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Abstract. In the current paper, we obtain discrepancy estimates in exponen-
tial Orlicz and BMO spaces in arbitrary dimension d ≥ 3. In particular, we use
dyadic harmonic analysis to prove that the dyadic product BMO and exp(L2/(d−1))
norms of the discrepancy function of so-called digital nets of order two are
bounded above by (logN )(d−1)/2. The latter bound has been recently conjectured
in several papers and is consistent with the best known low-discrepancy construc-
tions. Such estimates play an important role as an intermediate step between the
well-understood Lp bounds and the notorious open problem of finding the precise
L∞ asymptotics of the discrepancy function in higher dimensions, which is still
elusive.

1 Introduction and results

1.1 Definitions. The main object of the present paper is the discrepancy
function. For a positive integer N , let PN be a point set in the unit interval [0, 1)d

with N points. The discrepancy function is defined as

DPN (x) =
∑
z∈PN

χ[0,x)(z) − Nx1 · · · xd ,

where x = (x1, . . . , xd ) ∈ [0, 1)d and [0, x) = [0, x1)× . . . × [0, xd ). By χA we de-
note the characteristic function of a set A ∈ R

d , so the term CPN (x) =
∑

z χ[0,x)(z)
is equal to the number of points of PN in the interval [0, x). Hence, DPN meas-
ures the deviation of the number of points of PN in [0, x) from the fair number of
points LN (x) = N |[0, x)| = Nx1 · · · xd , which would be achieved by a (practically
impossible) perfectly uniform distribution of points, thus quantifying the extent
of equidistribution of the point set PN and its quality for numerical integration
(quasi-Monte Carlo methods; see, e.g., [16]).

Asymptotic behavior of the discrepancy function in Lp([0, 1)d )-spaces for 1 <

p < ∞ is well understood. The classical lower bound proved by Roth [35] for
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p = 2 and by Schmidt [38] for arbitrary 1 < p < ∞ states that there exists a
constant c = c(p, d) > 0 such that for every positive integer N and all point sets
PN in [0, 1)d with N points,

(1)
∥∥∥DPN |Lp([0, 1)d )

∥∥∥ ≥ c (logN )(d−1)/2 .

The best known value for c in L2 can be found in [24]. Furthermore, these esti-
mates are known to be sharp, i.e., there exists a constant C = C(p, d) > 0 such
that for every positive integer N , there is a point set PN in [0, 1)d with N points
such that

(2)
∥∥∥DPN |Lp([0, 1)d )

∥∥∥ ≤ C (logN )(d−1)/2 .

This was proved by Davenport [12] for p = 2, d = 2, by Roth [36] for p = 2 and
arbitrary d , and finally by Chen [9] in the general case. The best known value for
C in L2 can be found in [16] and [19].

The precise asymptotics of the L∞([0, 1)d )-norm of the discrepancy function
(star-discrepancy) is known as the great open problem in discrepancy theory [2].
The best currently known lower bound in dimensions d ≥ 3 was obtained quite
recently [6]. There exists a constant c = c(d) > 0 such that for every positive
integer N and all point sets PN in [0, 1)d with N points,∥∥∥DPN |L∞([0, 1)d )

∥∥∥ ≥ c (logN )(d−1)/2+ηd ,

where 0 < ηd < 1/2. At the same time, the bound in the plane is well known
([37]):

(3)
∥∥∥DPN |L∞([0, 1)2)

∥∥∥ ≥ c logN.

Furthermore (e.g., [21]), there exists a constant C > 0 such that for every positive
integer N , there is a point set PN in [0, 1)d with N points such that

(4)
∥∥∥DPN |L∞([0, 1)d )

∥∥∥ ≤ C (logN )d−1 .

One can observe a gap between the known upper and lower bounds for the star
discrepancy in dimensions d ≥ 3. There is no agreement among the experts as to
what should be the correct asymptotics in higher dimension, the two main conjec-
tures being (logN )d−1 and (logN )d/2. We refer the reader to, e.g., [4] for a more
detailed discussion.

1.2 Main results. Since the precise behavior of discrepancy in Lp-spaces
(1 < p < ∞) is known while the L∞ estimates remain elusive, it is natural
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and instructive to investigate what happens in intermediate spaces “close” to L∞.
Standard examples of such spaces are the exponential Orlicz spaces and (various
versions of) BMO, which stands for bounded mean oscillation. In harmonic anal-
ysis, these spaces often play a role of a natural substitute for L∞ as an endpoint
of the Lp scale. We refer the reader to the next section for precise definitions and
references.

This approach was initiated in [5] in the case of dimension d = 2. Examples
used to prove upper bounds in the two-dimensional case were constructed as modi-
fications of the celebrated Van der Corput set. In higher dimensions, we resort to
the higher-order digital nets—a concept introduced by Dick [13], [14] and stud-
ied from the relevant point of view in [17], [15], and [30]. In particular, we rely
strongly on the estimates of the Haar coefficients of the discrepancy function for
such nets (see Lemma 3.1) recently obtained by the second author [30].

The first main result of this work is the upper bound in dyadic product BMO.

Theorem 1.1. For each dimension d ≥ 3, there exists a constant C = C(d) >

0 such that for every positive integer N , there is a point set PN in [0, 1)d with N
points such that

(5)
∥∥∥DPN |BMOd

∥∥∥ ≤ C (logN )(d−1)/2 .

This result is known in the plane (see [5, Theorem 1.7]); moreover, it is sharp.
A simple modification of the proof of (1) yields the corresponding lower bound.

Theorem 1.2. For each dimension d ≥ 3, there exists a constant c = c(d) >

0 such that for every positive integer N and all point sets PN in [0, 1)d with N
points,

(6)
∥∥∥DPN |BMOd

∥∥∥ ≥ c (logN )(d−1)/2 .

These results say that in the case of discrepancy function, the BMO norm be-
haves more like Lp than like L∞.

Furthermore, we extend the result of [5, Theorem 1.4] on exponential Orlicz
spaces to the case of arbitrary dimension. The main theorem we prove in this
direction is the following.

Theorem 1.3. For each dimension d ≥ 3, there exists a constant C = C(d) >

0 such that for every positive integer N , there is a point set PN in [0, 1)d with N
points for which

(7)
∥∥∥DPN

∣∣ exp(L 2
d−1

)∥∥∥ ≤ C (logN )
d−1
2 .
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Some remarks are in order for this theorem. This bound has been recently con-
jectured in several different sources. A similar (albeit weaker) estimate has been
recently proved for the so-called Chen–Skriganov nets, independently in [40] and
[1], for the smaller exp

(
L2/(d+1)

)
norm. The authors of both papers conjectured

that it should be improved to the exp
(
L2/(d−1)

)
estimate stated above. In addition,

the same conjecture has been made in the survey paper [18, Section 9]. However,
until now this claim remained unproved.

The exponential integrability exponent 2/(d − 1) is quite natural for a variety
of reasons. First, it is consistent with the general ideology that the problem effect-
ively has d − 1 “free parameters” (see [4] for a detailed discussion), and therefore
the Littlewood–Paley inequalities should be applied d − 1 times: see Section 2.2,
in particular, estimate (12) of Lemma 2.1. Furthermore, this estimate is consistent
with the L∞-discrepancy bound (4) of the order (logN )d−1, valid for digital nets;
see Section 3.5.

For this very reason, the complementary lower bound is presently beyond
reach. There are indications that it should be almost as difficult as one of the
main open problems in the subject—the lower bound of the L∞-discrepancy. The
proof of the corresponding lower bound in dimension d = 2 ([5, Theorem 1.4])
uses techniques similar to the proof of the two-dimensional L∞ bound (3), which
are not available in higher dimensions. Besides, if one believes that the correct
L∞ bound is (logN )d/2, then estimate (7) is probably not sharp—in this case, the
norm on the left-hand side should be the subgaussian exp(L2); see Subsection 3.5
for details.

During the final stages of preparation of the present manuscript, we learned
about a recent preprint of Skriganov [41] written almost simultaneously, where
inequality (7) is proved for random digit shifts of an arbitrary digital (t, n, d)-net
(although the author does not state the result in exponential form, but instead writes
down Lp estimates with explicit dependence on p). The techniques of Skriganov’s
work exploit randomness in a crucial way. In contrast, our proof is deterministic
and is applicable to any higher order digital net (in fact, it suffices to take order
σ = 2). Concrete construction of such nets are given, e.g., in [15].

Interpolating the estimate of Theorem 1.3 with the well-known L∞ bound (4),
we obtain the following result, which is a direct analog of [5, Theorem 1.4].

Corollary 1.4. For each β satisfying 2/(d − 1) ≤ β < ∞, there exists a
constant Cβ > 0 such that for every positive integer N , there is a point set PN in
[0, 1)d with N points such that

(8)
∥∥∥DPN | exp(Lβ)

∥∥∥ ≤ Cβ (logN )(d−1)− 1
β .
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Since this result is even more closely tied to the L∞ estimates, no corresponding
lower bounds are available.

Our strategy resonates with that of [5], but we also rely strongly on very recent
results and constructions: digital nets of higher order [13], [14] and their explicit
constructions [15], [18], Haar expansions of the discrepancy function of such nets
used in the study of discrepancy in Besov spaces with dominating mixed smooth-
ness and in L2; see [17], [18], [15], [30]. For further results on this topic, see [10],
[11], [22], [27], [28], [39], [43]. As general references for studies of the discrep-
ancy function, we refer to the monographs [2], [16], [25], [31], [33] and surveys
[4], [23], [29].

We write A � B if there exists an absolute constant c > 0 such that A ≤ cB.
We write A � B if A � B and B � A. The implicit constants in this paper do not
depend on the number of points N (but may depend on some other parameters,
such as dimension, integrability index etc).

2 Preliminary facts

2.1 Haar bases. We denote N−1 = N0 ∪{−1}. Let D j = {0, 1, . . . , 2 j −1}
for j ∈ N0 and D−1 = {0}. For j = ( j1, . . . , jd ) ∈ N

d−1, let D j = D j1 × · · · × D jd .
For j ∈ N

d−1, we write | j | = max( j1, 0) + · · · + max( jd , 0).
For j ∈ N0 and m ∈ D j , we call the interval I j,m =

[
2− jm, 2− j (m + 1)

)
the m-

th dyadic interval in [0, 1) on level j . We put I−1,0 = [0, 1) and call it the 0-th
dyadic interval in [0, 1) on level −1. Let I+j,m = I j+1,2m and I−

j,m = I j+1,2m+1 be
the left and right half of I j,m , respectively.

For j ∈ N
d−1 andm = (m1, . . . ,md ) ∈ D j , we call I j,m = I j1,m1 × . . .×I jd ,md the

m-th dyadic interval in [0, 1)d at level j . We call the number | j | the order
of the dyadic interval I j,m . Its volume is then |I j,m| = 2−| j |.

An important combinatorial fact is that #{ j ∈ N
d
0 : | j | = n} � nd−1, where

#S stands for the cardinality of the set S.
Let j ∈ N0 and m ∈ D j . Let h j,m be the function on [0, 1) with support in

I j,m and constant values 1 on I+j,m and −1 on I−
j,m . We put h−1,0 = χI−1,0 on [0, 1).

Notice that we normalize the Haar functions in L∞, rather than L2.
Let j ∈ N

d−1 and m ∈ D j . The function h j,m given as the tensor product

h j,m(x) = h j1,m1 (x1) · · · h jd ,md (xd )

for x = (x1, . . . , xd ) ∈ [0, 1)d is called a dyadic Haar function on [0, 1)d . The
set of functions {h j,m : j ∈ N

d−1, m ∈ D j } is called the dyadic Haar basis on
[0, 1)d .
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It is well known that the system{
2| j |/2h j,m : j ∈ N

d
−1, m ∈ D j

}
is an orthonormal basis in L2([0, 1)d ), an unconditional basis in Lp([0, 1)d ) for
1 < p < ∞, and a conditional basis in L1([0, 1)d ).

2.2 Littlewood–Paley inequalities. For a function f ∈ L2([0, 1)d ), we
have Parseval’s identity

(9)
∥∥∥ f |L2([0, 1)d )∥∥∥2 =

∑
j∈Nd

−1

2| j | ∑
m∈D j

|〈 f, h j,m〉|2.

Littlewood–Paley inequalities are a generalization of this statement to Lp-spaces.
For a function f : [0, 1]d → R, the (dyadic) Littlewood–Paley square func-
tion is defined as

S f (x) =

( ∑
j∈Nd

−1

22| j |
∑
m∈D j

|〈 f, h j,m〉|2χI j,m

)1/2

.

It is a classical fact and a natural extension of (9) that in dimension d = 1, the
Lp-norm of f can be characterized using the square function; i.e., for each 1 <

p < ∞, there exist constants Ap, Bp > 0 such that

(10) Ap‖S f |Lp([0, 1))‖ ≤ ‖ f |Lp([0, 1))‖ ≤ Bp‖S f |Lp([0, 1))‖.
Two remarks are important. First, it is well known that Bp � √

p. Second, esti-
mates (10) continue to hold for Hilbert space-valued functions f . This allows one
to extend the inequalities to the case of multivariate functions f : [0, 1]d → R by
iterating the one-dimensional estimates d times, thus picking up constants Ad

p and
Bd
p � pd/2.
However, if the function f is represented by a hyperbolic sum of Haar

wavelets, i.e., a sum of Haar functions supported by intervals of fixed order,
f ∈ span{h j,m : | j | = n}; in other words, when the number of “free paramet-
ers” is d − 1, then the one-dimensional Littlewood–Paley inequalities (10) need
only be applied d − 1 times, yielding constants Ad−1

p and Bd−1
p � p(d−1)/2. We

summarize the estimates useful for our purposes in the following lemma.

Lemma 2.1. Let 1 < p < ∞.
(i) Multiparameter Littlewood–Paley inequality: For each function

f : [0, 1]d → R,

(11)
∥∥∥ f |Lp([0, 1)d )∥∥∥ � pd/2

∥∥∥S f |Lp([0, 1)d )∥∥∥ .
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(ii) Hyperbolic Littlewood–Paley inequality: Assume that the function
f : [0, 1]d → R is a hyperbolic sum of Haar functions, i.e.,

f ∈ span{h j,m : | j | = n}

for some n ∈ N. Then

(12)
∥∥∥ f |Lp([0, 1)d )∥∥∥ � p

d−1
2

∥∥∥S f |Lp([0, 1)d )∥∥∥ .

A more detailed discussion of the Littlewood–Paley inequalities and their ap-
plications in discrepancy theory can be found in [4].

2.3 Bounded mean oscillation and exponential Orlicz spaces. There
are different definitions of the space of functions of bounded mean oscillation in
the multivariate case. The appropriate version in our setting is the so-called dyadic
product BMOd introduced in [3]. For an integrable function f : [0, 1]d → R, we
define

(13)
∥∥∥ f |BMOd

∥∥∥ = sup
U⊂[0,1)d

(
|U |−1

∑
j∈Nd

0

2| j | ∑
m∈D j
I j,m⊂U

|〈 f, h j,m〉|2
)1/2

,

where the supremum is taken over all measurable sets U ⊂ [0, 1)d . The space
BMOd contains all integrable functions f with finite norm ‖ f |BMOd ‖. No-
tice that, technically, ‖ f |BMOd ‖ is only a seminorm, since it vanishes on linear
combinations of functions that are constant in some of the coordinate directions.
Therefore, formally, we need to take a factor space over such functions.

To give some intuition behind this definition, we notice that when d = 1 and U
is a dyadic interval, we have by Parseval’s identity

|U |−1
∑
j∈N0

2| j | ∑
m∈D j
I j,m⊂U

|〈 f, h j,m〉|2 = |U |−1
∫
U

∣∣ f − 〈 f 〉U
∣∣2dx,

where 〈 f 〉U is the mean of f over U—this is precisely the expression which arises
in the definition of the one-dimensional dyadic BMO space. The precise tech-
nical definition of the norm (13) turns out to be the correct multiparameter dyadic
extension which preserves the most natural properties of BMO, in particular, the
celebrated H1 −BMO duality: dyadic product BMO is the dual of the dyadic
Hardy space H1—the space of functions f ∈ L1 with integrable Littlewood–
Paley square function, i.e. such that S f ∈ L1; see [3].
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We remark that a non-dyadic version of this space, the Chang–Fefferman
product BMO, was introduced and studied in [7]. This space also admits a charac-
terization similar to (13), but with smoother functions in place of Haar wavelets.
For the relation between these spaces see e.g. [34].

In order to introduce the definition of the exponential Orlicz spaces, we start
by briefly discussing general Orlicz spaces. We refer to [26] for more information.
Let (�,P) be a probability space, and denote by E the expectation over (�,P).
Let ψ : [0,∞) → [0,∞) be a convex function such that ψ(x) = 0 if and only if
x = 0. For a (�,P)-measurable real valued function f , we define∥∥ f |Lψ

∥∥ = inf{K > 0 : Eψ(| f |/K ) ≤ 1},
where inf∅ = ∞. The Orlicz space (associated with ψ) Lψ consists of all
functions f with finite norm ‖ f |Lψ‖.

Let α > 0, and let ψα be a convex function which equals ex
α −1 for x suf-

ficiently large, depending upon α (for α ≥ 1, this function may be used for all
x ≥ 0). We write exp(Lα) = Lψα .

The following proposition yields a standard way to compute the exp(Lα) norms.
Its proof is a simple application of Taylor’s series for ex and Stirling’s formula.

Proposition 2.2. For every α > 0,

(14)
∥∥ f | exp(Lα)

∥∥ � sup
p>1

p−1/α ·
∥∥∥ f |Lp([0, 1)d )∥∥∥ .

The next proposition is a variant of the famous Chang–Wilson–Wolff inequal-
ity [8], which states that boundedness of the square function implies certain ex-
ponential integrability of the original function. The hyperbolic version presented
here can be deduced easily from the Littlewood–Paley inequality with sharp con-
stants (12) and the previous proposition.

Proposition 2.3 (Hyperbolic Chang–Wilson–Wolff inequality). Assume that
f is a hyperbolic sum of multiparameter Haar functions, i.e.,

f ∈ span{h j,m : | j | = n}
for some n ∈ N. Then

(15)
∥∥∥ f | exp (L2/(d−1))∥∥∥ �

∥∥∥S( f )|L∞([0, 1)d )
∥∥∥ .

Proof. According to (12), we have

‖ f |Lp([0, 1)d )‖ � p(d−1)/2‖S f |Lp([0, 1)d )‖ ≤ p(d−1)/2‖S f |L∞([0, 1)d )‖.
Estimate (15) now follows from (14). �
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We note that it is important here that the function f be a linear combination of
Haar functions supported by rectangles of fixed volume: without this assumption,
the correct norm in the left-hand side would be exp

(
L2/d

)
, which can be deduced

from (11).
For all 1 ≤ p < ∞, we have L∞ ⊂ exp(Lα) ⊂ Lp. Furthermore, it is obvious

that
∥∥ f | exp(Lα)

∥∥ � ∥∥ f | exp(Lβ)
∥∥, i.e., exp(Lβ) ⊂ exp(Lα), for α < β. The next

lemma shows that under the assumption that f ∈ L∞, the relation may be reversed.
The argument is a simple interpolation between exponential Orlicz spaces and L∞.

Proposition 2.4. Let 0 < α < β < ∞. If a function f ∈ L∞([0, 1)d ) also
satisifies f ∈ exp(Lα), then f ∈ exp(Lβ) and∥∥∥ f | exp(Lβ)

∥∥∥ �
∥∥∥ f | exp(Lα)

∥∥∥α/β ·
∥∥∥ f |L∞([0, 1)d )

∥∥∥1−α/β
.

Proof. Set q = α
β
p. Then

‖ f |Lp([0, 1)d )‖ ≤ ‖ f |Lq([0, 1)d )‖α/β · ‖ f |L∞([0, 1)d )‖1−α/β

and ∥∥∥ f | exp(Lβ)
∥∥∥ � sup

p>1
p−1/β · ‖ f |Lp([0, 1)d )‖

≤ sup
p>1

p−1/β · ‖ f |Lq([0, 1)d )‖α/β · ‖ f |L∞([0, 1)d )‖1−α/β

� sup
q>1

(
q−1/α · ‖ f |Lq([0, 1)d )‖

)α/β · ‖ f |L∞([0, 1)d )‖1−α/β,

which finishes the proof. �

2.4 Digital nets. Our next step is to define digital (t, n, d)-nets of order
σ ≥ 1. The original definition of digital nets goes back to Niederreiter [32], and
the first constructions were given even earlier by Sobol’ [42]. The concept of
higher-order digital nets was introduced in [13], [14]. We quote the definitions
from [13] and [14, Definitions 4.1, 4.3]. In the case of order σ = 1, we recover the
original definition of digital nets.

For ν ∈ {0, 1, . . . , 2n−1}with the binary expansion ν = ν0+ν12+· · ·+νn−12n−1

with digits ν0, ν1, . . . , νn−1 ∈ {0, 1}, the binary digit vector ν̄ is given as ν̄ =
(ν0, ν1, . . . , νn−1)� ∈ F

n
2. Then, for σ ∈ N, let C1, . . . ,Cd be σn × n matrices over

F2. We compute Ci ν̄ = (xi,ν,1, xi,ν,2, . . . , xi,ν,σn)� ∈ F
σn
2 for 1 ≤ i ≤ d . Finally, we

define xi,ν = xi,ν,12−1 + xi,ν,22−2 + · · ·+ xi,ν,σn2−σn ∈ [0, 1) and xν = (x1,ν, . . . , xd,ν).
We call the point set P2n = {x0, x1, . . . , x2n−1} a digital net (over F2).
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Now let 0 ≤ t ≤ σn be an integer. For every 1 ≤ i ≤ d , we write Ci =
(ci,1, . . . , ci,σn)�, where ci,1, . . . , ci,σn ∈ F

n
2 are the row vectors of Ci . If for all

1 ≤ λi,1 < . . . < λi,ηi ≤ σn, 1 ≤ i ≤ d with

λ1,1 + · · · + λ1,min(η1,σ) + · · · + λd,1 + · · · + λd,min(ηd ,σ) ≤ σn − t

the vectors c1,λ1,1, . . . , c1,λ1,η1
, . . . , cd,λd,1, . . . , cd,λd,ηd

are linearly independent over
F2, then P2n is called an order σ digital (t, n, d)-net (over F2).

The smaller the quality parameter t and the greater the order σ, the better struc-
ture the point set has. In particular, every point set P2n constructed with the digital
method is at least an order σ digital (σn, n, d)-net. Every order σ2 digital (t, n, d)-
net is an order σ1 digital (
tσ1/σ2�, n, d)-net if 1 ≤ σ1 ≤ σ2; see [13]. It is well
known that digital (t, n, d)-nets are perfectly distributed with respect to dyadic in-
tervals (in the standard terminology (see, e.g., [16]), order 1 digital (t, n, d)-nets
are (t, n, d)-nets): every dyadic interval of order n− t contains exactly 2t points of
the (t, n, d)-net. A version of this property continues to hold for higher-order nets.

Lemma 2.5. Let P2n be an order σ digital (t, n, d)-net. Then every dyadic
interval of order n contains at most 2
t/σ� points of P2n .

It is a classical fact that such sets satisfy the best known star discrepancy esti-
mate (4); see [16, Theorem 5.10].

Lemma 2.6. Let P2n be an order σ digital (t, n, d)-net. Then

(16)
∥∥∥DP2n |L∞([0, 1)d )

∥∥∥ � nd−1.

Constructions of order σ digital (t2, n, d)-nets can be obtained via so-called
digit interlacing of order 1 digital (t1, n, σd)-nets, and several constructions of
order 1 digital nets are known. For details, examples, and further literature, we
refer to [18] and [15]. We only point out here that there are constructions with a
good quality parameter t which, in particular, does not depend on n.

3 Proofs of the theorems

We prove the main theorems in the case when the number of points is a power of 2,
i.e., N = 2n. The reduction to the general case is standard; see, e.g., Subsection 6.3
in [5]. Our examples are the higher-order digital nets described in the previous
section with the minimal non-trivial value of the order σ = 2.

We rely on the recent estimates of the Haar coefficients of the discrepancy
function of order 2 digital nets obtained by the second author.
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Lemma 3.1 ([30, Lemma 5.9]). Let P2n be an order 2 digital (t, n, d)-net. Let
j ∈ N

d−1 and m ∈ D j .

(i) If | j | ≥ n − 
t/2�, then |〈DP2n , h j,m〉| � 2−| j | and |〈DP2n , h j,m〉| � 2−2| j |+n

for all but 2n values of m.
(ii) If | j | < n − 
t/2�, then |〈DP2n , h j,m〉| � 2−n (2n − t − 2| j |)d−1.

In fact, we mostly need the second part of this lemma, i.e., the Haar coeffi-
cients for small values of | j | (in other words, for large intervals). Comparing this
estimate to the corresponding two-dimensional bound for the Van der Corput set
obtained in [5, Lemma 4.1], which states that |〈DP2n , h j,m〉| � 2−n, we see that in
our case we have an additional logarithmic factor. However, this factor is com-
pletely harmless, as one can see from the following elementary computation.

Lemma 3.2. Let K be a positive integer, A > 1, and q, r > 0. Then

K−1∑
k=0

Ak (K − k)q kr � AK Kr,

where the implicit constant is independent of K .

Proof. We have

K−1∑
k=0

Ak (K − k)q kr ≤ AK Kr
K−1∑
k=0

Ak−K (K − k)q = AK Kr
K∑
k=1

A−k kq � AKKr .
�

We now turn to the proofs of the main theorems, which are similar in spirit to
the arguments in [5].

3.1 Proof of Theorem 1.1. Let P2n be an order 2 digital (t, n, d)-net with
the quality parameter t depending only on the dimension d . We recall that

#{ j ∈ N
d
0 : | j | = n} � nd−1 and #D j = 2| j |.

We fix an arbitrary measurable set U ⊂ [0, 1)d . We need to prove

|U |−1
∑
j∈Nd

0

2| j | ∑
m∈D j
I j,m⊂U

|〈DP2n , h j,m〉|2 � nd−1.

We split the sum above into three cases: large, intermediate, and small intervals,
according to the cases in Lemma 3.1. We observe that, in each case, there are at
most 2| j ||U | values of m ∈ D j such that I j,m ⊂ U .
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Starting with large intervals, we apply (ii) of Lemma 3.1 and Lemma 3.2 to
obtain

|U |−1
∑
j∈Nd

0| j |<n−
t/2�

2| j | ∑
m∈D j
I j,m⊂U

|〈DP2n , h j,m〉|2

� |U |−1
∑
j∈Nd

0| j |<n−
t/2�

2| j | 2| j ||U | 2−2n (2n − t − 2| j |)2(d−1)

� 2−2n
n−
t/2�−1∑

k=0

22k (2n − t − 2k)2(d−1) (k + 1)d−1

� 2−2n 22n (n − t/2)d−1 � nd−1.

Next, we consider intermediate intervals and apply (i) of Lemma 3.1 to obtain

|U |−1
∑
j∈Nd

0
n−
t/2�≤| j |<n

2| j | ∑
m∈D j
I j,m⊂U

|〈DP2n , h j,m〉|2 � |U |−1
∑
j∈Nd

0
n−
t/2�≤| j |<n

2| j | 2| j ||U | 2−2| j |

≤
n−1∑

k=n−
t/2�
(k + 1)d−1 � nd−1.

We now turn to the case of small intervals, where | j | ≥ n. These boxes are too
small to capture any cancellation, hence we treat the linear and counting parts of
the discrepancy function separately.

The case of the linear part LP2n (x) = 2nx1 · . . . · xd is simple. It is easy to verify
that |〈LP2n , h j,m〉| � 2−2| j |+n; thus we obtain

|U |−1
∑
j∈Nd

0| j |≥n

2| j | ∑
m∈D j
I j,m⊂U

|〈LP2n , h j,m〉|2 � |U |−1
∑
j∈Nd

0| j |≥n

2| j | 2| j ||U | 2−4| j |+2n

� 22n
∞∑
k=n

2−2k (k + 1)d−1 � nd−1.

Estimating the counting part CP2n is a bit more involved. Denote by J the fam-
ily of dyadic intervals I j,m ⊂ U with | j | ≥ n such that 〈CP2n , h j,m〉 �= 0. Consider
the subfamily J̃ ⊂ J, which consists of maximal (with respect to inclusion) dyadic
intervals in J. We first demonstrate the following fact, which provides control of
the total size of the intervals in this family:

(17)
∑
I j,m∈J̃

|I j,m| = ∑
I j,m∈J̃

2−| j | � nd−1|U |.
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Indeed, consider an interval I j,m ∈ J. Since 〈CP2n , hI j,m 〉 �= 0, at least one point
z ∈ P2n must be contained in the interior of I j,m , which in turn means that each
side of I j,m has length at least 2−2n (since P2n is an order 2 digital net, whose points
have binary coordinates of length 2n), i.e., 0 ≤ jk ≤ 2n for k = 1, . . . , d .

Fix integer parameters r1,. . . ,rd−1 between 0 and 2n. Consider the family
J̃r1,...,rd−1 ⊂ J̃ consisting of those intervals I j,m ∈ J̃ for which jk = rk for k =
1, . . . , d −1, i.e., the lengths of their first d −1 sides are fixed. All intervals in this
family are disjoint: if two of them intersected, then their first d − 1 sides would
have to coincide, and hence one would have to be contained in the other, which
contradicts maximality. Therefore,

∑
I j,m∈J̃

2−| j | =
2n∑

r1,...,rd−1 =0

∑
I j,m∈J̃r1,...,rd−1

∣∣I j,m∣∣ ≤
2n∑

r1,...,rd−1 =0

|U | � nd−1|U |,

which proves (17).
For a dyadic interval J, we define CJ

P2n
(x) =

∑
z∈P2n∩J χ[0,x)(z), i.e. CJ

P2n
(x) is

the part of the counting function that counts only the points from J. It is clear that
〈CP2n , h j,m〉 = 〈CJ

P2n
, h j,m〉 whenever I j,m ⊂ J.

We recall Lemma 2.5, which implies that every dyadic interval of volume at
most 2−n contains no more than 2
t/2� points. Therefore, for each interval J ∈ J̃,

(18)
∥∥CJ

P2n

∥∥
L2(J)

≤ ∑
p∈P2n∩J

∥∥χ[0,·)(z)
∥∥
L2(J)

≤ 2
t/2�|J|1/2.

Using the orthogonality of Haar functions, Bessel inequality, (18), and (17), we
find that

|U |−1
∑
I j,m∈J

2| j ||〈CP2n , h j,m〉|2 ≤ |U |−1
∑
J∈J̃

∑
I j,m⊂J

2| j ||〈CJ
P2n

, h j,m〉|2

≤ |U |−1
∑
J∈J̃

∥∥CJ
P2n

∥∥2
L2(J)

≤ |U |−12t+1
∑
J∈J̃

|J| � nd−1,

which concludes the proof for small intervals and therefore proves Theorem 1.1.

3.2 Proof of Theorem 1.2. We now turn to the proof of the matching
lower bound for the space BMOd . The proof is a simple adaptation of the ideas of
the original proof [35] of the lower bound for the L2-discrepancy (1).

Fix an arbitrary point set PN ⊂ [0, 1)d with N points. Choose the scale n ∈ N

so that 2N ≤ 2n < 4N . This choice guarantees that for each j ∈ N
d
0 with | j | = n,
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there are at least 2n−1 values ofm ∈ D j such that I j,m∩PN = ∅, i.e., at least half of
all intervals do not contain any points of PN . As discussed before, for such empty
intervals,

|〈DPN , h j,m〉| = |〈LN , h j,m〉| � N2−2| j | � 2−n.

We use the definition of the BMOd norm (13) and choose the measurable set U =
[0, 1)d to obtain∥∥∥DPN |BMOd

∥∥∥2 ≥ ∑
j∈Nd

0

2| j | ∑
m∈D j

|〈DPN , h j,m〉|2 ≥ ∑
j∈Nd

0| j |=n

2| j | ∑
m∈D j

I j,m∩PN =∅

|〈LN , h j,m〉|2

� ∑
j∈Nd

0| j |=n

2n · 2n−1 · 2−2n � nd−1,

which finishes the proof, since n � logN .

3.3 Proof of Theorem 1.3. We now turn our attention to the proof of the
upper bound in the Orlicz space exp

(
L2/(d−1)

)
. Once again we consider three

different cases, namely, large intervals, intermediate intervals, and small intervals.
We start with the large intervals. Applying the triangle inequality, Chang–

Wilson–Wolff inequality (Proposition 2.3), and (ii) of Lemma 3.1, we obtain∥∥∥∥∥ ∑
j∈Nd

−1| j |<n−
t/2�

2| j | ∑
m∈D j

〈DP2n , h j,m〉 h j,m

∣∣ exp (L2/(d−1))∥∥∥∥∥
≤

n−
t/2�∑
k=0

∥∥∥∥∥ ∑
j∈Nd

−1| j |=k

2| j | ∑
m∈D j

〈DP2n , h j,m〉 h j,m

∣∣ exp (L2/(d−1))∥∥∥∥∥
�

n−
t/2�∑
k=0

∥∥∥∥∥
( ∑

j∈Nd
−1| j |=k

22| j |
∑
m∈D j

|〈DP2n , h j,m〉|2 χI j,m

)1/2 ∣∣L∞

∥∥∥∥∥
�

n−
t/2�∑
k=0

∥∥∥∥∥
( ∑

j∈Nd
−1| j |=k

22k 2−2n (2n − t − 2| j |)2(d−1)
∑
m∈D j

χI j,m

)1/2 ∣∣L∞

∥∥∥∥∥
� 2−n

n−
t/2�∑
k=0

(
22k (2n − t − 2k)2(d−1) (k + 1)d−1

)1/2
� 2−n 2nn(d−1)/2 = n(d−1)/2.
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Now we consider the medium sized intervals, applying (i) of Lemma 3.1, ob-
taining∥∥∥∥∥ ∑

j∈Nd
−1

n−
t/2�≤| j |<n

2| j | ∑
m∈D j

〈DP2n , h j,m〉 h j,m

∣∣ exp (L2/(d−1))∥∥∥∥∥
≤

n−1∑
k=n−
t/2�

∥∥∥∥∥ ∑
j∈Nd

−1: | j |=k
2| j | ∑

m∈D j

〈DP2n , h j,m〉 h j,m

∣∣ exp (L2/(d−1))∥∥∥∥∥
≤

n−1∑
k=n−
t/2�

∥∥∥∥∥
( ∑

j∈Nd
−1: | j |=k

22k
∑
m∈D j

|〈DP2n , h j,m〉|2 χI j,m

)1/2 ∣∣L∞

∥∥∥∥∥
�

n−1∑
k=n−
t/2�

(
(k + 1)d−1

)1/2 � n(d−1)/2.

In the case of small intervals, we again treat the linear and the counting parts
separately. Since |〈LP2n , h j,m〉| � 2−2| j |+n, we obtain∥∥∥∥∥ ∑

j∈Nd
−1| j |≥n

2| j | ∑
m∈D j

〈LP2n , h j,m〉 h j,m

∣∣ exp (L2/(d−1))∥∥∥∥∥
≤

∞∑
k=n

∥∥∥∥∥ ∑
j∈Nd

−1:| j |=k
2| j | ∑

m∈D j

〈LP2n , h j,m〉 h j,m

∣∣ exp (L2/(d−1))∥∥∥∥∥
≤

∞∑
k=n

∥∥∥∥∥
( ∑

j∈Nd
−1: | j |=k

22k
∑
m∈D j

|〈LP2n , h j,m〉|2χI j,m

)1/2∣∣L∞

∥∥∥∥∥
� 2n

∞∑
k=n

(
2−2k (k + 1)d−1

)1/2 � n(d−1)/2.

The estimate of the counting part is somewhat harder. Recall that J denotes the
family of all dyadic intervals I j,m ⊂ U with | j | ≥ n, i.e., |I j,m| ≤ 2−n, such that
〈CP2n , h j,m〉 �= 0. As noticed earlier, if I j,m ∈ J, this implies that I j,m contains at
least one point of P2n in its interior; therefore, jk ≤ 2n (i.e., |I jk,mk | ≥ 2−2n) for
each k = 1, . . . , d .

In addition, for each I j,m ∈ J, we can find its unique parent, i.e., the interval
Ĩ j ′,m′ that satisfies

(i) I j,m ⊂ Ĩ j ′,m′ ;
(ii) | j ′| = 2−n, i.e., |Ĩ j ′,m′ | = 2−n; and
(iii) jk = j ′k (which implies that I jk,mk = Ĩ j ′k,m′

k
) for all k = 1, . . . , d − 1.
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In other words, to find the parent, we expand the d-th side of I j,m so that the
resulting interval has volume 2−n.

We can now reorganize the sum according to the parents

(19)
∑
j∈Nd

−1| j |≥n

2| j | ∑
m∈D j

〈CP2n , h j,m〉 h j,m =
∑

Ĩ j ′,m′ : | j ′|=n
j ′k≤2n: k=1,...,d

∑
I j,m⊂Ĩ j ′,m′

jk = j ′k :k=1,...,d−1

2| j |〈CP2n , h j,m〉h j,m.

Fix an arbitrary parent interval Ĩ j ′,m′ and consider the innermost sum above
(20) ∑

I j,m⊂Ĩ j ′,m′
jk = j ′k : k≤d−1

2| j |〈CP2n , h j,m〉 h j,m =
∑

p∈P2n∩Ĩ j ′,m′

∑
I j,m⊂Ĩ j ′,m′

jk = j ′k : k≤d−1

2| j |〈χ[p,1), h j,m〉 h j,m.

We notice that the expression inside the last sum splits into a product of one-
dimensional factors:

2| j |〈χ[p,1), h j,m〉h j,m(x) =
d∏
j =1

2 jk〈χ[pk,1), h jk,mk〉 h jk,mk (xk)

=

(
d−1∏
j =1

2 j ′k〈χ[pk,1), h j ′k,m
′
k
〉 h j ′k,m

′
k
(xk)

)
· 2 jd 〈χ[pd ,1), h jd ,md 〉 h jd ,md (xd )

= 2| j ′∗|〈χ[p∗,1), h j ′∗,m′∗〉 h j ′∗,m′∗(x1, . . . , xd−1) · 2 jd 〈χ[pd ,1), h jd ,md 〉 h jd ,md (xd ),

where ∗ denotes the projection of the d-dimensional vector to its first d − 1 coor-
dinates, e.g., if j = ( j1, . . . , jd ), then j∗ = ( j1, . . . , jd−1). The expression in (20)
can now be rewritten as∑

I j,m⊂Ĩ j ′,m′
jk = j ′k : k≤d−1

2| j |〈χ[p,1), h j,m〉 h j,m(x)

= 2| j ′∗|〈χ[p∗,1), h j ′∗,m′∗〉 h j ′∗,m′∗(x∗) ·
∑

I jd ,md ⊂Ĩ j ′d ,m′
d

2 jd 〈χ[pd ,1), h jd ,md 〉 h jd ,md (xd ),

leaving us with the task of examining this ultimately one-dimensional sum. How-
ever, one can easily see that this sum is precisely the Haar expansion of the func-
tion χ[pd ,1) restricted to the interval Ĩ j ′d ,m′

d
, except for the constant term, i.e.,

(21)
∑

I jd ,md
⊂Ĩ j ′d ,m′

d

2 jd 〈χ[pd ,1), h jd ,md 〉h jd ,md (xd ) = χĨ j ′d ,m′
d

(xd )·
(
χ[pd ,1)(xd )−2 jd

∣∣[pd , 1)∩Ĩ j ′d ,m′
d

∣∣),

which, in particular, is bounded pointwise by 2. Obviously,∣∣2| j ′∗|〈χ[p∗,1), h j ′∗,m′∗〉
∣∣ ≤ 1.
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Recall that, according to Lemma 2.5, there are at most 2
t/2� points p ∈ P2n ∩ Ĩ j ′,m′ .
Therefore, ∑

I j,m⊂Ĩ j ′,m′
jk = j ′k : k=1,...,d−1

2| j |〈CP2n , h j,m〉 h j,m(x) = α j ′d (xd )h j ′∗,m′∗(x∗),

where |α j ′d (xd )| ≤ 2
t/2�+1 � 1.

Let xd be fixed for the moment. Due to (21), for a given (d−1)-dimensional dy-
adic interval Ĩ j ′∗,m′∗ , there exists at most one d-dimensional dyadic interval Ĩ j ′,m′ =
Ĩ j ′∗,m′∗ × Ĩ j ′d ,m′

d
with |Ĩ j ′,m′ | = 2−n such that α j ′d (xd ) �= 0. Therefore, applying (19)

and taking Lp-norms in the first d − 1 variables, we obtain∥∥∥∥∥ ∑
j∈Nd

−1| j |≥n

2| j | ∑
m∈D j

〈CP2n , h j,m〉 h j,m

∣∣Lp(dx∗)

∥∥∥∥∥
=

∥∥∥∥∥ ∑
Ĩ j ′,m′ :| j ′|=n

j ′k≤2n: k=1,...,d

∑
I j,m⊂Ĩ j ′,m′

jk = j ′k : k=1,...,d−1

2| j |〈CP2n , h j,m〉 h j,m

∣∣Lp(dx∗)

∥∥∥∥∥
=

∥∥∥∥∥ ∑
Ĩ j ′∗,m′∗ :| j ′|=n

j ′k≤2n, k=1,...,d−1

α j ′d (xd )h j ′∗,m′∗
∣∣Lp(dx∗)

∥∥∥∥∥
� p

d−1
2

∥∥∥∥∥
( ∑

Ĩ j ′∗,m′∗ : | j ′|=n
j ′k≤2n, k=1,...,d−1

|α j ′d (xd )|2χĨ j ′∗,m′∗

)1/2∣∣Lp(dx∗)

∥∥∥∥∥ � p
d−1
2 n

d−1
2 ,

where in the last line we have employed the (d−1)-dimensional Littlewood–Paley
inequality (11) and the fact that there are of the order of nd−1 choices of j ′∗ in the
sum. Integrating this bound with respect to xd and applying Proposition 2.2, we
arrive at ∥∥∥∥∥ ∑

j∈Nd
−1| j |≥n

2| j | ∑
m∈D j

〈CP2n , h j,m〉 h j,m

∣∣exp (L2/(d−1))∥∥∥∥∥ � n(d−1)/2,

which finishes the proof of Theorem 1.3.

3.4 Proof of Corollary 1.4. We set α = 2/(d −1) and use Proposition 2.4
to interpolate between the exp

(
L2/(d−1)

)
estimate (7) of Theorem 1.3 and the L∞
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estimate (16) of Lemma 2.6, obtaining∥∥∥DP2n | exp(Lβ)
∥∥∥ �

∥∥∥DP2n | exp(L2/(d−1))
∥∥∥ 2

(d−1)β ·
∥∥∥DP2n |L∞([0, 1)d )

∥∥∥1− 2
(d−1)β

� n
d−1
2 · 2

(d−1)β n(d−1)·
(
1− 2

(d−1)β

)
= n(d−1)− 1

β .

3.5 Orlicz space estimates and star-discrepancy. To conclude, we out-
line an argument which demonstrates how estimates in exponential Orlicz spaces
may be related to the “great open problem” of the subject [2], i.e., sharp bounds
on the L∞-discrepancy. Let us assume that for a certain order 2 digital net P2n with
N = 2n points for some α > 0, the discrepancy function satisfies the exponential
bound

(22)
∥∥DP2n | exp(Lα)

∥∥ � (logN )(d−1)/2 � n(d−1)/2.

This trivially leads to the following distributional estimate: for each λ > 0,

μ
{
x ∈ [0, 1]d :

∣∣DP2n (x)
∣∣ > λ

}
� exp

(
−
(

λ

n(d−1)/2

)α)
,

where μ is Lebesgue measure. The fact that P2n is a binary digital net (i.e., all
points have binary coordinates of length 2n) implies that its discrepancy function
does not change much on dyadic intervals of side length 2−2n. Therefore, for those
values of λ for which the set

{∣∣DP2n (x)
∣∣ > λ

}
is non-empty, we must have

μ
{
x ∈ [0, 1]d :

∣∣DP2n (x)
∣∣ > λ

}
� 2−2nd .

Comparing the last two estimates, we observe that they cannot simultaneously
hold if λ � n

d−1
2 + 1

α ; i.e., in this case,
{∣∣DP2n (x)

∣∣ > λ
}
= ∅, in other words

(23)
∥∥DP2n

∥∥
L∞ � n

d−1
2 + 1

α .

Recall that two main conjectures about the correct asymptotics of the discrep-
ancy function predict the sharp order of growth of either (logN )d−1 or (logN )d/2.
Our Theorem 1.3 is consistent with the first hypothesis: in this case, (22) holds
with α = 2/(d − 1), and hence (23) becomes

∥∥DP2n

∥∥
L∞ � nd−1 which matches the

best known upper bound (4).
In striving to prove the second conjecture along these lines, estimate (22)

should hold with α = 2, i.e., one would need to construct a digital net whose
discrepancy function is subgaussian.

We notice that Skriganov [41, Lemma 6.2] uses a somewhat different discret-
ization approach which yields similar results and shows that an estimate in Orlicz
space exp

(
L2/(d−1)

)
yields the L∞ upper bound for the discrepancy function of the

order (logN )d−1.
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