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Abstract

We present a blended conditional gradient ap-
proach for minimizing a smooth convex function
over a polytope P, combining the Frank—Wolfe
algorithm (also called conditional gradient) with
gradient-based steps, different from away steps
and pairwise steps, but still achieving linear con-
vergence for strongly convex functions, along
with good practical performance. Our approach
retains all favorable properties of conditional gra-
dient algorithms, notably avoidance of projections
onto P and maintenance of iterates as sparse con-
vex combinations of a limited number of extreme
points of P. The algorithm is lazy, making use
of inexpensive inexact solutions of the linear pro-
gramming subproblem that characterizes the con-
ditional gradient approach. It decreases measures
of optimality rapidly, both in the number of itera-
tions and in wall-clock time, outperforming even
the lazy conditional gradient algorithms of (Braun
et al., 2017). We also present a streamlined ver-
sion of the algorithm that applies when P is the
probability simplex.

1. Introduction

A common paradigm in convex optimization is minimiza-
tion of a smooth convex function f over a polytope P.
The conditional gradient (CG) algorithm, also known as
“Frank—Wolfe” (Frank & Wolfe, 1956), (Levitin & Polyak,
1966) is enjoying renewed popularity because it can be im-
plemented efficiently to solve important problems in data
analysis. It is a first-order method, requiring access to gradi-
ents V f(x) and function values f(z). In its original form,
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CG employs a linear programming (LP) oracle to minimize
a linear function over the polytope P at each iteration. The
cost of this operation depends on the complexity of P.

In this work, we describe a blended conditional gradient
(BCG) approach, which takes one of several types of steps
on the basis of the gradient V f at the current point. Our ap-
proach maintains an “active vertex set,” consisting of some
solutions from previous iterations. Building on (Braun et al.,
2017), BCG uses a “weak-separation oracle” to find a vertex
of P for which the linear objective attains some fraction
of the reduction in f promised by the LP oracle, typically
by searching among the current set of active vertices. If no
vertex yielding acceptable reduction can be found, the LP
oracle used in the original FW algorithm may be deployed.
On other iterations, BCG employs a “simplex descent ora-
cle,” which takes a step within the convex hull of the active
vertices, yielding progress either via reduction in function
value (a “descent step”) or via culling of the active vertex
set (a “drop step”). The size of the active vertex set typi-
cally remains small, which benefits both the efficiency of
the method and the “sparsity” of the final solution (i.e., its
representation as a convex combination of a relatively small
number of vertices).

BCG has similar theoretical convergence rates to several
other variants of CG that have been studied recently, in-
cluding pairwise-step and away-step variants and the lazy
variants of (Braun et al., 2017). In several cases, we observe
better empirical convergence for BCG than for these other
variants. While the lazy variant of (Braun et al., 2017) has
an advantage over baseline CG when the LP oracle is expen-
sive, our BCG approach consistently outperforms the other
variants in more general circumstances, both in per-iteration
progress and in wall-clock time.

Related work

There has been an extensive body of work on conditional
gradient algorithms; see the excellent overview of (Jaggi,
2013). Here we review only those papers most closely
related to our work.

Our main inspiration comes from (Braun et al., 2017; Lan
et al., 2017), which introduces the weak-separation oracle
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as a lazy alternative to calling the LP oracle in every it-
eration. It is influenced too by the method of (Rao et al.,
2015), which maintains an active vertex set, using projected
descent steps to improve the objective over the convex hull
of this set, and culling the set on some steps to keep its size
under control. While the latter method is a heuristic with
no proven convergence bounds beyond those inherited from
the standard Frank—Wolfe method, our BCG algorithm em-
ploys a criterion for optimal trade-off between the various
steps, with a proven convergence rate equal to state-of-the-
art Frank—Wolfe variants up to a constant factor.

Our main result shows linear convergence of BCG for
strongly convex functions. Linearly convergent variants
of CG were studied as early as (Guélat & Marcotte, 1986)
for special cases and (Garber & Hazan, 2013) for the gen-
eral case (though the latter work involves very large con-
stants). More recently, linear convergence has been estab-
lished for various pairwise-step and away-step variants of
CG in (Lacoste-Julien & Jaggi, 2015), where the concept of
an active vertex set is used to improve performance. Other
memory-efficient decomposition-invariant variants were de-
scribed in (Garber & Meshi, 2016) and (Bashiri & Zhang,
2017). Modification of descent directions and step sizes,
reminiscent of the drop steps used in BCG, have been con-
sidered by (Freund & Grigas, 2016; Freund et al., 2017).
The use of an inexpensive oracle based on a subset of the
vertices of P, as an alternative to the full LP oracle, has
been considered in (Kerdreux et al., 2018b). (Garber et al.,
2018) proposes a fast variant of conditional gradients for
matrix recovery problems.

BCG is quite distinct from the fully-corrective Frank—Wolfe
algorithm (FCFW) (see, for example, (Holloway, 1974;
Lacoste-Julien & Jaggi, 2015)). Both approaches maintain
active vertex sets, generate iterates that lie in the convex
hulls of these sets, and alternate between Frank—Wolfe steps
generating new vertices and correction steps optimizing
within the current active vertex set. However, convergence
analyses of the FCFW algorithm assume that the correction
steps have unit cost, though they can be quite expensive in
practice, requiring multiple evaluations of the gradient V f.
For BCG, by contrast, we assume only a single step of gra-
dient descent type having unit cost (disregarding cost of line
search). For further explanation of the differences between
BCG and FCFW, see computational results in Figure 12 and
discussion in Appendix D.

Contribution
Our contribution can be summarized as follows:

Blended Conditional Gradients (BCG). The BCG approach
blends different types of descent steps: the traditional CG
steps of (Frank & Wolfe, 1956), the lazified CG steps of
(Braun et al., 2017), and gradient descent steps over the

convex hull of the current active vertex set. It avoids projec-
tions onto P or onto the convex hull of the active vertices,
and does not use away steps and pairwise steps, which
are elements of other popular variants of CG. It achieves
linear convergence for strongly convex functions (see The-
orem 3.1), and O(1/t) convergence after ¢ iterations for
general smooth functions. While the linear convergence
proof of the Away-step Frank—Wolfe Algorithm (Lacoste-
Julien & Jaggi, 2015, Theorem 1, Footnote 4) requires the
objective function f to be defined on the Minkowski sum
P — P+ P, BCG does not need f to be defined outside
the polytope P. The algorithm has complexity comparable
to pairwise-step or away-step variants of conditional gra-
dients, both in per-iteration running time and in the space
required to store vertices and iterates. It is affine-invariant
and parameter-free; estimates of such parameters as smooth-
ness, strong convexity, or the diameter of P are not required.
It maintains iterates as (often sparse) convex combinations
of vertices, typically much sparser than the baseline CG
methods, a property that is important for some applications.
Such sparsity is due to the aggressive reuse of active ver-
tices, and the fact that new vertices are added only as a kind
of last resort. In wall-clock time as well as per-iteration
progress, our computational results show that BCG can be
orders of magnitude faster than competimg CG methods on
some problems.

Simplex Gradient Descent (SiGD). In Section 4, we de-
scribe a new projection-free gradient descent procedure for
minimizing a smooth function over the probability simplex,
which can be used to implement the “simplex descent oracle”
required by BCG.

Computational Experiments. We demonstrate the excel-
lent computational behavior of BCG compared to other
CG algorithms on standard problems, including video co-
localization, sparse regression, structured SVM training,
and structured regression. We observe significant compu-
tational speedups and in several cases empirically better
convergence rates.

Outline

We summarize preliminary material in Section 2, including
the two oracles that are the foundation of our BCG proce-
dure. BCG is described and analyzed in Section 3, establish-
ing linear convergence rates. The simplex gradient descent
routine, which implements the simplex descent oracle, is
described in Section 4. Our computational experiments
are summarized in Section 5; more extensive experiments
appear in Appendix D. Variants on the analysis and other
auxiliary materials are relegated to the appendix. We men-
tion in particular a variant of BCG that applies when P is
the probability simplex, a special case that admits several
simplifications and improvements to the analysis.
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2. Preliminaries

We use the following notation: e; is the i-th coordinate
vector, 1 := (1,...,1) = e; + e3 + --- is the all-ones
vector, ||-|| denotes the Euclidean norm ({3-norm), D =
diam(P) = sup, ,epllu — v||2 is the £o-diameter of P,
and conv S denotes the convex hull of a set S of points. The
probability simplex A* := conv{ey, ..., ey} is the convex
hull of the coordinate vectors in dimension k.

Let f be a differentiable convex function. Recall that f is L-
smooth if f(y) — f () =V f(x)(y— ) < Llly —z||?/2 for
all x,y € P. The function f has curvature C'if f(yy+(1—
M) < f(@) + V(@) (y —2) + Cy?/2, forall z,y € P
and 0 < v < 1. (Note that an L-smooth function always
has curvature C' < LD?.) Finally, f is strongly convex if
for some o > 0 we have f(y) — f(x) — Vf(z)(y — z) >
ally — z||?/2, for all z,y € P. We use the following fact
about strongly convex function when optimizing over P.

Fact 2.1 (Geometric strong convexity guarantee). (Lacoste-
Julien & Jaggi, 2015, Theorem 6 and Eq. (28)) Given a
strongly convex function f, there is a value pn > 0 called the
geometric strong convexity such that

(@) — min f(y) < (Wweseer V@) = 2)

yeP 2u

for any x € P and for any subset S of the vertices of P for
which x lies in the convex hull of S.

The value of 1 depends both on f and the geometry of P.

2.1. Simplex Descent Oracle

Given a convex objective function f and an ordered finite
set S = {vy,..., v} of points, we define f5: A*¥ — R as

follows: .
fs(A) = f (Z Am) : (1)
i=1

When fg is Lyg-smooth, Oracle 1 returns an improving
point ' in conv S together with a vertex set S’ C S such
that 2’ € conv S’.

Oracle 1 Simplex Descent Oracle SiDO(z, S, f)

Input: finite set S C R”, point x € conv.S, convex
smooth function f: conv.S — R";

Output: finite set S” C S, point 2’ € conv S’ satisfying
either

drop step: f(2') < f(z)and S’ # S
descent step:
fl@)=f(a) = [maxyves Vf(2)(u—v)]?/(4Ly,)

In Section 4 we provide an implementation (Algorithm 2)

of this oracle via a single descent step, which avoids pro-
jection and does not require knowledge of the smoothness
parameter L.

2.2. Weak-Separation Oracle

Oracle 2 Weak-Separation Oracle LPsepp(c, z, ®, K)

Input: linear objective ¢ € R"™, point x € P, accuracy
K > 1, gap estimate & > 0;

Output: Either (1) vertex y € P with c¢(z —y) > ®/K, or
(2) false: ¢(z — z) < P forall z € P.

The weak-separation oracle Oracle 2 was introduced in
(Braun et al., 2017) to replace the LP oracle traditionally
used in the CG method. Provided with a point z € P,
a linear objective c, a target reduction value ® > 0, and
an inexactness factor K > 1, it decides whether there ex-
ists y € P with cx — ¢y > ®/K, or else certifies that
cx — cz < ® for all z € P. In our applications, ¢ = V f(z)
is the gradient of the objective at the current iterate z. Or-
acle 2 could be implemented simply by the standard LP
oracle of minimizing cz over z € P. However, it allows
more efficient implementations, including the following.
(1) Caching: testing previously obtained vertices y € P
(specifically, vertices in the current active vertex set) to see
if one of them satisfies cx — cy > ®/K. If not, the tradi-
tional LP oracle could be called to either find a new vertex of
P satisfying this bound, or else to certify that cx — cz < @
for all z € P, and (2) Early Termination: Terminating the
LP procedure as soon as a vertex of P has been discovered
that satisfies cx — cy > ®/K. (This technique requires an
LP implementation that generates vertices as iterates.) If
the LP procedure runs to termination without finding such
a point, it has certified that cx — cz < ® forall z € P. In
(Braun et al., 2017) these techniques resulted in orders-of-
magnitude speedups in wall-clock time in the computational
tests, as well as sparse convex combinations of vertices for
the iterates x;, a desirable property in many contexts.

3. Blended Conditional Gradients

Our BCG approach is specified as Algorithm 1. We dis-
cuss the algorithm in this section and establish its con-
vergence rate. The algorithm expresses each iterate xy,
t =0,1,2,... as a convex combination of the elements
of the active vertex set, denoted by S;, as in the Pairwise
and Away-step variants of CG. At each iteration, the al-
gorithm calls either Oracle 1 or Oracle 2 in search of the
next iterate, whichever promises the smaller function value,
using a test in Line 6 based on an estimate of the dual gap.
The same greedy principle is used in the Away-step CG ap-
proach, and its lazy variants. A critical role in the algorithm
(and particularly in the test of Line 6) is played by the value
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®,, which is a current estimate of the primal gap — the
difference between the current function value f(x;) and the
optimal function value over P. When Oracle 2 returns false,
the curent value of ®; is discovered to be an overestimate
of the dual gap, so it is halved (Line 13) and we proceed to
the next iteration. In subsequent discussion, we refer to @
as the “gap estimate.”

Algorithm 1 Blended Conditional Gradients (BCG)
Input: smooth convex function f, start vertex =g € P,
weak-separation oracle LPsepp, accuracy K > 1

Qutput: points x; in Pfort=1,...,T

1: ®¢ « maxyep V f(xo)(xo —v)/2 {Initial gap
estimate }
2: SO — {330}
3: fort =0to7T —1do
4 vft « argmax,cg, Vf(2)v
5. ofWY argmin, ¢ g, V f(x¢)v
6:  if Vf(z) (v — v =9) > @, then
7: Zyt1, Sty1 < SiDO(xy, S;)  {either a drop step
or a descent step}
8: q)t+1 — (Pt
9: else
10: ve < LPsepp(V f(24), 21, P, K)
11: if v; = false then
12: Tyl < Tt
13: Dypq — Dy/2 {gap step}
14: St+1 — St
15: else
16: Tep1 < argmingep,, o, f(z) {FW step, with
line search}
17: Choose Si;+1 € Sy U {v;} minimal such that
Ti+41 € conv St+1.
18: (I)t+1 — O,
19: end if
20:  end if
21: end for

In Line 17, the active set S;11 is required to be minimal.
By Caratheodory’s theorem, this requirement ensures that
|Si+1] < dim P + 1. In practice, the S; are invariably
small and no explicit reduction in size is necessary. The
key requirement, in theory and practice, is that if after a call
to Oracle SiDO the new iterate x;; lies on a face of the
convex hull of the vertices in .S;, then at least one element of
S; is dropped to form S;;. This requirement ensures that
the local pairwise gap in Line 6 is not too large due to stale
vertices in S;, which can block progress. Small size of the
sets Sy is crucial to the efficiency of the algorithm, in rapidly
determining the maximizer and minimizer of V f(x;) over
the active set S; in Lines 4 and 5.

The constants in the convergence rate described in our
main theorem (Theorem 3.1 below) depend on a modified

curvature-like parameter of the function f. Given a vertex
set S of P, recall from Section 2.1 the smoothness parame-
ter L ¢, of the function fg: A* — R defined by (1). Define
the simplicial curvature C* to be

C%:= max Ly, )
S:|S|<2dim P

to be the maximum of the L, over all possible active sets.
This affine-invariant parameter depends both on the shape
of P and the function f. This is the relative smoothness
constant Ly 4 from the predecessor of (Gutman & Pefia,
2019), namely (Gutman & Pefia, 2018, Definiton 2a), with
an additional restriction: the simplex is restricted to faces of
dimension at most 2 dim P, which appears as a bound on
the size of S in our formulation. This restriction improves
the constant by removing dependence on the number of
vertices of the polytope, and can probably replace the origi-
nal constant in convergence bounds. We can immediately
see the effect in the common case of L-smooth functions,
that the simplicial curvature is of reasonable magnitude,
specifically,
ob < LD?(dim P) ’
2

where D is the diameter of P. This result follows from
(2) and the bound on Ly, from Lemma A.l in the ap-
pendix. This bound is not directly comparable with the
upper bound Ly 4 < LD?/4 in (Gutman & Pefia, 2018,
Corollary 2), because the latter uses the 1-norm on the stan-
dard simplex, while we use the 2-norm, the norm used by
projected gradients and our simplex gradient descent. The
additional factor dim P is explained by the n-dimensional
standard simplex having constant minimum width 2 in 1-
norm, but having minimum width dependent on the dimen-
sion n (specifically, ©(1/+/n)) in the 2-norm. Recall that
the minimum width of a convex body P C R” in norm
[I-]] is ming max,, yep ¢(u — v), Where ¢ runs over all lin-
ear maps R” — R having dual norm ||¢|. = 1. For the
2-norm, this is just the minimum distance between parallel
hyperplanes such that P lies between the two hyperplanes.

For another comparison, recall the curvature bound C' <
LD2. Note, however, that the algorithm and convergence
rate below are affine invariant, and the only restriction on
the function f is that it has finite simplicial curvature. This
restriction readily provides the curvature bound

C <204, (3)

where the factor 2 arises as the square of the diameter of
the standard simplex A¥. (See Lemma A.2 in the appendix
for details.) Note that S is allowed to be large enough so
that every point of P is in the convex hull of some vertex
subset .S, by Caratheodory’s theorem, and that the simplicial
curvature provides an upper bound on the curvature
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We describe the convergence of BCG (Algorithm 1) in the
following theorem.

Theorem 3.1. Let f be a strongly convex, smooth func-
tion over the polytope P with simplicial curvature C* and
geometric strong convexity p. Then Algorithm I ensures
flzr) — f(x*) < &, where x* is an optimal solution to f
in P for some iteration index T that satisfies

20 D
T< [logso—‘ + 8K [bg ngJ

4K204A AKCA A ol
+6 ¢ {log ¢ “ZO(ClogO), 4)
o € o €

where log denotes logarithms to the base 2.

For smooth but not necessarily strongly convex func-
tions f, the algorithm ensures f(z7) — f(z*) < e after
T = O(max{C?, &} /¢) iterations by a similar argument,
which is omitted.

Proof. The proof tracks that of (Braun et al., 2017). We
divide the iteration sequence into epochs that are demarcated
by the gap steps, that is, the iterations for which the weak-
separation oracle (Oracle 2) returns the value false, which
results in @, being halved for the next iteration. We then
bound the number of iterates within each epoch. The result
is obtained by aggregating across epochs.

We start by a well-known bound on the function value using
the Frank-Wolfe point v/ = argmin,cp Vf(x;)v at
iteration ¢, which follows from convexity:

Flae) = f(@*) < V(@) (@ =) < V(o) (ze—v ™).

If iteration ¢ — 1 is a gap step, we have using z; = x;_; and
(bt = ¢t71/2 that

flze) = f(@®) < V(@) (z —of V) <28, (5)

This bound also holds at ¢ = 0, by definition of ®y. Thus
Algorithm 1 is guaranteed to satisfy f(z7) — f(z*) < e at
some iterate 7" such that 7' — 1 is a gap step and 2®1 < ¢.
Therefore, the total number of gap steps Ng required to
reach this point satisfies

20
Ng < [log gﬂ , (6)

which is also a bound on the total number of epochs. The
next stage of the proof finds bounds on the number of itera-
tions of each type within an individual epoch.

If iteration ¢ — 1 is a gap step, we have z; = x;_; and
&, = ®,_1/2, and because the condition is false at Line 6
of Algorithm 1, we have

Vf(z) Wi —a) < V(z) (v —ofW=9) <28, (7)

This condition also holds trivially at ¢ = 0, since 11()4 =

véﬁw*s = xp. By summing (5) and (7), we obtain
Vf(x)(vft — oFW) < 49y, so it follows from Fact 2.1
FW
)

that f(z,) — f(a*) < Leevi TDE < 5% gy com-
bining this inequality with (5), we obtain

fxe) = f(2%) < min {807 /11, 2P}, (8)

for all ¢ such that either ¢t = 0 or else ¢ — 1 is a gap step. In
fact, (8) holds for all t, because (1) the sequence of function
values { f(zs)}s is non-increasing; and (2) &, = ®, for all
s in the epoch that starts at iteration ¢.

We now consider the epoch that starts at iteration ¢, and
use s to index the iterations within this epoch. Note that
®, = P, for all s in this epoch.

We distinguish three types of iterations besides gap step.
The first type is a Frank—Wolfe step, taken when the weak-
separation oracle returns an improving vertex vs; € P such
that V f(zs)(zs — vs) > ®,/K = ®&;/K (Line 16). Us-
ing the definition of curvature C, we have by standard
Frank—Wolfe arguments that (c.f., (Braun et al., 2017)).

¢s . (I)s
>
f(zsy1) > 5K mln{l, KC}

>(I)tmin{1 il },

f(xs) —
)

T2KCA

where we used @, = ®, and C < 2C* (from (3)). We
denote by Nty the number of Frank—Wolfe iterations in the
epoch starting at iteration ¢.

The second type of iteration is a descent step, in which
Oracle SiDO (Line 7) returns a point 1 that lies in the
relative interior of conv S and with strictly smaller function
value. We thus have S;1; = S, and, by the definition of
Oracle SiDO, together with (2), it follows that

[V f(xs) (v —oFV=5))2
404

LA 7

=408 T4

flxs) = f(weq1) 2

(10)

We denote by N, the number of descent steps that take

place in the epoch that starts at iteration ¢.

The third type of iteration is one in which Oracle 1 returns
a point 511 lying on a face of the convex hull of S, so
that S5 is strictly smaller than .S,. Similarly to the Away-
step Frank—Wolfe algorithm of (Lacoste-Julien & Jaggi,
2015), we call these steps drop steps, and denote by ijp
the number of such steps that take place in the epoch that
starts at iteration ¢. Note that since S, is expanded only at
Frank—Wolfe steps, and then only by at most one element,
the total number of drop steps across the whole algorithm
cannot exceed the total number of Frank—Wolfe steps. We
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use this fact and (6) in bounding the total number of itera-
tions 7" required for f(xr) — f(z*) < e:

T < NQ) + Ndesc + NFW + Ndrop
20
< ’710g EO—‘ + Ndesc + 2]VFW

29
= [log Ow +
€

(11
Z (Njesc + 2Z\flf‘W)

t:epoch start

Here Ngesc denotes the total number of descent steps, Npw
the total number of Frank—Wolfe steps, and Ny the total
number of drop steps, which is bounded by Ngw, as just
discussed.

Next, we seek bounds on the iteration counts Nj.. and
Nt within the epoch starting with iteration ¢. For the total
decrease in function value during the epoch, Equations (9)
and (10) provide a lower bound, while f(z;) — f(z*) is
an obvious upper bound, leading to the following estimate

using (8).

o If &, > 2K CA then

. o2 P,
20, > f(xt) - f(.’L‘ ) 2 N;escwitA + N;‘Wﬁ
@tK (I)t (I)t
> Nt —— + Nty— > (N 2NLy) —
— +Vdesc 9 + FWQK_( desc+ FW)4K7
hence
Niese + 2Ny < 8K. (12)
o If &, < 2KC4, a similar argument provides
807 ) . ®F .
TZf(It)*f(I)ZNdesc@Jr FW 2 0A
> (Njee + 2Nf )i
= desc Fw 8K20A7
leading to
64K2C4
Ngesc + 2NIEW < — (13)

There are at most

—‘ epochs in the regime with &, > 2K cA,

KCcA . . . A
log epochs in the regime with &, < 2KC*~.

Combining (11) with the bounds (12) and (13) on Nfy, and
N{..., we obtain (4). O

esc?

4. Simplex Gradient Descent

Here we describe the Simplex Gradient Descent approach
(Algorithm 2), an implementation of the SiDO oracle (Ora-
cle 1). Algorithm 2 requires only O(|:S|) operations beyond
the evaluation of V f(x) and the cost of line search. (It is
assumed that x is represented as a convex combination of
vertices of P, which is updated during Oracle 1.) Apart
from the (trivial) computation of the projection of V f(z)
onto the linear space spanned by A*, no projections are
computed. Thus, Algorithm 2 is typically faster even than a
step of Frank—Wolfe, for typical small sets .S.

Alternative implementations of Oracle 1 are described in
Section C.1. Section C.2 describes the special case in which
P itself is a probability simplex. Here, BCG and its ora-
cles are combined into a single, simple method with better
constants in the convergence bounds.

In the algorithm, the form c1 denotes the scalar product of
cand 1, i.e., the sum of entries of c.

Algorithm 2 Simplex Gradient Descent Step (SiGD)
Input: polyhedron P, smooth convex function f: P — R,
subset S = {v1,va,...,v;} of vertices of P, point
xr € conv S
Output: set S’ C S, point 2’ € conv S’
1: Decompose x as a convex combination x = Zle iV,
withSF X =Tand\; >0,i=1,2,...,k
2: ¢+ [Vf(@)vr,...,Vi(@)vg] {c =V fs(A);see (1)}

3: d <+ c¢— (c1)1/k {Projection onto the hyperplane of
AR}

4: if d = 0 then

5:  return =’ =01, S = {v} {Arbitrary vertex }

6: end if

7: p <« max{n >0:\—nd >0}

8: y—x—n)y, div;

9: if f(z) > f(y) then

10: 2/ <y

11:  Choose S’ C S, S’ # S withz’ € conv S’.

12: else

13: 2’ < argmin, ¢, 1 f(2)

14 S+« S

15: end if

16: return z’, S’

To verify the validity of Algorithm 2 as an implementation
of Oracle 1, note first that since y lies on a face of conv S
by definition, it is always possible to choose a proper subset
S’ C S in Line 11, for example, S" := {v; : \; > nd;}.
The following lemma shows that with the choice h := fg,
Algorithm 2 correctly implements Oracle 1.

Lemma 4.1. Let AF be the probability simplex in k di-
mensions and suppose that h: A¥ — R is an Lj,-smooth
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function. Given some X € AF, define d = Vh()\) —
(VR(A)1/k)1 and let n > O be the largest value for which
7= A-nd > 0. Let \' == argmin, ¢, ;] h(2). Then
either h(\) > h(T) or

max<; j<x VA(A)(e; — ;)]

4Ly

h(Y) — h(X) > |

Proof. Letg(¢) == h(¢—(¢1)1/k), then Vg({) = Vh({—
(CH1/k) — (Vh(¢— (¢1)1/k)1)1/k, and g is clearly Lj,-
smooth, too. In particular, Vg(\) = d.

From standard gradient descent bounds, not repeated here,
we have the following inequalities, for v < min{n,1/L}:

h(A) = h(A = ~vd) = g(A) — g(A = yVg(N))
SLZIE] B TP /GRS
L . e.)]2
=7 [ma’XISZJSk VI(A) (e’L ej)] , (14)
where the second inequality uses that the /5-diameter of the
Ak is 2, and the last equality follows from Vg(\)(e; —e;) =
Vh(A)(ei — ¢;).

When 1 > 1/Lj, we conclude that A(\) < h(\ —
(1/Ly)d) < h(\), hence

2

[max; jeq12,.. ky VR(A)(ei — e;)]?
V) > JE{1,2,., j
M) h(X) i ,

which is the second case of the lemma. When n < 1/Lj,,
then setting v = 7 in (14) clearly provides h(\) —h(7) > 0,
which is the first case of the lemma. [

5. Computational Experiments (Summary)

To compare our experiments to previous work, we used
problems and instances similar to those in (Lacoste-Julien &
Jaggi, 2015; Garber & Meshi, 2016; Rao et al., 2015; Braun
etal., 2017; Lan et al., 2017). These include structured re-
gression, sparse regression, video co-localization, sparse sig-
nal recovery, matrix completion, and Lasso. We compared
various algorithms denoted by the following acronyms: our
algorithm (BCG), the Away-step Frank—Wolfe algorithm
(ACG) and the Pairwise Frank—Wolfe algorithm (PCG) from
(Lacoste-Julien & Jaggi, 2015; Garber & Meshi, 2016), the
vanilla Frank—Wolfe algorithm (CG), as well as their lazi-
fied versions from (Braun et al., 2017). We add a prefix ‘L’
for the lazified versions. Figure 1 summarizes our results
on four test problems. Further details and more extensive
computational results are reported in Appendix D.

Performance Comparison

We implemented Algorithm 1 as outlined above and used
SiGD (Algorithm 2) for the descent steps as described in

Section 4. For line search in Line 13 of Algorithm 2, we
perform standard backtracking, and for Line 16 of Algo-
rithm 1, we do ternary search. In Figure 1, each of the four
plots itself contains four subplots depicting results of four
variants of CG on a single instance. The two subplots in
each upper row measure progress in the logarithm (to base
2) of the function value, while the two subplots in each
lower row report the logarithm of the gap estimate ®, from
Algorithm 1. The subplots in the left column of each plot
report performance in terms of number of iterations, while
the subplots in the right column report wall-clock time.

As discussed earlier, 2®; upper bounds the primal gap
(the difference between the function value at the current
iterate and the optimal function value). The lazified al-
gorithms (including BCG) halve ®; occasionally, which
provides a stair-like appearance in the graphs. In imple-
mentations, if a stronger bound on the primal gap is avail-
able (e.g., from an LP oracle call), we reset ®; to half of
that value, thus removing unnecessary successive halving
steps. For the non-lazified algorithms, we plot the dual gap
max,cp Vf(x)(xy — v) as a gap estimate. The dual gap
does not necessarily decrease in a monotone fashion (though
of course the primal gap is monotone decreasing), so the
plots have a zigzag appearance in some instances.

6. Final Remarks

In (Lan et al., 2017), an accelerated method based on weak
separation and conditional gradient sliding was described.
This method provided optimal tradeoffs between (stochastic)
first-order oracle calls and weak-separation oracle calls. An
open question is whether the same tradeoffs and acceleration
could be realized by replacing SiGD (Algorithm 2) by an
accelerated method.

After an earlier version of our work appeared online, (Ker-
dreux et al., 2018a) introduced the Holder Error Bound con-
dition (also known as sharpness or the Lojasiewicz growth
condition). This is a family of conditions parameterized
by 0 < p < 1, interpolating between strongly convex
(p = 0) and convex functions (p = 1). For such functions,
convergence rate O(1/e”) has been shown for Away-step
Frank—Wolfe algorithms, among others. Our analysis can
be similarly extended to objective functions satisfying this
condition, leading to similar convergence rates.
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Figure 1. Four representative examples. (Upper-left) Sparse signal recovery: mingegn.|jq|, <+ ||y — @z 2, where @ is of size 1000 x 3000
with density 0.05. BCG made 1402 iterations with 155 calls to the weak-separation oracle LPsep. The final solution is a convex
combination of 152 vertices. (Upper-right) Lasso. We solve minge p||Az — b||2 with P being the (scaled) ¢;-ball. A is a 400 x 2000
matrix with 100 non-zeros. BCG made 2130 iterations, calling LPsep 477 times, with the final solution being a convex combination of
462 vertices. (Lower-left) Structured regression over the Birkhoff polytope of dimension 50. BCG made 2057 iterations with 524 calls to
LPsepp. The final solution is a convex combination of 524 vertices. (Lower-right) Video co-localization over netgen_12b polytope
with an underlying 5000-vertex graph. BCG made 140 iterations, with 36 calls to LPsep . The final solution is a convex combination of
35 vertices.
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A. Upper bound on simplicial curvature

Lemma A.1. Let f: P — R be an L-smooth function over
a polytope P with diameter D in some norm ||-||. Let S be
a set of vertices of P. Then the function fg from Section 2.1
is smooth with smoothness parameter at most

LD?|S]|
< —.

s =

Ly

Proof. Let S = {v1,...,v}. Recall that fg: A¥ — R

is defined on the probability simplex via fs(a) == f(Aa),
where A is the linear operator defined via Ao := Zle ;.

We need to show

2
fsta) = 1s(9) - Vss(@)a—p) < F2L oy,
a,B e AF. (15)

We start by expressing the left-hand side in terms of f and
applying the smoothness of f:

fs(a) — f5(8) = Vfs(8)(a — §)
= J(Aa) — f(A5) ~ VI(AB)- (a— 4B)
<3+ llda - AJP.

Let v4 = max{a — 3,0} and v_ = max{f8 — «, 0} with
the maximum taken coordinatewise. Then «— 3 = v —y_

with v; and y_ nonnegative vectors with disjoint support.

In particular,
lla = BIIZ = v+ = =13 = I+ 3 + =13 (D

Let 1 denote the vector of length k& with all its coordinates
1. Since 1 = 18 = 1, we have 1y, = 1~v_. Let t denote
this last quantity, which is clearly nonnegative. If ¢ = 0
then v = 7_ = 0 and o = [, hence the claimed (15)
is obvious. If £ > 0 then «, /t and ~y_/t are points of the
simplex A*, therefore

Ao — Ap
D> A /1)~ Al o)) = 222 g
Using (17) with k£ and k_ denoting the number of non-zero
coordinates of v and y_, respectively, we obtain

2 2 2o 21 1

oo = Bllz = [lv+llz + [l7=1lz > ¢ P

+ —
, (19)
9 4 4t
>t > —.
ky +k_ k
By (18) and (19) we conclude that || Aa—AB||?> < kD?||a—
]13/4, which together with (16) proves the claim (15). [

Lemma A.2. Let f: P — R be a convex function over a
polytope P with finite simplicial curvature C*. Then f has
curvature at most

C <20%.

Proof. Let x,y € P be two distinct points of P. The line
through z and y intersects P in a segment [w, z], where w
and z are points on the boundary of P, i.e., contained in
facets of P, which have dimension dim P — 1. Therefore by
Caratheodory’s theorem there are vertex sets .S,,, S, of P of
size at most dim P with w € conv S, and z € conv S,. As
such z,y € conv S with S :== S, U S, and |S| < 2dim P.

Reusing the notation from the proof of Lemma A.1, let
k = |S| and A be a linear transformation with S =
{Aey, ..., Aes} and fs(¢) = f(AC) forall ¢ € A¥. Since
x,y € conv S, there are o, 3 € A¥ with z = Aa and

= Ap. Therefore by smoothness of fg together with
Ly, <C%and |8 - af < V2:

fyy+ 1 =v)z) = f(x) =V f(x)(y —z)

= f(vAB+(1=7)Aa) = f(Aa) =7V f(Aa)- (A - Aa)
=fs(¥B+ (L =7)a) = fs(e) =7V [fs(a)(B - a)
< Ll =) _LalB=ol? o o,
showing that C' < 2C as claimed. O

B. Algorithmic enhancements

We describe various enhancements that can be made to the
BCG algorithm, to improve its practical performance while
staying broadly within the framework above. Computational
testing with these enhancements is reported in Section D.

B.1. Sparsity and culling of active sets

Sparse solutions (which in the current context means “solu-
tions that are a convex combination of a small number of ver-
tices of P”) are desirable for many applications. Techniques
for promoting sparse solutions in conditional gradients were
considered in (Rao et al., 2015). In many situations, a sparse
approximate solution can be identified at the cost of some
increase in the value of the objective function.

We explored two sparsification approaches, which can be
applied separately or together, and performed preliminary
computational tests for a few of our experiments in Sec-
tion D.

(i) Promoting drop steps. Here we relax Line 9 in Algo-
rithm 2 from testing f(y) > f(x) to f(y) > f(x) —
where ¢ := min{%, €0} with g9 € R some up-

per bound on the accepted potential increase in objec-
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tive function value and p being the amount of reduction
in f achieved on the latest iteration. This technique
allows a controlled increase of the objective function
value in return for additional sparsity. The same con-
vergence analysis will apply, with an additional factor
of 2 in the estimates of the total number of iterations.

(ii) Post-optimization. Once the considered algorithm
has stopped with active set Sy, solution z(, and dual
gap dy, we re-run the algorithm with the same ob-
jective function f over the facet conv Sy, i.e., we
solve mingeconv 5, f () terminating when the dual
gap reaches dj.

These approaches can sparsify the solutions of the baseline
algorithms Away-step Frank—Wolfe, Pairwise Frank—Wolfe,
and lazy Pairwise Frank—Wolfe; see (Rao et al., 2015). We
observed, however, that the iterates generated by BCG are
often quite sparse. In fact, the solutions produced by BCG
are sparser than those produced by the baseline algorithms
even when sparsification is used in the benchmarks but not
in BCG! This effect is not surprising, as BCG adds new
vertices to the active vertex set only when really necessary
for ensuring further progress in the optimization.

Two representative examples are shown in Table 1, where
we report the effect of sparsification in the size of the active
set as well as the increase in objective function value.

We also compared evolution of the function value and size of
the active set. BCG decreases function value much more for
the same number of vertices because, by design, it performs
more descent on a given active set; see Figure 2.

B.2. Blending with pairwise steps

Algorithm 1 mixes descent steps with Frank—Wolfe steps.
One might be tempted to replace the Frank—Wolfe steps
with (seemingly stronger) pairwise steps, as the informa-
tion needed for the latter steps is computed in any case. In
our tests, however, this variant did not substantially differ
in practical performance from the one that uses the stan-
dard Frank—Wolfe step (see Figure 9). The explanation
is that BCG uses descent steps that typically provide bet-
ter directions than either Frank—Wolfe steps or pairwise
steps. When the pairwise gap over the active set is small,
the Frank—Wolfe and pairwise directions typically offer a
similar amount of reduction in f.

C. Algorithmic Variations
C.1. Alternative implementations of Oracle 1

Algorithm 2 is probably the least expensive possible imple-
mentation of Oracle 1, in general. We may consider other
implementations, based on projected gradient descent, that

aim to decrease f by a greater amount in each step and
possibly make more extensive reductions to the set S. Pro-
Jjected gradient descent would seek to minimize fg along
the piecewise-linear path {projsx (A—yVfs(A)) | v > 0}.
Such a search is more expensive, but may result in a new
active set S’ that is significantly smaller than the current set
S and, since the reduction in fg is at least as great as the
reduction on the interval v € [0, 7] alone, it also satisfies
the requirements of Oracle 1.

More advanced methods for optimizing over the simplex
could also be considered, for example, mirror descent (see
(Nemirovski & Yudin, 1983)) and accelerated versions of
mirror descent and projected gradient descent; see (Lan,
2017) for a good overview. The effects of these alternatives
on the overall convergence rate of Algorithm 1 has not been
studied; the analysis is complicated significantly by the lack
of guaranteed improvement in each (inner) iteration.

The accelerated versions are considered in the computa-
tional tests in Section D, but on the examples we tried, the
inexpensive implementation of Algorithm 2 usually gave
the fastest overall performance. We have not tested mirror
descent versions.

C.2. Simplex Gradient Descent as a stand-alone
algorithm

We describe a variant of Algorithm 1 for the special case in
which P is the probability simplex A¥. Since optimization
of a linear function over A¥ is trivial, we use the standard
LP oracle in place of the weak-separation oracle (Oracle 2),
resulting in the non-lazy variant Algorithm 3. Observe
that the per-iteration cost is only O(k). In cases of k very
large, we could also formulate a version of Algorithm 3 that
uses a weak-separation oracle (Oracle 2) to evaluate only a
subset of the coordinates of the gradient, as in coordinate
descent. The resulting algorithm would be an interpolation
of Algorithm 3 below and Algorithm 1; details are left to
the reader.

When line search is too expensive, one might replace
Line 14 by 2411 = (1 — 1/L¢)zs + y/Ly, and Line 17
by xt41 = (1 — 2/(t + 2))as + (2/(t + 2))ey. These
employ the standard step sizes for (projected) gradient de-
scent and the Frank—Wolfe algorithm, and yield the required
descent guarantees.

We now describe convergence rates for Algorithm 3, noting
that better constants are available in the convergence rate
expression than those obtained from a direct application of
Theorem 3.1.

Corollary C.1. Let f be an a-strongly convex and L -
smooth function over the probability simplex AF with k > 2.
Let x* be a minimum point of f in A*. Then Algorithm 3



Blended Conditional Gradients

Table 1. Size of active set and percentage increase in function value after sparsification. (No sparsification performed for BCG.) Left:
Video Co-localization over netgen_08a. Since we use LPCG and PCG as benchmarks, we report (i) separately as well. Right: Matrix
Completion over movielens100k instance. BCG without sparsification provides sparser solutions than the baseline methods with
sparsification. In the last column, we report the percentage increase in objective function value due to sparsification. (Because this quantity
is not affine invariant, this value should serve only to rank the quality of solutions.)

vanilla (i) (i), (i) Af(2) vanilla (i), (i) Af(z)
PCG 112 62 60 2.6% ACG 300 208 7.4%
LPCG 94 70 64  0.1% PCG 358 255  8.2%
BCG 60 59 40 0.0% BCG 211 211 0.0%

Algorithm 3 Stand-Alone Simplex Gradient Descent
Input: convex function f
Output: points z; in A* fort =1,...,T

1: xzg =€

2: fort=0to7 — 1do

3 Sy {iray,; >0}

41 ay < argmax;cg Vf(z);

5. s8¢ < argminge g, Vf(24)i

6: w4 argming o, V()

7. iV f(zr)a, = V(@e)s, > VI(z)ze — V(2t)w,

then
g d, = V(@i =3 es VI (@e);/15:] i €Sy
0 i S,
fori =1,2,...,k

9: n = max{y: x; —yd > 0} {ratio test}
10: y=x —nd

11: if f(z¢) > f(y) then

12: Tig1 < Y {drop step}
13: else

14: Tpp1 < argmingep,, 1 f(x)  {descent step}
15: end if

16:  else

17: Tiq1 4 argmingep, o 1 .f(2) {FW step}
18:  end if

19: end for
converges with rate

PN
o) - 1) < (1= g ) Ulan) = ),
T=1,2....

If f is not strongly convex (that is, « = 0), we have

flzr) = f(z%) <

Proof. The structure of the proof is similar to that of
(Lacoste-Julien & Jaggi, 2015, Theorem 8). Recall from
(Lacoste-Julien & Jaggi, 2015, §B.1) that the pyramidal

width of the probability simplex is W > 2/ \/E, so that the
geometric strong convexity of f is u > 4«/k. The diameter
of A¥is D = /2, and it is easily seen that cA = Ly and
C < LyD?/2=Ly.

To maintain the same notation as in the proof of Theo-
rem 3.1, we define v = e,,, vV ™5 = e,, and v}V =
ew,- In particular, we have Vf(z;)w, = Vf(xe)vf"W,
Vf(x)s, = Vf(z) v =5, and V@), = V(v
Let hy := f(zy) — f(x*).

In the proof, we use several elementary estimates. First, by

convexity of f and the definition of the Frank—Wolfe step,
we have

he = f(ze) = f(@*) < V(@)@ =) (20)

Second, by Fact 2.1 and the estimate . > 4« /k for geomet-
ric strong convexity, we obtain

[V f(@e) (vt —of™)]?
8a/k ’

hy

IN

2y

Let us consider a fixed iteration £. Suppose first that we
take a descent step (Line 14), in particular, V f(z;)(v{* —
vEW =S > Vf(x)(x, — vf"v) from Line 7 which, to-
gether with V f (z)z; > V f (2)v" =9, yields

2V f () (vf = vV %) 2 V() (vf = oY), (22)
By Lemma 4.1, we have
V f () (vA — 0FW—5 2
o) = i) > FLENT )
[V f(2) (0™ — ’UFW)]2 o
hta

> .
- 16Lf - 2Lfk’

where the second inequality follows from (22) and the third
inequality follows from (21).

If a Frank—Wolfe step is taken (Line 17), we have similarly
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to (9) that

Vf () (@, — ")
2
: V() (2 —v"™W)
- min {1, 2L; } .

f@)=f(xe41) =

Combining with (20), we have either f(z;) — f(zi41) >
h¢/2 or

) (2 — vFW))2
Flxe) = f(egr) > IVA( )(4Lf )]

| [Vt =™ e
- 16Lf _2Lfk

hy.

Since av < Ly, the latter is always smaller than the former,
and hence is a lower bound that holds for all Frank—Wolfe
steps.

Since f(x¢) — f(w¢11) = hy — hyy1, we have hyyy <
(1 —a/(2Lsk))h, for descent steps and Frank—Wolfe steps,
while obviously hyy1 < hy for drop steps (Line 12). For
any given iteration counter 7, let Ty, be the number of
descent steps taken before iteration 7', Trw be the number
of Frank—Wolfe steps taken before iteration T, and T, be
the number of drop steps taken before iteration 7. We have
Tarop < Trw, so that similarly to (11)

T = Tgesc + Trw + Tdrop < These + 2Trw. (23)

By compounding the decrease at each iteration, and using
(23) together with the identity (1 — ¢/2)? > (1 — ¢) for any
e € (0,1), we have

These+Trw T/2
[0 (6
hr <|1——— ho<|1——— h
= < 2Lfk) °= ( 2Lfk> ’

o T
<[(1— —— - hg.
( 4Lfk) ’

The case for the smooth but not strongly convex functions
is similar: we obtain for descent steps

he — hiyr = fze) — f(@e41)
o Vi)t ==
= AL, (24)
_ [Vi@o@ o kg
- 4Lf - 4Lf’

where the second inequality follows from (20).
For Frank—Wolfe steps, we have by standard estimations

12
sy < {1 WAL
Lf < hy/2

if hy < 2Ly,

25
otherwise. 25)

Given an iteration T', we define Tyrop, Trw and Tjesc as
above, and show by induction that

AL;
hr < ————
= Tdesc

, forT > 1. 26
+ Trw - (26)

Equation (26), i.e., hy < 8Ly /T easily follows from this
via Tyrop < Trw. Note that the first step is necessarily a
Frank—Wolfe step, hence the denominator is never 0.

If iteration 7' is a drop step, then 7" > 1, and the claim is
obvious by induction from hr > hr_;. Hence we assume
that iteration 7 is either a descent step or a Frank—Wolfe
step. If Tyese +Trw < 2 then by (24) or (25) we obtain either
hr < Lf < 2Lf or hy < hp_1 — h%_l/(llLf) < 2Lf,
without using any upper bound on hp_1, proving (26) in
this case. Note that this includes the case T" = 1, the start
of the induction.

Finally, if Tgese + Trw > 3, then hp_1 < 4Ly /(Thesc +
Tew—1) < 2L t by induction, therefore a familiar argument
using (24) or (25) provides

AL, AL;
hr < - 3
Tdesc + TFW -1 (Tdesc + TFW - ]-)
AL;

S
Tdesc + TFW

proving (26) in this case, too, finishing the proof. O

D. Computational experiments

To compare our experiments to previous work we used
problems and instances similar to those in (Lacoste-Julien
& Jaggi, 2015; Garber & Meshi, 2016; Rao et al., 2015;
Braun et al., 2017; Lan et al., 2017). These problems in-
clude structured regression, sparse regression, video co-
localization, sparse signal recovery, matrix completion, and
Lasso. In particular, we compared our algorithm to the
Pairwise Frank—Wolfe algorithm from (Lacoste-Julien &
Jaggi, 2015; Garber & Meshi, 2016) and the lazified Pair-
wise Frank—Wolfe algorithm from (Braun et al., 2017). We
also benchmarked against the lazified versions of the vanilla
Frank—Wolfe and the Away-step Frank—Wolfe as presented
in (Braun et al., 2017) for completeness. We implemented
our code in Python 3.6 using Gurobi (see (Gurobi Op-
timization, 2016)) as the LP solver for complex feasible
regions; as well as obvious direct implementations for the
probability simplex, the cube and the ¢;-ball. As feasible
regions, we used instances from MIPLIB2010 (see (Koch
etal., 2011)), as done before in (Braun et al., 2017), along
with some of the examples in (Bashiri & Zhang, 2017). We
used quadratic objective functions for the tests with random
coefficients, making sure that the global minimum lies out-
side the feasible region, to make the optimization problem
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Figure 2. Comparison of ACG, PCG and LPCG against BCG in function value and size of the active set. Left: Video Co-Localization

instance. Right: Sparse signal recovery.

non-trivial; see below in the respective sections for more
details.

Every plot contains four diagrams depicting results of a
single instance. The upper row measures progress in the
logarithm of the function value, while the lower row does
so in the logarithm of the gap estimate. The left column
measures performance in the number of iterations, while
the right column does so in wall-clock time. In the graphs
we will compare various algorithms denoted by the follow-
ing abbreviations: Pairwise Frank—Wolfe (PCG), Away-step
Frank—Wolfe (ACG), (vanilla) Frank—Wolfe (CG), blended
conditional gradients (BCG); we indicate the lazified ver-
sions of (Braun et al., 2017) by prefixing with an ‘L". All
tests were conducted with an instance-dependent, fixed time
limit, which can be easily read off the plots.

The value @, provided by the algorithm is an estimate of the
primal gap f(x:) — f(z*). The lazified versions (including
BCGQG) use it to estimate the required stepwise progress, halv-
ing it occasionally, which provides a stair-like appearance
in the graphs for the dual progress. Note that if the certifi-
cation in the weak-separation oracle that ¢(z — =) > ® for
all z € P is obtained from the original LP oracle (which
computes the actual optimum of ¢y over y € P), then we
update the gap estimate ®,; with that value; otherwise the
oracle would continue to return false anyway until & drops
below that value. For the non-lazified algorithms, we plot
the dual gap max,ecp V f(z¢)(zs — v).

Performance comparison

We implemented Algorithm 1 as outlined above and used
SiGD for the descent steps as described in Section 4. For

line search in Line 13 of Algorithm 2 we perform standard
backtracking line search, and for Line 16 of Algorithm 1, we
do ternary search. We provide four representative example
plots in Figure 1 to summarize our results.

Lasso. We tested BCG on lasso instances and compared
them to vanilla Frank—Wolfe, Away-step Frank—Wolfe, and
Pairwise Frank—Wolfe. We generated Lasso instances simi-
lar to (Lacoste-Julien & Jaggi, 2015), which has also also
been used by several follow-up papers as benchmark. Here
we solve mingcp|| Az — b||2 with P being the (scaled) #;-
ball. We considered instances of varying sizes and the re-
sults (as well as details about the instance) can be found
in Figure 3. Note that we did not benchmark any of the
lazified versions of (Braun et al., 2017) here, because the
linear programming oracle is so simple that lazification is
not beneficial and we used the LP oracle directly.

Video co-localization instances. We also tested BCG on
video co-localization instances as done in (Lacoste-Julien &
Jaggi, 2015). It was shown in (Joulin et al., 2014) that video
co-localization can be naturally reformulated as optimizing
a quadratic function over a flow (or path) polytope. To this
end, we run tests on the same flow polytope instances as
used in (Lan et al., 2017) (obtained from http://lime.
cs.elte.hu/~kpeter/data/mcf/road/). We de-
pict the results in Figure 4.

Structured regression. We also compared BCG against
PCG and LPCG on structured regression problems, where
we minimize a quadratic objective function over polytopes
corresponding to hard optimization problems used as bench-
marks in e.g., (Braun et al., 2017; Lan et al., 2017; Bashiri
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& Zhang, 2017). As in Lasso, we minimize a least-squares
objective but instead of the ¢;-ball, the feasible regions are
the polytopes from MIPLIB2010 (see (Koch et al., 2011)).
Additionally, we compare ACG, PCG, and vanilla CG over
the Birkhoff polytope for which linear optimization is fast
(we are using the Hungarian algorithm), so that there is little
gain to be expected from lazification. See Figures 5 and 6
for results.

Matrix completion. Clearly, our algorithm also works di-
rectly over compact convex sets, even though with a weaker
theoretical bound of O(1/¢) as convex sets need not have a
pyramidal width bounded away from 0, and linear optimiza-
tion might dominate the cost, and hence the advantage of
lazification and BCG might be even greater empirically.

To this end, we also considered Matrix Completion instances
over the spectrahedron S = {X = 0 : Tr[X] = 1} C
R™" where we solve the problem:

3 PR p— . . 2
min Y (Xij = Ti )%
(i)l

where D = {T;; | (i,j) € L} € Ris a data set.
In our tests we used the data sets Movie Lens 100k
and Movie Lens Im from https://grouplens.org/
datasets/movielens/ We subsampled in the 1m case
to generate 3 different instances.

As in the case of the Lasso benchmarks, we benchmark
against ACG, PCG, and CG, as the linear programming
oracle is simple and there is no gain to be expected from
lazification. In the case of matrix completion, the perfor-
mance of BCG is quite comparable to ACG, PCG, and CG
in iterations, which makes sense over the spectrahedron,
because the gradient approximations computed by the linear
optimization oracle are essentially identical to the actual
gradient, so that there is no gain from the blending with
descent steps. In wall-clock time, vanilla CG performs best
as the algorithm has the lowest implementation overhead
beyond the oracle calls compared to BCG, ACG, and PCG
(see Figure 7) and in particular does not have to maintain
the (large) active set.

Sparse signal recovery. We also performed computa-
tional experiments on the sparse signal recovery instances
from (Rao et al., 2015), which have the following form:

&= argmin |y — ®z|3.
z€R™: |||l <7
We chose a variety of parameters in our tests, including one
test that matches the setup in (Rao et al., 2015). As in the
case of the Lasso benchmarks, we benchmark against ACG,
PCG, and CG, as the linear programming oracle is simple
and there is no gain to be expected from lazification. The
results are shown in Figure 8.

PGD vs. SiGD as subroutine

To demonstrate the superiority of SiGD over PGD we also
tested two implementations of BCG, once with standard
PGD as subroutine and once with SiGD as subroutine. The
results can be found in Figure 9 (right): while PGD and
SiGD compare essentially identical in per-iteration progress,
in terms of wall clock time the SiGD variant is much faster.
For comparison, we also plotted LPCG on the same instance.

Pairwise steps vs. Frank—Wolfe steps

As pointed out in Section B.2, a natural extension is to
replace the Frank—Wolfe steps in Line 16 of Algorithm 1
with pairwise steps, since the information required is readily
available. In Figure 9 (left) we depict representative behav-
ior: Little to no advantage when taking the more complex
pairwise step. This is expected as the Frank—Wolfe steps are
only needed to add new vertices as the drop steps are sub-
sumed the steps from the SiDO oracle. Note that BCG with
Frank—Wolfe steps is slightly faster per iteration, allowing
for more steps within the time limit.

Comparison between lazified variants and BCG

For completeness, we also ran tests for BCG against various
other lazified variants of conditional gradient descent. The
results are consistent with our observations from before
which we depict in Figure 10.

Standard vs. accelerated version

Another natural variant of our algorithm is to replace the
SiDO subroutine with its accelerated variant (both possible
for PGD and SiGD). As expected, due to the small size of
the subproblem, we did not observe any significant speedup
from acceleration; see Figure 11.

Comparison to Fully-Corrective Frank—Wolfe

As mentioned in the introduction, BCG is quite different
from FCFW. BCG is much faster and, in fact, FCFW is
usually already outpeformed by the much more efficient
Pairwise-step CG (PCG), except in some special cases. In
Figure 12, the left column compares FCFW and BCG only
across those iterations where FW steps were taken; for com-
pleteness, we also implemented a variant FCFW (fixed steps)
where only a fixed number of descent steps in the correction
subroutine are performed. As expected FCFW has a better
“per-FW-iteration performance,” because it performs full
correction. The excessive cost of FCFW’s correction rou-
tine shows up in the wall-clock time (right column), where
FCFW is outperformed even by vanilla pairwise-step CG.
This becomes even more apparent when the iterations in the
correction subroutine are broken out and reported as well
(see middle column). For purposes of comparison, BCG
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and FCFW used both SiGD steps in the subroutine. (This
actually gives an advantage to FCFW, as SiGD was not
known until the current paper.) The per-iteration progress of
FCFW is poor, due to spending many iterations to optimize
over active sets that are irrelevant for the optimal solution.
Our tests highlight the fact that correction steps do not have
constant cost in practice.
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Figure 3. Comparison of BCG, ACG, PCG and CG on Lasso instances. Upper-left: A isa 400 x 2000 matrix with 100 non-zeros. BCG
made 2130 iterations, calling the LP oracle 477 times, with the final solution being a convex combination of 462 vertices giving the
sparsity. Upper-right: A is a 200 x 200 matrix with 100 non-zeros. BCG made 13952 iterations, calling the LP oracle 258 times, with the
final solution being a convex combination of 197 vertices giving the sparsity. Lower-left: A is a 500 x 3000 matrix with 100 non-zeros.
BCG made 3314 iterations, calling the LP oracle 609 times, with the final solution being a convex combination of 605 vertices giving the
sparsity. Lower-right: A is a 1000 x 1000 matrix with 200 non-zeros. BCG made 2328 iterations, calling the LP oracle 1007 times, with
the final solution being a convex combination of 526 vertices giving the sparsity.
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Figure 4. Comparison of PCG, Lazy PCG, and BCG on video co-localization instances. Upper-Left: netgen_12b for a 3000-vertex
graph. BCG made 202 iterations, called LPsepp 56 times and the final solution is a convex combination of 56 vertices. Upper-Right:
netgen_12b over a 5000-vertex graph. BCG did 212 iterations, LPsep was talked 58 times, and the final solution is a convex
combination of 57 vertices. Lower-Left: road_paths_01_DC_a over a 2000-vertex graph. Even on instances where lazy PCG gains
little advantage over PCG, BCG performs significantly better with empirically higher rate of convergence. BCG made 43 iterations,
LPsepp was called 25 times, and the final convex combination has 25 vertices Lower-Right: net gen_08a over a 800-vertex graph.
BCG made 2794 iterations, LPsepp was called 222 times, and the final convex combination has 106 vertices.
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combination of 442 vertices. Lower-right: Over the spanning tree polytope over the complete graph with 10 nodes. BCG made 1983
iterations with 262 LPsep calls and the final solution is a convex combination of 247 vertices. BCG outperforms LPCG and PCG, even
in the cases where LPCG is much faster than PCG.
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made 429 iterations with 239 LPsepp calls and the final solution is a convex combination of 239 vertices. BCG outperforms ACG, PCG
and CG in all cases.
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Figure 10. Comparison of BCG, LCG, ACG, and PCG. Left: Structured regression instance over the spanning tree polytope over the
complete graph with 11 nodes demonstrating significant performance difference in improving the function value and closing the dual gap;
BCG made 3031 iterations, LPsep was called 1501 times (almost always terminated early) and final solution is a convex combination
of 232 vertices only. Right: Structured regression over the disctom polytope; BCG made 346 iterations, LPsep , was called 71 times,
and final solution is a convex combination of 39 vertices only. Observe that not only the function value decreases faster, but the gap
estimate, too.
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