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Synopsis The term “stress” is used to describe important phenomena at multiple levels of biological organization, but

finding a general and rigorous definition of the concept has proven challenging. Current models in the behavioral

literature emphasize the cognitive aspects of stress, which is said to occur when threats to the organism are perceived as

uncontrollable and/or unpredictable. Here we adopt the perspective of systems biology and take a step toward a general

definition of stress by unpacking the concept in light of control theory. Our goal is to clarify the concept so as to

facilitate integrative research and formal analysis. We argue that stress occurs when a biological control system detects a

failure to control a fitness-critical variable, which may be either internal or external to the organism. Biological control

systems typically include both feedback (reactive, compensatory) and feedforward (predictive, anticipatory) compo-

nents; their interplay accounts for the complex phenomenology of stress in living organisms. The simple and abstract

definition we propose applies to animals, plants, and single cells, highlighting connections across levels of organization.

In the final section of the paper we explore some extensions of our approach and suggest directions for future research.

Specifically, we discuss the classic concepts of conditioning and hormesis and review relevant work on cellular stress

responses; show how control theory suggests the existence of fundamental trade-offs in the design of stress responses;

and point to potential insights into the effects of novel environmental conditions, including those resulting from

anthropogenic change.

The challenge of defining stress

My chapter defines the concept of stress. I am not

certain whether one who undertakes this task ei-

ther has an enormous ego, is immeasurably stupid,

or is totally mad. (Levine 1985)

Ever since Selye (1950) introduced the term in

biology, the task of defining stress has been fraught

with difficulties and ambiguities (Le Moal 2007;

Romero et al. 2009; Koolhaas et al. 2011). Selye

used the word “stress” to denote the specific physi-

ological response that organisms mount to nonspe-

cific demands, including both negative challenges

(e.g., starvation, infection) and positive challenges

(e.g., foraging or mating opportunities; Selye 1976).

The initial definition has been narrowed in later re-

search, first with the notion that stressors are actual

or perceived threats to the homeostasis of the

organism, and then with the emphasis—particularly

strong in the behavioral literature—that stress is spe-

cifically triggered by perceptions of unpredictability

and/or uncontrollability (Levine and Ursin 1991;

McEwen and Wingfield 2003; Ursin and Eriksen

2004; Romero et al. 2009; Ursin and Eriksen 2010;

Koolhaas et al. 2011). These ideas are rooted in con-

cepts from control theory, such as feedback and

feedforward regulation (Bechhoefer 2005; Albertos

and Mareels 2010; Åström and Murray 2012; Frank

2018a). However, the connections between biological

models of stress and the formal theory of control

systems are seldom discussed explicitly, and their

implications have not been explored in any detail.

Moreover, the increasing emphasis of behavioral

models on the cognitive aspects of prediction and

coping (Ursin and Eriksen 2010; Koolhaas et al.
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2011) makes them ill-suited to describe stress in

organisms that lack a nervous system (e.g., plants;

Hirt 2009), or even at the level of individual cells

(Kültz 2005). When researchers in animal, plant, and

cellular physiology describe responses to threats and

challenges as stress, they may be referring to entirely

different phenomena—or, alternatively, the conver-

gent vocabulary may reflect the existence of a shared

conceptual core. An integrated perspective on stress

has been hindered by the fact that stress is typically

studied at a single biological scale, and the interac-

tion with other scales is rarely investigated (Romero

et al. 2015).

In this paper we adopt the perspective of systems

biology (Kitano 2002), and take a step toward a gen-

eral definition of stress by unpacking the concept in

light of control theory. Specifically, we argue that

stress occurs when a biological control system detects

a failure to control a fitness-critical variable, which

may be either internal or external to the organism.

As we detail below, detection does not imply a cog-

nitive appraisal but merely a measured discrepancy

between the target state of the variable and its actual

state. To qualify as control failures, discrepancies

must be large and/or persistent, reflecting the sys-

tem’s inability to anticipate or rapidly address the

challenge (what counts as “large” and “persistent”

necessarily depends on the particular variable and

its relation to fitness). Biological control systems typ-

ically include both feedback (reactive, compensatory)

and feedforward (predictive, anticipatory) compo-

nents; their interplay accounts for the complex phe-

nomenology of stress in living organisms.

Our goal is not to advance a new theory of stress

or propose an alternative to existing models, but to

clarify the concept so as to facilitate integrative re-

search and—ultimately—formal analysis. The defini-

tion of stress we propose is meant to be as simple

and abstract as possible; it does not depend on the

cognitive, physiological, and molecular mechanisms

that mediate or respond to challenges in any partic-

ular case. For instance, feedforward anticipatory

responses do not require a nervous system and can

be implemented by relatively simple biochemical

pathways (Zhang et al. 2009). Thus, our definition

is consistent with current models of stress in the

behavioral literature (reviewed in the next section);

these models will be the main focus of this paper,

since our expertise lies mainly in vertebrate systems.

However, the same definition applies equally well to

cellular stress responses, highlighting connections

across levels of biological organization and facilitat-

ing integration between different disciplinary tradi-

tions. We believe that explicitly redefining stress in

the language of control theory will promote concep-

tual clarity in a field marred by redundant and often

ambiguous terminology. Even more importantly, this

approach suggests several interesting implications

and novel directions for research, as we discuss in

the final section of the paper.

Current models of stress in the
behavioral literature

In this preliminary section we briefly survey current

conceptions of stress in the behavioral literature, de-

scribing their main concepts, and highlight some re-

curring themes. We begin with the allostasis model

proposed by McEwen and Wingfield (2003), which

has profoundly influenced subsequent theorizing in

this area. This model focuses on the physiological

adjustments required to maintain stability through

change, or allostasis (Sterling and Eyer 1988).

Allostatic responses adaptively shift the set point of

homeostatic systems to match anticipated changes in

the environment or in the organism’s state (includ-

ing transitions between life history stages). For ex-

ample, the homeostatic set points of metabolism and

body temperature shift between day and night, and

even more dramatically during hibernation. When a

prey spots a predator nearby, the autonomic system

increases the set point of heart rate in anticipation of

flight, even before actual escape behavior is initiated.

In the model, stress is defined as a threatening event

that elicits a physiological and/or behavioral allo-

static response in addition to those imposed by the

normal life cycle. Allostatic responses tend to have

immediate benefits and long-term costs. Rising levels

of physiological mediators such as glucocorticoids

increase energy availability to deal with present chal-

lenges, but deplete the individual’s reserves and may

result in tissue damage, particularly if exposure to

stress is severe and/or chronic. The cumulative effect

of allostasis is called allostatic load. When environ-

mental conditions require more work to be done to

maintain physiological stability, allostatic load

increases and can lead to two types of overload. If

the energy necessary to maintain homeostasis

exceeds the energy available to an organism, an

“emergency life history stage” will be initiated. If

energetic demands are not exceeded and allostatic

responses are sustained for too long, metabolic

imbalances and pathological damage can result.

The concept of allostasis has been revised and ex-

tended in what is perhaps the most comprehensive

model of stress to date, the reactive scope model

(Romero et al. 2009). This model is less focused

on energetic expenditures, applies to a greater range
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of contexts (including those in which energy is not

the limiting factor), and allows for more explicit

predictions about individual differences in stress sus-

ceptibility. Mediators of the stress response (e.g., glu-

cocorticoids, heart rate, behavioral responses such as

aggression and locomotion) have a normal range

termed the reactive scope, which encompasses antic-

ipatory changes that follow circadian and seasonal

fluctuations (predictive homeostasis), as well as tem-

porary increases following unpredictable threats

(reactive homeostasis). If levels of mediators (e.g.,

hormone concentrations) exceed the normal reactive

scope too often or for too long they begin to induce

pathological damage (homeostatic overload); if they

fall too low they become insufficient to maintain

homeostasis (homeostatic failure). Both outcomes

should lead to diminished fitness. Genetic and devel-

opmental factors as well as prior experiences may

narrow or expand the reactive scope, leading to in-

dividual differences in stress susceptibility. The de-

velopment of individual differences is also the focus

of the adaptive calibration model advanced by Del

Giudice et al. (2011) and Ellis and Del Giudice

(2014). This model combines the concept of allosta-

sis with the insight that repeated, chronic stress

carries important information about life history-

relevant features of the environment (e.g., danger,

unpredictability, availability of resources). As the

organism develops, the stress response system inte-

grates this information and contributes to the

regulation of key life history trade-offs, with broad-

ranging effects on maturation, behavior, and

physiology—including physiological reactivity to

future stressors.

Whereas the allostasis and reactive scope models

tend to focus mainly on physiological processes, the

cognitive activation theory of stress (CATS; Ursin

and Eriksen 2004, 2010) takes an explicitly cognitive

perspective on stress. The model defines stress as a

general alarm response that occurs when there is a

discrepancy between expectancy and reality.

Expectancies correspond to the homeostatic set val-

ues of motivational systems and can be violated by

threats to the organism, homeostatic imbalances,

novelties, and so on. The alarm response triggered

by discrepancies involves non-specific physiological

arousal and persists until the discrepancy is resolved.

The CATS quantifies expectancies by their strength,

by the perceived probability of the expected event,

and by the event’s positive or negative affective con-

notation (valence). Building on these notions, the

model attempts to formalize intuitive concepts such

as anxiety, helplessness, and hopelessness based on

the perceived probability and valence of future

events, coupled with learned expectations about the

relationships between coping responses and

outcomes.

As is apparent from this brief overview, a com-

mon thread of many current models of stress is that

they do not exclusively focus on reactive or compen-

satory responses (those deployed after the challenge

has occurred), but place considerable emphasis on

the importance of anticipatory responses. The latter

have been described by different authors as

“allostasis,” “predictive homeostasis,” or “adaptive

homeostasis” (with somewhat different implications;

see Romero et al. 2009; Davies 2016). In a recent

effort to clarify the concept of stress, Koolhaas

et al. (2011) argued that stressors should be clearly

distinguished from everyday challenges, and nar-

rowly defined as fitness-threatening situations that

involve significant unpredictability and/or uncontrol-

lability. Unpredictable events can be identified by the

lack of anticipatory responses, whereas uncontrolla-

ble events are marked by absent or delayed physio-

logical recovery. In this perspective, the most

stressful events for an animal are those in which

previously predictable/controllable situations sud-

denly deteriorate, causing a rapid failure of both an-

ticipatory and reactive processes. This framework

synthesizes many key aspects of the existing

approaches, including the allostasis model, reactive

scope model, and CATS. It also inherits a markedly

cognitive conception of stress: adopting the CATS

formulation, the authors frame prediction as expec-

tancies about probable outcomes, and note that the

occurrence of stress is crucially influenced by the

animal’s perception, internal representations, and

memory of previous experiences. As noted above,

defining stress in cognitive terms permits a sophisti-

cated analysis of behavioral and physiological

responses to challenges (for details see Koolhaas

et al. 2011), but further separates the study of stress

in animals from that of analogous phenomena that

occur at the cellular level or in organisms without a

nervous system. In the next section we show how, by

explicitly considering the control-theoretic underpin-

nings of current models of stress, one can formulate

their main insights in a more general way that does

not rely on cognitive assumptions (while also ac-

counting for the role of cognitive processes when

they are relevant).

Stress in a systems perspective

To survive and reproduce, organisms need to con-

stantly control the state of myriad dynamic processes

at multiple levels of organization, from single cells
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and their components (e.g., cellular respiration) to

multicellular individuals (e.g., temperature control,

circulation) to interactions between organisms (e.g.,

predator avoidance, competition for social rank).

From this vantage point, organisms can be viewed

as intricate collections of nested control systems. In

the simplest cases, biological control systems main-

tain homeostasis by keeping a well-defined physiolog-

ical variable (e.g., temperature, blood pressure, glucose

concentration) within an optimal range around a set

point. In more general terms, biological control can be

framed as the pursuit of fitness-relevant goals which

may depend on the state of complex variables such as

social rank or offspring health and survival. Such var-

iables are often partly or fully external to the organism

(as illustrated by offspring survival); the effective reg-

ulation of both “internal” and “external” variables may

require the organism to interact with its environment

and sometimes modify it (e.g., searching for food,

protecting offspring, choosing a location with appro-

priate temperature). Regardless of their nature and

complexity, all control systems ultimately rely on

two basic strategies, that is, feedback and feedforward

control. The properties and limitations of these two

types of regulation have been worked out in control

theory, which is one of the main contributors to sys-

tems biology (see Kitano 2002; Bechhoefer 2005;

Albertos and Mareels 2010; Åström and Murray

2012; Khammash 2016; Frank 2018a). In what follows,

we review some basic concepts of control theory (see

also the Glossary at the end of the paper) before ap-

plying them to the problem of defining and under-

standing stress.

Feedback and feedforward control

In feedback or closed-loop control, the current set

point or goal (reference input) is compared with the

actual state of the system (i.e., the system’s output)

to obtain an error signal. For example, a thermostat

may detect a discrepancy between the room temper-

ature (output) and the temperature set point. The

error signal is used to generate an action, so as to

bring the state of the system closer to the reference

input (e.g., the thermostat may activate a heater).

However, other causal factors (disturbances) may be

acting on the system at the same time; for example,

someone may open a window, letting cold air into

the room. The joint effect of control actions and

disturbances determines the system’s output, which

is then measured and compared with the reference,

closing the control loop (Fig. 1A). The weight

assigned to the feedback channel (feedback gain)

determines the effect of error signals on the

controller’s behavior, so that a higher-gain controller

responds to a the same amount of discrepancy with

a larger corrective action. In total, feedback control-

lers track the system’s output in real time, progres-

sively narrowing the gap between the goal and the

state of the world through moment-to-moment self-

correction. As a rule, the system’s output is not

directly available for comparison but has to be esti-

mated or measured indirectly, for example through

cascades of chemical reactions or sensory organs.

Measurement processes—broadly defined to include

sensory processes and the associated neural

computations—inevitably introduce some stochastic

error (or noise) in the loop, and engender a funda-

mental trade-off between the controller’s tracking

speed and its ability to reject unwanted noise. If

the output is measured with higher temporal

resolution—thus increasing the ability to track rapid

changes in the state of the system—more irrelevant

noise will enter the feedback channel and be ampli-

fied, causing undesired fluctuations in the response.

Conversely, effective filtering of unwanted noise

reduces the tracking speed of the control system

(Bechhoefer 2005; Albertos and Mareels 2010). A

powerful way to employ feedback controllers is to

nest multiple feedback loops within one another,

yielding a feedback cascade. In this type of hierarchi-

cal arrangement, the inner control loop regulates a

lower-order variable (i.e., pursues a lower-order

goal) and thus simplifies the control problem faced

by the controller in the outer loop. For example,

regulation of blood pressure (the higher-order vari-

able) depends on nested feedback loops that control

lower-order variables such as heart rate, stroke vol-

ume, and vasoconstriction (Sterling and Eyer 1988).

The main strength of feedback control lies in its

flexibility, that is, the ability to respond to unknown

or unanticipated disturbances. More generally, feed-

back control has an intrinsically self-correcting na-

ture; for this reason, it does not require an accurate

preexisting model of the system in order to function

properly. However, feedback systems are also highly

sensitive to noise and rely on accurate measurement

of the output. Another crucial limitation of feedback

control is that it depends on the ability to track real-

time changes in the system. Slow chemical reactions,

neural computation, physical inertia in the system—

these and other factors introduce delays and re-

sponse lags in the feedback loop, with the result

that the performance of feedback control deterio-

rates. Beyond a certain threshold, delays in the feed-

back loop may destabilize the system and lead to

erratic, uncontrolled behavior (Bechhoefer 2005;

Albertos and Mareels 2010; Frank 2018a).
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While feedback controllers can flexibly respond to

disturbances and changes in the system after they

have occurred, they are intrinsically unable to antic-

ipate them. When disturbances can be anticipated

(or ignored altogether), feedforward or open-loop

control becomes an effective option, allowing for

improved robustness and the reduction or elimina-

tion of response delay. The term “open-loop” high-

lights the fact that the system output is not used to

determine control actions (i.e., there is no feedback

channel closing the loop between input and output).

The simplest forms of open-loop control make no

attempt to predict the future state of the system, and

produce fixed actions that follow an inflexible course

once initiated. Such “ballistic” responses are often

optimal in the context of rapid defensive mecha-

nisms, such as protective reflexes (e.g., blinking,

pain-induced limb retraction) or the initial phase

of the cellular response to heat shock (Shudo et al.

2003; Albertos and Mareels 2010). In more complex

feedforward controllers, the reference input is com-

bined with an implicit or explicit model of the sys-

tem to generate a control action (or sequence of

actions) based on the predicted behavior of the sys-

tem over time; if the model is correct and there are

no major unforeseen disturbances, such an anticipa-

tory response will yield the desired output without

further correction. Feedforward processes may

integrate information about current disturbances

(obtained from sensors) as well as past states of

the system (stored in some form of memory); to

generate control actions, a controller may compute

predictive estimates of future states of the system

(Fig. 1B). In sum, feedforward regulation ranges

from simple reflexes to complex cognitive simula-

tions of future events that integrate preexisting

knowledge about the likelihood of potential out-

comes, the influence of contextual variables, and so

on. For simplicity, in this paper we treat

“prediction” and “anticipation” as synonyms, regard-

less of whether a control system actually computes

estimates of future states. The advantages of feedfor-

ward controllers over their feedback counterparts in-

clude reduced sensitivity to noise (robustness),

greater dynamic stability, and the fact that they do

not require accurate, real-time measurement of the

system’s output. At the same time, sophisticated

feedforward regulation requires an accurate internal

model of the system and enough information about

its current state so that future disturbances can be

successfully anticipated. Most crucially, feedforward

controllers are unable to respond to unanticipated

events that occur while the current action is

unfolding.

The complementary strengths of feedback and

feedforward control can be combined by integrating

Fig. 1 Schematic representation of (A) a feedback or closed-loop control system and (B) a feedforward or open-loop control system.

Feedforward controllers may employ information about past and present disturbances (dashed box and arrows) to predict future states

of the system and determine the appropriate control actions. FB, feedback; FF, feedforward.
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the two strategies within a single control system. For

example, predictive estimates generated by a feedfor-

ward controller can be used to compensate for the

delays introduced by feedback loops and reduce the

effects of sensor noise. Conversely, the errors caused

by an imperfect predictive model of the system can

be corrected and smoothed out by introducing reac-

tive feedback loops (Bechhoefer 2005).

Unsurprisingly, most biological regulatory systems

include both anticipatory and reactive components

(Barrett and Simmons 2015). This is true across or-

ganismal systems and even at the cellular level: for

example, the biochemical pathways that mediate

responses to oxidative damage not only include

nested feedback loops that respond to the concentra-

tion of the damaging molecules and their metabo-

lites, but also feedforward processes that sense early

cues of danger and proactively activate other com-

ponents of the system (Zhang et al. 2009, 2010; more

on this below). In allostasis and predictive homeo-

stasis, a feedforward controller anticipates the future

state of the system (e.g., changes in physical activity,

food scarcity) and responds by adaptively adjusting

the reference input of a homeostatic feedback con-

troller, which in turn regulates the output variable

(e.g., blood pressure, metabolic rate). The brain itself

can be conceptualized as a complex controller that

integrates feedback and feedforward processes

(Franklin and Wolpert 2011). Taking this idea one

step further, proponents of active inference models

argue that all of cognition and behavior can be

explained as the result of predictive computations;

in this perspective, what feedback pathways do is

carry information about prediction errors (Friston

2010; Pezzulo et al. 2015). Crucially, predictive com-

putations do not necessitate a complex nervous sys-

tem. Even relatively simple biochemical networks can

compute mathematical functions (from addition/

subtraction and multiplication/division to roots and

polynomials; Buisman et al. 2009), implement

switches and oscillators (Miller et al. 2005; Nov�ak

and Tyson 2008), and even perform associative

learning (McGregor et al. 2012).

Stress as control failure

The concepts reviewed above suggest a simple but

general definition of stress as control failure.

Specifically, stress occurs when a biological control

system detects a failure to control a fitness-critical

variable. By fitness-critical we mean a variable with

the potential to significantly impact the survival and/

or reproductive success of the organism (Koolhaas

et al. 2011); depending on context, this may extend

to related organisms (inclusive fitness; see West and

Gardner 2013). The term “fitness-critical” under-

scores the idea that not all aspects of the world

with some relevance to fitness are automatically

sources of stress. Some variables have a dispropor-

tionate impact on survival and reproduction; organ-

isms are selected to rapidly detect deviations from

the desired state of those variables and to forcefully

respond to control failures. Note that mild and/or

short-lived deviations from the system’s goal or reg-

ulatory range are expected in any realistic control

system, and do not automatically qualify as failures.

However, large and/or persistent discrepancies indi-

cate that the organism is unable to achieve control

over key aspects of its internal functioning and/or

external environment—in other words, that the

organism’s fitness is threatened.

The state of the controlled variable is usually

known only indirectly through processes of measure-

ment and estimation (which in the most complex

cases may include sensory and cognitive compo-

nents, with multiple layers of inference). Incorrect

estimates of the state of the system can lead the

controller to detect large, persistent discrepancies

when they are not present. An animal may mistake

a shadow for a dangerous predator; defective baror-

eceptors may incorrectly sense a threatening drop in

blood pressure; and so on. In all these cases, stress

and stress responses occur in absence of an actual

threat to fitness. Conversely, discrepancies that go

undetected by the control system (e.g., failing to

spot an approaching predator) do not engender

stress even if they may result in damage to the or-

ganism and substantial fitness costs.

By this definition, an event or challenge becomes a

stressor if it results in a failure to control a fitness-

critical variable (as detected by the control system);

this captures the key features of threat and uncon-

trollability emphasized by current models (Koolhaas

et al. 2011). As we detail below, unpredictability

refers to a particular kind of control failure in which

anticipatory (feedforward) responses are lacking or

inadequate. A single control failure represents an in-

stance of acute stress; repeated failures over time

indicate the existence of difficult or even intractable

problems in the organism and/or its environment

(and may be described as a type of chronic stress).

Fitness-critical variables can be internal or external

to the organism: to a mother with dependent off-

spring, a predator threatening the offspring can be a

tremendous stressor, and failures to control offspring

health and survival can be expected to be extremely

stressful. While the classic concept of homeostasis

suggests an emphasis on internal variables
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(e.g., glucose concentration, blood pressure, oxida-

tive damage), our definition underscores that biolog-

ical control and its failures apply to multiple fitness-

relevant domains, which may extend well beyond the

borders of the individual organism. Depending on

the nature of the control system under consider-

ation, one may identify various categories of

stress—social, energetic, cardiovascular, immune, ox-

idative, and so on. In this paper, we are not con-

cerned with specific stressors and the relevant

responses, but only with the general concept of stress

and its invariant features across systems, organisms,

and levels of analysis.

In line with the current literature, stress as a con-

dition is distinguished from both the event that

induces it (stressor) and the response enacted to re-

solve it (stress response). Especially when dealing

with internal states, it is important to draw a clear

distinction between the physiological variables that

the organism is attempting to control and those

that mediate the response. As an illustration drawing

from vertebrate physiology, consider the case of en-

ergetic stress induced by starvation (the stressor).

The fitness-critical variable that the organism is fail-

ing to control is blood glucose concentration (or,

more abstractly, energy availability); the response of

the organism may include a temporary elevation of

glucocorticoids and other hormones, which stimulate

glucose release and—if successful—eventually restore

energetic homeostasis. While glucocorticoid secretion

may be upregulated by changing the feedback set

point of the hypothalamic–pituitary–adrenal (HPA)

axis, the focal variable that defines the presence or

absence of stress is the concentration of glucose, and

not that of glucocorticoids (though the latter may be

used as indicators to infer a state of stress). The

larger system that includes both glucose and gluco-

corticoid regulation can be described as a feedback

cascade, with glucose regulation as the outer loop

(higher-order goal) and glucocorticoid regulation as

the inner loop (lower-order goal). This is a crucial

point that may generate confusion if not properly

understood; in particular, it should be noted some

models of stress (notably the reactive scope model;

Romero et al. 2009) focus on the homeostatic regu-

lation of mediators rather than that of fitness-critical

variables per se. In contrast, the definition we pro-

pose focuses on the regulation of fitness-critical var-

iables (e.g., blood glucose or energy availability); the

regulation of specific mediators (e.g., glucocorti-

coids) is treated as a subproblem in the generation

of appropriate responses. Of course, the nature of

biological adaptation is such that, in many cases,

fitness-critical variables are hierarchically nested

within one another (e.g., achieving the potential for

successful reproduction requires sufficient energy

reserves; building up energy reserves requires suffi-

cient day-to-day energy availability; and so on). This

is not a problem for our definition, as long as the

proper level(s) of analysis and the nature of the

stressor(s) are correctly identified in any given case.

The concept of stress as control failure is illus-

trated in Fig. 2. The figure depicts a schematic con-

trol system with both feedback and feedforward

components. The controlled variable can be jointly

affected by disturbances in the environment as well

as the organism’s own behavior and physiology

(summarized as the “state of the organism” in the

figure). Of course, controllers can only modify the

state of the external environment through the organ-

ism’s behavior, which is why there are no arrows

pointing directly from the controllers to the environ-

ment. When the feedforward controller anticipates a

disturbance, it can act directly by triggering a re-

sponse against the disturbance (arrow pointing to

the state of the organism) or indirectly by shifting

the reference input of the feedback controller. In the

latter case, the anticipatory response can be de-

scribed as an instance of allostasis. In the case of

energetic stress discussed above, the organism may

be able to predict an impending period of scarcity

(disturbance); for example, based on seasonal cues

that winter is approaching or declining rates of en-

ergy intake over a certain time span. Anticipatory

responses to prevent starvation may range from

changes in foraging behavior (e.g., leaving the cur-

rent foraging patch; increasing food intake to build

up energy reserves) to allostatic changes that modify

the set point of feedback-regulated systems, includ-

ing the HPA axis.

For an example at the cellular level, consider the

biochemical pathways that protect the cell from ox-

idative damage (Zhang et al. 2009, 2010). Oxidative

damage is caused by reactive oxygen species and

other reactive compounds (e.g., electrophiles), which

can be produced as metabolites of foreign molecules

(xenobiotics). The critical controlled variable in this

case is the cell’s redox environment; deviations from

the set point are detected by sensor proteins and

relayed to a gene regulatory network in the nucleus

(the feedback controller), which in turn activates the

expression of antioxidant and detoxifying enzymes (a

compensatory response directed at restoring homeo-

stasis). By our definition, a persistent failure to

maintain the redox environment within acceptable

limits would qualify as oxidative stress. The system

is organized as a feedback cascade, with a main outer

loop that controls the overall activity of the
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regulatory network and multiple inner loops that

fine-tune the expression of specific enzymes. The

feedforward component is provided by xenosensors,

nuclear receptors that detect potentially dangerous

xenobiotics before they are converted into reactive

metabolites. Activated xenosensors trigger various

anticipatory responses, both directly by inducing

the expression of specific detoxifying enzymes and

indirectly by upregulating the activity of the main

feedback controller (an instance of allostasis; for

details see Zhang et al. 2009, 2010).

Because biological control systems are complex

and involve the interplay of multiple components

(Fig. 2), control failures—and hence stress—can

arise for a variety of distinct reasons. On the one

hand, some environmental challenges may be intrin-

sically hard to predict and/or address, for example

because of their intensity (e.g., wildfires, potent tox-

ins), their stochastic nature (e.g., floods, rare preda-

tors), or their evolutionary novelty (e.g., invasive

predators, novel pollutants). On the other hand, un-

controllability and unpredictability are always joint

functions of the environment and the organism;

challenges that are manageable for some individuals

may exceed the regulatory capacity of others who

lack resources, skills, and/or knowledge. As a result,

previous stressors may either increase or decrease the

organism’s ability to effectively deal with subsequent

challenges (see Romero et al. 2009; Taff and

Vitousek 2016). For example, prolonged exposure

to stress may deplete an organism’s resources, thus

reducing its ability to cope with similar challenges in

the future. Conversely, if dealing with a stressor pro-

vides useful information and improves the organ-

ism’s predictive models, future events may become

more predictable and controllable (more on this be-

low). Dysfunctions within the organism may play the

role of endogenous stressors (e.g., autoimmunity,

circulatory diseases) or—more indirectly—negatively

impact the control system’s ability to respond to

stress, resulting in delayed, insufficient, or inappro-

priate responses to challenges.

The nature of unpredictability

Figure 2 helps clarify the distinction between the two

defining features of a stressor, uncontrollability and

unpredictability (e.g., Koolhaas et al. 2011; see

above). While uncontrollability broadly refers to

the inability to keep the variable of interest within

the target range (right side of the figure), unpredict-

ability refers to a particular kind of failure—that is, a

failure of the feedforward component to anticipate a

challenging event and/or respond appropriately to

cues that predict its onset (left side of the figure).

Predictive failures can take many different forms,

each with somewhat different implications: for ex-

ample, the control system may correctly predict

Fig. 2 An idealized biological control system with both feedback and feedforward components. For simplicity, the figure does not show

reference inputs, disturbances, or sensor noise (see Fig. 1 for details). The controlled fitness-critical variable (in boldface) may be a

joint function of the organism and environment. The feedback controller enacts compensatory/reactive responses to challenges that

produce discrepancies between the goal (reference input) and the measured state of the variable. The feedforward controller enacts

anticipatory/predictive responses to challenges; anticipatory responses that change the reference input of the feedback controller

represent instances of allostasis. Note that the control system may involve complex cascades and nested control loops (not shown).

Stress occurs when the control system detects a failure to keep the fitness-critical variable within the target range (uncontrollability).

Unpredictability refers to failures of the feedforward component to anticipate a challenge and/or respond appropriately; such failures

may or may not lead to stress, depending on whether they ultimately result in a failure to control the fitness-critical variable.
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that a challenge is going to happen but fail to predict

when or how it is going to play out. In turn, uncer-

tainty and errors may arise from a number of dif-

ferent sources—including incorrect models of the

organism and/or environment, lack of information

about the state of the system, or noise in the sensors

that relay that information. When predictions are

uncertain and involve a large margin of error, a

feedforward controller may trigger nonspecific antic-

ipatory responses that are likely to be useful in a

broad range of conditions. Alternatively, the control-

ler may make a precise but incorrect prediction and

enact an inappropriate response. Both of these cases

are distinct from complete predictive failures marked

by the absence of anticipatory responses. The current

literature on stress emphasizes the latter case, equat-

ing unpredictability with the lack of anticipatory

responses (Koolhaas et al. 2011); the approach we

propose suggests a more nuanced view of unpredict-

ability. As discussed above, feedforward controllers

are especially vulnerable to the damaging effects of

erroneous or incomplete predictive models. While

failing to predict the onset of a stressor (false neg-

atives) leads to the absence of anticipatory responses,

erroneously predicting that a stressor will occur

(false positives) may trigger unnecessary responses,

including allostatic adjustments. Such unnecessary

responses may be strong enough to destabilize the

whole system and induce a state of stress. Setting the

optimal balance between false positives and false

negatives is a complex problem that depends on

the frequency of different challenges, the reliability

of cues, and the fitness costs of responding or failing

to respond. Under many conditions, selection may

favor the evolution of mechanisms that accept a rel-

atively large rate of false positives as a safety measure

(see Nesse 2001, 2005; Johnson et al. 2013; Sheriff

et al. 2018).

Note that, by our definition, unpredictability only

leads to stress if it ultimately results in a failure to

control the critical variable. When this happens, the

compensatory stress responses elicited by uncontrol-

lability may prompt revisions of the predictive model

employed by the feedforward controller. This idea is

consistent with active inference models, according to

which the primary role of feedback pathways in the

nervous system is to carry information about predic-

tion errors, which can be used to update the brain’s

feedforward models (see Pezzulo et al. 2015). It also

dovetails with the recent hypothesis that acute stress

triggered by unpredictability functions as a “teaching

signal” for the brain—by boosting memory for the

stressful event, enhancing bottom-up information

processing (i.e., increasing the weight of feedback

signals), and facilitating rapid learning through

mechanisms such as dopamine release (Trapp et al.

2018). In organisms without a nervous system or

even single cells, simple forms of revision can take

place at the molecular level. In the oxidative stress

example, a hypothetical revision mechanism could be

as simple as the upregulated expression of xenosen-

sors following a sustained failure to restore redox

homeostasis (i.e., oxidative stress). As a result, future

exposure to similar amounts of xenobiotics would

trigger the expression of larger amounts of detoxify-

ing enzymes. This general pattern has been empiri-

cally demonstrated in yeast cells exposed to oxidative

stress, which respond to subsequent stressors with

increased transcription rates (Guan et al. 2012).

It is noteworthy that, in the approach we have

outlined, prediction is treated as an integral compo-

nent of physiological and behavioral control; as such,

it applies equally to long-term adjustments and rapid

responses to immediate challenges. For example, ag-

onistic encounters and other social stressors seem to

prime inflammatory mechanisms even before any

physical damage occurs (see Takahashi et al. 2018).

This broad view of prediction must be distinguished

from the concept of predictive homeostasis in the

reactive scope model (Romero et al. 2009), which

is explicitly restricted to highly predictable changes

on a seasonal, circadian, or life history scale. In the

same model, anticipatory responses in the context of

acute challenges are regarded as instances of reactive

homeostasis (Romero et al. 2009, 380). This termi-

nological difference should be kept in mind to avoid

confusion.

Extensions and future directions

Hormesis and conditioning

In a variety of domains, empirical findings indicate

that prior exposure to low-intensity challenges can

have protective effects against later, more severe

stressors of the same kind (Fig. 3A). Such condition-

ing effects have been documented in relation to tox-

ins, hypoxia, cardiovascular and thermal stress, and

other types of challenges (Calabrese et al. 2007;

Calabrese 2016). Conditioning is regarded by many

as a special case of hormesis, a broad class of biphasic

responses in which exposure to low versus high levels

of a certain agent (e.g., a toxin) has opposite effects

on physiological responses and/or outcomes (typically

beneficial at low levels and harmful at high levels;

Calabrese and Baldwin 2003; Costantini et al. 2010;

Fig. 3B). While there is some debate about the gen-

erality and evolutionary implications of hormesis

(Forbes 2000; Thayer et al. 2005; Mushak 2009,
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2013, 2016; Costantini et al. 2010), these effects are

both theoretically and practically interesting. For ex-

ample, conditioning is relevant to understanding the

interacting effects of multiple challenges and stres-

sors over time—a scenario that is likely common

in natural populations (Romero et al. 2009). This

is a major focus in the study of endocrine flexibil-

ity (Taff and Vitousek 2016), defined as reversible

phenotypic plasticity of endocrine traits (e.g., glu-

cocorticoid levels) in response to environmental

stimuli. Multiple challenges over time can result

in various possible patterns, both beneficial and

detrimental to fitness; for example, exposure to

stressors may not only impair future flexibility,

but also enable a faster response to subsequent

stressors (see Taff and Vitousek 2016). While con-

ditioning effects likely contribute to determine the

shape of such patterns, the literature on endocrine

flexibility has remained largely disconnected from

that on hormesis. Conversely, biomedical research

on hormesis has often ignored the potential fitness

costs of ostensibly beneficial conditioning effects

(e.g., Costantini et al. 2014), which are of primary

interest to evolutionary biologists who study

plasticity.

From a mechanistic perspective, hormesis is easy

to explain as a manifestation or byproduct of

adaptive homeostatic control, consistent with the ap-

proach presented in this paper. Specifically, hormesis

(including conditioning) may arise because low-

intensity challenges induce compensatory feedback

responses that lead to “overcorrection” (Stebbing

1987); alternatively, low-intensity challenges may en-

gage feedforward responses designed to anticipate

future perturbations (Stebbing 2009). Recent work

on cellular stress has started to put these ideas in

quantitative form through detailed mathematical

models of the biochemical networks that mediate

responses to toxins, oxidative damage, and so on

(Zhang and Andersen 2007; Zhang et al. 2009,

2010; Goulev et al. 2017). These models show that

various specific mechanisms may produce hormetic

effects, including delayed or nonlinear compensatory

responses (Zhang and Andersen 2007; Zhang et al.

2009; Goulev et al. 2017) as well as high-gain antic-

ipatory responses triggered by small perturbations

(Zhang et al. 2009).

We suggest that insights gathered from models of

cellular stress could be usefully applied to other bi-

ological systems, including animals with complex

nervous systems. For example, fairly sophisticated

mathematical models of the HPA axis in humans

and rodents have been developed and refined

(Stanojevi�c et al. 2018). These models can be used

to simulate the effect of challenges of variable inten-

sity and that of repeated challenges over time, but—

to our knowledge—have never been employed to

explore the dynamics of conditioning. When feedfor-

ward control relies on cognitive processes, low-

intensity challenges may contribute to calibrate or

revise the predictive model by providing useful in-

formation about the environment and the organism,

Fig. 3 (A) Schematic representation of conditioning effects. Prior exposure to a low-intensity challenge (solid line) has a protective

effect against a later, more severe challenge. Protective effects are indicated by less intense responses and/or reduced damage following

the high-intensity challenge, compared with the condition in which the organism is not exposed to the low-intensity challenge (dashed

line). (B) Schematic representation of hormesis in a classic dose–response framework. The shape of the dose–response curve is

biphasic, with beneficial effects at low doses (“hormetic zone”) and harmful effects beyond a critical threshold.

1028 M. Del Giudice et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article-abstract/58/6/1019/5094765 by guest on 14 D

ecem
ber 2018



in line with the idea that acute stressors function as

“teaching signals” for the brain (Trapp et al. 2018).

Interestingly, even single cells show forms of (non-

cognitive) memory for previous stress exposures (see

Guan et al. 2012). This example highlights the com-

monalities that exist between vastly different levels of

organization and the potential for cross-fertilization

across disciplines.

Trade-offs in the design of stress responses

A systems perspective makes it possible to harness

principles from control theory and apply them to

long-standing questions about the evolved design

of stress responses. One of these principles is the

so-called conservation of fragility in feedback-

regulated systems, an instance of the pervasive

trade-offs between robustness and fragility that char-

acterize both natural and artificial mechanisms

(Csete and Doyle 2002; Kitano 2007; Khammash

2016; see also Bechhoefer 2005). The performance

of a feedback controller can be modulated by chang-

ing its feedback gain (see Fig. 1A). Specifically, slow

(low-frequency) disturbances can be eliminated more

effectively by increasing gain; however, each increase

in low-frequency stability (robustness) is inevitably

compensated by an increase in high-frequency insta-

bility (fragility; Fig. 4). Above a critical frequency,

disturbances are not reduced but amplified and

may lead to catastrophic losses of control. A ther-

mostat that is extremely effective at canceling out

slow temperature changes (e.g., between night and

day) may break into uncontrolled oscillations if ex-

posed to high-frequency changes (e.g., if another

heater in the room is turned on and off every few

minutes). This phenomenon has been empirically

documented in yeast cells: the biochemical pathways

that respond to osmotic stress can be dysregulated by

fast oscillatory inputs outside the ecological range,

leading to uncontrolled hyperactivation of the system

(Mitchell et al. 2015). From an alternative perspec-

tive, the trade-off between performance at low versus

high frequencies can be framed as a trade-off be-

tween plasticity and homeostasis (Frank 2018b).

Specifically, controllers with enhanced ability to re-

ject short-term disturbances (homeostasis) will

generally be less effective in adapting to slower,

long-term changes in the environment (plasticity),

and vice versa.

Because of robustness-fragility trade-offs, the evo-

lution of stress responses is constrained in ways that

may be not immediately intuitive. In particular, the

conservation of fragility suggests that organisms may

not respond to challenges and stressors as rapidly

and intensely as they possibly could. By compromis-

ing performance and allowing for a certain

“sloppiness” in the expression of physiological

responses, they may reduce the risk of catastrophic

failures when encountering challenges outside the

optimal range. For example, animals are often lim-

ited in their ability to undergo rapid hormonal shifts

in response to unpredictable events in the environ-

ment (“rapid endocrine flexibility”). A possible ex-

planation is that the time lag between the event and

the required phenotypic change would be too long

for the response to be useful (Taff and Vitousek 2016).

The conservation of fragility may contribute to explain

why the expression of endocrine-mediated phenotypes

has not evolved to be faster and more vigorous (e.g., as

a means to prevent catastrophic failures, or to favor

long-term plasticity over short-term homeostasis). Of

course, the limitations of pure feedback control can be

partially overcome by adding feedforward components

to the system (Csete and Doyle 2002); however, this

entails new points of fragility (e.g., sensitivity to pre-

diction errors), as well as the additional costs of build-

ing and maintaining a more complex system.

Interestingly, mathematical treatments of the HPA

axis have dealt extensively with issues of dynamic sta-

bility (Savi�c 2008; Stanojevi�c et al. 2018), but have not

explicitly considered the role of robustness–fragility

trade-offs in the design of the system.

Fig. 4 Illustration of the conservation of fragility in feedback-

regulated systems. Fragility is a function of the absolute effect of

a disturbance on the system’s output (see Fig. 1A). Positive fra-

gility means that disturbances are amplified, potentially leading to

uncontrolled oscillations. Negative fragility (robustness) means

that disturbances are attenuated. Perfect control is obtained

when disturbances are fully rejected (i.e., they have no effect on

the output). By increasing the feedback gain, the system can be

made more robust at low frequencies (slow disturbances);

however, each increase in low-frequency robustness is matched

by a corresponding increase in fragility at high frequencies (fast

disturbances).
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Novel environments and evolutionary mismatches

Finally, a systems perspective may offer valuable

insights into the stresses imposed by novel environ-

ments or stimuli, including those resulting from an-

thropogenic global change. Anthropogenic change

can shift environmental parameters outside the range

organisms have previously experienced (altered tem-

peratures, carbon dioxide levels, etc.) or give rise to

conditions that focal organisms have never encoun-

tered, such as the presence of invasive species (Sih

et al. 2011). These novel conditions often function as

stressors and may reduce fitness, by playing the role

of ecological and evolutionary “traps” or engender-

ing other evolutionary mismatches (see Schlaepfer

et al. 2002; Somero 2012; Cofnas 2016). For example,

climate change interferes with the timing of the

activity-hibernation cycle of Arctic ground squirrels,

which is regulated by a combination of feedforward

mechanisms that anticipate the coming of spring (in

both sexes) and feedback mechanisms that respond

to temperature (in females; see Buck and Barnes

1999a, 1999b). With climate change, the short repro-

ductive windows of male and female squirrels can

become desynchronized, leading to intraspecific

sex-dependent mismatch in reproductive timing—a

likely source of stress for this species (Richter et al.

2017; Williams et al. 2017).

The outcomes of scenarios involving novel envi-

ronmental conditions are intrinsically difficult to

predict (Sih 2013). The approach we have presented

in this paper may provide leverage by pointing to

specific vulnerabilities of the various components of

biological control systems (Fig. 2). Feedback compo-

nents are more likely to be compromised when novel

conditions exceed the range they have evolved to

handle (uncontrollability), resulting in stress

responses that are too weak to effectively compensate

disturbances. Conditions that fall outside the evolved

range may also drive a feedback controller into a

zone of fragility, increasing the risk of catastrophic

failure (see above; Mitchell et al. 2015). In most

cases, however, the feedforward components of reg-

ulatory systems should be disproportionately affected

by novel conditions, given their reliance on predic-

tion and their dependence on accurate models of the

environment (whether implicit or explicit).

Predictive failures may occur for many different rea-

sons. For instance, sensors may not recognize

impending threats that fall outside their design lim-

its, thus failing to activate anticipatory responses;

indeed, it has been suggested that many failures to

conduct appropriate behavioral responses to novel

conditions stem from limited or imperfect

information (Sih 2013). Even if sensors detect the

novel threats, the controller may rely on an outdated

model of the environment or utilize inappropriate

decision-making rules (Schlaepfer et al. 2010). As a

result, the control system may initiate maladaptive

responses that fail to resolve the state of stress or

even exacerbate it, with escalating costs and the pos-

sibility of sustained damage. While learning can po-

tentially attenuate the impact of novel conditions on

predictive mechanisms, learning processes are them-

selves constrained by past evolutionary history, and

may fail to perform adaptively if conditions are suf-

ficiently novel.

Conclusion

Unpacking the concept of stress in light of control

theory reveals deep commonalities across levels of

biological organization, and suggests a simple but

general definition that is potentially amenable to for-

mal analysis. The definition we have proposed is not

meant as a replacement for existing models; rather, it

is an opportunity for theoretical clarification and a

stimulus to explore novel ideas and research direc-

tions. From our perspective, stress is a basic feature

of all biological systems—and a truly unifying con-

cept that will continue to inform research for deca-

des to come.
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Glossary of control theory terms

Controller: a mechanism whose function is to match

the value of a target variable to that of a reference

input. The value of the controlled variable is the

output of a system; the controller acts on the system

to modify its output so as to keep the controlled

variable close to the reference input.

Disturbance: an event (not produced by the control-

ler) that changes the state of the system.

Error signal: the discrepancy between the measured

system output and the reference input at a given

time.
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Feedback (closed-loop) control: a mode of control

in which the system output is compared with the

reference input, and the resulting error signal is

used by the controller to determine the control

action. Feedback control is reactive and can only

correct the effects of disturbances after they have

occurred.

Feedback gain: the weight assigned to the error signal

in determining the response of the controller. A con-

troller with higher feedback gain will respond more

strongly to the same deviation from the reference input.

Feedforward (open-loop) control: a mode of con-

trol in which a model of the system is used to de-

termine control actions, without feedback from the

system output. Feedforward control can be used to

anticipate future disturbances before they occur (to

the extent that they can be successfully predicted).

Reference input: the desired value of the controlled

variable. The reference input can be static (set point)

or dynamic, and can be viewed as the “goal” of the

controller.

Robustness/fragility: robustness is the ability of a sys-

tem to maintain performance in the face of perturba-

tions (broadly defined to include noise and

uncertainty). Fragility is lack of robustness, or a sys-

tem’s sensitivity to perturbations. The robustness of a

controller is a measure of its ability to reject distur-

bances and/or withstand the performance-degrading

effects of noise (e.g., sensor noise) and uncertainty.

Sensors: mechanisms that measure the system out-

put (and/or current disturbances) and relay that in-

formation to the controller. Sensors may introduce

noise and delays in the control loop.
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