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One-bit sensing, discrepancy and Stolarsky’s principle

D. Bilyk and M. T. Lacey

Abstract. A sign-linear one-bit map from the d-dimensional sphere S to
the N-dimensional Hamming cube HY = {—1,+1}" is given by
x— {sign(z-z;): 1 <j< N},

where {z;} € S*. For 0 < § < 1, we estimate N(d,d), the smallest
integer N so that there is a sign-linear map which has the d-restricted
isometric property, where we impose the normalized geodesic distance
on S¢ and the Hamming metric on HY. Up to a polylogarithmic factor,
N(d,d) = §~2+2/(d+1) " which has a dimensional correction in the power
of §. This is a question that arises from the one-bit sensing literature, and
the method of proof follows from geometric discrepancy theory. We also
obtain an analogue of the Stolarsky invariance principle for this situation,
which implies that minimizing the L2-average of the embedding error is
equivalent to minimizing the discrete energy =, (5 — d(z, ,2']-))27 where d
is the normalized geodesic distance.

Bibliography: 39 titles.
Keywords: discrepancy, one-bit sensing, restricted isometry property,
Stolarsky principle.

§ 1. Introduction

The present paper is concerned with the following question: what is the minimal
number of hyperplanes such that, for any two points on the unit sphere, the geodesic
distance between them is well-approximated by the proportion of hyperplanes which
separate these points. This question has connections to different topics, such as
one-bit sensing (a nonlinear variant of compressive sensing), geometric functional
analysis (almost isometric embeddings), and combinatorial geometry (tessellations
of the sphere), while our proof techniques are taken from geometric discrepancy
theory.

We now introduce the notation and make this question more precise.

Let d > 2 and let S¢ € R%**! denote the d-dimensional unit sphere. We denote
by d(z,y) the geodesic distance between z and y on S% normalized so that the
distance between antipodal points is 1, that is,

d(z,y) = M’

™
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where x-y is the scalar product of the vectors x and y. The N-dimensional Hamming
cube HY = {—1,+1}*" has the Hamming metric

N
1 1 .
dy(s,t) = ﬁz]sj —tjl = S #{1 <G <Nis; £}
j=1

where s = (s1,...,5y) € HY, and similarly for ¢, that is, dy(s,t) measures the
proportion of the coordinates in which s and ¢ differ. We consider sign-linear maps
from S% to HY given by

wz(x) = {sgn(z; -z): 1 < j < N},

where Z = {21, 2,...,2x} C S%. Note that, with an abuse of notation, pz(z) =
sgn(Az), where the rows of A consist of the vectors z1,...,zn.

Each coordinate of the map ¢z divides S? into two hemispheres, and the Ham-
ming distance

du(pz(x), 0z(y))
is the proportion of the hyperplanes zj- that separate the points x and y. It is easy
to see that, if one chooses a hyperplane z uniformly at random, then

P{sgn(z - z) #sgn(y - z)} = d(z,y). (1.1)

This is the original instance of the Crofton formula from integral geometry (see [36],
pp- 36-40). Hence for a large number of random (or carefully chosen deterministic)
hyperplanes, the Hamming distance dg(z,y) should be close to the geodesic dis-
tance d(z,y).

The closeness is quantified by the following definition of the restricted isometric
property (RIP), a basic concept in compressed sensing literature.

Definition 1. Let 0 < § < 1. A map ¢: S — HY satisfies the 6-RIP if

sup |du(p(z), p(y)) —d(z,y)| <. (1.2)

z,yesd

We set N(d,d) to be the minimal integer N for which there exists an N-point set
Z C S%, such that ¢z is a §-RIP map.

In the sign-linear case ¢ = @z, we set

Az(z,y) = du(pz(z), pz(y)) — d(z,y). (1.3)

Building on intuition, we can set Nyam(d,d) to be the smallest integer N so that
drawing Z uniformly at random, the sign-linear map ¢z is a §-RIP map, with
probability at least 1/2. In a companion paper [10], we conjecture, following [32],
that

Nedam(d, 6) < do—2. (1.4)

Such bounds are known for the linear embedding of the sphere into RV (Dvoretzky’s
theorem). The power of §~2 is sharp in the random case, as follows from the Central
Limit Theorem. In [10] we prove that a 6-RIP map from S¢ to HY exists for N



746 D. Bilyk and M. T. Lacey

as in (1.4), although our map is not sign-linear, but rather a composition of the
‘nearest neighbour’ map and a sign-linear map. We also prove an analogue of (1.4)
for sparse vectors.

In this paper we show that in general there is a dimensional correction to the
power of §. This is our first main result.

Theorem 1. For alld e N and 0 < § < 1,
N(d,5) ~pog 62T, (1.5)

where the equality holds up to a dimensional constant and a polylogarithmic factor
imndand?d.

The upper bound in (1.5) is achieved by exhibiting a Z of small cardinality, for
which ¢ satisfies §-RIP. Jittered (or stratified) sampling, a cross between purely
random and deterministic constructions, provides the example. Loosely speaking,
first we divide the sphere S? into N roughly equal pieces, and then we choose
a random point in each of them, see § 2 for details. The lower bound is the universal
statement that every Z of sufficiently small cardinality does not yield a §-RIP map.
It is a deep fact from geometric discrepancy theory.

Most of the prior work concerns randomly selected Z. Jacques and coauthors
[24], Theorem 2, proved an analogue of (1.4) for sparse vectors in S¢ with an
additional logarithmic term in 6. Plan and Vershynin [32] studied this question,
looking for RIP for general subsets K C S? mapped into the Hamming cube, of
which the sparse vectors are a prime example. They proved [32], Theorem 1.2, that
Niam(d,8) < dé~5, and conjectured (1.4), at least in the random case. Neither
paper anticipates the dimensional correction in § above.

Since in applications the dimension d is often quite large, we considered a non-
asymptotic version of the upper bound in (1.5) and computed an effective value of
the constant Cy, proving that it grows roughly as d®/? (see Theorem 4 for a more
precise statement):

d

1 d+1
N(d, ) < max{0d352+d2+1 (1 +logd + log 5) , 100d},

where C' > 0 is an absolute constant.

Our second main result goes in a somewhat different direction. In Theorem 5
we show that the L?-norm of Ayz(z,y) given in (1.3) satisfies an analogue of the
Stolarsky principle [35], which implies that minimizing the L?-average of Az(x,y)
is equivalent to minimizing the discrete energy of the form - > i (3 —d(z;, zj))z.
This suggests interesting connections to such objects as spherical codes, equiangular
lines and frames. See Theorem 5 and § 3 for details.

One-bit sensing. The restricted isometry property (RIP) was formulated by Can-
des and Tao [16] and is a basic concept in compressive sensing [21], Ch. 6. It can
be studied in various metric spaces, and thus has many interesting variants.
One-bit sensing was initiated by Boufounos and Baraniuk [12]. The motivation
for the one-bit measurements sgn(z - y) are that (a) they form a canonical nonlin-
earity on the measurement, as well as a canonical quantization of data, (b) there
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are striking technological advances which employ nonlinear observations, and (c) it
is therefore of interest to develop a comprehensive theory of nonlinear signal pro-
cessing.

The subsequent theory was then developed in [23], [24], [30] and [32]. For upper
bounds, random selection of points on a sphere is generally used. Note that [23],
Theorem 1, does contain a lower bound on the rate of recovery of a one-bit decoder.
Plan and Vershynin [32] established results on one-bit RIP maps for arbitrary sub-
sets of the unit sphere, and proposed some ambitious conjectures about bounds for
these maps. In a companion paper [10] we will investigate some of these properties
in the case of randomly selected hyperplanes. The results about one-bit sensing
have been used in other interesting contexts, see the papers cited above as well
as [4] and [31].

Lower bounds, like the ones proved in Theorem 1, indicate the limits of what can
be accomplished in compressive sensing. See, for instance, Larsen-Nelson [22], who
prove a lower bound for dimension reduction in the Johnson-Lindenstrauss Lemma.
This lemma, is a fundamental result in dimension reduction. In short, it states that
for X C S¢ C R4+ of cardinality k, there is a linear map A: Rt — RN which,
restricted to X, satisfies §-RIP, provided that N > 6~2log k. This has many proofs,
see [34], for instance. The connection of this lemma to compressed sensing is well
known, see, for example, [3].

In our companion paper [10] we will show that the one-bit variant of the Johnson-
Lindenstrauss bound holds, with the same bound N > §~2log k. It would be inter-
esting to know if this bound is also sharp. The clever techniques in [22] are essen-
tially linear in nature, so that new techniques are needed. Progress on this ques-
tion might have consequences on lower bounds for nonlinear Johnson-Lindenstrauss
RIPs.

Dvoretzky’s Theorem. The results in this paper are also related to Dvoretzky’s
Theorem [19], which states that for all £ > 0 and all dimensions d there exists
N = N(d,¢) such that any Banach space X of dimension N contains a subspace Y
of dimension d which embeds into Hilbert space with distortion at most 1 + €.
(Finite distortion must hold uniformly at all scales, in contrast to the RIP, which
ignores sufficiently small scales.) This is a fundamental result in geometric func-
tional analysis, and has sophisticated variants in metric spaces [2], [2§].

It is interesting that the argument of Plan and Vershynin [19], § 3.2, relies upon
a variant of Dvoretzky’s Theorem and indeed ties improved bounds in Dvoretzky’s
Theorem to improvements in one-bit RIP maps. In view of the connection between
RIP properties in geometric discrepancy identified in this paper, there are new
techniques that could be brought to bear on this question.

Geometric interpretation. The results above can be interpreted as properties of
tessellations of the sphere S? induced by the hyperplanes {z*: z € Z}. The integer
N(d, §) is the smallest size of Z so that for all z,y € S% the proportion of hyperplanes
from Z that separate x and y is bounded above and below by d(x,y) &+ 6. This is
the geometric language used in Plan-Vershynin [19], which indicates a connection
with geometric discrepancy theory.

We point the reader to some recent papers which investigate integration on
spheres and related geometrical questions: [1], [15] and [33].
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In this paper, we shall denote the surface measure on the sphere by o, normalized
so that o(S?) = 1. Unnormalized (Hausdorff) measure on S¢ will be denoted by 7.
We shall use the notation w = o7%_,(S?1) and Q = 07(S?). In particular,

d+1
2

2w

0= ,
L(45h)

and the ratio between these two, which will appear often, satisfies (see [26])

NG d
Y _ % <) —. (1.6)
Q T(§)VT 2
The notation A < B means that A < CB for some fixed constant C' > 0. Occa-
sionally, the implicit constant may depend on the dimension d (this will be made
clear in the context), but it is always independent of N and 4.

1.1. Discrepancy. We phrase the RIP property in the language of geometric
discrepancy theory on the sphere S?. Let Z = {#1,...,2n} be an N-point subset
of S%. The discrepancy of Z relative to a measurable subset S C S? is

D(Z,8) = %#{z NS} —a(S).

We define the extremal (L) discrepancy of Z with respect to a family . of
measurable subsets of S¢ to be

Dy (Z) = ;gjpplD(Z7 S)I. (L.7)

If the family . admits a natural measure then the supremum above can also be
replaced by an L?-average. The main questions in discrepancy theory are the follow-
ing. How small can discrepancy be? What are good or optimal point distributions?
These questions have profound connections to approximation theory, probability,
combinatorics, number theory, computer science, analysis and so on, see [7], [18]
and [27].

In this sense the quantity Az(z,y) defined in (1.3) clearly has a discrepancy
flavour. In fact, (and this is perhaps the most important observation of the paper)
the problem of uniform tessellations can actually be reformulated as a problem on
geometric discrepancy with respect to spherical wedges.

Denote the set of normals of those hyperplanes that separate x and y by

Way = {z €% sgn(z - 2) #sgn(y - 2) }. (1.8)

The letter W stands for wedge, since the set W, does in fact look like a spherical
wedge, that is, the subset of the sphere lying between the hyperplanes z -z = 0 and
y -z =0, see Figure 1.

It follows from the Crofton formula (1.1) that

0(Wyy) = P(z* separates = and y) = d(z, y).
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Figure 1. The spherical wedge Wy, .

Therefore we can rewrite the quantity (1.3) as

#(Z N Way)

AZ(x,y): N

N
— J(ny) = % ; ]‘Wry (Zk) — O'(ny) = D(Z, me),

(1.9)
that is, the discrepancy of the N-point distribution Z with respect to the
wedge Wy, see §1.3.

The RIP property can now be reformulated in terms of the L*°-discrepancy with
respect to wedges. Indeed, according to definitions (1.2) and (1.7), the map ¢ is
0-RIP exactly when the quantity

4(ZNW,
[Az]loo = su%d % — 0(Way)| =t Dyedge(Z2) (1.10)
x,ye

is at most J. The problem of estimating N(d, d) is thus simply inverse to obtaining
discrepancy estimates in terms of IV, and this is precisely the approach we shall
take.

1.2. A point of reference: spherical cap discrepancy. We recall the classical
results concerning the discrepancy for spherical caps. For z € S, and ¢ € [-1,1],
let C'(x,t) be the spherical cap of height ¢ centred at x, given by

C(x,t) ={yeShy- x>t}
Denote the set of all spherical caps by €. For an N-point set Z C S% let

Deap(2) = sup |D(Z,C)) = sup| HELE)

—o(C
ce ce% N (©)

be the extremal discrepancy of Z with respect to spherical caps . The following
classical results due to Beck [5], [6] yield almost precise information about the
growth of this quantity in terms of N.

Beck’s Theorem (on spherical cap discrepancy). For dimensions d > 2, the fol-
lowing hold.
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Upper bound. There exists an N-point set Z C S® with spherical cap discrepancy
Deap(Z) < N727 34 /log N. (1.11)

Lower bound. For any N-point set Z C S% the spherical cap discrepancy satisfies

1

Deap(Z) 2 N~ 2, (1.12)

We will elaborate on the upper bound (1.11). It is proved using a construction
known as jittered sampling, which produces a semi-random point set. We describe
this construction in much detail in § 2. The proof of (1.11) in [6] states that ‘.. . using
probabilistic ideas it is not hard to show...’ and refers to [5], where this fact is
proved for rotated rectangles, not spherical caps. (It is well known that jittered
sampling is applicable in many geometric settings.) In the book [7] the algorithm is
described in some more detail, but one of the key steps, namely regular equal-area
partition of the sphere, is only postulated. This construction was only recently
rigorously formalized, and effective values of the underlying constants have been
found [20], [26]; see §2.1 for further discussion.

It is generally believed that standard low-discrepancy sets, while providing good
bounds with respect to the number of points N, yield very bad, often exponential,
dependence on the dimension. However, as we shall see, it appears that for jittered
sampling this behaviour is quite reasonable (see also [29] for a discussion of a sim-
ilar effect). This is consistent with the fact that this construction is intermediate
between purely random and deterministic sets.

Since we are interested in both asymptotic and nonasymptotic regimes, we shall
explore this construction (in the case of spherical wedges) tracing the dependence
of the constant on the dimension very scrupulously.

The proof of the lower bound (1.12) is Fourier-analytic in nature and holds with
the smaller L?-average in place of the supremum,

Deap,12(Z) = (/11 /sd

More precisely, a lower bound stronger than (1.12) holds:

#(Z N C(x, 1))

2 1/2
—o(C(x,t))| do(x) dt> .

Deap.12(Z) 2 N3 2, (1.13)

This bound is sharp: the L2-discrepancy of jittered sampling yields a bound akin
o (1.11), but without y/log N.

Strikingly, minimizing the L2-discrepancy is the same as maximizing the sum of
pairwise distances between the vectors in Z, which is the main result in [35].

Theorem 2 (Stolarsky Invariance Principle). In all dimensions d > 2, for any
N-point set Z = {z1,...,zn} C S?, the following holds:

1
~Dewp12(2) / / iz — yl| do(z) do(y Zuzz Sl (114)

1,0=1
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where || - || is the Euclidean norm and

co=j [, Ip-2ldo(z) = 3

for an arbitrary pole p € S?.

2l €

The square of the L2-discrepancy is exactly the difference between the continuous
potential energy given by ||« — y|| and the discrete energy induced by the points
of Z. Alternate proofs of the Stolarsky principle can be found in [9] and [14].

1.3. Main results. Analogues of Beck’s discrepancy estimates (1.11) and (1.12),
as well as of the Stolarsky invariance principle, hold for spherical wedges W,.
These in turn imply results for sign-linear RIP maps. Moreover, we shall explore
the dependence of the upper estimates on the dimension d. Recall the definition of
a wedge Wy, in (1.8) and of the wedge discrepancy (1.9), (1.10).

Z0W,
Dwedge(Z): sup |D(Z7W;E'g)|: sup M

— o(Way)|-
z,yeSd z,yeSd N “

Theorem 3. For all integers d > 2 there are By and Cy > 0 such that for all
integers N > 1 the following hold.

Upper bound. There exists a distribution of N points Z C S* with
Dwedge(Z) < C(dzv_%_fld\/ logN. (1.15)

Provided N > 100d, we have Cy < 20di+1a.
Lower bound. For any Z C S% with cardinality N,

Dyedge(Z) > BgN~# 721, (1.16)

Both inequalities are known in a very similar geometric situation. It was proved
by Bliimlinger [11] that the upper bound (1.15) holds for the discrepancy with
respect to spherical ‘slices’. For z,y € S? denote

S’my:{zeSd:z~x>0,z-y<0}.

In other words, the slice S, is a half of the wedge W,,,. It should be noted that the
discrepancy with respect to slices is in fact a better measure of equidistribution on
the sphere than the wedge discrepancy (the wedge discrepancy does not change if
we move all points to the hemisphere {z-p > 0} by changing some points z to —z).
Using jittered sampling in a manner almost identical to Beck’s, Bliimlinger showed
that there exists Z C S, #7 = N, such that

Dyiice(Z) = sup |D(Z,84,)| S N2 2a+/log N.

z,yeSsd

Like Beck’s estimate, this bound did not say anything about the dependence of con-
stants on the dimension. Without any regard for constants, the main estimate (1.15)
of Theorem 3 follows immediately since

D(Z,Wyy) = D(Z, S4y) + D(Z,5_._,),
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and hence
Dwedge (Z) < 2Dslice(Z)'

An effective value of the constant Cy in Theorem 3, which is important for uniform
tessellation and one-bit compressed sensing problems, requires much more delicate
considerations and constructions, some of which only became available recently,
see §2.1.

Bliimlinger also showed that the lower bound (1.16) holds for the slice discrep-
ancy. The proof uses spherical harmonics and is quite involved (Matousek [27]
writes that ‘it would be interesting to find a simple proof’). In fact, it was shown
that the L2-discrepancy for slices is bounded below by the L?-discrepancy for spher-
ical caps, from which the result follows by Beck’s estimate (1.13):

2 Dslicc,LZ(Z) zDCap,Lz(Z) 2N_%_T1d' (117)

~

Dslice (Z)

The lower bound for spherical wedges can be deduced by the following symmetriza-
tion argument.

Proof of (1.16).For apoint set Z = {z1,...,zx} C S%, consider its symmetrization,
that is, a 2N-point set Z* = Z U (—Z). It is easy to see that

D(Z,Wyy) = D(Z,5,y)+D(Z,5_4,—y) = D(Z, Syy) + D(—Z,5,,) =2D(Z*, Sgy).

Therefore,

1

Dwedge(Z) = 2Dslice(Z*> Z (QN)_%_ﬁ7
which proves (1.16).

Inverting the bounds of Theorems 3, one immediately obtains the result an-
nounced first (1.5), which gives asymptotic bounds on the minimal dimension of
a sign-linear 0-RIP from S? to the Hamming cube.

Theorem 4. There exists an absolute constant C' > 0 (independent of the dimen-
sion) such that in every dimension d > 2 and for every 6 > 0, the integer N(d,J)
in Definition 1 satisfies

d

1\ @1
b2t T < N(d,d) < max{lOOd, Cdes >t <1 +logd + log 5) },

_5 2
whereafifd—_s_l and bg > 0.

The absolute constant C' above can be taken to be C' = 4000, for instance. Some
details are given in the end of §2.3.

In a different vein, we also obtain a variant of the Stolarsky Invariance Princi-
ple (1.14).
Theorem 5 (Stolarsky principle for wedges). For any finite set Z = {z1,...,z2n}C
S9, the following relation holds:

||Az<xy>|2—N22< o))~ [ (5 dew) et

(1.18)
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Minimizing the L2-average of the wedge discrepancy associated to the tessellation
of the sphere is thus equivalent to minimizing the discrete potential energy of Z
induced by the potential P(z,y) = (% — d(x,y))z. Intuitively, we would like to
make the elements of Z ‘as orthogonal as possible’ on the average.

First of all, this suggests natural candidates for tessellations that are good or
optimal on the average, for example, spherical codes (sets X C S? such that all
x,y € X satisfy x - y < u for some parameter u < 1, see [37], Ch. 5, and references
there), or equiangular lines (sets X C S? such that all z,y € X satisfy |z -y| = u
for some fixed p € [0, 1), see [17]).

This also brings up connections to frame theory. Benedetto and Fickus [8] proved
that a set Z = {21,...,2nx} C S?% forms a normalized tight frame (that is, there
exists a constant A > 0 such that for every z € R?*! an analogue of Parseval’s
identity holds: Al|z[|2 = 2N, |z - z|?) if and only if Z is a minimizer of a discrete
energy known as the total frame potential:

N
TP(Z) = Y |z 5%

ij=1

which looks unmistakably similar to the discrete energy on the right-hand side
of (1.18).

It is not yet known whether the minimizers of (1.18) admit a similar geometric
or functional-analytic characterization, or if some of the known distributions yield
reasonable values for this energy. These are interesting questions to be addressed
in future research. We prove Theorem 5 in § 3.

§ 2. Jittered sampling

Jittered (or stratified) sampling in discrepancy theory and statistics can be
viewed as a semi-random construction, somewhat intermediate between the purely
random Monte Carlo algorithms and the purely deterministic low discrepancy point
sets. It is easy to describe the main idea in just a few words: initially, the ambient
manifold (cube, torus, sphere, and so on) is subdivided into N regions of equal
volume and (almost) equal diameter, then a point is chosen uniformly at random
in each of these pieces, independently of the others.

Intuitively, this construction guarantees that the point set which results is fairly
well distributed (there are no clusters or large gaps). Amazingly, it turns out
that in many situations this distribution yields nearly optimal discrepancy (while
purely random constructions are far from optimal, and deterministic sets are hard
to construct). As mentioned before, the construction in Theorem 1 is precisely the
jittered sampling. It differs from the corresponding lower bound only by a factor
of v/log N, which is a result of the application of large deviation inequalities. If we
replace the L>-norm of the discrepancy by L2, jittered sampling actually gives the
sharp upper bound easily (without /log N). Similar phenomena persist in other
situations (discrepancy with respect to balls or rotated rectangles in the unit cube,
slices on the sphere and so on).

Jittered sampling has been very well described in the classical references on
discrepancy theory, such as [7], [18] and [27]. However, since the spherical case
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possesses certain subtleties, and, in addition, we want to trace the dependence of
the constants on the dimension, we shall describe the construction in full detail.
Besides, this procedure will also yield a quantitative bound on the constant in the
classical spherical caps discrepancy estimate (1.11).

In order to make the construction precise we need to introduce two notions:
equal-area partitions with bounded diameters and approximating families.

2.1. Regular partitions of the sphere. Let S; C S¢, i = 1,2,...,N. We say
that {S;}, is a partition of the sphere if S? is a disjoint (up to measure zero)
union of these sets, that is, ST = Uf\il S; and o(S; N S;) =0 for ¢ # j.

Definition 2. Let . = {S;}Y, be a partition of S?. We call it an equal-area
partition if 0(S;) = 1/N for each i =1,...,N.

Definition 3. Let . = {S;}}¥, be an equal-area partition of S?. We say that
it is a regular partition (or an equal-area partition with bounded diameters) with
constant K4 > 0 if, for every i =1,..., N,

diam(S;) < KyN~1.

In the case of the unit cube [0,1)%, regular partitions are extremely easy to
construct. Indeed, for N = M?, we can simply take disjoint squares of side length
M~' = N—1/4_ The situation is more complicated for the sphere S%. Nevertheless,
there is an explicit upper bound on the constant K4 above.

Theorem 6 (Leopardi [26]). For all N € N there exist reqular partitions {S;}N ,
of S* with the constant Kq given by

Kq= 8(?)3, (2.1)

where as before Q is the d-dimensional Lebesque surface measure of ST and w is the
(d — 1)-dimensional measure of S4=1.

Note that Leopardi states the result without the specific value of the constant K.
However, it can easily be extracted from the proof, see p. 9 in [26].

The history of this issue (as described in [25]) is interesting. In [35], Stolarsky
asserts the existence of regular partitions of S? for all d > 2, but offers no con-
struction or proof of this fact. Later, Beck and Chen [7] quote Stolarsky, and
Bourgain and Lindenstrauss [13| quote Beck and Chen. A complete construction
of a regular partition of the sphere in arbitrary dimension was given by Feige and
Schechtman [20], and Leopardi [26] found an effective value for the constant in their
construction, which we have given above.

2.2. Approximating families. We approximate an infinite family of sets (for
example, all spherical caps or wedges) by finite families. This will facilitate the use
of a union bound estimate in the next section.

Definition 4. Let . and 2 be two collections of subsets of S?. We say that 2 is
an e-approximating family (also known as e-bracketing) for . if, for each S € .7,
there exist sets A, B € 2 such that

ACSCB and o(B\A)<e.
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It is easy to see that for any N-point set Z in S%, if S, A and B are as in the
definition above then the discrepancies of Z with respect to these sets satisfy

|D(Z,S)| < max{|D(Z, A)|,|D(Z, B)|} +¢. (2.2)

Hence Do (Z) < Do(Z) +¢e. Thus, for ¢ < N~! the discrepancy with respect
to the original family is of the same order as the discrepancy with respect to the
e-approximating family.

Constructions of finite approximating families are obvious in some cases, for
example axis-parallel boxes in the unit cube or spherical caps: just take the same
sets with rational parameters with small denominators.

For the spherical wedges, which is our case of interest, we have the following
lemma.

Lemma 1. For any0 < ¢ < 1 and integer d>1 there is an approximating family 2
for the the collection of spherical wedges {Wy,: x,y € ST} with

#9 < (Cd)Hre—20d+1) (2.3)

where 0 < C' < 82 is an absolute constant.

Proof. We construct two separate families, one for interior and one for exterior
approximation of the spherical wedges. Let .4 (¢) be the covering number of S¢
with respect to the Euclidean metric, in other words, the cardinality of the smallest
set % such that for each x € S? there exists z € /2 with |z — 2| < e.

A simple volume argument (see [39], for example) shows that

N (e) < <1 + i)dﬂ < (4)d+1.

3

(More precise estimates can be obtained, in particular by using d-dimensional,
rather than (d + 1)-dimensional volume arguments, but this will suffice for our
purposes.)

We construct an e-approximating family as follows. Start with an y-net JZ,
of size .4(y), where v > 0 is to be specified. For z,y € S?, define the exterior
enlargement and interior reduction of Wy, as

X _ d.
Wey () ={pestp=
Wrint _ d.

We claim that the collection

—v,py<PUPEeSip -z <y,py> v} D Wy,
Y,py<—tU{peStip-a < —y,p-y =7} C Way.

2 = {W;;t(’y) x,y € A} U {W;’;‘t(’y): x,y € A}

forms an approximating family for the set of all wedges {Wy,: x,y € S?}. Indeed,
let 2/,y' € S Choose z,y € J, so that ||z —2'| < v and |y — ¢/| < 7.
Then it is easy to see that W' C Wy, C W', For example, if p -z’ > 0,
then p-x=p-2' —p- (2’ —x) > —~, the rest is similar.
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Moreover, it is easy to see that the normalized measure of a ‘tropical belt’ around
the equator satisfies

2vw
c({pesh:p-z| <)) < %2 :
Therefore we can estimate
ex m 4wﬁy
oWt \ i) < =2,

hence we have an e-approximating family with e = 4w~/ that is, v = Qe/(4w).
The cardinality of this family satisfies the bound

2 )2 8d+9 [ ¥ 2 —2(d+1) d+1_—2(d+1)

where C' > 0 is an absolute constant which can be taken to be C' = 82, for example.
Here we have used the standard fact (1.6).
Lemma 1 is proved.

2.3. The spherical wedge discrepancy of jittered sampling. Proof of The-
orem 3. The algorithm, which we describe for the case of spherical wedges, is
generic and applies to many other situations. We shall need the following version
of the classical Chernoff-Hoeffding large deviation bound (see, for example, [18]
and [27]).

Lemma 2. Let p; € [0,1],i =1,2,...,m. Consider centred independent random
variables X;,1=1,...,m, such that

P(X;=-pi)=1-p; and P(X;=1-p;)=p;.
Let X =", X;. Then for any X >0

P(IX| > \) < Qexp(:;>. (2.4)

We start with a regular partition {S;}, of the sphere as described in § 2.1, that
is, S = UZ 1 Si, 0(SiN S;) =0fori#j,a(S;) =1/N, and diam(S;) < KyN~/¢
for alli=1,...,N.

We now construct the set Z = {z1,...,2zn} by choosing independent random
points z; € S; according to the uniform distribution on .S;, that is, N - d]g,.

Let 2 be a 1/N-approximating family for the family Z of interest, in our case the
family of spherical wedges {W,,: z,y € S%}. The size of this family, as discussed
in §2.2, satisfies #.2 < AgN%. According to (2.3) we can take Ay = (Cd)4*!
and ag = 2(d+1).

Consider a single set @ € 2. It is easy to see that for those i = 1,..., N for
which S;NOQ = & (S; lies completely inside or completely outside of @), the input
of z; and S; to the discrepancy of Z with respect to @ is zero. In other words,

D(Z,Q)=~ > (loz)—-No(SinQ) if} (2.5)
N N

10 S;iNOQ#LD
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where the X; are exactly as in Lemma 2 with p; = N - o(S; N Q), and m < M,
where M is the maximal number of sets S; that may intersect the boundary of any
element of 2.

It is now straightforward to estimate M for spherical wedges. Let ¢ = KqN 1/,
Since every S; has diameter at most e, all the sets S; which intersect 0Q are
contained in the set 9Q + B, where B is the unit ball. Recall that ¢); denotes the
unnormalized Lebesgue measure on the sphere, and that we defined Q = o7%(S9)
and w = o5_,(S?"1). We then have

M% o400 + eB) < o7, (0Q) - 26 < SKaN~ Haw.

Hence, invoking the diameter bounds for the regular partition (2.1) we find that

1
8de 1—1 1(w 1 1—1
M < N-74d <64d4d | = N "a,

Choosing the parameter A = (aq - M)%\/log N, then invoking the representa-
tion (2.5) and the large deviation estimate (2.4), we find that for any given Q € 2

A
IED(ID(Z, Q) > N) =P(|X| > \) < 2N 2.
Since #Qgq < AgN“?, the union bound yields
A
P(|D(Z,Q)| > N for at least one Q € 2) < 24;N~% < 1,

whenever N > (24,4)'/®¢. Therefore, for such N, there exists Z such that

1 1

2 d

2
sup |D(Z,Q)| < N~ agM)?+/log N < 8/ag d?a (g) N~273,/log N,

QRe2

that is, the discrepancy estimate of the form (1.15) holds for each member of the
approximating family Q) € 2 with constant 8,/ag d2i (w/Q)z 24 for N> (244)Y/ .
Since this constant is greater then one, the right-hand side is greater than 1/N
for all N. Thus according to (2.2), the discrepancy estimate (1.15) holds for all
sets Wyy, z,y € S? with twice the constant.

Recalling that ag = 2(d+1) and A4 = (Cd)4*! and the fact that w/Q <\/d/(27),
we find that the constant is at most Cy; = 20di*71 whenever N > 100d. This
finishes the proof of Theorem 3.

Proof of Theorem 4.1t is a straightforward, but tedious task to check that if N >100d
and

d
: 1\ 7+
N > 400d76~ 1 ((d + 1) log(400d") + 2d log 5) 7

where v = 5 d 7, then 20ditia N—2~ \/logN < §. Therefore, with positive
probability, Jlttered sampling with NV points yields a J-uniform tessellation. It is
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easy to see that the right-hand side in the above equation is bounded by

d+1

2 1
4000d%6 2t @t <1 +logd + log 5) ,

where a = g — which proves Theorem 4.

2
d+1>
§ 3. Stolarsky principle for the wedge discrepancy

We now turn to the proof of Theorem 5, the Stolarsky principle for tessellations.
Recall that the L?-norm of the function Az (z,y) for a set Z C S¢ is

sz nli= [ | ( Zlmy %) <me>)2da<x>do<y>. (3.1)

The proof is quite elementary in nature and conforms to a standard algorithm for
many similar problems: we square out the expression above, and the cross terms
yield the discrete potential energy of the interactions of points of Z. The idea is
generally quite fruitful. Torquato [38] applies this approach (both theoretically and
numerically) to many questions in discrete geometric optimization, such as packings,
coverings, number variance, to recast them as energy-minimization problems.

Proof of Theorem 5. We recall that o(W,,) = d(x,y) and notice that we can write

(up to sets of measure zero)

1
L, () = Lo iy () = 5 (1 = sgn(a - 2)sgn(y - 20))

Therefore, using (3.1), we have
[, [ azte.0? dotadoty
st Jsd

N
vz L, [ 30 (s ssen(y - 20) (1 —sen(e - z)senly - =) doa) do(y)

9 N
¥ 2 L L e ooty

+ /sd /sd d(z,y)? do(z) do(y). (3.2)

The most interesting term in (3.2) is the first. Using the obvious fact that

/ sgn(p-z)do(z) =0 VpeS?
Sd

we reduce this term to

T Z (/ sgn(a - z)sgn(e - 2) do(a >)2=i+N1_2' 1<;_d<zi,zj))2.
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The last line is obtained by rewriting the integrand as sgn(z - z)sgn(z - z;) =
1-2-1w,_ (), so that

/ sgn(z - z;)sgn(z - zj) do(x) =1 — 2/ lw.,., (x)do(x) =1 —2d(z;, z;).
Sé sd

We shall see that in the second term in (3.2) we can easily replace the discrete
average over z, € Z by the continuous average over p € S which is simpler to
handle. Indeed, notice that by rotational invariance the integrand in (3.2) does not
depend on the particular choice of z, € S¢. Therefore, for an arbitrary pole p € S¢
we can write

2 N
N; /S d /S i, (31)d(e, ) do(z) do(y) =2 /S d /S i, (), y) do(x) do(y).

Invoking rotational symmetry again, we see that the integral above can be replaced
by the average over p € S%:

Q/Sd /gd lw,, (p)d(z,y) do(z) do(y)
:2/Sd /Sd /Sd lw,, (p)d(z,y) do(z) do(y) do(p)
- Q/Sd /Sd [/Sd 1w, (p) da(p)]d(x,y) do(x) do(y)
:2/Sd /S d(z,y)? do(x) do(y),

thus the term has the same form as the last one in (3.2). Putting these together
we find that

el = g 3 (5 deoz)) + o [ [ deyrasteyanty)

i,7=1

1
Observing that / d(z,y)do(x) = B and hence
Sd

/Sd/8d<dxy> do(x) do(y /Sd/Sd (2.9)? do( )do’()ff

we arrive at the desired conclusion (1.18):

sl = 1 2 (Fatos) [ [ (St w69

1,j=1

3.1. L2-discrepancy for random tessellations. The Stolarsky principle pro-
vides a very simple way of computing the expected value of the square of the
L2-discrepancy. Assume that the set Z = {z1,...,2x} C S? is random and com-
pute the expectation of ||[Az(x,y)||3. Obviously, for a typical point set Z and



760 D. Bilyk and M. T. Lacey

a typical wedge Wy, the discrepancy is of the order 1/ VN, therefore this expected
value naturally behaves as ¢(1/N). To compute its value precisely we shall need
the quantity that has already arisen in the computations above, namely the second
moment of the geodesic distance, or in other words, the expected value of the square
of the geodesic distance between two random points on the sphere:

Vi Endenf = [ [ dteg) dota) doty)

Lemma 3. Let Z = {z,...,2x} C S? consist of N i.i.d. (uniformly distributed)
points on the sphere. Then

1/1
Bzl = 5 (5 )-

Proof. 1t is obvious that E,,d(x,y) = 1/2 and hence E,,, (1/2—d(z,y))* = V4 — 1/4.
To find the value of Ez||Az(z,y)||3 we use the final form of the Stolarsky princi-
ple (3.3). We separate the off-diagonal and diagonal terms in the discrete part
of (3.3) to obtain

, 1 & 1 2 1
EZ”AZ(‘ray)HQ = m Z Ezi,z]' 5 - d(Ziazj) — |\ Va— Z

ij=1

:]\;(NQ—N)(V—l) WNf (V—D:;](;—Vd),

which completes the proof.
In the case of spherical cap discrepancy this computation is even simpler.

Lemma 4. Let Z = {z1,...,2x} C S¢ consist of N i.i.d. (uniformly distributed)
points on the sphere. Then

caUqg

EZDcup L2 — T, (34)

where Ug = B, yesal|lz — yl| and cq is the constant from Theorem 2.

Using the original Stolarsky principle, Theorem 2, gives

N2 - N Ui
*]EZDcap,Lz = N2 Z ]Ez, ZJ”Z»L - Z]” - Ud - TUd — Ud = W

3,j=1

Finally, we take a closer look at the expected value of the square of the geodesic
distance V. We remark that it can be written as

Vd_/Sd/gd (z,y)*do(z) do(y) = /¢> (sin )~ 1dop, (3.5)

where w is the surface area of S®~!. In Table 1 we list the values of Vy in low
dimension.
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Table 1. The values of V.

d | d=2 d=3 d=4 d=5 d=6
v li_2(|+1_1 (1_20 11 5 11 518
Y1272 |3 272 | 2 9x2 | 3 8x2 | 2 225¢2

3.2. L? wedge discrepancy for jittered sampling. The Stolarsky princi-
ple (3.3) allows us to prove that jittered sampling yields optimal order of the L?
wedge discrepancy quite easily.

Lemma 5. Let Z = {z,...,2x} C S N € N, be a point set constructed by
jittered sampling corresponding to a regular partition of the sphere with constant K.
Then

Ez|Az(x.y)[3 < KaN ',

A matching lower bound for arbitrary N-point sets is known for caps and slices
and can be easily generalized to wedges, see (1.17) and the discussion immediately
following it.

Proof of Lemma 5. We notice that for i # j we have

E(; _ d<zi,zj))2 _ N7 /S | /S J_ (; - d(o:,y>)2 do () do(y),

while for ¢ = j we simply get i. Therefore,

Ez||Az(z,9)]3

- % i E.. ., <; - d(zi,zj))2 - /Sd /Sd (; - d(aay))zdo(l") do(y)

"2 /s /s (d(w,y) = &*(w,y))do(x) do(y)
N

1
<Y KNI — = KN~

=1

since d(z,y) — d(z,y) < d(z,y) < ||z — y|| < KgN~ for z,y € S;.
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