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Abstract. The IceCube Neutrino Observatory at the geographic South Pole, with its surface array IceTop,

detects three different components of extensive air showers: the total signal at the surface, low energy muons on

the periphery of the showers, and high energy muons in the deep InIce array of IceCube. These measurements

enable determination of the energy spectrum and composition of cosmic rays from PeV to EeV energies, the

anisotropy in the distribution of cosmic ray arrival directions, the muon density of cosmic ray air showers, and

the PeV gamma-ray flux. Furthermore, IceTop can be used as a veto for the neutrino measurements. The latest

results from these IceTop analyses will be presented along with future plans.

1 Introduction to Cosmic Ray Physics

with the IceCube Neutrino Observatory

The IceCube Neutrino Observatory at the geographic

South Pole, completed in December of 2010, is not only

a world-class neutrino observatory but is also an excel-

lent instrument to study cosmic rays. IceCube includes

multiple detector components, as shown in Figure 1. The

IceCube-InIce array consists of 86 strings buried beneath

the surface of the Antarctic ice sheet to a depth of 2500 m.

Below a depth of 1500 m, these strings are instrumented

with 60 digital optical modules (DOMs) apiece [1]. The

DOMs are designed to detect the Cherenkov light emitted

by charged particles traversing the ice [2]. The strings are

arranged in a triangular grid with ∼125 m separation, as

shown in Figure 2. Each IceCube-InIce string is topped

with two ice-Cherenkov tanks separated by 10 m. These

two tanks are referred to as a station, and all the surface

stations together comprise the IceTop array [3]. Each tank

is viewed by two DOMs apiece, one running at low gain,

the other at high gain, to maximize the dynamic range.

Both the IceTop and IceCube-InIce DOMs are fully inte-

grated into the data acquisition system of the observatory.

2 Observation Modes for Cosmic Ray

Studies Using IceTop and IceCube-InIce

Since the IceTop and the IceCube-InIce arrays can be op-

erated independently or in coincidence, there are a number

of different cosmic ray studies that can be performed uti-

lizing those three possible observation modes. We begin

with a discussion of each observation mode: the analyses

are discussed in the next sections.
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Figure 1: The IceCube Neutrino Observatory, with mul-

tiple sub-arrays labeled. Here, analyses using IceTop and

the IceCube-InIce arrays are discussed.

2.1 Studies using the IceTop Array alone

As discussed in [3], when six tanks in three stations reg-

ister a signal in coincidence, the IceTop surface array is

triggered and the signals from all tanks and the deep-ice

detectors are preserved. IceTop data from each air shower

event are then reconstructed using a maximum-likelihood

procedure to fit the shape and normalization of a lateral

distribution function (LDF) of the deposited charges. This

reconstruction algorithm takes into account arrival time

fluctuations and results in the fitted shower core position

(x, y, z), direction (θ, φ), and (S 125, β) . Here, β is related

to the slope of the LDF, while S 125 is the “shower size”

parameter, the result of the LDF fit to the signal strength

measured in vertical equivalent muons (VEM) at a refer-

ence distance of 125 m perpendicular to the shower axis,

as shown in Figure 3. At this distance, the shower size
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