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Adaptive Optimal Decision in Multi-Agent
Random Switching Systems

Mushuang Liu, Yan Wan

Abstract—Random switching models have been widely
used in areas of communication, physics and aerospace,
to capture the random movement patterns of mobile
agents. In this letter, we study the optimal decision-making
problem for multi-agent systems governed by random
switching dynamics. In particular, we develop a novel
online optimal control solution that integrates the rein-
forcement learning (RL) with an effective uncertainty sam-
pling method, called multivariate probabilistic collocation
method (MPCM), to adaptively find the optimal policies for
agents of randomly switching mobility. We also develop a
novel estimator that integrates the unscented Kalman fil-
ter (UKF) and MPCM to provide online estimation solutions
for these agents. Efficiency and accuracy of the proposed
solutions are analyzed. A concrete communication and
antenna control co-design problem for a multi-UAV network
is studied in the end to illustrate and validate the results.

Index Terms—Random switching systems, learning con-
trol, nonlinear estimation.

|. INTRODUCTION

ANDOM mobility models (RMMs) [1], [2], [3], includ-
Ring Random Walk, Random Direction, Gauss Markov
and Smooth Turn (ST), have been widely used in diverse areas
to capture the random movement patterns of mobile agents.
Examples include ad hoc networks in wireless communication,
random motion of particles in physics, and random unmanned
aircraft vehicle (UAV) mobility in aerospace. These RMMs fall
under the general random switching modeling framework: at
each randomly selected time point, an agent randomly selects
its maneuver of certain statistical properties, and moves with
the selected maneuvers until the next selected time point.
Driven by the emergence of Internet-of-Things (IOT) appli-
cations, mobile agents play increasingly important roles in
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optimal decision processes. In this letter, we study optimal
control and effective estimation for such multi-agent random
switching systems.

Optimal controller design for stochastic systems has been
studied in, e.g., [4]. For linear systems corrupted with additive
noise, optimal controls solution that minimize the expected
quadratic cost functions can be found analytically. For gen-
eral stochastic systems with multi-dimensional uncertainties,
simulation-based uncertainty evaluation methods need to be
utilized. The Monte Carlo (MC) method and its variants
including the Markov chain MC and Sequential MC have been
widely used to explore the uncertainty space. However, they
require a large amount of sample points, and hence, are too
time-consuming to be used for online decisions. To address
this challenge, paper [5] developed an effective uncertainty
evaluation method, called multivariate probabilistic collocation
method (MPCM), and paper [6] integrated it with reinforce-
ment learning (RL) to effectively solve the stochastic optimal
control problem online. However, the uncertainties considered
in [6] do not capture complex random switching behaviors. In
this letter, we integrate RL and MPCM to provide an online
learning-based adaptive optimal control solution for random
switching systems of highly flexible, random, and uncertain
agent mobility patterns.

In practice, agents’ states are not always available for con-
troller design, and thus, effective state estimators are needed.
For linear systems with additive noise, Kalman filter (KF) is
the optimal estimator. For nonlinear systems, the sampling-
based unscented KF (UKF) [7], [8] have been used practically.
In this letter, we also describe a practical estimator for multi-
agent random switching systems by integrating UKF and
MPCM. A communication and control co-design problem for
a multi-UAV network governed by ST mobility is studied in
the end to illustrate and validate the results.

[I. MODELING AND PROBLEM FORMULATION
A. System Model

Consider a group of N agents, each of which moves inde-
pendently with a general random switching dynamics as
follows. At randomly selected time points Té, T{, Té, ceey
where 0 = T, < T} < ---, agent i randomly selects its
maneuver a;[77] (e.g., velocity, heading direction, or turning
center, etc.), and maintains the selected maneuver until the next
selected time point. The time duration for agent i to maintain
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Fig. 1. lllustration of the ST RMM. (a) Maneuver selection and switching
behavior. (b) A sample trajectory (red curve). Green spots are randomly
chosen turning centers [2].

its current maneuver is r[[Tli], i.e., r,-[T[i] = T; i Tli. Note
that such a general random switching dynamics is constructed
using two types of random variables. Type 1 random variable,
ai[Tli], describes the charaqteristics for each maneuver, and
type 2 random variable 7;[7}] describes how often the switch-
ing of type 1 random variable occurs. The agent dynamics is
described as

x;[k] = f(xi[k — 11, a;[k], w[T}]), (1)

where x;[k] € R" is the system state vector of agent i at time
instant k, and f(.) captures the general agent dynamics. a;[k] €
R™ is the agent’s maneuver at time k, and m is the number
of uncertain parameters that describe the statistic properties
of the maneuver. Each element of a;[k], a; k], where p €
{1, ..., m}, follows the random switching rule,

o JaiplTl, it Ae0,1,2,.),k=Tj;
aiplk] = {ai,p[k UL i Vi=0.1.2, . kzT, P
where ai,p[Tli](p = 1_, ...,m) is the element of the type 1
random variable a;[7}], and a;,[T;](p = 1, ..., m) changes

independently over time with pdf fx, (ai,p[Tli]). The random
variables (a;[T}], 7;[T}]) are independent for each agent i to
capture their independent movement patterns.

We use a simple but widely-used UAV RMM, smooth turn
RMM [1], [2], to illustrate the random switching dynamics.
In the ST RMM, each agent selects a yelocity vi[Tli] and a
turning center with a turning radius r;[7}] along the line per-
pendicular to its current heading direction, and then circles
around it until the next selected time point. The type 1 ran-
dom variables ai[Tli] = [ri[Tli], vi[Tli]] are inversely Gaussian
and uniformly distributed respectively, and the type 2 ran-
dom variable ri[Tli] = Tli o Tli is exponentially distributed.
The switching behavior and sample trajectory are shown in
Figs. 1(a) and 1(b) respectively.

The communication topology among the agents is fixed and
represented using an undirected graph G = (V, £), where V
is the set of agents V =1,2,...,N,and £ C V x V is the set
of communication links. A link (i, j)(i # j) means that agents
i and j can directly communicate with each other, where j is
one of the neighbors of agent i.

Each agent has a local measurement model of a general
nonlinear form

zijlk] = g(x;[k]) + @ ;[k], 3)

where z;;[k] is the measured output of agent i by its neighbor
J» 8(.) is a general nonlinear function, and @ ;[k] is the white
Gaussian noise.

B. Problem Formulation

We consider the following stochastic optimal control
problem defined on a network of agents subject to the ran-
dom switching dynamics. Denote the number of agent i’s
neighbors as n;. Each agent i seeks its control policies w; j[k],
j€Il,...,n;], to optimize a performance cost with its neigh-
bor j according to the measurement z;;[k]. Each agent i has at
least n; controllers to optimize the cost with the n; neighbors
respectively. This formulation has practical use in a wide range
of new mobile networking applications, where the co-design
of communication and control components becomes essential.
An example is illustrated in Section IV.

In general, the expected cost to optimize is

o0
Jij=ELY_ rijxilk], x;[k], ug k], uj i[k])]. )
k=0
where r;j[k], G =1,...,m;) is the cost between agent i and
its neighbor j at time k. u; j[k] is the control vector of agent i,
which seeks to minimize the communication cost with its
neighbor j, J; ;. The value function V;;(x) corresponding to
the performance index is defined as

o
Vijlkl = E[ Z rij(xilk'], X[k, w j (K], i (KDY (5)
k'=k
Consider the problem of finding the optimal control policies
u;fj[k] that satisfies

u;;[k] = argmin J; ;[k1(x;[k], X;[k], w; ;[k], w; i[k]).  (6)

Ui j

I1l. MAIN RESULTS
A. Optimal Control in Random Switching Systems

In this subsection, we assume the state information, i.e.,
x;[k] and x;[k], is available, and design an adaptive optimal
controller to find the optimal policies for agents moving with
random switching dynamics.

Consider the value function described in (5). Because the
uncertain parameters are independent from the system state,
the following Bellman equation holds,

Vijlkl = EQ_ rijlk) = E(rijlkl + ) rijIkD)
K=k K=k+1
= E(r; j[k] 4+ Vi j[k + 1]). (7

This Bellman equation can be solved online using RL [9].
In particular, assume that a neural network weight W; ; exists
such that the value function can be approximated as

Vi (xilk], xjlk]) = W] (x; k], xj[k]). (8)

Using the value function approximation (VFA) method, the
optimal control policy can be found from the policy iteration
(PD) algorithm [10]. Two main steps are involved in the PI
algorithm: 1) policy evaluation, which evaluates the value
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function at each time step, and 2) policy improvement, which
finds the optimal policy based on the current value function.

For random switching systems, the policy evaluation step
involves uncertainty evaluation to calculate the expectation
of a function as shown in (7). This uncertainty evaluation
is typically obtained using the Monte Carlo method and its
variants, too slow to be used for on-line decision algorithms.
Here we use a multivariate probabilistic collocation method
(MPCM) [5] to effectively evaluate the uncertainty. To map to
the MPCM framework, we here denote the generic function
whose expectation to be evaluated as G(ay, ..., a;), which
is modulated by uncertain parameters ai, az, ..., a, with the
degree of each parameter up to a certain number. The MPCM
accurately evaluates the output mean of G, by smartly selecting
a limited number of sample points according to the Gaussian
Quadrature rules, evaluating these sample points, and produc-
ing the output mean from a reduced-order mapping G’. The
main property of MPCM is described in the following lemma.
Please refer to [5] for the proof and detailed MPCM design
procedures.

Lemma 1 [5, Th. 2]: Consider a generic system mapping
modulated by m independent uncertain parameters:

2n1—12ny—1 21, —1

dp

G(ay,...,am) = Z Z Zl/fql ,,,,, qml_[a s
71=0 ¢2=0 gm=0

where a, (p € 1,2,...,m) is an uncertain parameter with
degree up to 2n, — 1. n, is a positive integer for any
pel,2 ....m and ¥y . 4, € R are the coefficients. Each
uncertain parameter a, follows an independent pdf fa,(ap).
The MPCM approximates G(ay, ..., a,) with the following
low-order mapping

n—lnp—1 nm—1 m
Gl ....am=3 > > Qan ]
71=02=0  gn=0 =1
with  E[G(ay, ..., an)] = E[G(ai,...,ay)], where

Qq,,...qn € R are coefficients.

Remark 1: Lemma 1 shows that the MPCM reduces the
number of simulations from 2" [)_; 1, to [])_; np, where m
is the number of uncertain parameters. Despite the significant
reduction of computation by 2", MPCM accurately predicts
the output mean [5]. We note that the degree of an uncertain
parameter in G is dependent on specific applications. For a
nonlinear system, G is a polynomial approximation with prop-
erly selected maximal degree for each parameter, 2n, —1. With
the increase of maximal degree, the approximation accuracy
can be improved, but at the cost of additional computational
load and the chance of overfitting.

Here we integrate RL and MPCM to provide an effective
online learning-based optimal control algorithm for random
switching systems.

To evaluate the value function V;;[k] at each time instant,
one needs to calculate E(V; j[k+1]) according to the Bellman
equation (7). The value function V;;[k + 1] is determined
uniquely by the system states x;[k + 1] and x;[k + 1], which
can be found from the current states x;[k] and x;[k], system
dynamics f(.), and the random switching behaviors. In particu-
lar, given the current states x;[k] and x;[k], agent i can predict

its future state x;[k 4+ 1] according to its current maneuver
a;[k + 1] using the system dynamics f(.). However, agent i
does not know agent j’s current maneuver a;[k + 1], and as
such, x;[k+1] needs to be estimated by agent i considering its
switching behaviors. Denote the switching behavior of agent
J at time k as s;[k]. sj[k] = 1 or O indicates if the current
maneuver switches at time k or not. Denote the value func-
tion V; j[k] when s;[k] = 1 (or s;[k] = 0) as V}[k] (or VK]
correspondingly). When s;[k] = 0, agent j keeps its previous
maneuver a;[k], and the system state x;[k+1] is obtained using
a;jlk], ie.,

VUKD = rijlk] + Vijlk + 11(xilk + 10, x[k], aj[k]).  (9)

When s;[k] = 1, agent j chooses a new random maneu-
ver from aj[T{] at time k, and in this case, E(V;;[k + 1])
needs to be estimated from the characteristics of the random
variable a][TJ |. Define a system mapping subject to uncer-
tain input parameters aj[T] I: Gy, (xilk + 11, x;[k], a][TJ D) =
ri jlk1+ Vi jlk+ 11(xilk+ 11, x;[k], a;[T]), then the value func-
tion Vl.l’ j[k] can be estimated from the mean output of the
system mapping Gy, (xi[k + 1],xj[k],aj[T{_]) using MPCM,

e., Vi{j[k] = E[Gvivj(x,-[k + 11, xj[k], aj[T{])]. In particular,
a set of samples are selected based on the pdfs of uncertain
parameters, and simulations are run at these samples to esti-
mate E[Gv,.’j(x,-[k + 1], x;[], aj[Tf])]. Under the assumption
that each uncertain parameter a; , has a degree up to 2n, — 1,
Gv,; (xilk + 11, x;[k]. aj[T}]) has the following form,

G, (xilk + 11, x;[k], ay[T]1)

2n1—12ny—1 21, —1
=3 > Y Y itk 1, x,[k])]_[ ”.
q1=0 ¢2=0 gm=0 p=1

According to Lemma 1, the output mean of this system
mapping can be estimated from the output of a reduced-order
mapping G/ (Xl [k+11, x;[k], a][TJ ]) derived from the MPCM
procedure [5 Sec. II],

‘/jl’j[k] = E[Gy,; (xilk + 1], x;[k], aj[T{])]
= E[GYy,  (xilk + 1], xj[k], aj[T)])],

/v,.,j(Xi[k + 11, x[k], a;[T}])

np—1ny—1 ny—1

=22 ) Y

q1=0¢>=0 Gm=0

The coefficients QV (x, [k + 1], x;[k]) and output mean
can be obtained us1ng the evaluated outputs GV xilk +

(10)

(xilk + 10, 5k [ Jaf. (1)

p=1

11, x;[k], aj[TJ ]) at each selected simulation point, accordmg
to the procedures in [5, Sec. 1I-B].

Theorem 1: The value function described in (7) can be
estimated as

Vijlkl =

where ng[k] and Vil’ j[k] are described in (9) and (10) respec-
tively. P 1s the probability that agent j switches its maneuver
at time k. This probability can be derived from the distribution

of GT}1, fr (gIT7]).

PVjIK] + (1 = PV [k, (12)
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Algorithm 1 Policy
Switching Systems

Iteration Algorithm for Random

1: Initialize the system with initial states x;[0], x;[0], and
admissible control policies u; ;[0] and w; ;[0].

2: Select I—[lel np MPCM sample points according to the
pdfs pr (aj,,,[T{]) and the MPCM procedure [5, Sec. II].
Denote each selected MPCM sample as A/, where [ =
1, ..., ]_[I'f:] np.

3: For each iteration s, find the value function when s;[k] =
0. Vi, using (9).

4: Find the value function Vl.l,’j(s) (x;k], x;[k]) at each MPCM
sample A’, using the Bellman equation: V,-l,’j(s) [k] =
il + WD o (xilk + 10, %[k + 1).

5. Find the reduced polynomial mapping from a;, to
G’Vl_'j(x,'[k + 11, x;[], aj[T{]) described in (11)' according
to Lemma 1. g;, and G/Vi.j (x;[k+ 1], x;[£], aj[Tf]) take the
value of A’ and le [£] respectively.

6: Find the value function when si[k] = 1, ie. V. ”[K],
by combining (10) and the derived system mapping
Gy, (xilk + 11, x;[k], a[T)]).

7: Find the value function Vi(";-) [k] by combining Theorem 1,
VO] and VO k).

8: Update the value function coefficients Wl-(j-) according to

the estimated V;")[k]: W{" ¢ (xi[K]. x,[k]) = V) [K].

© argminy, Vi(j-) [k].

9: Update the control policy ug’sj) as u;; :

10: Repeat procedures 3 — 9.

Proof: The value function for an agent of random switching
dynamics can be derived as

Vi jlkl = E(V;jlk]|sjlk] = 0)P(sj[k] = 0)
+ E(Vijlkllsi[k] = DP(si[k] = 1)

= PV)[K]+ (1 — PV} [K]. (13)
Equations (9), (10) and (13) naturally lead to
Theorem 1. |

The detailed algorithm that integrates the PI learning algo-
rithm and MPCM is described in Algorithm 1. After initial-
ization in Step 1, Step 2 samples aj[T{] to prepare for the
uncertainty evaluation procedures in Steps 4 — 6. Steps 3 — 7
are value function evaluation. In particular, Step 3 evaluates
ng, Steps 4 — 6 evaluate Vl-l’ i and Step 7 combines Vi(,)j and
Vl-l, ; according to Theorem 1 to find Vi jlk]. After value func-
tion evaluation, the approximation weights W;; and optimal
control polices u; ; are updated respectively in Steps 8 and 9.
The detailed procedures for MPCM and PI algorithm can be
found in [5], [10] respectively.

Theorem 2: Consider the random switching system shown
in (1) with the value function described in (5). Assume there
exists a unique optimal solution and Algorithm 1 converges.
Given the current system states x;[k] and x;[k], the solution
found by Algorithm 1 is the optimal control policy.

Proof: The control policy derived by evaluating the value
function V; j[k] = PVSj[k] +(1-P) Vi{ j [£] is optimal according

to (6), Theorem 1, and the policy iteration properties [10].
As such, to prove this theorem, we are left to show that
the two optimal solutions, which are found by evaluating
the reduced-order mapping Png[k] + (1 - P)G/‘/,.J(Xi[k +
1],Xj[k],aj[T{]) and the original value function mapping
PVIK] + (1 = P)Gy,, (xilk + 11, xj[k], aT]]) are the same.
Lemma 1 proves that E[G, (xi[k + 1],Xj[k]saj[T{])] =

E[Gy,;(xi[k + 1], x;[k], aj[T;])]. Therefore, the equivalence of
the two optimal solutions can be proved from a contradiction
argument described in [6, Th. 1]. u

Remark 2: The convergence of Algorithm 1 depends on
three numerical solutions: the policy iteration method, the
value function approximation, and the MPCM approximation.
The policy iteration method has been widely used in dynamic
programming and reinforcement learning fields [6], [10], with
its convergence conditions provided in [10]. The value func-
tion approximation uses neural networks to approximate
the smooth value function. The assumptions that make this
approximation hold are listed in [11]. MPCM works well
for both polynomial and non-polynomial system mappings as
guaranteed by Lemma 1, with properly selected degrees for
the polynomials (see [5] for the details).

B. State Estimation in Random Switching Systems

In many practical applications, state information x;[k] and
x;j[k] may not be available for controller design. In this sub-
section, we provide a practical online state estimation solution
for agents of random switching systems.

Given the previous state x;[k — 1], the expected current
state E(x;[k]|x;[k — 1]) can be estimated considering the two
possible switching behaviors: s;[k — 1] = 1 or 0. When
silk — 1] = 1, agent i chooses a new random maneuver from
a,-[Tf] at time k — 1. As such, the estimation of the expected
conditional system state E(x;[k]|x;[k — 1], si[k — 1] = 1)
involves uncertainty evaluation, which we solve using MPCM,
instead of the Monte Carlo methods which are computation-
ally ineffective. In particular, we define f(x;[k — 1], ai[Tf])
as a system mapping subject to uncertain input parameters
ai[Tli], ie., Gi(xjlk — 1],ai[Tli]). The expected system state
when s;[k—1] = 1 is then approximated from the mean output
of the system mapping G;(x;[k— 1], ai[Tli]) using MPCM, i.e.,

E(xi[kl[xi[k — 11, silk — 11 = 1) = E[Gi(xi[k — 1], a;[T;])]. (14)

Theorem 3: Given the previous system state X;[k — 1], the
expected current state for agent i is estimated as

E(xi[k]|x;[k — 1) = PE[G}(x;[k — 1], a;[T]])]
+ (1 = P)f (xilk — 1], a;[k — 1]),
where P is the probability that agent i switches its maneuver
at time k— 1. G;(X,-[k_ —1], ai[Tli]) is a reduced order mapping
of G;(x;[k — 1], a;[T}]) derived from MPCM.

Proof: The expected system state at time k for an agent of

random switching dynamics can be derived as

E(xi[k]|x;[k —1])
= E(xi[k][xi[k — 1], si[k — 1] = 0)P(si[k — 1] = 0)
+ E(xi[k]|xi[k — 11, si[k — 1] = DP(silk — 1] = 1). (16)

5)
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In the case of s;[k—1] = 0, agent i keeps its previous maneu-
ver. The conditional expected system state E(x;[k]|x;[k —
1], sifk — 1] = 0) can be found from the previous system
state x;[k — 1] and maneuver a;[k — 1] as

Ei[kl[xilk — 11, slk — 1] = 0) = f(xi[k — 1], aj[k — 1]).  (17)

In the case of s;[k—1] = 1, agent i chooses a new maneuver
from ai[T;] at time k— 1. The expected conditional system state
Ex[k]|x;[k — 1], si[k — 1] = 1) can be estimated from the
mean output of the reduced-order system mapping Gi(xj[k —
11, ai[Tl’]) using MPCM according to (14) and Lemma 1.

Equations (14), (16) and (17) naturally lead to
Theorem 3. u

Theorem 3 provides an accurate and computationally-
efficient approach to estimate the expected system state for
random switching systems, given the previous state. Next we
integrate it with UKF to provide the state estimation solution
from the measurement signals z;;[k]. The system is assumed
to be observable. In particular, MPCM and UKF are inte-
grated for a 5-step state estimation procedure. Steps 1 and
2 select initial conditions and MPCM points to initialize
Steps 3-5. Steps 3 and 4 find the state estimator for the
switching behaviors s;[k — 1] = 0 and 1 respectively. Step
5 finds the expected state by integrating the two estimators in
Steps 3 and 4.

Step 1 (Initialize): Initialize X;[0] and P;[0].

Step 2 (Select MPCM Points): [],_;n, MPCM sample
points are selected according to the pdfs pr (ai,p[T;]) and the
MPCM procedure [5, Sec. II]. Denote each selected MPCM
sample as A', where [ =1, ..., ]_[21:1 np.

Step 3 (Estimate the System State When sij[k — 1] = 0):
The expected system state E(x;[k]|X;[k — 11, z;;[k], si[k —
1] = 0) can be estimated using UKF through the follow-
ing four sub-steps [7]: (a) select sigma points from X;[k — 1];
(b) predict system state by instantiating the sigma points
through the system dynamics f(.); (c) select new sigma
points from the predicted state, and predict measurement
by instantiating the sigma points through the measurement
model g(.); (d) update the Kalman gain and find the expected
state E(x;[k]|X;[k — 1], z;[k], silk — 1] = 0) and covariance
EP;[k]|P;[k — 1], z;;|k], si{k — 1] = 0). Please refer to [7], [8]
for the detailed UKF procedure.

Step 4 (Estimate the System State When sij[k — 1] =1):
Uncertainty evaluation is necessary in this step, and the
expected system state is derived by integrating MPCM and
UKF using the following three sub-steps (a)-(c).

(a) Estimate system state at each selected MPCM point:
At each selected MPCM point A' (I = 1,...,]_[;’,;1 np),
the system state can be estimated from the UKF procedure
shown in Step 3, (a)-(d). Denote the estimated state from
UKEF at each sample point as f(f[k] with the covariance Pﬁ[k]
(I=1, ]_[Z’=1 np).

(b) Find the reduced polynomial mappings: Define system
mappings Gy (Xilk — 1], a[T]]) and Gp Kilk — 11, a;[T]])
as the relationships between the expected system
state and covariance with the random variable ai[T[i].
According to Lemma 1, the reduced-order map-
pings can be found respectively as G;i xilk —

Woallj) = Y020 Srerg- Y2y Q8 . (ilk — 1)
[, al, and  Gp (Kilk nalrfjh) = Yio,
ZZ;;(I) .- ZZZ;(]) QpFaGilk =11 T, aZ’[’, respectively.

(c) Find the expected system state and covariance:
The expected system state and covariance are then found
from the mean output of the system mapping accord-
ing to Lemma 1 and the MPCM design procedure [5],
Exi[kl1Xi[k — 11, zjlk], silk — 11 = 1) = E[Gy (Kilk —
1L, [Ty D], ERiK][Pi[k — 1], zjlk], silk — 1] = 1) =
E[Gp, (xilk — 11, ai[ T} ])].

Step 5 (Estimate the Expected System State): The estimated
state and covariance are then derived from Steps 3 and 4
according to Theorem 3 as

E(xi[k1[%i[k — 11, z;[k])
= PE(X;[k]1X;lk — 11, z;;[k], silk — 1] = 1])
+ (1 = PYE(x[k]IXilk — 11, z;[k], silk — 1] = 0]),
EP;[k]|P;[k — 1], z;[k])
= PE(P[k]|Pi[k — 1], z;[k], si[k — 1] = 1])
+ (1 = P)E(P;[k]|Pi[k — 1], zi;[k], silk — 1] = O]).

As such, the estimator of x;[k] is X;[k] = E(x;[k]|X;[k —
11, zjj[k]), and the expected error covariance is P;[k] =
E(P;[k]|P;[k — 1], z;[k]).

Remark 3: The performance of the state estimation algo-
rithm is jointly determined by UKF and MPCM. UKF
addresses the nonlinear system dynamics and measurement
models. MPCM effectively samples the random switching
behavior. The accuracy of MPCM is guaranteed by Lemma 1.
Note that UKF is not an optimal estimator. It has been prac-
tically used to provide approximations to optimal solutions
with certain accuracy. Performance analysis on UKF for gen-
eral systems is limited in the literature. When the measurement
model is linear, the estimation error of UKF is bounded when
an extra positive definite matrix is added in the calculated
covariance matrix [8]. Here we use the UKF method to address
random switching system dynamics. The use of MPCM does
not deteriorate the convergence or the optimality of state
estimation as guaranteed by Lemma 1.

[V. ILLUSTRATIVE EXAMPLES

Consider a five-UAV network to support a surveillance-like
mission. UAVs move independently according to the ST RMM
described in Section II-A. The randomly-generated trajectories
of the UAVs are shown in Fig. 2(a).

A three-sector directional antenna is mounted on each
UAV to communicate with its neighbor UAVs over long
distances upon an ID-based fixed communication topology
(Fig. 2(b)). To maximize the communication performance,
each UAV controls the heading directions of its antennas to
maximize the received signal strength indicators (RSSI), which
measure the communication channel performance. The cost
function in this example is J;; = —E[ Zi\,:o R; jlk]], where
R;j, the RSSI that UAV i receives from its neighbor j is
Rijlkl = Puapn + 201og o(z4m7) + Guasilkl (see [12] for
the details), and N is the experimental time. Here Py is
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Fig. 2. (a) Sample trajectories of the UAVs, (b) Communication topology
of the five-UAV network.
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Fig. 3. Estimation performance. (a) Trajectory of UAV 3. (b) Estimation
errors.

the transmitted signal power, A is the wavelength, d[k] is the
distance between neighboring UAVs, and Gyjgp;i[k] is the sum
of gains of the two antennas, which depends on their heading
angles. Measurements are GPS corrupted with Gaussian white
noise. The performances of the designed estimators and con-
trollers are simulated for all five UAVs and communication
links. We here only show the performance of UAV 3 and its
communication link to UAV 2.

We first investigate the computation load reduction of the
MPCM through a comparative study. Because two type 1
random variables are involved, the number of uncertain param-
eters in the system mapping G(ai, az) is m = 2. We select
n = 2 ‘for the degree of a; = vi[Tli] and np, = 3 for
ap = ri|T;]. With this parameter setting, ]_[;,":1 n, = 6 MPCM
points are selected according to the MPCM procedure [5].
For the optimal control solution developed in III-A, the Monte
Carlo method requires about 8000 sample points to converge to
the output mean, while the MPCM method only needs 6 points
to converge to the correct result. The significant reduction
of computation load shows the value of MPCM to facilitate
online uncertainty evaluation.

We then analyze performance of the state estimator designed
in Section III-B (see Fig. 4) . The estimated trajectory matches
well with the real UAV trajectory, and the estimation errors are
much smaller than the errors of GPS signals, which validates
the effectiveness of the estimation solution.

Finally, we simulate the optimal controller designed based
on the estimated states. Fig. 4(a) shows the controlled head-
ing directions of the directional antenna mounted on UAV 3
to communicate with UAV 2, and Fig. 4(b) shows the errors
between the controlled and real optimal heading directions.
The controlled directional antenna heading direction is very
close to the optimal solution, and the errors are within

1.5 T 0.2
5 g
] =
S s 01
2 5]
=) 0
S 05 g
2 & 0.1
T 9 \r s =)
@ " £-02
[} =Optimal angle kel
T = Controlled angle 8
-0.5 T-03
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)
(a) (b)

Fig. 4. Control performance. (a) Optimal headings of directional
antenna on UAV 3 to communicate with UAV 2. (b) Errors between the
optimal and the controlled heading angles of the directional antenna.

(—0.2, 0.15) rad, which validates effectiveness of the proposed
adaptive optimal control solution.

V. CONCLUSION

This letter studies the design of adaptive optimal deci-
sion solutions for multi-agent random switching systems. An
optimal controller and a practical state estimator, developed
based on RMM, UKF, MPCM and RL constructs, provide
fast online decision solutions for multiple agents moving
with general highly flexible and uncertain movement pat-
terns. Efficiency and accuracy of the proposed solutions are
analyzed. In the future work, we will further investigate prop-
erties of the proposed solutions for random switching systems,
including convergence, robustness, and optimality.
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