Robust Annotation of Mobile Application Interfaces
in Methods for Accessibility Repair and Enhancement

Xiaoyi Zhang, Anne Spencer Ross, James Fogarty
Paul G. Allen School of Computer Science & Engineering
DUB Group, University of Washington
{xiaoyiz, ansross, jfogarty}(@cs.washington.edu

ABSTRACT

Accessibility issues in mobile apps make those apps difficult
or impossible to access for many people. Examples include
elements that fail to provide alternative text for a screen reader,
navigation orders that are difficult, or custom widgets that
leave key functionality inaccessible. Social annotation
techniques have demonstrated compelling approaches to such
accessibility concerns in the web, but have been difficult to
apply in mobile apps because of the challenges of robustly
annotating interfaces. This research develops methods for
robust annotation of mobile app interface elements. Designed
for use in runtime interface modification, our methods are
based in screen identifiers, element identifiers, and screen
equivalence heuristics. We implement initial developer tools
for annotating mobile app accessibility metadata, evaluate
our current screen equivalence heuristics in a dataset of 2038
screens collected from 50 mobile apps, present three case
studies implementing runtime repair of common accessibility
issues, and examine repair of real-world accessibility issues
in 26 apps. These contributions overall demonstrate strong
opportunities for social annotation in mobile accessibility.

Author Keywords
Robust annotation; runtime modification; accessibility.

ACM Classification Keywords
Human-centered computing — Accessibility systems and
tools.

INTRODUCTION

Mobile apps have become ubiquitous, used in accessing a
wide variety of services online and in the physical world
(e.g., financial services, transit information). However, many
apps remain difficult or impossible to access for people with
disabilities, an estimated 15% of the world population [30].
For example, recent research examined the prevalence of
accessibility issues in a sample of 100 Android apps, finding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

UIST '18, October 14-17, 2018, Berlin, Germany

© 2018 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 978-1-4503-5948-1/18/10...$15.00
https://doi.org/10.1145/3242587.3242616

that every app included at least one accessibility issue [33].
95% of the examined apps included touchable elements that
were smaller than recommended by Android’s accessibility
guidelines [17], making them difficult to access for many
people (e.g., people with motor impairments). 94% included
elements that lacked alternative text, making them difficult
to access using a screen reader (e.g., for people with visual
impairments). 85% included elements with low text contrast,
another barrier for people with vision impairments.

In addition to accessibility issues that can be objectively
defined and detected by tools like Google Accessibility
Scanner [14], considering the context of an interaction often
reveals additional barriers. For example, a person using a
screen reader may need to swipe 10 to 20 times before the
focus moves to elements that should be readily available
(e.g., the “Menu” button in the Dropbox app). As another
example, a single inaccessible element can often undermine
the overall functionality of an app (e.g., the 5-star rating
element of the Yelp app lacks accessibility support, leaving
this core functionality inaccessible to many people).

Mobile platforms have begun to support interactive correction
of accessibility failures. For example, Android’s TalkBack
screen reader allows end-users to add custom labels to
elements where an app developer has failed to provide a
label. However, this functionality is limited to /mageButton
or ImageView elements and requires an app developer has
provided a ViewIDResourceName, an optional property that
is often not specified. In an evaluation reported later in this
paper, we examined 50 apps and found that TalkBack can
apply custom labels to less than 13.6% of elements that it
visits. TalkBack also does not support correcting an element
that does have a label, even if that label is misleading.

Prior research in the runtime repair of accessibility failures
has often focused on the web, in part because a webpage’s
underlying representation is available and can be modified
prior to rendering by the browser. Social annotation is one
powerful approach to accessibility repair [24,40], in which
people annotate interface elements with metadata that is then
used to repair accessibility failures in future interactions
(e.g., annotating images that lack alternative text with text
that can then be presented to future people who encounter
that image using a screen reader). Such approaches require
a robust method for determining when an annotation is
applied, typically addressed via the combination of a URL
(i.e., indicating the context in which an annotation is applied)

and an XPath (i.e., within the context of the URL, indicating
which element is annotated). Despite advances in runtime
enhancement of mobile apps [31,48], social annotation
remains difficult to apply in mobile apps because of a lack of
methods for specifying an annotation context (i.e., the lack of
a robust notion of a screen identifier, analogous to a URL).

This paper addresses this underlying requirement for robust
annotation of mobile app interface elements. We develop a
template-based approach to a screen identifier, implemented
for the Android platform. We then use this in demonstrating
several types of runtime accessibility repair: 1) applying
custom labels to interface elements, 2) correcting navigation
order, and 3) authoring accessibility context for inaccessible
customized elements (e.g., a 5-star rating element).

The specific contributions of our work therefore include:

e Development of methods for robust annotation of mobile
app interface elements. Designed for use in runtime interface
modification, our methods combine a novel approach to
screen identifiers and screen equivalence heuristics with
familiar techniques for Android element identification.

o Implementation of initial developer tools for annotating
mobile app accessibility metadata, including tools for
authoring annotations and applying annotations at runtime.

e Evaluation of our current screen equivalence heuristics in
a dataset of 2038 screens collected from 50 mobile apps.

e Three case studies demonstrating the implementation of
runtime repair of common accessibility issues, each using
the robust annotation methods developed in this research.

¢ An examination of repairing real-world accessibility issues
in 26 apps, including popular Android apps, apps with
accessibility issues reported in online forums, and apps
identified through an in-person interview with a person
who regularly uses the Android TalkBack screen reader.

RELATED WORK

Our current research is informed by prior research in social
annotation and web accessibility, in runtime interface
modification, and in screen and element identifiers.

Social Annotation and Web Accessibility

The web’s representation has long encouraged enhancement
of content through annotation, from annotation capabilities in
Mosaic [43] to W3C efforts in interoperable annotations [44].
Prior research has developed robust web annotation to enable
content customization and adaptation for end-users [4,5,28].
Extensive research in social accessibility has applied social
annotation to web accessibility (e.g., [3,22,34,35,40,41]).
Systems have explored various techniques, with a core that:
1) a person observes an accessibility failure, 2) that person or
another person annotates the interface with metadata used by
a tool that can repair the failure, and 3) annotation data is
shared so that future users of the interface benefit from the
repair. Examples of research in social annotation for web
accessibility include providing image alternative text and
other metadata [35,40,41], repairing navigation order [34],
sharing scripts for site-specific repairs [3], and designing
infrastructure for crowdsourcing contributions [22].

i,

2w (e O LG

78

kit L This interface includes 6 elements with missing
or misleading labels for use by a screen reader.

“«d G
——— e O I G »
710 ESPN app

TalkBack allows end-users to add custom labels
to only 2 of the elements (shown in green).

O Il @ ™

—a

We develop new annotation methods that allow
developers to repair all 6 elements.

Figure 1: Missing and misleading labels are a common and
important accessibility issue that can be addressed by new
approaches to robust annotation for accessibility repair.
Runtime Interface Modification

Techniques for modifying the web benefit from the ability
to directly modify a page prior to its rendering by a browser
(e.g., modifying the HTML, CSS, or DOM). In contrast,
non-web architectures generally lack an ability to access or
modify internal representation, requiring different approaches
to runtime modification. Prior research in desktop interfaces
has replaced of an application’s toolkit [12,13,29] or used
window manager redirection of input and output [8,39,42].
A meaningful modification requires understanding the
content and state of that interface, generally obtained through
a combination of accessibility API data (e.g., [6,39]) and
pixel-based analysis of interface content (e.g., [8,9,10,20,46]).

Less research has explored runtime interface modification
in mobile platforms, in part due to their security architectures
and greater concern for performance (e.g., a challenge for
pixel-based techniques developed in the desktop context).
Notable examples of runtime accessibility enhancements have
included macro support [31] and pointing enhancement [48].
The SWAT framework requires rooting a device for an
accessibility service to obtain system-level instrumentation
of content and events [32], but rooting is a significant
security risk and also presents a technical expertise barrier.
Recent research in interaction proxies demonstrates a strategy
for runtime accessibility repair and enhancement without
rooting a phone, without requiring an app’s source code,
preserving all capabilities of a phone’s built-in accessibility
infrastructure [47]. These techniques modify interaction
using floating windows inserted between an app’s original
interface and the manifest interface a person perceives and
manipulates, deciding how to coordinate and modify
interaction with the added floating windows according to
information available via standard platform accessibility
APIs. The robust annotation techniques we develop in this
paper are also based entirely on information available via
standard platform accessibility APIs, offering the potential

for broad deployment. Later sections demonstrate several
case studies of runtime accessibility repairs implemented
using a combination of annotations and interaction proxies.

Screen and Element Identifiers

As noted in the introduction, social annotation on the web has
generally been implemented via the combination of a URL
(i.e., indicating the context in which an annotation is applied)
and an XPath (i.e., within the context of the URL, indicating
which element is annotated). This strategy cannot be directly
applied in mobile apps because the various screens of an
app lack robust identifiers (i.e., the equivalent of a URL).
Robust annotation of mobile apps therefore requires both:
1) methods for identifying a screen within an app, and
2) methods for identifying specific elements within that screen.

Prior research exploring screen identifiers has not been
motivated by runtime interface modification and is
generally inappropriate for that purpose. For example, Flow
is an Android developer toolkit that allows naming interface
states, navigating between them by name, and remembering
the history of states [37]. However, such a toolkit must be
integrated by an app’s developer and cannot be used to
reason about screens as part of an external repair.

The Rico project developed a large dataset of mobile app
designs, gathered by capturing data during crawls of mobile
apps [7]. Rico encounters a screen identification problem in
determining whether an interaction during a crawl results in
an app entering a new interface state or a state that has
previously been captured. They define a context-agnostic
similarity heuristic that compares two screens based on: 1) the
number of pixels that differ in the two screen images, and
2) the number of differences when comparing the values of
ViewIDResourceName for elements of the two screens. Two
screens were considered the same if both were below
manually-tuned thresholds, requiring the same value for
99.8% of pixels and all but 1 ViewIDResourceName value.
These thresholds resulted in an estimated 9% error rate
(6% error incorrectly determining two screens were the same,

3% error incorrectly determining two screens were different).

Rico’s use of pixel comparison is appropriate for crawling,
but problematic for runtime modification (e.g., it requires
additional permissions, can present performance challenges).

Other mobile app crawls similarly attempt to minimize
revisitation of known screens by testing for similarity. For
example, DECAF and PUMA define a generic feature vector
encoding the structure of a screen’s interface hierarchy,
then use a cosine-similarity metric to determine screen
equivalence according to a threshold [21,26]. An evaluation
in DECAF with a .92 threshold estimated a 20% error rate
(including 8% error incorrectly determining two screens were
the same and 12% error incorrectly determining two screens
were different). The threshold can be varied to obtain different
tradeoffs between thoroughness and speed of a crawl, but a
developer cannot otherwise correct either class of error.

In contrast to both of the above, the screen identification
methods we develop in this paper: 1) use more information

in the structure of the interface hierarchy to reduce overall
error, and 2) allow the developer of an accessibility repair
to explicitly correct any errors in screen identification to
ensure robust annotation for runtime interface modification.

Automated testing tools address a need to be in a known state
by executing pre-defined interaction sequences that bring an
app to known screens (e.g., [1,18,36]). Because the developer
of a test knows what screen will be active in each step of that
test, they can reference elements of that screen. For example,
UiSelector is an element identifier used in Android tools [19],
specifying elements by properties such as ContentDescription,
ClassName, State information, Text value, and location in an
interface hierarchy. Within the context defined by a screen
identifier, we use a similar approach to element identifiers so
that we leverage developer familiarity with this approach.

ANDROID BACKGROUND

This section reviews several Android capabilities. We first
discuss why existing capabilities are inappropriate for robust
annotation, then provide background on accessibility
services and Android’s existing limited repair capabilities.

Android’s accessibility services expose a Windowld for each
View. Intended to support input interactions across multiple
processes, Windowld is not stable (i.e., it will change each
time an app is launched). It is therefore inappropriate as an
identifier for storing annotations for use in future sessions.

When available, Android’s accessibility services also expose
a ViewldResourceName for each View. ViewldResourceName
is Android’s primary approach to a robust identifier (e.g., to
be used in automated testing). Unfortunately, it is optional
and often not specified by an app developer. When
specifying an app’s layout in an XML layout file, including a
ViewldResourceName allows a developer to obtain a reference
to that element at runtime (i.e., similar to web programming
practices of accessing an element according to an id attribute).
However, app developers commonly create interface elements
directly in code, obtain direct references to those elements, and
therefore see no reason to specify a ViewIDResourceName.
ViewIDResourceName is also not required to be unique, and
the same value may be used by multiple elements in different
contexts (e.g., elements in different screens of an app).
ViewIDResourceName is therefore also not an adequately
available and robust identifier for annotating Android elements.

Android allows an accessibility service to capture an image
of the screen if a person grants screenshot permission to the
service. A person may refuse this permission. Apps can also
specify a FLAG SECURE to disable screen capture, a
common practice in apps that contain sensitive information
(e.g., in banking apps). Prior research has examined
pixel-based analysis and annotation (e.g., [8,9,10,20,46]), but
the application of those techniques in mobile apps is limited
by potential lack of access to screenshots and concerns for
mobile performance challenges in pixel-based analysis.

Our approach focuses on using information available via the
standard Android accessibility APIs. Each interface element

Developer Developer
Capture of Identification of
Screens Template Screens

J]&

v
Navigation Order

Additional Repairs

|

—_—

Developer End-User
Authoring of Runtime Repair of
Annotations Accessibility

Figure 2: We develop and evaluate new methods for robust annotation of mobile app interface elements appropriate for
runtime accessibility repair, together with end-to-end tool support for developers implementing accessibility repairs.

is represented as an AccessibilityNode that exposes
properties of that element (e.g., ClassName, AvailableActions,
Text, ContentDescription). Each AccessibilityNode can also
access its parent and any children, allowing us to obtain and
consider the tree of all interface elements in a screen.

As noted in our introduction, Android’s TalkBack screen
reader allows adding custom labels to elements. When a
person navigates to an element without alternative text, they
may perform a gesture to open the “local context menu”,
find the “add label” option, and enter a label for that element.
Current support for interactive correction has several
limitations: 1) It is often difficult for a person with a visual
impairment to know the correct label for an unlabeled element,
which can require trial and error or seeking assistance from
another person. 2) TalkBack support for correction applies
only to ImageButton or ImageView elements, which must
have a ViewIDResourceName assigned by the app developer.
3) TalkBack does not allow replacing an existing label,
even if it is incorrect or misleading. Improved support could
enable significant advances relative to such limitations
(e.g., greater ability to annotate elements, new ability to share
robust annotations among the many people using an app).

APPROACH AND SYSTEM OVERVIEW

Our focus is on developing an approach to robust annotation
of mobile app interface elements. Figure 2 overviews our
approach, currently implemented in a set of related tools.
Later sections discuss details of our approach and our current
tools in more detail, while also emphasizing that different
tools can be composed to implement the overall approach.

Beginning from the left of Figure 2, a developer implementing
an accessibility repair first captures screens they would like
to annotate within an app. We have developed a capture
tool that can be used for this, implemented as an Android
accessibility service. With the tool running in the
background, the developer visits each screen that will be
annotated. A software button added by the tool then allows
capturing a current screen (i.e., a screen image and a
snapshot of the current AccessibilityNode hierarchy).

Collection will often include multiple captures of the same
screen, as illustrated by color and shape in Figure 2. This can
occur when a screen is visited multiple times during collection,
or when a screen is captured with different content (e.g., the
same Yelp rating screen captured for different restaurants).

The developer of a repair identifies femplate screens that
correspond to unique screens in the app. A template tool
displays unique template screens in a row, with captured
variations displayed in the column underneath each template.
The tool applies our current screen equivalence heuristics, as
discussed and evaluated in later sections, so that templates
are automatically identified. A developer therefore only
needs to inspect and potentially correct identified templates.

A developer then authors annotations using a combination
of a screen identifier for the template screen in which an
annotation applies, an element identifier for the annotated
element within that screen, and the metadata to be associated
with that element. We have developed an annotation tool to
support authoring annotations. It displays the screen image,
uses AccessibilityNode data to generate an element identifier
when a developer selects an element in the image, provides
highlighted feedback on elements that will be selected as a
developer edits an element identifier, and allows inputting
JSON-formatted metadata to be included in an annotation.

A developer can then create an accessibility service that uses
annotations for the runtime repair of accessibility issues on
end-user devices. We have developed a runtime library that
supports comparing the current screen of an app against
template screens for that app. If the current screen matches a
template, the library further supports testing element identifiers
of annotations against the current screen. The accessibility
service can then use matching annotations in applying its
runtime repairs. Later sections discuss three example
services we have implemented using this approach.

Supporting a Range of Accessibility Repair Scenarios
Our approach and tools can support a variety of scenarios
for a developer implementing annotation-based accessibility
repair. Two example scenarios can include: 1) targeted repair
in one or two screens of an app, or 2) more general-purpose
repair of a class of errors across many different apps.

In the first scenario, a developer might decide to modify the
navigation order within a specific screen of a specific app
(e.g., in the “file explorer” screen of the Dropbox app). The
developer can open the app, visit the screen to be repaired,
and capture its data. The developer can then inspect that
data in our annotation tool, obtain a screen identifier for the
“file explorer” screen, and obtain element identifiers for
elements to be modified. The developer could then implement

a custom accessibility service that: 1) uses our runtime
library to detect when the app’s context matches the “file
explorer” screen identifier, 2) obtains references to interface
elements in the screen using their element identifiers, and
3) uses the references to re-order navigation in that screen.

In the second scenario, the developer may find they want to
extend their repair to other apps in which people report the
same type of accessibility issue. Instead of developing many
such specialized repair services, the developer can generalize
their repair service. They can remove the use of specific
screen identifiers and element identifiers, instead defining an
annotation type and modifying their code to repair navigation
according to any annotations available for the current screen.
This might be sufficient for their needs, they might extend our
annotation tool to make it easier to author such annotations,
or they might examine new approaches to supporting a
community of interested people in annotating many apps.

IMPLEMENTING ROBUST ANNOTATION

Annotation is implemented using a combination of a screen
identifier and an element identifier. A screen identifier
corresponds to a template screen, and a set of screen
equivalence heuristics are used in both: 1) defining template
screens (i.e., determining whether a screen is a variation of an
existing template screen or distinct from existing templates),
and 2) runtime identification of screens (i.e., determining
whether the current screen matches a screen identifier).
This section discusses each of these key components.

Screen Identifier

A screen identifier corresponds to a template screen and any
variations of that screen, where a variation informally has
the same screen structure with minor differences in content
(e.g., images, text, number of items in a list). Annotations
applied to a template will also apply to any variations,
which both: 1) minimizes effort that might otherwise be
spent annotating many different versions of a screen, and
2) allows our approach in screens containing dynamic
content that could not otherwise be feasibly annotated.

A set of template screens is initialized with the first captured
screen (i.e.,, a single template with no variations). Each
screen is then compared against the set of current templates
using screen equivalence heuristics. If a screen is equivalent
to an existing template, it is added as a variation. Otherwise,
the screen is used as a new template. Although a capture
includes both a screen image and accessibility data, the image
is used only for developer inspection and annotation. Screen
equivalence heuristics must be based in the accessibility
data, because the image will not be available at runtime.
A developer may also use any variation as the representative
screen for a template, as all of the variations are equivalent.

At runtime, an accessibility service can capture accessibility
data for a screen and use our runtime library to compare
that screen against the set of template screens for that app.
This uses the same screen equivalence heuristics. If a match
is found, annotations associated with that template screen
are considered relevant to the current screen of the app.

Our template tool generates a unique and random screen
identifier for each template screen (e.g., “screen_1520907”).
A developer may also associate a human readable identifier
with the screen identifier (e.g., “file explorer”), while
ensuring human readable names are unique within an app.
Identifiers can then be used with our runtime library to detect
a screen (e.g., for a repair to the “file explorer” screen).

Element Identifier

A developer can then reference elements in a template screen
using techniques familiar in Android testing frameworks
(i.e., UiSelector and XPath selectors). Our implementation
of these selectors also differentiates between stable and
dynamic properties. Stable properties are unlikely to change
between screen content updates (i.e., between variations),
including ClassName, Depth, IsLeaf, and ViewldResourceName.
Dynamic properties are more likely to change, including
ContentDescription, Location, NumberOfChildren, Size, and
Text. The current set of properties could be extended if
necessary or if future versions of the Android Accessibility
APIs expose additional properties of interface elements.

Our annotation tool also automatically generates a unique
and random element identifier for each element in a template
screen (e.g., “element 594017). Each default element identifier
corresponds to a selector including the element’s path in the
hierarchy and its stable properties. A developer can verify
the default selector by using the annotation tool to inspect
how it applies in each variation. If necessary, a developer
can edit the default selector, again inspecting how it applies
in each variation. They may also associate a human readable
name with an element identifier (e.g., “menu button”).
At runtime, an accessibility service can use our runtime
library to obtain a reference to an interface element using
either an element identifier or a supported selector.

Screen Equivalence Heuristics

Annotation requires screen equivalence heuristics for
determining a set of template screens for annotation and
determining whether the active screen of an app matches
one of those templates. As previously noted, we rely only
on information available via standard Android accessibility
APIs, so that: 1) our runtime library does not require rooting
end-user devices, and 2) our runtime library does not require
pixel-based analysis of screen images, which may be
unavailable and may present performance challenges in a
mobile app. Our heuristics are instead based in two key
insights regarding identification of template screens.

First, contexts where Android identifiers fail to correspond to
a meaningful notion of a screen are not random (i.e., are not
well described by ignoring any one ViewldResourceName
nor by treating them as noise in a similarity metric). Instead,
they are often systematic, resulting from developer behaviors
(e.g., failing to provide an identifier, copy-pasting code
resulting in non-unique identifiers) or standard toolkit
behaviors (e.g., widgets that dramatically change what is
presented in a screen with only subtle indications of that
change in the accessibility API information for the screen).
We develop a set of heuristics based in such systematic

behaviors, and we evaluate our heuristics in a later section.
We note these heuristics can also be updated and extended
as we gather additional data or as toolkit behaviors evolve
(e.g., introducing new widgets that require adjustments).

Second, the two types of error in screen equivalence have
different implications. We define a FalseSame error as
incorrectly determining two screens are the same. This can
result in what should be a distinct template screen instead
being considered a variation of an existing template
(i.e., requiring developer correction), or it can also result in a
runtime screen matching an incorrect template and retrieving
incorrect annotations. We define a FalseDifferent error as
incorrectly determining two screens are different. This can
result in additional annotation overhead through the creation
of spurious templates that could be combined, or it can result
in a screen not being annotated at runtime. Our techniques
allow the developer of an accessibility repair to correct either
form of error, but we design our default screen equivalence
heuristics to minimize FalseSame errors. This corresponds to
preferring a need for greater annotation effort over the
possibility of annotations being incorrectly applied at runtime.

Our current screen equivalence is implemented using eight
heuristics, each based on a specific app developer practice
or toolkit behavior. Heuristic 1 makes an early determination
based on explicit app developer indication that screens differ.
Heuristics 2 to 5 account for common interface structures that
require special consideration, transforming the accessibility
API representation to better support comparison. Heuristic 6
then filters items that should not be considered in comparison.
Given these special case checks and adjustments, Heuristic 7
then makes the primary comparison based on values of
ViewldResourceName in the two screens. Heuristic 8 then
further reduces FalseSame errors by comparing values of
ClassName in the two screens. After discussing each heuristic,
we discuss how a repair developer can correct any errors.

1. Compare ActivityName: If two screens both have an
ActivityName value that was specified by the developer,
but not the same value, the screens are considered different.
This heuristic is intended to reduce FalseSame errors.

2. Check for Navigation Drawer: This common Android
element presents a menu above an interface by dimming
and preventing interaction with elements under the
menu. When this heuristic detects an open navigation
drawer, it transforms the representation of the interface
so remaining heuristics apply only to contents of the
menu (i.e., ignoring the occluded background elements).
If one screen contains an open navigation drawer, but
the other does not, the screens are considered different.
This heuristic is intended to reduce FalseDifferent errors.

3. Check for a Floating Dialog: This common Android
element also occludes elements underneath it. This
heuristic similarly detects a floating dialog, transforms
the representation so remaining heuristics apply only to
contents of the floating dialog, and considers two
screens different if only one contains a floating dialog.
This heuristic is intended to reduce FalseDifferent errors.

4. Check for Tab Layout: Android’s tab layout preloads the
content of each tab, presenting the same tree to the
Android accessibility APIs regardless of which tab is
selected. When this heuristic detects a tab layout, it uses a
binary Selected property of the active tab to transform the
representation so remaining heuristics apply according to
the content of that active tab. It also considers two
screens different if only one contains a tab layout. This
heuristic is intended to reduce FalseSame errors.

5. Check for Radio Button Group with a Multi-Page View:
This alternative approach to tab-like functionality similarly
results in an Android accessibility API tree structure that
does not adequately correspond to the selected radio button.
This heuristic uses a binary Checked property of the active
radio button to transform the representation so remaining
heuristics apply according to content of the active view.
This heuristic is intended to reduce FalseSame errors.

6. Visibility Filter: Common Android container elements
expose elements in their accessibility API structure that
are outside the bounds of the screen (e.g., WebView), so
we transform the representation by filtering to include
only visible elements (i.e., elements with boundsInScreen
values that correspond to non-zero area within the screen).
This heuristic is intended to reduce FalseSame errors.

7. Compare ViewldResourceName: This stable property of
each element will not change when an element’s content
is modified. If the set of ViewldResourceName values
are not the same, the screens are considered different.
This heuristic is the primary comparison based on any
transformations applied in the previous heuristics.

8. Compare ClassName: As with ViewldResourceName, this
stable property will not change when an element’s content
is modified. We consider this additional stable property
to helps address situations where ViewldResourceName
is not informative. If the set of ClassName values are
not the same, the screens are considered different.
This heuristic is intended to reduce FalseSame errors.

Our evaluation shows these heuristics are highly effective,
and they can be extended as additional data suggests new
heuristics. However, any approach will sometimes require
correction by the developer of a repair. For a FalseSame error,
a developer can write an element selector that differentiates
the two screens. Any future screens that match the original
template will then be separated into two templates based on
whether they match the selector. For a FalseDifferent error, a
developer combines the two template screens and their
variations. Any future screens will be considered equivalent
if they match either of the original templates. Although we
have not found it necessary, we note that multiple such
corrections could be composed as needed.

Annotation Storage

The tasks of inspecting, editing, and using annotations
require: 1) collections of template screens, each including a
screen image, associated accessibility data, and a screen
identifier used for referencing that template screen,
2) variations associated with each template screen, 3) element

identifiers for each element in each template screen, and
4) annotations defined as a combination of a screen identifier,
an element identifier, and the annotation metadata to be
associated with that element of that screen. Our current
implementation stores this data in Google’s Firebase.

DATA COLLECTION AND ANNOTATION TOOLS

Our core methods for screen identifiers, element identifiers,
and screen equivalence can be applied in a variety of tools.
We have created an initial set of tools to support development
of repairs based on these methods. This section introduces
our current tools and briefly discusses potential alternatives.

Capture Tool
Implemented as an Android accessibility service, this tool

runs in the background to allow a developer to capture screens.

A developer browses to a screen they want to capture, then
presses a software button on the navigation bar. The tool
plays a confirmation sound, captures a screen image with
associated accessibility data, and uploads them to the
database. The capture tool therefore requires screenshot
permission, but our runtime tools do not (i.e., captured images
are used only used to support annotation and our runtime
tools do not use pixel-level data). If a developer wants to
capture an app that has disabled screenshot permission, they
can use a rooted device or emulator [45]. Although a
requirement to root a device is inappropriate for end-user
accessibility tools, it is more appropriate for a developer
and is the only method to circumvent FLAG SECURE.
Typical capture will include a developer navigating through
an app, using the tool to capture different screens,

interacting with the app, and capturing variations of screens.

Template Screen Tool

This web application supports a developer inspecting and
potentially correcting identified template screens in each app.
Images of template screens are shown in the top row, with
any variations shown in a column underneath each template.
Template screens and their variations are automatically and
reliably identified using screen equivalence heuristics, so the
tool is primarily used to inspect the results, obtain screen
identifiers, make occasional corrections, and access the
annotation tool by clicking into a screen. If a correction is
needed, the tool supports authoring a selector or combining

templates (i.e., as discussed in Screen Equivalence Heuristics).

Annotation Tool

This web application supports a developer in authoring
annotations on a template screen. It is currently accessed by
clicking a screen image in the template screen tool. The tool
shows the screen image with its screen identifier and uses
captured accessibility API data to highlight elements when
a developer clicks on them. Developers can also author a
custom selector and receive feedback through highlighting
one or more elements. For each highlighted element, its
identifier and properties are shown in a list. An annotation
can be authored as JSON-formatted metadata, or a developer
can extend the annotation tool with custom functionality for
a particular class of annotation (e.g., as with customized
annotation interfaces developed in our later case studies).

Runtime Library

Our runtime library supports annotation-based accessibility
services by providing key functions for obtaining accessibility
data, identifying a screen by comparing it to a library of
templates, identifying elements in a screen, and retrieving
annotations. The library also supports listening for ViewClicked
and WindowStateChanged events, which can lead to a change
of screen structure requiring identification of the new screen.
Our library therefore supports overall management of relevant
annotations, allowing a developer to focus on the functionality
of their accessibility repair service.

Alternative Collection and Annotation Tools

Our current tools support an end-to-end annotation process
for developers, chosen as a first primary audience as we
develop tools based on this approach to annotation. We
envision future research exploring complementary approaches.

For example, an extension of our tools might support end-user
capture and annotation directly on their phone (e.g., requiring
screenshot permission during capture, but allowing end-users
to directly collect and annotate data for a repair). Future
research might also examine how to scale annotation, perhaps
drawing upon crowdsourcing and friendsourcing techniques
developed in other contexts (e.g., [35,40,41]). Our approach
to screen equivalence could be included in tools for automated
exploration of mobile apps (e.g., [2,21,27]), and such tools
could benefit the capture of data for accessibility repair.

EVALUATION OF SCREEN EQUIVALENCE HEURISTICS
To evaluate the effectiveness of our current screen equivalence
heuristics, we recruited 5 developer participants to capture
screens and identify templates in a dataset of real-world
mobile apps. Our sample of mobile apps was 5 top free
apps in each of 10 categories. 5 participants were recruited
from our department, as our primary criterion was to recruit
experienced developers familiar with mobile apps.

Each session began with simple training, showing participants
how to capture a screen and how to use the template screen
tool to examine identification of template screens in an app.
We then asked each participant to capture screens for all of
the major features in 10 apps, and if possible to capture one
or more variations for each screen. After completing capture
for each app, the participant was asked to use the template
screen tool to examine the identification of template screens
in their capture of that app and to correct any errors.
Because our focus was on data collection, participants used
a simplified version of the tool that allowed dragging screens
to re-arrange them, without a need to identify a selector that
could allow the templates to be used with our runtime tools.
When a participant completed capture and identification of
template screens for the 10 assigned apps, we asked them to
examine template screens in another 10 apps captured by other
participants. We therefore obtained 2 developer judgments
regarding the template screens and variations within each
app, and the lead researcher resolved the limited number of
disagreements (a total of 12 disagreements in 9 apps).
Participants were compensated with a $20 gift card. Data
collection took about 5 to 10 minutes for each app.

Participants collected a total of 2,038 screens from 50 apps.
Following the same procedure used in [7], we examine
equivalence in the 42,504 pairs of screens that result from
considering all pairs within each app. Table 1 summarizes
the improvement associated with each heuristic. Because our
primary heuristic compares values of ViewldResourceName,
we report the effectiveness of other heuristics in terms of
improvement relative to this. Considering only
ViewldResourceName in our dataset results in a FalseSame
error rate of 3.10% and a FalseDifferent error rate of 2.28%.
Adding each heuristic reduces these, and the comparison of
ViewldResourceName following all previous heuristics
results in a FalseSame error rate of 0.44% and a
FalseDifferent error rate of 0.83%. Comparison of ClassName
then further reduces the FalseSame error rate to 0.09% while
slightly increasing the FalseDifferent error rate to 0.92%.

Overall this is a 97% reduction in FalseSame error with a
60% reduction in FalseDifferent error, consistent with our
goal of prioritizing the minimization of FalseSame errors
(i.e., as discussed when introducing our screen equivalence
heuristics). Remaining errors can also generally be addressed
by the developer of a repair (i.e., specifying a selector or
merging templates), a capability lacking from prior
approaches to screen equivalence (e.g., [7,21,26]). Error
rates are well below the 6% FalseSame and 3%
FalseDifferent error rates in [7], though care must be taken
in comparing these rates because those numbers are based
on a different and much smaller dataset (i.e., 1044 pairs of
screens from 12 apps used to tune the equivalence
thresholds used in that work). Robust screen identifiers
should also allow a developer to author an element
identifier for any element in a screen. In contrast, we find
the TalkBack screen reader’s reliance on
ViewldResourceName will allow it to apply a custom label
to only 13.6% of TalkBack-visited elements in this data.

Examining this data, we observe a practice of obfuscating
ViewldResourceName. For example, the Facebook Messenger
app sets ViewldResourceName to “name _removed” for all of
its elements. Considering only ViewldResourceName results
in 84 FalseSame errors in this app, while our heuristics use
ActivityName, interface structure, and ClassName to reduce
this to only 2 FalseSame errors (which could then be corrected
by developer specification of an appropriate selector). We
also note approaches based entirely on ViewldResourceName,
including the TalkBack screen reader’s support for adding
custom labels, will be completely ineffective in such an app
(i.e., because all elements have the same ViewldResourceName).

Heuristic 8 reduces FalseSame error by checking ClassName,
but slightly increases FalseDifferent error. Examining this,
we find that advertising banners are a common cause of
increased FalseDifferent error. For example, the Abs Workout
app includes advertising elements that have different
ClassNames before and after an advertisement is loaded.
This suggests a future heuristic might filter advertising
elements, perhaps by blacklisting their ClassNames.

Error Rate (%)

Heuristic | FalseSame | FalseDiff

- Only ViewldResourceName 3.10 2.28
1 ActivityName 2.51 2.28
2 Navigation Drawer 2.51 1.06
3 Floating Dialog 2.51 0.83
4 Tab Layout 1.55 0.83
5 Radio Button Group 1.48 0.83
6 Visibility Filter 0.44 0.83
7 ViewldResourceName as above as above
8 ClassName 0.09 0.92

Table 1. Improvements in error rates resulting from the
addition of each of our current screen equivalence heuristics.

We also observe a small number of cases that likely cannot
be resolved using our current techniques due to an app’s
complete failure to implement a meaningful representation
via the accessibility APIs. For example, the TopBuzz app
includes a custom-implemented tab layout that does not
expose any indication of what tab is active (e.g., nothing like
the Selected or Checked properties in our current heuristics).
It also does not properly expose elements of all tabs to the
accessibility APIs, but instead exposes contents of the first
tab regardless of which tab is currently active. Resolving
such a complete failure may require pixel-based techniques
(e.g., as in [89,10,11]). Although this will require
screenshot permission at runtime, performance implications
might be addressed by limiting pixel-based analysis to only
such special-case scenarios where accessibility data fails.

CASE STUDIES OF RUNTIME ACCESSIBILITY REPAIR
This section demonstrates repair of three common types of
accessibility issues, all implemented using our approach to
robust annotation. These case studies are implemented
using interaction proxy techniques, and correspond to prior
proof-of-concept demonstrations in that research [47].
However, it was previously infeasible to scale demonstrations
beyond a handful of elements in a handful of apps, due to a
lack of methods for determining where and how to apply a
runtime repair. Integrating annotation-based techniques into
these demonstrations is an important step toward runtime
accessibility repair in mobile apps, which the next section
further examines in a set of 26 real-world apps.

Missing or Misleading Labels

As illustrated in Figure 1, many apps contain both unlabeled
elements (e.g., elements lacking a ContentDescription that
will therefore be read as “unlabeled”) and elements with
misleading labels (e.g., Figure 1’s two buttons labeled “15”).

We implemented an accessibility service that uses annotations
to repair elements with missing or misleading values of
ContentDescription. A developer uses the annotation tool to
identify an element in need of label repair (e.g., by clicking it
in the image, by writing a custom selector), then uses a text
field to enter an appropriate ContentDescription, which the
tool stores as an annotation. At runtime, the accessibility

services detect whether the current screen includes any
annotations, then uses interaction proxy techniques to repair
how annotated elements are read by the screen reader.

Navigation Order Issues

The navigation order of interface elements is important to
many people (e.g., a person using swipe gestures to navigate
interface elements with a screen reader, a person using a
switch interface), but many apps have navigation orders
that can make them difficult to use. For example, the
navigation order for the Dropbox app begins with the “add”
button and then requires navigating through all files in the
current folder (i.e., a list of arbitrary length) before

LR I3

accessing the “menu”, “select”, or “more” buttons.

We implemented an accessibility service that uses annotations
to repair navigation order within a screen. A customized
annotation interface shows the current navigation order and
allows developers to modify the order by moving elements in
a list. The resulting navigation order is stored as an annotation
associated with the screen, which our accessibility service
detects at runtime and uses to correct the navigation order.

Inaccessible Customized Widgets

Whenever a developer creates a custom interface element,
they also need to write additional code to expose appropriate
accessibility hierarchy and context [15]. Unfortunately, many
developers fail to do this, so these custom elements can be
difficult or impossible to use with an accessibility service.
For example, custom rating widgets found in Yelp and many
other apps are often inaccessible (e.g., the Yelp rating widget
is exposed as a TextView and does not allow a person using
a screen reader or switch interface to enter a rating).

We implemented an accessibility service that uses annotations
to repair some forms of inaccessible customized widgets.
Figure 2 illustrates our enhancement of the annotation tool
that supports rubberband selection to define clickable areas
within an element, storing a list of these areas with a
ContentDescription for each as an annotation on the element.
At runtime, the accessibility service uses these annotations
to create the missing accessibility API representations. This
approach can only repair relatively simple custom elements,
but also suggests an approach to more sophisticated repairs.

EVALUATION OF RUNTIME REPAIR

Our case studies build upon prior demonstrations of
accessibility repairs that have received positive feedback,
including feedback in two rounds of studies with 14 people
with visual impairments who use screen readers [47]. The
end-user experience with repair is the same as in this prior
research, but prior demonstrations were limited to a handful
of apps chosen by the research team and custom code for
each repair. Our current evaluation therefore focused on
examining the application of our selected categories of
repair to accessibility issues in real-world apps. We first
worked with a participant who uses a screen reader, repairing
accessibility issues they identified as problematic. We then
collected and repaired issues in a larger set of apps.

Participant Feedback on Accessibility Repairs

To gather initial feedback on accessibility repairs implemented
in our case studies, we interviewed a person who is blind and
has used an Android screen reader for 6 years. Via email prior
to the interview, we described the three types of accessibility
issues addressed in our case studies and asked if he found
these issues in apps he frequently used. He replied to report
issues in 6 apps. We then spent an hour capturing screens
and authoring annotations to repair the accessibility issues
he reported, followed by an additional hour examining the
apps to find and repair issues he had not mentioned. We
note the runtime repair of accessibility issues in 6 different
apps would be infeasible in prior approaches requiring
custom code to repair to specific elements in specific apps
(e.g., prior repair demonstration in interaction proxies [47]).

During the interview, we first asked the participant to show
how he normally used each app and how it was inaccessible.
We then enabled our accessibility repair service and asked
him to revisit the interactions he had showed us. After he
experienced all repairs to the accessibility issues he reported,
we disabled our repair service and guided him to screens
with additional accessibility issues he had not mentioned.
We then re-enabled the repair service, so he could experience
the difference. After each app, we asked him: 1) to what
extent the accessibility issues are a barrier; 2) if a repair
service would change how he uses the app; 3) whether the
repair service addressed all accessibility issues he mentioned.
At the end of the interview, we asked for his overall opinion
and thoughts regarding our approach and its potential.

Overall the participant expressed frustration with accessibility
issues: “These (accessibility) barriers make me not want to
use them (apps). I'm a customer, just happened to be blind,
but I'd like to use these services.” He confirmed our repairs
addressed the issues he reported, as well as additional issues
in the same apps. He described how repairs would change
how he uses apps, and might help more people: “Having the
annotation available and making the app accessible make
me more likely to use the app. 1'd like to be able to use more
stuff and do more. Enhancing (the apps) to be more usable
and accessible...that makes it better for everybody.”

One app he identified was BECU (i.e., a local credit union).
The app is implemented with cocos2dx, a game engine that
was probably chosen for its ability provide high-quality
animations. It unfortunately exposes very limited information
to the Android accessibility APIs. On the login screen,
TalkBack cannot navigate focus to the input fields for the
account name or password. This app did include support for
Android’s voice assistant, which speaks a list of available
options (e.g., “enter the password”), then requires double
tapping and speaking an option. The participant objected
that this solution did not meet accessibility expectations:
“that’s not what I want, and it is not the way it should be
working...I should just be able to double tap on the
username and type it’. He also noted that speaking
introduces privacy concerns: “I often wear headphones and
(keep) the screen off so that nobody could hear what's

going on”. We repaired the inaccessible login screen by
defining a clickable area and defining a description for each
input field. We did not continue repair beyond the login
screen, both because we did not have credentials to use
during capture and because we did not want to ask the
participant to expose his personal information in testing.

The participant also identified the At Bat app, which features
listening to live streams of baseball games. However, after
paying for a subscription, the participant found he could not
access the streams. The “play” button is unlabeled, and a
feed source must be selected to enable the unlabeled “play”
button. Without instruction, this interaction is extremely
difficult for a person using a screen reader. The participant
was frustrated by the player: “it’s a big barrier that I am
not able to really use that app, it makes me frustrated and 1
don't understand why they are unlabeled...I don't want to
open some random buttons”. We annotated the unlabeled
buttons with appropriate labels, repaired the navigation order
to more easily move to the audio player, and added an
instruction to select a feed. The participant described how
these repairs would make the app useful: “7 would actually
use it and I paid for it...Right now, I'm not using it at all.”

Repairs in Additional Mobile Apps

As a complement to our in-depth exploration with the above
participant, we made repairs in 20 additional apps. 10 were
identified as having accessibility issues by participants in
accessibility-related forums [16,23,38], and 10 were selected
from the top downloaded apps in the Google Play Store.

Details regarding the accessibility issues we repaired in a
total of 26 apps are available at https://github.com/appaccess.
Across 24 apps, we found and repaired 115 labels that were
missing and 46 labels that were misleading. Across 18 apps,
we found and repaired 29 navigation order issues. Across
11 apps, we found and repaired 12 inaccessible custom
widgets. We include examples of these repairs in the
supplementary video.

Because runtime repair of mobile accessibility issues is a
relatively new capability (e.g., [32,47]), and because prior
methods have required custom code specific to each repair,
we believe this is the largest existing set of runtime repairs
of mobile app accessibility issues, thereby providing support
for the potential of annotation-based accessibility repair.

CURRENT LIMITATIONS

Our evaluation found that a relatively small number of apps
expose an accessibility API representation that
fundamentally lacks vital information (e.g., screens in
TopBuzz on page 8, the BECU app on page 9). Our current
screen equivalence heuristics cannot be effective in such
circumstances. Careful authoring of selectors based on the
available information might allow a motivated developer to
differentiate screens and author repairs, but other
approaches may also be beneficial. For example, we have
overall avoided pixel-based analysis, but might make
limited use of such techniques in situations like these which
cannot otherwise be addressed.

Currently, we examine capture and annotation of an app
within a single version of that app running on a single phone
(i.e., at a single screen resolution and in portrait orientation).
We are not aware of any prior research in screen equivalence
that has addressed this limitation, but future research toward
large-scale deployment of annotation-based repair will need
to consider different versions and renderings of the same app.
Our approaches should be promising, as they do not rely upon
element location or size and large-scale changes can likely be
modeled as additional template screens. Scrolling, animation,
and dynamic introduction of new elements are also classic
difficulties in runtime interpretation and modification. Our
runtime tools currently address this by identifying a screen
when it first appears, then monitoring events that might
indicate a change in the active screen. This has been
effective, but additional approaches may be necessary.

Our current implementation is for Android. Although it is not
the most popular mobile platform among people who use
screen readers, its open platform both enables our annotation
techniques and allows advances to be directly deployed in
accessibility services. Our overall strategy (i.e., identifying
components and patterns that lead to screen equivalence errors)
is likely to generalize to additional mobile platforms.

CONCLUSION

This paper has introduced an approach to robust annotation
of mobile apps, using techniques appropriate for runtime
accessibility repair. We have presented our underlying
methods in terms of screen identifiers, element identifiers,
and screen equivalence heuristics. We have developed an
initial set of tools based on these methods, focused on
developer implementation of accessibility repair services.
We then evaluated our screen equivalence heuristics,
presented our case studies applying annotation in runtime
accessibility repair, and examined these case study
implementations in repairing real-world accessibility issues.
Supporting materials (e.g., code and screen data) are
available at: https://github.com/appaccess.

We have demonstrated an initial set of annotation tools, but
there are many more possibilities. For example, our approach
might be integrated directly into Android’s core accessibility
services (i.e., the TalkBack screen reader and Switch Access).
Annotation could address limitations of these tools in relying
upon ViewldResourceName. Future research could also
explore tools that do not require developer-level expertise,
including crowdsourcing or friendsourcing approaches.
Robust approaches to mobile app screen equivalence and
annotation can also have applications beyond accessibility,
including interface testing, large-scale collection and analysis
of mobile apps [7,21,33], and task automation [25]. Overall,
we believe many new tools can be developed using the
underlying methods developed in this initial research.

ACKNOWLEDGEMENTS

This research was funded in part by the National Science
Foundation, under award IIS-1702751 and through a Graduate
Research Fellowship, and by a Google Faculty Award.

REFERENCES

1.
2.

Appium. Appium. http://appium.io/

Tanzirul Azim and Iulian Neamtiu. (2013). Targeted
and Depth-first Exploration for Systematic Testing of
Android Apps. Proceedings of the ACM SIGPLAN
International Conference on Object Oriented
Programming Systems Languages & Applications
(OOPSLA 2013), 641-660.
http://doi.org/10.1145/2544173.2509549

Jeffrey P. Bigham and Richard E. Ladner. (2007).
AccessMonkey: A Collaborative Scripting Framework
for Web Users and Developers. Proceedings of the
Web for All Conference (W44 2007), 25-34.
http://doi.org/10.1145/1243441.1243452

Nilton Bila, Troy Ronda, Igbal Mohomed, Khai N
Truong, and Eyal De Lara. (2007). PageTailor:
Reusable End-User Customization for the Mobile Web.
Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys 2007).
http://doi.org/10.1145/1247660.1247666

Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C. Miller. (2005). Automation and
Customization of Rendered Web Pages. Proceedings of
the ACM Symposium on User Interface Software and
Technology (UIST 2005).
http://doi.org/10.1145/1095034.1095062

Tsung-Hsiang Chang, Tom Yeh, and Rob Miller.
(2011). Associating the Visual Representation of User
Interfaces with Their Internal Structures and Metadata.
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2011), 245-256.
http://doi.org/10.1145/2047196.2047228

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua
Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. (2017). Rico: A Mobile App
Dataset for Building Data-Driven Design Applications.
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2017), 845-854.
http://doi.org/10.1145/3126594.3126651

Morgan Dixon and James Fogarty. (2010). Prefab:
Implementing Advanced Behaviors Using Pixel-Based
Reverse Engineering of Interface Structure.
Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2010), 1525—
1534. http://doi.org/10.1145/1753326.1753554

Morgan Dixon, Gierad Laput, and James Fogarty.
(2014). Pixel-Based Methods for Widget State and
Style in a Runtime Implementation of Sliding Widgets.
Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2014),2231—
2240. http://doi.org/10.1145/2556288.2556979

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Morgan Dixon, Daniel Leventhal, and James Fogarty.
(2011). Content and Hierarchy in Pixel-Based Methods
for Reverse Engineering Interface Structure.
Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2011), 969-978.
http://doi.org/10.1145/1978942.1979086

Morgan Dixon, A. Conrad Nied, and James Fogarty.
(2014). Prefab Layers and Prefab Annotations:
Extensible Pixel-Based Interpretation of Graphical
Interfaces. Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST 2014),
221-230. http://doi.org/10.1145/2642918.2647412

James R Eagan, Michel Beaudouin-Lafon, and Wendy
E Mackay. (2011). Cracking the Cocoa Nut: User
Interface Programming at Runtime. Proceedings of the
ACM Symposium on User Interface Software and
Technology (UIST 2011), 225-234.
http://doi.org/10.1145/2047196.2047226

W. Keith Edwards, Ian Smith, Scott E. Hudson, Joshua
Marinacci, Roy Rodenstein, and Thomas Rodriguez.
(1997). Systematic Output Modification in a 2D User
Interface Toolkit. Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST
1997), 151-158. http://doi.org/10.1145/263407.263537

Google. Accessibility Scanner.
https://play.google.com/store/apps/details?
id=com.google.android.apps.accessibility.auditor

Google. Building Accessible Custom Views.
https://developer.android.com/guide/topics/ui/accessibi
lity/custom-views.html#virtual-hierarchy

Google. Eyes-free Forum.
https://groups.google.com/forum/#!forum/eyes-free

Google. Making Apps More Accessible.
https://developer.android.com/guide/topics/ui/accessibi
lity/apps.html#touch-targets

Google. Monkeyrunner.
https://developer.android.com/studio/test/monkeyrunne
r/index.html

Google. UiSelector.
https://developer.android.com/reference/android/suppo
rt/test/uiautomator/UiSelector.html

Tovi Grossman, Tovi Grossman, Ravin Balakrishnan,
and Ravin Balakrishnan. (2005). The Bubble Cursor:
Enhancing Target Acquisition by Dynamic Resizing of
the Cursor’s Activation Area. Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI 2005), 281-290.
http://doi.org/10.1145/1054972.1055012

21.

22.

23.

24,

25.

26.

27.

28.

Shuai Hao, Bin Liu, Suman Nath, William G J
Halfond, and Ramesh Govindan. (2014). PUMA:
Programmable UI-Automation for Large-Scale
Dynamic Analysis of Mobile Apps. Proceedings of the
International Conference on Mobile Systems,
Applications, and Services (MobiSys 2014), 204-217.
http://doi.org/10.1145/2594368.2594390

Yun Huang, Brian Dobreski, Bijay Bhaskar Deo,
Jiahang Xin, Nata Miccael Barbosa, Yang Wang, and
Jeffrey P. Bigham. (2015). CAN: Composable
Accessibility Infrastructure via Data-Driven
Crowdsourcing. Proceedings of the Web for All
Conference (W44 2015), 2.
http://doi.org/10.1145/2745555.2746651

InclusiveAndroid. App and Game Categories.
https://www.inclusiveandroid.com/?q=app-and-game-
categories

Shinya Kawanaka, Yevgen Borodin, Jeffrey P.
Bigham, Darren Lunn, Hironobu Takagi, and Chieko
Asakawa. (2008). Accessibility Commons: A Metadata
Infrastructure for Web Accessibility. Proceedings of
the ACM Conference on Computers and Accessibility
(ASSETS 2008), 153-160.
http://doi.org/10.1145/1414471.1414500

Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
(2017). SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. Proceedings of the
ACM Conference on Human Factors in Computing
Systems (CHI 2017), 6038—6049.
http://doi.org/10.1145/3025453.3025483

Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.
(2014). DECAF: Detecting and Characterizing Ad
Fraud in Mobile Apps. Proceedings of the USENIX
Conference on Networked Systems Design and
Implementation (NSDI 2014), 57-70.

Ke Mao, Mark Harman, and Yue Jia. (2016). Sapienz:
Multi-objective Automated Testing for Android
Applications. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA
2016), 94-105.
http://doi.org/10.1145/2931037.2931054

Michael Nebeling, Maximilian Speicher, and Mc
Norrie. (2013). CrowdAdapt: Enabling Crowdsourced
Web Page Adaptation for Individual Viewing
Conditions and Preferences. Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive
Computing System (EICS 2013).
http://doi.org/10.1145/2480296.2480304

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

Dan R Olsen Jr., Scott E Hudson, Thorn Verratti,
Jeremy M Heiner, and Matt Phelps. (1999).
Implementing Interface Attachments Representations
Based on Surface. Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 1999),
191-198. http://doi.org/10.1145/302979.303038

World Health Organization. (2011). World Report on
Disability.
http://www.who.int/disabilities/world_report/2011/en/

André Rodrigues. (2015). Breaking Barriers with
Assistive Macros. Proceedings of the ACM Conference
on Computers and Accessibility (ASSETS 2015), 351—
352. http://doi.org/10.1145/2700648.2811322

André Rodrigues and Tiago Guerreiro. (2014). SWAT:
Mobile System-Wide Assistive Technologies.
Proceedings of the 28th International BCS Human
Computer Interaction Conference on HCI 2014-Sand,
Sea and Sky-Holiday HCI, 341-346.

Anne S. Ross, Xiaoyi Zhang, James Fogarty, and Jacob
O. Wobbrock. (2017). Epidemiology as a Framework
for Large-Scale Mobile Application Accessibility
Assessment. Proceedings of the ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
2017), 2—11. http://doi.org/10.1145/3132525.3132547

Daisuke Sato, Masatomo Kobayashi, Hironobu Takagi,
and Chieko Asakawa. (2009). What’s Next? A Visual
Editor for Correcting Reading Order. In Proceedings of
the International Conference on Human-Computer
Interaction (INTERACT 2009), Tom Gross, Jan
Gulliksen, Paula Kotz¢é, Lars Oestreicher, Philippe
Palanque, Raquel Oliveira Prates and Marco Winckler
(eds.). Berlin, Heidelberg, 364—-377.
http://doi.org/10.1007/978-3-642-03655-2_41

Daisuke Sato, Hironobu Takagi, Masatomo Kobayashi,
Shinya Kawanaka, Chieko Asakawa, and Asakawa
Chieko. (2010). Exploratory Analysis of Collaborative
Web Accessibility Improvement. ACM Transactions
on Accessible Computing (TACCESS), 3(2), 5.
http://doi.org/10.1145/1857920.1857922

Selendroid. Selendroid. http://selendroid.io/

Square. Flow Github Repository.
https://github.com/square/flow

StrangelyTyped. My Brief Experiences with Android
Talkback/Accessibility.
https://www.reddit.com/r/Android/comments/3uqs6z/m
y_brief experiences with android/

Wolfgang Stuerzlinger, Olivier Chapuis, Dusty
Phillips, and Nicolas Roussel. (2006). User Interface
Facades: Towards Fully Adaptable User Interfaces.
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2006), 309-318.
http://doi.org/10.1145/1166253.1166301

40.

41.

42.

43.

Hironobu Takagi, Shinya Kawanaka, Masatomo

Kobayashi, Takashi Itoh, and Chieko Asakawa. (2008).

Social Accessibility: Achieving Accessibility Through
Collaborative Metadata Authoring. Proceedings of the
ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS 2008), 193-200.
http://doi.org/10.1145/1414471.1414507

Hironobu Takagi, Shinya Kawanaka, Masatomo
Kobayashi, Daisuke Sato, and Chieko Asakawa.
(2009). Collaborative Web Accessibility Improvement:
Challenges and Possibilities. Proceedings of the ACM
Conference on Computers and Accessibility (ASSETS
2009), 195-202.
http://doi.org/10.1145/1639642.163967

Desney S Tan, Brian Meyers, and Mary Czerwinski.
(2004). WinCuts: Manipulating Arbitrary Window
Regions for More Effective Use of Screen Space.
Extended Abstracts of the ACM Conference on Human
Factors in Computing Systems (CHI’EA 2004), 1525—
1528. http://doi.org/10.1145/985921.986106

Mosaic Design Team. (1993). Group Annotations in
NCSA Mosaic.
https://www.math.utah.edu/~beebe/support/html/Docs/
group-annotations.html

44,

45.

46.

47.

48.

W3C. W3C Web Annotation Working Group.
https://www.w3.org/annotation/

Xposed. DisableFlagSecure.
http://repo.xposed.info/module/fi.veetipaananen.androi
d.disableflagsecure

Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
(2009). Sikuli: Using GUI Screenshots for Search and
Automation. Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST 2009),
183-192. http://doi.org/10.1145/1622176.1622213

Xiaoyi Zhang, Anne Ross, Anat Caspi, James Fogarty,
and Jacob O. Wobbrock. (2017). Interaction Proxies
for Runtime Repair and Enhancement of Mobile
Application Accessibility. Proceedings of the ACM
Conference on Human Factors in Computing Systems
(CHI 2017), 6024—-6037.
http://doi.org/10.1145/3025453.3025846

Yu Zhong, Astrid Weber, Casey Burkhardt, Phil
Weaver, and Jeffrey P. Bigham. (2015). Enhancing
Android Accessibility for Users with Hand Tremor by
Reducing Fine Pointing and Steady Tapping.
Proceedings of the Web for All Conference (W44
2015), 29. http://doi.org/10.1145/2745555.2747277

	Robust Annotation of Mobile Application Interfaces in Methods for Accessibility Repair and Enhancement
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATed Work
	Social Annotation and Web Accessibility
	Runtime Interface Modification
	Screen and Element Identifiers

	ANDroid background
	Approach and SYSTEM OVERVIEW
	Supporting a Range of Accessibility Repair Scenarios

	implementing ROBUST ANNOTATION
	Screen Identifier
	Element Identifier
	Screen Equivalence Heuristics
	Annotation Storage

	data collection and annotation tools
	evaluation OF Screen EQUIVALENCE HEURISTICS
	Case StudIES of runtime accessibility repair
	Missing or Misleading Labels
	Navigation Order Issues
	Inaccessible Customized Widgets

	evaluation OF runtime repair
	Participant Feedback on Accessibility Repairs
	Repairs in Additional Mobile Apps

	CURRENT LIMITATIOnS
	conclusion
	ACKNOWLEDGEMENTs
	REFERENCES
	Final copy.pdf
	Robust Annotation of Mobile Application Interfaces in Methods for Accessibility Repair and Enhancement
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATed Work
	Social Annotation and Web Accessibility
	Runtime Interface Modification
	Screen and Element Identifiers

	ANDroid background
	Approach and SYSTEM OVERVIEW
	Supporting a Range of Accessibility Repair Scenarios

	implementing ROBUST ANNOTATION
	Screen Identifier
	Element Identifier
	Screen Equivalence Heuristics
	Annotation Storage

	data collection and annotation tools
	evaluation OF Screen EQUIVALENCE HEURISTICS
	Case StudIES of runtime accessibility repair
	Missing or Misleading Labels
	Navigation Order Issues
	Inaccessible Customized Widgets

	evaluation OF runtime repair
	Participant Feedback on Accessibility Repairs
	Repairs in Additional Mobile Apps

	CURRENT LIMITATIOnS
	conclusion
	ACKNOWLEDGEMENTs
	REFERENCES

	Final.pdf
	Robust Annotation of Mobile Application Interfaces in Methods for Accessibility Repair and Enhancement
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATed Work
	Social Annotation and Web Accessibility
	Runtime Interface Modification
	Screen and Element Identifiers

	ANDroid background
	Approach and SYSTEM OVERVIEW
	Supporting a Range of Accessibility Repair Scenarios

	implementing ROBUST ANNOTATION
	Screen Identifier
	Element Identifier
	Screen Equivalence Heuristics
	Annotation Storage

	data collection and annotation tools
	evaluation OF Screen EQUIVALENCE HEURISTICS
	Case StudIES of runtime accessibility repair
	Missing or Misleading Labels
	Navigation Order Issues
	Inaccessible Customized Widgets

	evaluation OF runtime repair
	Participant Feedback on Accessibility Repairs
	Repairs in Additional Mobile Apps

	CURRENT LIMITATIOnS
	conclusion
	ACKNOWLEDGEMENTs
	REFERENCES

