], we use coordinates (x1, x2, x3) = (y, x) = z in which x = x3 are
the level sets are the convex foliation, and x3 = 0 is the artificial boundary, We write
tangent vectors as λ∂x + ω ∂y, and the projected bicharacteristic corresponding to
such a tangent vector at z as γz,λ,ω = γx,y,λ,ω. One then considers an operator of
the form LJ , where L is a slightly modified version of J∗, and where L cuts off at
the artificial boundary, see [23]:

(Lv)(z) = x−2

∫

χ(λ/x)v(γz,λ,ω) dλ dω,

cf. [20], the displayed equation below (3.1) (this differs from [23] in normalization).
Here χ is a non-negative smooth compactly supported function, χ(0) > 0, which is
appropriately chosen as in [23], see also Lemma 3.7. The particular smooth measure
dλ dω is irrelevant; any other positive definite smooth measure will do. Note that
the measure has nothing to do with the Euclidean metric g0 (which plays a role
in the transverse isotropy!) in particular, and similarly the coordinates xj have
nothing to do with Euclidean metric.

The main terms in (3.2) are the Âjl
i (x, ξ) terms; the others can be absorbed into

these by Poincaré inequalities, at least if the Âjl
i (x, ξ) terms are non-degenerate,

see [19]. To leading order at the boundary these decouple due to the δji , so one
is essentially working on a microlocally weighted X-ray transform combining the
differences of the unknown material parameters; more precisely one has a transform
for each derivative of the combinations of the differences of these unknown material
parameters. (One of course has to deal with these transforms together as done in
[19] and follow-up papers.) Thus, one may consider the simplified transforms

(3.3) J̃ f̃(γ) =

k
∑

l=1

∫

(Ãl(X(t),Ξ(t))f̃l(X(t)) dt = 0

with

Ãl(x, ξ) = −
∂Ξ̃j

∂ξj
(τ(x, ξ), (x, ξ))El(x, ξ),

Ãl(x, ξ) = −
∂P

∂νl
(ν1(x), . . . , νk(x), x, ξ) at ∂M,

f̃l = ∂jfl,

with j fixed.
The following proposition is proved completely analogously to [19, Corollary 3.1]:

Proposition 3.1. If the operator e−̥/xLJ̃e̥/x is elliptic when considered as a
map from a single component of f̃l (i.e. with the others set to 0), the ellipticity of
the full operator e−̥/xLJe̥/x follows as a map for the corresponding component,
provided the artificial boundary is sufficiently close to ∂M .

Roughly speaking, the hypothesis of this proposition says that ignoring coupling
one can recover the derivatives of fl (due to ellipticity, choosing the artificial bound-
ary sufficiently close to ∂M), which then, as the conclusion states, allows one to
recover fl, though due to the coupling in LJ , a Poincaré inequality based argument
is needed as in [19, Corollary 3.1]. Because of this proposition, in what follows we

concentrate on properties of LJ̃ .
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Now, with p± = GqP/qsV (with + for qP; notice that p± stands for P above),
and with tilded coordinates corresponding to the transversely isotropic structure,
not the convex foliation, we have from (1.1) that

(3.4)

∂p±
∂E2

= ∓
2|ξ̃′|2ξ̃23

√

(

(a11 − a55)|ξ̃′|2 + (a33 − a55)ξ̃23
)2

− 4E2|ξ̃′|2ξ̃23

,

∂p±
∂a11

= |ξ̃′|2
(

1±
(a11 − a55)|ξ̃

′|2 + (a33 − a55)ξ̃
2
3

√

(

(a11 − a55)|ξ̃′|2 + (a33 − a55)ξ̃23
)2

− 4E2|ξ̃′|2ξ̃23

)

,

∂p±
∂a33

= ξ̃23

(

1±
(a11 − a55)|ξ̃

′|2 + (a33 − a55)ξ̃
2
3

√

(

(a11 − a55)|ξ̃′|2 + (a33 − a55)ξ̃23
)2

− 4E2|ξ̃′|2ξ̃23

)

.

We summarize some immediate definiteness properties (keep in mind the back-
ground assumption that max{a55, a66} < min{a11, a33}) of these material deriva-
tives in a lemma:

Lemma 3.2. We have:

(1) ∂p+

∂a11
is a positive definite multiple of |ξ̃′|2, thus is in particular non-negative.

(2) ∂p+

∂a33
is a positive definite multiple of ξ̃23 , thus is in particular non-negative.

(3) ∂p±

∂E2 are positive definite multiples of ∓|ξ̃′|2ξ̃23 , thus is in particular non-
positive/non-negative.

(4) If E2 > 0, ∂p−

∂a11
is negative definite multiple of |ξ̃′|2 away from ξ̃3 = 0 and

from ξ̃′ = 0, and is everywhere non-positive; the analogous statement holds
if E2 < 0 with ‘positive’ and ‘negative’ reversed.

(5) If E2 > 0, ∂p−

∂a33
is a negative definite multiple of ξ̃23 away from ξ̃3 = 0 and

from ξ̃′ = 0, and is everywhere non-positive; the analogous statement holds
if E2 < 0 with ‘positive’ and ‘negative’ reversed.

Remark 3.3. Notice that when E2 = 0, ∂p−

∂a11
= 0 and ∂p−

∂a33
= 0, i.e., a11 and a33

affect only p+. (In isotropic elasticity, a11 = a33 = λ + 2µ in terms of the Lamé
parameters, while a55 = µ, and E2 = 0, a13 = λ, so this is the statement that the
S waves are insensitive to λ.)

As we recall below, the derivatives in (3.4) will be evaluated at the points in
the cotangent bundle on the support of the cutoff χ in L, which means that points
near the image of the tangent space of the level sets of the convex foliation under
the local inverses H−1

x . Furthermore, for the principal symbol computation for LJ̃
at a point (x, ζ), by stationary phase, one actually needs the base tangent vector
to the bicharacteristic, Hx(ξ) = λ∂x + ω · ∂y, be annihilated by

∑

j ζj dxj , though
this needs to be suitably interpreted at the artificial boundary since ζ is actually a
scattering covector.

3.2. Principal symbols. Concretely, for the standard principal symbol compu-
tation one writes the projected bicharacteristics through x, y, with tangent vector
λ∂x + ω · ∂y at that point, in the form

γ(t) = γx,y,λ,ω(t) = (γ
(1)
x,y,λ,ω(t), γ

(2)
x,y,λ,ω(t)) = (x+λt+αt2 +O(t3), y+ωt+O(t2)),
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where the O’s are understood to mean the indicated prefactor times a smooth
function of all variables,

(x1, x2, x3) = ((x1, x2), x3) = (y, x) = z,

where α = α(x, y, λ, ω), see Section 4 of [20], including expanding all the O error
terms into smooth functions. Thus, to match the notation of this paper and [23],
the scalar function x stands for x3 in terms of the vector coordinates (x1, x2, x3),
and yet it is written as the first component of γ. (Technically, that section of [20] is
in the more complicated one form setting, so there are various slight simplifications
in the computations for the present purposes.) Then

(γ(t), γ̇(t)) = (x+ λt+ αt2 +O(t3), y + ωt+O(t2), λ+ 2αt+O(t2), ω +O(t)),

and scaling λ̂ = λ/x, t̂ = t/x, as relevant below for the oscillatory integral, gives

(γ(xt̂), γ̇(xt̂)) = (x+ x2(λ̂t̂+ αt̂2 + xO(t̂3)),

y + x(ωt̂+ xO(t̂2)), x(λ̂ + 2αt̂+ xO(t̂2)), ω + xO(t̂)).

The weight Âjl
i is on the phase space due to the Hamiltonian dynamics used in the

Stefanov-Uhlmann formula, so the tangent vector γ̇(t) needs to be converted to a
covector via the local inverse H−1

γ(t) of the Hamilton vector field map.

The symbol whose left quantization is

(3.5) Al,̥ = e−̥/xLJ̃e̥/x,

considered restricted to functions with only non-vanishing lth components, is, cf.
[20, Equation (4.9)], combined with the weights discussed in [20, Equation (6.15)],

(3.6) al,̥(x, y, ζ) =

∫

e−̥/xe̥/γ
(1)
x,y,λ,ω

(t)ei(ζ3/x
2,ζ′/x)·(γ

(1)
x,y,λ,ω

(t)−x,γ
(2)
x,y,λ,ω

(t)−y)

Ãl(γ(t), H−1
γ(t)(γ̇(t)))χ(λ/x) dt dλ dω,

where ζ is the scattering coordinate (so covectors are ζ3
dx
x2 +ζ′ · dyx ). After rescaling

λ and t, this becomes a non-degenerate oscillatory integral with critical points at
the codimension 2 submanifold

(3.7) t̂ = 0, ζ3λ̂+ ζ′ · ω = 0.

Note that if ζ′ is large relative to ζ3, i.e., if we stay away from a conic neighborhood
of ζ′ = 0, one can use t̂ and ω‖ as the variables in which the stationary phase is
performed, where ω is decomposed relative to ζ′ into a parallel and a perpendicular

vector; then λ̂, ω⊥ parameterize the critical set. On the other hand, if ζ3 is large

relative to ζ′, then one can use t̂ and λ̂ as the variables in which stationary phase
is performed; then ω parameterizes the critical set. Hence, substituting the above
expressions for γ, γ̇, we conclude that up to errors that are O(x〈ζ〉−1) relative to the
a priori order, (−1, 0), arising from the 0th order symbol in the oscillatory integral
and the 2-dimensional space in which the stationary phase lemma is applied,

(3.8) al,̥(x, y, ζ)

=

∫

ei(ζ3(λ̂t̂+αt̂2)+ζ′·(ωt̂))e−̥(λ̂t̂+αt̂2)Ãl(x, y,H−1
x,y(xλ̂, ω))χ(λ̂) dt̂ dλ̂ dω.
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At this point we apply the stationary phase lemma. Up to an overall elliptic factor,
this results in an integral of

Ãl(x, y,H−1
x,y(xλ̂, ω))χ(λ̂)

over the critical set with a positive weight. In particular, if this has a fixed indefinite
sign, e.g. is non-negative at all points of, and is actually definite (positive in the
example) at one point of, the critical set, the resulting operator is elliptic. Note

that we are using χ ≥ 0 with χ(0) > 0, so if Ãl has a fixed indefinite sign, the key

question is if there is a point on the critical set with λ̂ small at which Ãl has a
definite sign.

Notice (3.7) states that if ζ3 = 0, the tangent vector ω is annihilated by ζ′ and λ̂
is arbitrary (with the localizing cutoff χ keeping it in a compact region); otherwise
ω is actually arbitrary, though if ζ3 is small relative to ζ′, this requires a very large

λ̂, which may fall outside the support of the cutoff χ; in any case as long as the
cutoff is non-trivial at zero, a neighborhood of those ω annihilated by ζ′ is relevant.

Notice that at x = 0, regardless of the value of λ̂, the corresponding tangent vector

is just (xλ̂)∂x + ω · ∂y = ω · ∂y, cf. the argument of Ãl.
Now, if one regards two of a11, a33, E

2 as known, thus the value of l is fixed
to be the remaining single unknown, then, corresponding to (3.2), at the artificial

boundary the standard principal symbol of Al,̥ = e−̥/xLJ̃e̥/x is, up to overall
elliptic factors, simply an integral with a weight given by the remaining unknown’s

derivative, so for instance ∂p±

∂E2 if E2 is not known. Namely, the principal symbol

of Al,̥ = e−̥/xLJ̃e̥/x is an integral over all ω (except in the special case when
ζ3 = 0, when only two values of ω enter) at covectors (z, ξ) where the covectors ξ
are the images of (0, ω) under the map H−1

z , which, as we recall, is the local inverse
of Hz. Thus, if these partials are either positive at all points or negative at all
points, or simply non-negative, resp. non-positive at all points with a strict sign at
one point, the principal symbol is elliptic, since it is an integral of these expressions
with respect to a smooth positive measure, up to an overall elliptic factor.

Now, for p+ all the partials are non-zero as long as ξ̃′ and ξ̃3 are non-zero, with
∂p+

∂E2 negative, the others positive; for p− the analogous claim holds for the E2

partial, and in addition for the a11 and a33 partials provided that E2 > 0.
For principal symbol computations we only need to consider the tangent plane

to the artificial boundary (and nearby level sets in the interior); the question is

whether the potential degeneracy of the weights at ξ̃′ = 0 or ξ̃3 = 0 provides an
obstruction to a strict sign at at least one point of relevance.

First consider the degeneracy of some of our weights, such as ∂p+

∂a11
, at ξ̃′ = 0.

Lemma 3.3. If the gradient ∇f of the transverse isotropy foliation function is not
parallel to the artificial boundary, points with ξ̃′ = 0 cannot give rise to vectors
tangent to the artificial boundary under Hamiltonian map Hx.

Note that the hypothesis on ∇f follows at least sufficiently close to the actual
boundary under the conditions we discussed for the qSH waves, which we are as-
suming.

Proof. With an abuse of notation
∑

j
∂p±

∂ξj
∂xj

is
∑

j
∂p±

∂ξ̃j
∂x̃j

, both being the base

component, i.e. pushforward to the base, of the Hamilton vector field, expressed in
different coordinates. But if ξ̃′ vanishes, this vector is a multiple of ∂x̃3 , so is parallel
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to the axis of transverse isotropic elasticity. Correspondingly, if the gradient ∇f of
the transverse isotropy foliation function is not parallel to the artificial boundary,
which we are assuming, then ξ̃′ cannot vanish at the relevant points as ∂x̃3 cannot
be both parallel to the axis and tangent to the level sets of the convex foliation
function. �

Thus, if we have a weight which is non-negative and only vanishes if ξ̃′ = 0, such

as ∂p+

∂a11
, arising when we are attempting to recover a11 from p+ travel times, we

indeed have ellipticity at the standard principal symbol level, i.e., Al,̥ is elliptic
in the standard sense when l corresponds to a11 and the wave speed used is p+.
Together with Lemma 3.7 below, this proves that the qP travel times determine a11,
in the sense of Theorem 1.2.

Unfortunately, there are points in the tangent plane at the artificial boundary
with ξ̃3 = 0, however, which is an issue for the determination of E2 and a33. Indeed,
this is exactly the statement that there are points in the tangent plane annihilated
by the differential df of the foliation function, i.e. orthogonal to ∇f , which happens
even under the conditions we discussed for the qSH waves. Since we still have a
fixed though degenerate sign for our weight (so it can vanish, but is ≥ 0 everywhere
or ≤ 0 everywhere), this is only an issue if the weight vanishes at every point at
which the weight is evaluated in the principal symbol.

Note the vanishing phenomenon for the weight occurs for all relevant covectors
even away from the artificial boundary:

Lemma 3.4. Away from the artificial boundary, in x > 0, the only points ζ for
which ξ̃3 = 0 at all points on the critical set near the tangent space of the foliation
giving the artificial boundary are those in the span of df .

Proof. First, at covectors in the span of df , we are integrating over integral curves
with tangent vectors annihilated by df , but at all of these ξ̃3 = 0. On the other
hand, for any covector ζ not in the span of df , the set of ‘bad vectors’ annihilated
by both ζ and df is a line, so in any open set of vectors annihilated by ζ (which thus
form a 2-dimensional family), such as those in an arbitrarily small neighborhood of
the tangent space to the level set of the foliation, there will be vectors which are
not in the ‘bad set’, proving the lemma. �

Thus, away from the boundary ellipticity can only fail at points in the span of df ,
where we have already seen that it does fail. That the failure is quadratic follows
simply from the fixed (degenerate) sign of the principal symbol.

We now turn to the non-degeneracy of the quadratic vanishing:

Lemma 3.5. Suppose that the hypothesis of Lemma 3.1 holds. For Al,̥ corre-
sponding to E2 and a33, the quadratic vanishing of the principal symbol at the span
of df is non-degenerate in x > 0.

Proof. The lemma follows from showing that along any line transversal to the span
of df the quadratic vanishing is non-degenerate, i.e., the second derivative is strictly
positive (or strictly negative) since then the a priori positive (or negative) indefinite
nature of Hessian combined with this fact implies positive (or negative) definiteness.

But this can be seen as follows: consider ν not in the span of df and ζ = ζǫ =
G0(df)

−1 df + ǫν, where one may assume that ν is G0-orthogonal to df and of
unit length; the desired non-degeneracy follows if we find a vector annihilated by
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ζ and close to the tangent space of the convex foliation which is the image, via
the Hamilton vector field map Hx̃, of a covector ξ̃ = ξ̃ǫ that has |ξ̃3| ≥ Cǫ, C > 0
(independent of ǫ), for then the fact that the relevant weights are non-degenerate

multiples of ξ̃23 proves the conclusion. Since the Hx̃ maps covectors with vanishing
third component to Kerdf , and Hx̃ has, by Lemma 3.1, invertible differential at
ξ̃3 = 0, we see that for a vector v′ there is a covector mapped to it by Hx̃ whose the
third (tilded) component is a non-degenerate multiple of the distance (with respect
to any positive definite inner product on the tangent space) of v′ from the kernel of
df . Hence, it suffices to show that Ker ζ contains a vector v′ which is ≥ Cǫ, C > 0,
distance from Ker df but is still near the tangent plane to the convex foliation (so
that it is within the support of the cutoff).

This final claim can be seen as follows: by linear independence, for ǫ 6= 0, Kerdf
and Ker ζǫ intersect in a line in an angle ∼ ǫ (more precisely, the tangent of the
angle is ǫ), and in any compact ‘annulus’ (closed ball minus a smaller open ball)
centered at a point in Ker df at a fixed distance from the intersection, the distance
between a point in Ker ζǫ and Ker df is bounded below by Cǫ, C > 0 (and above
by a similar expression), so consider a non-zero vector v in the tangent space of
the convex foliation which is annihilated by df ; the tangent space of the foliation
is 2-dimensional and df is not conormal to the level sets of the convex foliation, so
the span of v is well-defined (i.e., there is no freedom of choice as far as the span of
v is concerned); in any fixed ball around it there is then a vector vǫ in Ker ζǫ which
is distance bounded below by Cǫ (and above by a similar expression) from Kerdf ,
proving the claim. �

At the artificial boundary a bit more care is required, and it requires an explicit
discussion of scattering covectors and maps related to them. Since elsewhere in the
paper only the statement of the lemma is used, we do not recall the background
here in more detail, but see for instance [23], [19]. The argument presented below
is a modification, keeping track of potential degeneracies in identifications, of the
arguments discussed above for the case of points away from the artificial boundary.

Lemma 3.6. Suppose that the hypothesis of Lemma 3.1 holds. For Al,̥ correspond-
ing to E2 and a33, the quadratic vanishing of the principal symbol is non-degenerate
near the artificial boundary as well.

Proof. Consider a scattering covector ζ = ζ3
dx
x2 + ζ′ · dy

x which is not in the span

of x−1
3 df , x3 the convex level set function defining the boundary. If ζ3 6= 0, the

integral giving the principal symbol contains contributions corresponding to the
whole tangent space of the boundary, which cannot lie completely in the kernel
of df since df is not conormal to the artificial boundary, so there are points at
which the weight is evaluated but ξ̃3 6= 0. On the other hand, if ζ3 = 0, i.e., we
are working with a scattering cotangent vector which is scattering cotangent to the
boundary, then as already discussed, there is a line, given by the kernel of ζ′, within
the tangent space of the boundary within which the weights get evaluated; this line
needs to be in the kernel of df to lose ellipticity. But the kernel of df within the
tangent space to the boundary is also one dimensional (since df is not conormal
to the boundary), and includes the kernel of the (non-zero!) projection of df , so it
is exactly the latter. Thus, ellipticity fails exactly if these two are the same, i.e.
exactly if ζ is a multiple of the image of x−1

3 df in the scattering cotangent bundle.
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Again, the quadratic nature of the vanishing of the principal symbol follows from
the fixed, though degenerate, sign of the principal symbol.

Finally, the non-degeneracy of the quadratic vanishing can be seen by an argu-
ment broadly similar to the one given above away from the boundary. Although we
have scattering pseudodifferential operators to consider, so their standard principal
symbols are homogeneous functions on the scattering cotangent bundle with the
zero section removed, it is beneficial to work on the b-cotangent bundle: the two are
related by a conformal rescaling by x3, so the cosphere bundles are exactly the same,
and utilizing the b-cotangent bundle we spare ourselves from explicitly writing x3

or x−1
3 in many places: the relevant identification is the map π : T ∗M → bT ∗M

which is the adjoint of the smooth linear bundle map ι : bTM → TM which at
∂M regards a vector tangent to ∂M as simply a vector in T∂MM , and thus is
neither injective (the kernel is the span of x3∂x3) nor surjective at the boundary.
(The scattering analogues, used in the first paragraph of the proof, are x−1

3 π and
ιx−1

3 .) Now, at each point q in ∂M , π(df) is an element of T ∗
q ∂M (a well-defined

subspace of bT ∗
q M , unlike the case of T ∗

q M , within which the conormal bundle is

well-defined!) thus annihilates bNqM (a well-defined subspace of bTqM which is
spanned by x3∂x3), so the image under ι of Kerπ(df) is a line in TqM contained
in Tq∂M ; this is the line spanned by any nonzero vector v in Ker(df) ∩ Tq∂M . We
again consider a family ζǫ = π(df) + ǫν where ν ∈ bT ∗

q M , and we may assume that

ν is orthogonal to π(df) with respect to an inner product (dual b-metric) on bT ∗
q M .

Then Ker ζǫ and Kerπ(df) again meet in a line in an angle ∼ ǫ (for ǫ 6= 0, and the
angle is with respect to the aforementioned b-metric, though the ∼ ǫ statement is
independent of the choice of the b-metric), and the localization via the cutoff means
that we are working in a fixed small neighborhood of T ∗

q ∂M in bT ∗
q M , which in

particular includes a neighborhood of the aforementioned v, in which, completely
similarly to above, in any fixed annulus (with respect to the b-metric) there are
points vǫ in Ker ζǫ which are distance ∼ ǫ from Kerπ(df). Since Kerπ(df) contains
the kernel of ι, the image under ι of vǫ is still ∼ ǫ distance away from ι(Ker(π(df))).
But this then finally implies that ι(vǫ) is distance ∼ ǫ away from Ker df itself, since
this is a plane intersecting Tq∂M the line ι(Ker(π(df))) in a fixed non-zero angle.

This shows that the ξ̃3 component of the covector corresponding to ι(vǫ) is ≥ Cǫ,
C > 0, which proves the non-degeneracy as in the case away from the boundary. �

We also need to have an elliptic boundary principal symbol at finite points:

Lemma 3.7. Suppose that the gradient ∇f of the anisotropic layer function f = x̃3

is neither parallel nor orthogonal to the artificial boundary. The boundary principal
symbol for determining any one of a11, a33, E

2 from p+, as well as for determining
E2 from p−, is elliptic at finite points. For determining one of a11, a33 from p− the
corresponding statement holds if E2 > 0.

Proof. For this we recall the computation from [23] in the form used in [19, Proof
of Lemma 3.5]. For this one again writes the projected bicharacteristics in the form

(x+ λt+ αt2 +O(t3), y + ωt+O(t2)),

where α = α(x, y, λ, ω). Further, one computes the integral (3.8) at x = 0 with a
Gaussian weight function in place of χ (which one eventually approximates by a
compactly supported χ) with the parameter ν, which we choose to be ν = ̥−1α,
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̥ > 0 to be chosen sufficiently large. This gives, e.g. for E2,

(ζ23 +̥
2)−1/2

∫

S1
ν−1/2e−(Ŷ ·ζ′)2/(2ν(ζ2

3+̥
2)) ∂p±

∂E2
(x, ξ) dŶ ,

where the covector ξ is the image of the tangent vector (λ, ω) = (0, Ŷ ) under H−1
x ,

the local inverse of Hx. Unlike for the case of the standard principal symbol, for
which a stationary phase computation was used, here there is no critical set to

restrict to, i.e., we are integrating with ∂p±

∂E2 evaluated at the images of all tangent
vectors to the artificial boundary. This expression is positive, resp. negative, if
∂p±

∂E2 (x, ξ) ≥ 0, resp. ≤ 0, for all relevant ξ, with the inequality definite for at least

one of them; the relevant ξ are the images of (0, ω) under H−1
x . But, taking into

account (3.4), this is the case for both p+ and p−, with the definiteness coming from

ξ̃′ and ξ̃3 both being non-zero at one such image, since the non-parallel nature of
∇f to the artificial boundary means that ξ̃′ indeed never vanishes on the preimage,
while the vanishing of ξ̃3 at a point would mean that the corresponding tangent
vector is orthogonal to ∇f , which in turn cannot happen everywhere as ∇f is not
orthogonal to the artificial boundary. A completely analogous conclusion holds

for ∂p+

∂a11
(x, ξ) and ∂p+

∂a33
(x, ξ), and if in addition E2 > 0, also for ∂p−

∂a11
(x, ξ) and

∂p−

∂a33
(x, ξ). �

The conclusion is that, with the others taken as known, the operator e−̥/xLJ̃e̥/x

is elliptic at finite points for any one of E2, a11, a33 for the qP-travel time data, and
E2 (as well as a11, a33 if E2 > 0) from the qSV-travel time data, while the stan-
dard principal symbol ellipticity holds for a11 from the qP-travel time data. Hence,
taking into account Proposition 3.1, a11 can be recovered from the qP-travel time
data under the hypothesis that the anisotropic layers are not aligned with the convex
foliation. This proves Theorem 1.2.

Corollary 1.2 is a simple extension of this:

Proof of Corollary 1.2. We suppose that there is a functional relationship between
a11, a33, E

2, concretely, a33 = F (a11) and E2 = H(a11), with F,H smooth, and
suppose that F ′ ≥ 0. We claim that then the qP and qsV travel times determine
a11 (and thus all the others).

To show this, we take the sum of the qP and qSV travel times. This cancels the
± in the equations (3.4), as we compute below. Namely, the effective coefficient in
the pseudolinearization for a11 becomes

∂p+
∂a11

+
∂p+
∂a33

F ′(a11) +
∂p+
∂E2

H ′(a11)

+
∂p−
∂a11

+
∂p−
∂a33

F ′(a11) +
∂p−
∂E2

H ′(a11)

= 2|ξ̃′|2 + 2F ′(a11)ξ̃
2
3 ≥ 2|ξ̃′|2,

so the above argument for recovering a11 given the other parameters works equally
well. Indeed, if F ′ > 0 then the right-hand side can be replaced by 2|ξ̃|2, so in
fact the above argument for a11 can be shortened somewhat. Note that there
is no need for assuming anything about the derivative of H , only the existence
of such a functional relationship, since H cancels from the computation of the
pseudolinearization coefficient at the boundary. (But note that H overall enters
into the pseudolinearization formula, so the existence of H is crucial.) �
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4. Determining more than one parameter at a time

Of course, one would like to determine more than one of these ideally. Since we
have two linear transforms, given by p±, and since at some covectors the standard
principal symbol behavior of these transforms only involves evaluation of the ma-
terial derivative of p± at two points with identical behavior (antipodal), even with
further modifications, as mentioned above in analogy with the tensor transform,
one cannot expect to recover all three in an elliptic manner. However, it is reason-
able to recover two of the three (or all three if two determine the third in a suitable
manner); for this one needs a linear independence statement for the principal sym-
bols which now must be considered a 2 by 2 matrix, with the inputs being the
material parameters, the outputs the data for the different wave types p+ vs. p−.
(One will need slightly more to implement this, again cf. the modifications of the

transform mentioned above.) For instance, ∂p±

∂E2 (x, ξ) (with + considered the first

row, − the second row of a column vector) and either ∂p±

∂a11
(x, ξ) or ∂p±

∂a33
(x, ξ) are

certainly linearly independent as long as ξ̃3 6= 0 and ξ̃′ 6= 0 since the two expressions
∂p±

∂E2 (x, ξ) are negatives of each other, which is not the case for the other ones. In
order to implement this, one defines L as

Lv(z) = x−2

∫

χ(λ/x)

(

C1+(z, λ, ω) C1−(z, λ, ω)
C2+(z, λ, ω) C2−(z, λ, ω)

)(

v+(γ
+
z,λ,ω)

v−(γ
−
z,λ,ω)

)

dλ dω,

where the first index of Ci± refers to the parameter being recovered (first vs. second)
and ± to the type of wave being used. Calling the parameters µ1 and µ2, we need
that the integral in ω of

(

C1+(z, 0, ω) C1−(z, 0, ω)
C2+(z, 0, ω) C2−(z, 0, ω)

)

(

∂p+

∂µ1
(z, ξ) ∂p+

∂µ2
(z, ξ)

∂p−

∂µ1
(z, ξ) ∂p−

∂µ2
(z, ξ)

)

over the circle with a positive weight is elliptic; here ξ = ξ(z, ω) is determined from
(0, ω) as above. Now we can choose the C matrix to be simply the transpose of the
second, material sensitivity matrix, at the actual boundary (where it is known!),
and extend in a smooth manner into the interior. Then the integrand is positive
definite over the boundary except where ξ̃′ = 0 or ξ̃3 = 0 (where it vanishes), thus
has positive definite symmetric part even nearby in the interior, thus the integral
also has positive definite symmetric part. This proves the ellipticity of the boundary
principal symbol at finite points, provided

(

∂p+

∂µ1
(z, ξ) ∂p+

∂µ2
(z, ξ)

∂p−

∂µ1
(z, ξ) ∂p−

∂µ2
(z, ξ)

)

is full-rank, which holds, as discussed already, e.g. if µ1 = E2, µ2 one of the other
parameters. We reiterate that if e.g. one assumes that a33 is a function of a11
and E2 (rather than a priori known), very similar arguments work; in this case,
assuming e.g. a33 = φ(a11), for the sake of an example, one simply needs that

(

∂p+

∂E2 (z, ξ)
∂p+

∂a11
(z, ξ) + ∂p+

∂a33
(z, ξ)φ′

∂p−

∂E2 (z, ξ)
∂p−

∂a11
(z, ξ) + ∂p−

∂a33
(z, ξ)φ′

)

is full rank, which is the case if φ′ > 0.
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In summary, the problem of determining E2 and either one of a11 and a33 (or
both if there is an a priori known relationship between them) from the qP and qSV
data under the hypothesis that the anisotropic layers are not aligned with the convex
foliation is always elliptic at finite points, and ellipticity fails only at scattering
covectors aligned with the projection of the tilt axis to the boundary as well as at
span of the tilt axis interior.
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