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C O N D E N S E D A B S T R A C T

Climate is changing globally and its impacts can arise at different levels of biological organization; yet, cross-level consequences of climate change are still poorly
understood. Designing effective environmental management and adaptation plans requires implementation of mechanistic models that span the biological hierarchy.
Because biological systems are inherently complex and dynamic in nature, dealing with complexities efficiently necessitates simplification of systems or approx-
imation of relevant processes, but there is little consensus on mathematical approaches to scale from genes to populations. Here we present an effort that aims to
bring together groups that often do not interact, but that are essential to illuminating the complexities of life: empirical scientists and mathematical modelers,
spanning levels of biological organization from genomes to organisms to populations. Through interplay between theory, models, and data, we aim to facilitate the
generation of a new synthesis and a conceptual framework for biology across levels.

1. Predicting impacts of climate change from genomes to
phenomes to populations

Climate is changing at a global scale with extreme weather events
(Rahmstorf and Coumou 2011), shifts in seasonality and precipitation
patterns, and an overall increase in the mean and variance of tem-
peratures as some of the more noticeable consequences (Houghton et al.
2001). These environmental changes can compromise organismal fit-
ness through changes in species phenologies and mismatches with their
resources (Parmesan and Yohe 2003), as well as potential intraspecific
mismatches during reproductive periods (Williams et al. 2017). Fur-
thermore, extreme weather patterns can increase stress levels which can
lead to decreased disease resistance and reduced fitness (Wingfield
et al. 2011), potentially jeopardizing population viability and long-term
persistence of many species.

Impacts of climate change can arise at different levels of biological
organization, either simultaneously or sequentially (Woodward et al.
2010), with different ramifications and feedbacks across levels. Most
available information, or that which is being gathered, is specific to
levels spanning genomes to individuals over relatively short time-
frames; yet, we are interested in how populations respond to altered
conditions, if and how they adapt, and how adaptation influences

persistence across long time scales. We are even less aware of the po-
tential cascading feedbacks from populations to individuals and gen-
omes and how these connections, either direct or indirect, can buffer or
accelerate adverse impacts of a changing environment on species or
populations. There is a need to have a mechanistic understanding of
nested and non-nested hierarchies (Allen and Starr 2017), i.e. of the
bidirectional connections from genotypes to populations in sufficient
detail so that relevant feedbacks are captured (Evans et al. 2013). Un-
derstanding connectivities and feedbacks is crucial to the design of ef-
fective management plans to mitigate the impacts of climate change on
populations.

2. Dealing with complexities across levels of biological
organization

Biological systems are inherently complex and dynamic in nature.
Developing models to represent these systems has traditionally focused
on defined levels, driven by specific needs and questions. For example,
human health applications have been the main driver of novel devel-
opments in whole cell modeling. The model of a Mycoplasma genitalium
cell realistically accounts for different cellular processes, including DNA
decay and repair, gene transcription and translation, metabolism, decay
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and recycling of RNA, and formation of the dividing rings (Karr et al.
2012). Even though this model is represented as a unit, it is comprised
of 28 separate modules that use different mathematical approaches that
are linked to represent the whole cell. By extension, scaling up from
cells to populations might require numerous additional modules,
making the mathematical connection between genes and populations
incredibly complex.

Mathematically, complex models can be formulated to include
multiple scales of biological processes and organization in the context
of multiscale modeling. For example, in pharmaceutical research and
chemical risk assessment, physiologically based pharmaco-toxicokinetic
(PBPK) models are used to predict the absorption, distribution, meta-
bolism and elimination of chemicals (e.g., drugs and environmental
toxicants) in humans and wildlife. In short, PBPK models predict organ
and tissue concentrations based on a given chemical exposure (Gibaldi
and Perrier 1982). Multiscale models that utilize a PBPK framework as
a means of integrating processes across scales include: liver metabolism
of acetaminophen in humans to predict variability of effects among
different groups of individuals (Sluka et al. 2016); models of the hy-
pothalamic-pituitary-gonadal axis to predict the effect of endocrine-
active chemicals on fish reproductive endpoints (Murphy et al. 2005, Li
et al. 2011, Gillies et al. 2016), and recent efforts to link across scales
for endocrine-active chemicals on rainbow trout reproduction leading
to population-level effects (Forbes et al. 2019). In addition to a longer
history of modeling animal nutrition (Baldwin and Sainz 1995), efforts
are being made to model physiology, such as what is being done in the
fields of stress physiology (Romero et al. 2015, Del Giudice et al. 2018)
and metabolic organization (Jusup et al. 2017). Critical to the success of
these efforts is the availability of data to parameterize the models. In
order to maintain biologically plausible values, the availability of data
will ultimately limit the complexity and predictive power of the models.

Although population-level processes clearly emerge from in-
dividual-level processes that themselves depend on physiology, cells,
and gene expression, ecological research on populations and species
interactions such as competition, predation, and mutualism, has tradi-
tionally ignored lower levels of organization. Furthermore, most models
of ecological dynamics regard populations as homogeneous compart-
ments expressed as states in differential equations that allow for ana-
lytical solutions of equilibria and mathematical tractability. With the
realization that population composition and structure influences po-
pulation dynamics, more structured models started emerging (Caswell
2001, Hastings et al. 2018). These included models representing po-
pulation structure in several designated groups (e.g., age- or stage-
based matrix models) and models representing each individual in the
population (e.g. individual-based models)(Grimm and Railsback 2005).
Increases in computational power and more flexible modeling ap-
proaches are now opening doors to permit representation of hierarchies
by including various processes and mechanisms at the levels of cells and
tissues.

Still, to further our understanding and mitigation of impacts of a
changing environment, we need to find ways of dealing with com-
plexities efficiently, by simplifying systems or approximating relevant
processes (Evans et al. 2013). When considering the processes that will
be included in a model’s mathematical formulation, having clarity on
the model’s purpose is essential. That is, characteristic spatial and
temporal scales may need to be considered in order to simplify equa-
tions and “prune” processes that are not essential contributors to model
output/prediction(s). One example of a coherent scientific framework,
based on a set of mechanistic models describing energy acquisition and
allocation, is the Dynamic Energy Budget (DEB) theory (Kooijman
2010, Jusup et al. 2017). Originally developed to better quantify im-
pacts of chemicals on species physiology and life history, DEB models
are applied to understand and predict biological responses to various
environmental factors (Galic and Forbes 2017), including temperature
and resource availability (Kearney and Porter 2009, Jusup et al. 2017).
As the currencies in DEB theory are mass and energy, this framework

provides a natural link between suborganismal, organismal, population,
and ecosystem processes and has often been applied for understanding
how impacts of stressors on individual organisms translate into impacts
at higher levels (Nisbet et al. 2000, Martin et al. 2013, Galic et al.
2017).

However, there is little consensus on mathematical approaches to
scale from genes to populations. Key unanswered questions include: Do
all levels of organization need to be modeled explicitly, or can some
levels be condensed for simplicity and tractability? If they are all in-
cluded, does each level need to be addressed with the same degree of
detail? Do we need to consider all of the genes and the genome archi-
tecture, or can we focus on a subset? Are there any modules that can be
treated as universal, such that cross-species variation or evolution can
be ignored?

3. The role of microevolution and plasticity in shaping genomes
and phenomes

Fundamental to understanding organismal responses to environ-
mental change through time is to understand the roles of evolution and
phenotypic plasticity in altering organism performance in response to
stressors. While phenotypic plasticity is an individual characteristic,
microevolution refers to genotypic changes at the population level.
Interactions between environmental change and genotypes distributed
within a population can occur both upstream and downstream of phe-
notypic changes that can be measured as physiological or biochemical
specializations of individuals (Diamond and Martin 2016). The linkage
between genotype and phenotype within the context of environmental
perturbation can be experimentally tracked via reaction norms. A re-
action norm encompasses a typical response (or plastic range of re-
sponses) to environmental variation by a single genotype (Houston and
McNamara 1992, Gotthard and Nylin 1995). Reaction norms are par-
ticularly useful in comparisons of closely related populations and may
be a key feature of modeling the range of available responses for (sub)
populations and ultimately their fate in the face of changing environ-
ments.

De facto, each parameter used in models addressing processes from
genes to populations reflects an organism’s phenotype and thus is
subject to evolution and also may have plastic characteristics (DeLong
et al. 2016). Predicting changes in these parameters is thus critical to
using multi-scale models to capture responses to climate change. Evo-
lutionary approaches such as quantitative genetics link mean trait
change to population dynamics but treat genes and their expression
across levels of organization as a black box (Lande 1976, Abrams et al.
1993). Alternatively, population genetics focuses on the change in al-
lele frequencies at specific sets of genes, but treats the emergence of
phenotypes from genotypes as black boxes (Messer et al. 2016). More
recent approaches such as Gillespie Eco-evolutionary Models (GEMs)
integrate demographic stochasticity and genetic drift with quantitative
genetics in a community context (DeLong and Gibert 2016), but still do
not account for all of the steps leading from genes to populations. Al-
though data remain scarce (for mammals, in particular), it is now
possible to tease apart the driving forces of phenotypic plasticity versus
microevolutionary changes on responses to environmental variability
(Boutin and Lane 2014). It is critical to recognize that scaling up from
genes to populations likely requires taking into account changes in
genes through time.

4. Collaborative developments across communities of experts

Tackling any big challenge, especially that of expected and un-
expected future changes in climate patterns and consequences for local
biota, will require connecting experts across disciplines. The scientific
community tends to operate in silos of expertise; for instance, in bio-
logical research it is still rare for teams of researchers to span more than
two levels of biological organization. It is even more uncommon to
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include mathematical or theoretical biologists into such efforts from the
beginning (but see e.g. (Forbes et al. 2017)). It is evident that collective
intelligence supersedes that of individual scientists (Woolley et al.
2010), and the need for more interdisciplinary research collaborations
has been voiced by the scientific community (Schwenk et al. 2009,
Mykles et al. 2010).

Here we present an effort that aims to coalesce groups that often do
not interact, but their collaboration is essential to illuminate the com-
plexities of life: empirical scientists and mathematical modelers, span-
ning levels of biological organization from genomes to organisms to
populations. Insights into how systems function at different scales have
the potential to provide a synthetic understanding of how animals op-
erate and serve as the basis for quantitative models to predict resilience
and vulnerability of species in a changing world. Thus, the overarching
goal of our Research Coordination Network (RCN) titled “Predicting
vertebrate responses to a changing climate: modeling genomes to
phenomes to populations (g2p2pop)” is to facilitate, refine and di-
versify scientific discourse among biologists and mathematicians with
expertise that spans from genomes to populations. We anticipate that
the RCN will create pivotal linkages among multiple disciplines of
biology and mathematics such that collaborations will form naturally
and result in bidirectional interplay between theory and experimenta-
tion to develop unified mechanistic models of genomes to phenomes to
populations (Fig. 1). It is only through such interactions between ex-
perts and interplay between theory, models, and data that we can hope
to facilitate the generation of a new synthesis and a conceptual fra-
mework for biology across levels.
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organization (B). Understanding and pre-
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