
Iwasawa theory:
a climb up the tower
Romyar Sharifi

Iwasawa theory is an area of number theory that
emerged from the foundational work of Kenkichi
Iwasawa in the late 1950s and onward. It studies the
growth of arithmetic objects, such as class groups,
in towers of number fields. Its key observation is
that a part of this growth exhibits a remarkable reg-
ularity, which it aims to describe in terms of values
of meromorphic functions known as L-functions,
such as the Riemann zeta function.

Through such descriptions, Iwasawa theory un-
veils intricate links between algebraic, geometric,
and analytic objects of an arithmetic nature. The
existence of such links is a common theme in many
central areas within arithmetic geometry. So it is
that Iwasawa theory has found itself a subject of
continued great interest. This year’s Arizona Win-
ter School attracted nearly 300 students hoping to
learn about it!

The literature on Iwasawa theory is vast and of-
ten technical, but the underlying ideas are possess-
ing of an undeniable beauty. I hope to convey some
of this, while explaining the original questions of
Iwasawa theory and giving a sense of the directions
in which the area is heading.

Algebraic number theory

To understand Iwasawa theory requires some knowl-
edge of the background out of which it arose. We at-
tempt to chart a course, beginning with a whirlwind
tour of the elements of algebraic number theory. We
make particular note of two algebraic objects, the
class group and the unit group of a number field,
that play central roles for us.

Algebraic numbers are the roots inside the com-
plex numbers of nonzero polynomials in a single
variable with rational coefficients. They lie in finite
field extensions of Q called number fields. The set

of algebraic numbers forms a subfieldQ ofC known
as an algebraic closure of Q. Inside Q sits a subring
Z of algebraic integers, consisting of the roots of
monic polynomials with integer coefficients.

The field automorphisms of Q form a huge
group called the absolute Galois group GQ =

Gal(Q/Q). These automorphisms permute the
roots of each rational polynomial, and consequently
this action preserves the algebraic integers.

We’ll use F to denote a number field. The inte-
ger ringOF of F is the subring of algebraic integers
in F . It is a PID if and only if it’s a UFD, but unlike
OQ = Z, it need not in general be either. Rather,
OF is what is known as a Dedekind domain. As
such, it has the property that every nonzero ideal
factors uniquely up to ordering into a product of
prime ideals. This property provides a replacement
for unique factorization of elements. A “prime” of
F is a nonzero prime ideal of OF .

A fractional ideal ofF is a nonzero, finitely gen-
erated OF -submodule of F . In particular, nonzero
ideals ofOF are fractional ideals, but so for instance
are all OF -multiples of 1

2 . The set IF of fractional
ideals is an abelian group under multiplication with
identity OF . The class group ClF of F is the quo-
tient of IF by its subgroup of principal fractional
ideals generated by nonzero elements of F . The
group ClF is trivial if and only if OF is a PID.

Remarkably,ClF is finite. Its order hF is known
as the class number. Like the class group itself, it is
the subject of many open questions. For instance,
work of K. Heegner, A. Baker, and H. Stark in the
1950s and 60s solved a problem of Gauss by show-
ing that there are exactly nine imaginary quadratic
fields with class number one: Q(i), Q(

√
−2),

Q(
√
−3), Q(

√
−7), .... On the other hand, Gauss’

conjecture that there are infinitely many such real
quadratic fields is still open.
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A number field F can be viewed as a subfield
of C in multiple ways. That is, any σ ∈ GQ gives
an isomorphism σ : F → σ(F ), and σ(F ) is a sub-
field of C as well, so precomposition with σ yields a
different “archimedean” embedding of F in C. We
may then place a metric onF by restricting the usual
distance function. An embedding of F in C is real
if it has image in R and complex if it is not real, in
which case it has dense image in C. The numbers
of real and complex-conjugate pairs of complex em-
beddings are respectively denoted r1(F ) and r2(F ).

The unit groupO×
F of invertible elements inOF

under multiplication is deeply intertwined with the
class group ClF . In fact, these groups are the ker-
nel and cokernel of the map F× → IF taking an
element to its principal fractional ideal. Dirichlet’s
unit theorem says that O×

F is a direct product of the
group of roots of unity in F and a free abelian group
of rank r = r1(F )+r2(F )−1. This is proven using
logarithms of absolute values of units with respect
to archimedean embeddings. The regulator RF of
F is a nonzero real number defined as a determinant
of a matrix formed out of such logarithms.

The prototypical example is F = Q(
√
−5),

for which OF = Z[
√
−5]. One has r1(F ) = 0,

r2(F ) = 1, and O×
F = {±1}. We have two factor-

izations of 6 into irreducible elements of Z[
√
−5]

that don’t differ up to units:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

The unique factorization into primes that resolves
this for our purposes is

(6) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5).

The class number of Q(
√
−5) is 2, so the class

group is generated by the class of any nonprincipal
ideal, such as (2, 1 +

√
−5) or (3, 1±

√
−5).

Ramification in an extension of number fields is
akin to the phenomenon of branching in branched
covers in topology. As we’ve implicitly noted, the
factorization of (2) in Z[

√
−5] is (2, 1 +

√
−5)2.

The square is telling us that the same prime is occur-
ring (at least) twice in the factorization: this is the
branching. Whenever this happens in an extension
of number fields, we say that the prime of the base
field ramifies in the extension. Only finitely many
primes ramify in an extension of number fields.

The Dedekind zeta function of F is the unique
meromorphic continuation to C of the series

ζF (s) =
∑

a⊂OF

(Na)−s,

where a runs over the nonzero ideals of OF and
Na is the index of a in OF . It has a simple pole

at s = 1 and satisfies a functional equation relating
ζF (s) and ζF (1 − s) that involves factors coming
from the archimedean embeddings. The Dedekind
zeta function of Q is the ubiquitous Riemann zeta
function ζ(s).

The functional equation tells us that ζF (s) van-
ishes to order the rank r of O×

F at s = 0. The
leading term in its Taylor expansion is given by the
analytic class number formula

ζ
(r)
F (0)

r!
= −hFRF

wF
.

where wF is the number of roots of unity in F .
This provides an important instance of a meromor-
phic function intertwining the unit and class groups.
More broadly, it’s a first fundamental example of
the links between analytic and algebraic objects of
arithmetic.

To a prime p of F , we can attach a p-adic met-
ric under which elements are closer together if their
difference lies in a higher power of p. We may
complete F with respect to this metric to obtain a
complete “local” field Fp that has a markedly non-
Euclidean topology. It has a compact valuation ring
Op equal to the open and closed unit ball about 0.

For example, the p-adic metric dp on Q is de-
fined by dp(x, y) = p−n for the largest n ∈ Z such
that x − y ∈ pnZ. The completion of Q with re-
spect to dp is called the p-adic numbers Qp, which
has valuation ring the p-adic integers Zp. Alterna-
tively, Zp is the inverse limit of the rings Z/pnZ
under the reduction maps between them.

Every prime p of F is maximal in OF with fi-
nite residue field OF /p. The Galois group G of
a finite Galois extension E/F acts transitively on
the set of primes q of E containing p. The stabi-
lizer of q in G is called its decomposition group Gq

and is isomorphic to Gal(Eq/Fp). The extension
OE/q of OF /p has cyclic Galois group generated
by x 7→ xNp. This element lifts to an element of Gq

called a Frobenius element at q. The lift is unique
if p is unramified in E/F . It is independent of q if
G is also abelian, in which case we denote it by ϕp.

The Hilbert class fieldHF ofF is the largest un-
ramified abelian extension ofF . Here, “unramified”
means that no prime ramifies and no real embedding
becomes complex. The Artin map taking the class
of a prime p to ϕp provides an isomorphism

ClF
∼−→ Gal(HF /F ).

For example, the Hilbert class field of Q(
√
−5)

is Q(
√
5, i), and the Artin isomorphism tells us

whether or not a prime p of Z[
√
−5] is principal
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via the sign in ϕp(i) = ±i. Class field theory con-
cerns “reciprocity maps” generalizing the Artin iso-
morphism by relaxing the ramification conditions.
These in turn can be used to prove reciprocity laws
generalizing Gauss’ law of quadratic reciprocity.

Cyclotomic fields

Iwasawa theory has its origins in the study of the
arithmetic of cyclotomic fields, a classical area of
number theory that dates back to attempts at proving
Fermat’s last theorem in the mid-1800’s. This is a
fascinating subject in its own right, not least for the
connections it reveals between Bernoulli numbers
and the structure of cyclotomic class groups.

For a positive integer N , the N th cyclotomic
field Q(ζN ) is given by adjoining the primitive N th

root of unity ζN = e2πi/N to Q. The Kronecker-
Weber theorem states that every finite abelian ex-
tension of the rationals is contained in a cyclotomic
field. If N > 1, the prime ideals that ramify in
Q(ζ2N ) are exactly those dividing N . The integer
ring of Q(ζN ) is Z[ζN ], so every cyclotomic integer
is a Z-linear combination of roots of unity.

Each element σ of Gal(Q(ζN )/Q) carries ζN
to another primitive N th root of unity, which has
the form ζiN for some i prime to N . The map taking
σ to the unit i modulo N provides an isomorphism

Gal(Q(ζN )/Q)
∼−→ (Z/NZ)×

known as the N th cyclotomic character.
For x, y, and z satisfying the Fermat equation

in odd prime exponent p, we have a factorization

xp + yp =

p−1
∏

i=0

(x+ ζipy) = zp

in Z[ζp]. Using this, Kummer proved in an 1850 pa-
per that if p is regular, which is to say that p ∤ hQ(ζp),
then Fermat’s last theorem holds in exponent p. (Its
use lies in the fact that if p is regular, then (x+ ζipy)
cannot be the pth power of a nonprincipal ideal.)
It’s known that there are infinitely many irregular
primes but not that there are infinitely many regular
primes, though over 60% of primes up to any given
number are expected to be regular.

For k ≥ 0, the kth Bernoulli number Bk ∈ Q is
the kth derivative at 0 of the function x

ex−1 . One has
Bk = 0 for odd k ≥ 3. Here’s a table of Bernoulli
numbers for positive even indices:

k 2 4 6 8 10 12 14

Bk
1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6

Kummer proved the following, which amounts
to a special case of the class number formula.

Theorem (Kummer). A prime p is irregular if and

only if p divides the numerator of Bk for some pos-

itive even k < p.

In particular, 691 is irregular as it divides B12.
Here’s a table of irregular primes p < 150 and the
indices n of the Bernoulli numbers Bn they divide:

p 37 59 67 101 103 131 149

n 32 44 58 68 24 22 130

The prime 157 divides both B62 and B110. The in-
dex of irregularity ip of p is the number of Bernoulli
numbers Bk with k < p even that p divides. Its val-
ues up to an increasingly large bound are expected
fit a Poisson distribution with parmeter 1

2 . The lat-
est in a long history of computations is due to Hart,
Harvey, and Ong for p < 231 = 2147483648. In
this range, ip attains a maximum value of 9.

Regularity of p is equivalent to the triviality of
the Sylow p-subgroup A of ClQ(ζp). We call A the
p-part of the class group. So, what more does the
fact an odd p divides a particular Bernoulli number
tell us about A? The answer is found in the action
of

∆ = Gal(Q(ζp)/Q) ∼= (Z/pZ)×

on A induced by the ∆-action on field elements.

For each δ ∈ (Z/pZ)×, there is a unique ele-
mentω(δ) ∈ Z×

p of order dividing p−1 that reduces
to δ. The resulting homomorphism

ω : (Z/pZ)× → Z×
p

is a splitting of the reduction modulo p map. The
group A breaks up as a direct sum

A =
⊕

i∈Z/(p−1)Z

A(i)

of subgroups

A(i) = {a ∈ A | δ(a) = ω(δ)ia for all δ ∈ ∆}

for integers i modulo p − 1. For obvious reasons,
these are often called∆-eigenspaces ofA. It is such
eigenspaces that we shall seek to study, beginning
with the following important theorem.

Theorem (Herbrand-Ribet). If k is a positive even

integer with k < p, then p divides Bk if and only if

A(p−k) 6= 0.
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Herbrand proved that A(p−k) = 0 unless p | Bk

in 1932. Ken Ribet proved the converse in a 1976
paper [Ri]. The proof of Herbrand’s theorem re-
lies on a direct construction of an annihilator of the
class group in Z[∆] due to Stickelberger. Ribet’s
proof is more delicate, involving a congruence be-
tween modular forms that occurs when p | Bk and
its consequences for a Galois representation. We’ll
explain his method later.

There is also a coarser decomposition of A as
A+ ⊕ A−, where A± is the subgroup of elements
on which complex conjugation acts as ±1. Then
A± is the direct sum of the ∆-eigenspaces of A for
even/odd i. The Herbrand-Ribet theorem concerns
A−, but Kummer had already shown that A− = 0
implies A = 0.

The order of A+ is the highest power of p divid-
ing the class number h+ of the fixed field Q(ζp)

+ of
complex conjugation. In 1920, H. Vandiver redis-
covered and later popularized a conjecture of Kum-
mer’s that A+ = 0. Hart, Harvey, and Ong have
verified this conjecture for p < 231.

Vandiver’s conjecture can be rephrased as a
question about units. That is, the group of cyclo-
tomic units in Z[ζp] is generated by

1 + ζp + · · ·+ ζj−1
p for 1 < j < p.

The class number formula implies that the index of
this subgroup of the unit group Z[ζp]

× is h+. Van-
diver’s conjecture asserts that p does not divide this
index.

By a reflection principle of H.-W. Leopoldt, an

even eigenspace A(k) vanishes if A(p−k) = 0, while

A(k) = 0 implies thatA(p−k) is cyclic. The proof of
this uses class field theory and a general duality be-
tween Galois and field elements known as Kummer
theory.

Classical Iwasawa theory

Iwasawa theory concerns the growth of arithmetic
objects in towers of number fields. More precisely,
it concerns the growth of p-parts of class groups,
and more general objects called Selmer groups, in
towers of number fields of p-power degree. This
growth exhibits a certain regularity that in good cir-
cumstances can be partially described by a p-adic
variant of a complex-valued L-function.

The simplest sort of tower consists of a sequence
Fn of fields

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞ =

∞
⋃

n=0

Fn

with Fn/F cyclic of degree pn. The Galois group
Γ = Gal(F∞/F ) of the tower is the inverse limit of
the groups Γn = Gal(Fn/F ) ∼= Z/pnZ and as such
is isomorphic to the additive group of Zp. It is thus
a compact group under the p-adic topology. Ev-
ery number field F has a cyclotomic Zp-extension
defined as the unique Zp-extension of F inside the
union of the fields F (ζpn).

If F has more than one Zp-extension, it has
infinitely many. Yet, the Galois group of the com-
positum of all Zp-extensions still has finite Zp-rank
t ≥ r2(F ) + 1. Leopoldt conjectured this to be an
equality in 1962. This notoriously difficult conjec-
ture can be phrased as the equality of the Z-rank of
the unit group O×

F and the Zp-rank of the closure
of its image inside the direct sum of its local com-
pletions at primes over p. Leopoldt’s conjecture is
known for abelian extensions of Q and imaginary
quadratic fields by 1967 work of Armand Brumer.

Let’s fix a Zp-extension F∞ of F in our dis-
cussion. In 1959, Iwasawa proved a result on the
growth of the orders of the p-parts An of the class
groups of the fields Fn [Iw1].

Theorem (Iwasawa). There exist nonnegative inte-

gers λ and µ and an integer ν such that

|An| = pp
nµ+nλ+ν

for all sufficiently large n.

As a p-group, An is a module over Zp. Since
it also has a commuting Γn-action, An is a module
for the group ring Zp[Γn], which consists of finite
formal sums of elements of Γn with Zp-coefficients.

We can compare theAn via norm mapsAn+1 →
An for everyn ≥ 0, as well as via mapsAn → An+1

induced by the inclusion ofFn inFn+1. These maps
are compatible with the action of Zp[Γn+1] on both
sides, with the action on An arising through the
restriction map Γn+1 → Γn. The Iwasawa algebra

Λ = lim←−
n

Zp[Γn]

then acts on both the inverse limit lim←−n
An and the

direct limit A∞ = lim−→n
An. The Iwasawa algebra

is a completion of the usual group ring Zp[Γ], and
as such it is a compact topological ring. Modules
over Λ are also known as Iwasawa modules.

The Artin isomorphism identifies An with the
Galois group Gal(Ln/Fn) of the maximal unram-
ified abelian p-extension (i.e., of p-power degree)
Ln of Fn. These maps are compatible with norms
on class groups and restriction on Galois groups.

The inverse limit of Artin isomorphisms identi-
fies lim←−n

An with the Galois group

X∞ = Gal(L∞/F∞),
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where L∞ =
⋃

n Ln. As an inverse limit of finite
p-groups, X∞ is said to be pro-p, and L∞ is the
maximal unramified abelian pro-p extension of F∞.

The Γ-action on the inverse limit of the An is
identified via the Artin isomorphisms with the con-
jugation action ofΓ onX∞. For this, one lifts γ ∈ Γ
to γ̃ ∈ Gal(L∞/F ) and allows γ to act on σ ∈ X∞

by
γ : σ 7→ γ̃σγ̃−1.

This gives X∞ the structure of a Λ-module, and we
refer to X∞ as the unramified Iwasawa module. In
that each An is finite, X∞ is finitely generated and
torsion over Λ.

TheΛ-moduleX∞ is compact, whileA∞ is dis-
crete. To obtain a compact Λ-module from A∞, we
take its Pontryagin dual A∨

∞ = Hom(A∞,Qp/Zp),
which is again finitely generated and torsion. Its
structure is very closely related to that of X∞.

In good circumstances, such as when F∞ is the
cyclotomic Zp-extension of F = Q(ζp), we can re-
cover An from X∞ as the largest quotient of X∞

upon which Γpn acts trivially. Crucial to this is the
fact that Γ is a pro-p group. Because of this, Λ is a
local ring, and one can employ Nakayama’s lemma.
This stands in stark contrast to the case of finite Ga-
lois extensions of prime-to-p degree, for which one
has far less control over the growth of p-parts of class
groups. Nevertheless, Larry Washington showed in
1979 that the p-parts eventually stop growing in the
cyclotomic Zℓ-extension for ℓ 6= p of an abelian
extension of Q.

As observed by Jean-Pierre Serre, the Iwasawa
algebraΛ is isomorphic to a power series ringZpJT K
in a single variable T . For this, we fix a topological
generator γ of Γ, which is to say an element gener-
ating a dense subgroup, or equivalently, an element
that restricts to a generator of each Γn. There is
then a unique continuous isomorphism of compact
Zp-algebras that takes γ−1 to T . We shall use such
an isomorphism to identify Λ and ZpJT K.

The structure theory of finitely generated mod-
ules over Λ mimics the theory of finitely generated
modules over a PID if one treats Λ-modules as be-
ing defined up to finite submodules and quotient
modules. The idea is that Λ becomes a PID upon
localization at any principal prime ideal, and there
are no nonzero finite modules over the localization.

A homomorphism f : M → N of finitely gen-
erated Λ-modules is called a pseudo-isomorphism
if it has finite kernel and cokernel. The notion of
pseudo-isomorphism gives an equivalence relation
on any set of finitely generated, torsion Λ-modules.

Theorem (Iwasawa, Serre). For any finitely gen-

erated, torsion Λ-module M , there is a pseudo-

isomorphism

M →
r
⊕

i=1

Λ/(fki
i )⊕

s
⊕

j=1

Λ/(pmj ),

where r, s ≥ 0, each fi is a monic irreducible poly-

nomial in Zp[T ] satisfying fi ≡ T deg fi mod p, and

each ki and mj is a positive integer.

In the notation the theorem, we set

λ(M) =

r
∑

i=1

ki deg fi and µ(M) =

s
∑

j=1

mj .

We can also associate to M its characteristic ideal
char(M) in Λ. That is, given the above pseudo-
isomorphism, we define

char(M) =

(

pµ(M)
r
∏

i=1

fki
i

)

.

The polynomial
∏r

i=1 f
ki
i is the usual characteristic

polynomial of T acting on the finite-dimensional
Qp-vector space M ⊗Zp

Qp.
In the case of the unramified Iwasawa module

X∞, the quantities λ = λ(X∞) and µ = µ(X∞)
are those in Iwasawa’s growth formula. In fact, we
also have λ = λ(A∨

∞) and µ = µ(A∨
∞), with the

characteristic ideals of X∞ and A∨
∞ differing by the

change of variables T 7→ (1 + T )−1 − 1.
Iwasawa conjectured that µ = 0 if F∞ is the

cyclotomic Zp-extension of F . Bruce Ferrero and
Washington proved this when F/Q is abelian [FW].
In this case, Iwasawa also showed that the (−1)-
eigenspace X−

∞ for the action of complex conjuga-
tion has no finite Λ-submodule.

For F∞ the cyclotomic Zp-extension of F =
Q(µp), the Iwasawa module X∞ has an action of
∆ = Gal(F/Q) that commutes with its Λ-action,
so we can again break up X∞ as a direct sum
of ∆-eigenspaces. In the computations of Hart-
Harvey-Ong, not a single ∆-eigenspace of X∞ has

λ-invariant greater than 1. Such an eigenspace X
(i)
∞

is nonzero if and only if A(i) is nonzero, so these
computations imply that λ ≤ 9 for p < 231.

p-adic L-functions

For any positive integer n, the Riemann zeta func-
tion satisfies

ζ(1− n) = −Bn

n
.

The prime p divides the denominator of Bn in low-
est form if and only if p − 1 divides n by an 1840
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result of Klausen and Von-Staudt. Let’s assume
p− 1 does not divide n, since otherwise it’s known
that the relevant eigenspace A(1) = A(p−n) is 0.

Form ≡ n mod p−1, Kummer showed in 1851
that

ζ(1−m) ≡ ζ(1− n) mod p.

This explains why our criterion for regularity re-
quires only indices n < p. Even better, if m ≡
n mod pj−1(p− 1) for some j ≥ 1, then we have

(1−pm−1)ζ(1−m) ≡ (1−pn−1)ζ(1−n) mod pj .

Fixing an even integer k, these congruences im-
ply the existence of a continuousZp-valued function

Lp(ω
k, s) of a p-adic variable s ∈ Zp satisfying

Lp(ω
k, 1− n) = (1− pn−1)ζ(1− n)

for all n ≡ k mod p− 1. Here as before, ω denotes
the p-adic character ω : (Z/pZ)× → Z×

p .

The p-adic L-functions Lp(ω
;; ; ) were con-

structed by Kubota and Leopoldt. Their values at
other nonnegative integers are similarly given by
special values of Dirichlet L-functions of complex-
valued characters of ∆. The Riemann zeta function
is the Dirichlet L-function for the trivial character.

The Iwasawa main conjecture

The Iwasawa main conjecture describes the charac-

teristic ideal of X
(p−k)
∞ for an odd prime p and an

even integer k in terms of the Kubota-Leopoldt p-

adic L-function Lp(ω
k, s). As X

(1)
∞ is trivial since

A(1) = 0, let us suppose that k 6≡ 0 mod p− 1.

Iwasawa showed that Lp(ω
k, s) is determined

on s ∈ Zp by a unique power series fk ∈ Λ satisfy-
ing

fk((1 + p)s − 1) = Lp(ω
k, s).

Here, we’ve taken the variable T to correspond to
γ−1 for the topological generator γ of Γ that raises
all roots of unity of p-power order to the power 1+p,
and (1+p)s is the limit of the sequence of (1+p)sn

for sn ∈ Z satisfying sn ≡ s mod pnZp.

The following conjecture of Iwasawa’s, formu-
lated in the late 1960s, was given a proof by Barry
Mazur and Andrew Wiles in a 1984 paper [MW].

Theorem (Iwasawa main conjecture, Mazur-Wiles).
For any even integer k 6≡ 0 mod p− 1, we have

char(X(p−k)
∞ ) = (fk).

The main conjecture implies that the highest
power of p dividing Lp(ω

k, s) is also the order of

the largest quotient of X
(p−k)
∞ upon which T acts as

(1 + p)s − 1. Taking s = 0, the main conjecture

gives the order of A(p−k); it does not, however, tell
us the isomorphism class (though refinements do
exist).

The main conjecture can also be formulated in
terms of the p-ramified Iwasawa module X∞ =
Gal(M∞/F∞) for M∞ the union of the maximal
abelian p-extensions of the Fn ramified only at the
unique prime (1 − ζpn+1) over p. This version of
the main conjecture asserts that

char(X(k)
∞ ) = (gk),

where gk is given by the change of variables
gk(T ) = fk((1 + p)(1 + T )−1 − 1). The equiva-
lence follows from an Iwasawa-theoretic version of
Kummer duality.

In [Iw2], Iwasawa proved his main conjecture

assuming that A(k) = 0. In this case, the equality
of characteristic ideals becomes an isomorphism

X(p−k)
∞

∼= Λ/(fk).

It’s worth understanding how Iwasawa’s argument
goes, as through it one obtains a form of the main
conjecture free fromL-functions asserting an equal-
ity of characteristic ideals of Iwasawa modules com-
ing from unit and class groups.

Iwasawa studied the image of the cyclotomic
units inside the local units of the completion at the
prime over p, working up the tower of completions
at p of the fields Fn by considering sequences of el-
ements compatible under norm maps. The Iwasawa
module U∞ of norm compatible sequences of local
units contains submodules E∞ and C∞ generated by
the sequences of global units and cyclotomic units,
respectively.

Class field theory provides an exact sequence

0→ E∞/C∞ → U∞/C∞ → X∞ → X∞ → 0.

This in turn yields an exact sequence with each
module replaced by its ωk-eigenspace under ∆. If

X
(k)
∞ = 0, then the class number formula can be

used to see that E(k)∞ = C(k)∞ as well. The four-term
exact sequence therefore reduces to an isomorphism

U (k)
∞ /C(k)∞

∼= X(k)
∞ .

Iwasawa then obtains that X
(k)
∞
∼= Λ/(gk) from the

following unconditional theorem, which amounts to
a p-adic regulator computation on cyclotomic units.
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Theorem (Iwasawa). There is an isomorphism of

Λ-modules

U (k)
∞ /C(k)∞

∼= Λ/(gk).

As characteristic ideals are multiplicative in
exact sequences of finitely generated, torsion Λ-
modules, this also tells us unconditionally that the
main conjecture is equivalent to the equality

char(E(k)∞ /C(k)∞ ) = char(X(k)
∞ )

in which no L-functions appear.

Modular forms

One might say that the theme of the work of Ribet
and Mazur-Wiles is that the study of the geometry
of varieties over Q can be used to solve arithmetic
questions. Specifically, their work makes use of
modular curves and congruences between modu-
lar forms. The Galois representations attached to
modular forms are two-dimensional, presenting a
natural next class of objects to study beyond the one-
dimensional abelian characters of class field theory.
We embark upon another brief tour.

The group of matrices in GL2(R) with positive
determinant acts by Möbius transformations on the
upper half-plane H of complex numbers with posi-
tive imaginary part. A modular curve is a quotient
of H by the action of a subgroup of SL2(Z) that is
determined by congruences among its entries. This
quotient can be compactified by adding in the equiv-
alence classes of the cusps, which are the rational
numbers and infinity.

A modular form f is a holomorphic function
of H that transforms under a congruence subgroup
Γ (in the standard notation, but not to be confused
with the Galois group appearing in Iwasawa theory)
in a manner prescribed by its “weight” k, and which
is bounded and holomorphic at the cusps. Specifi-
cally, if

(

a b
c d

)

∈ Γ, then

f

(

az + b

cz + d

)

= (cz + d)kf(z).

A modular form is a cusp form if it is zero at all
cusps.

If ( 1 1
0 1 ) ∈ Γ, then f(z + 1) = f(z), so f has a

Fourier expansion about the cusp at∞ of the form

f =

∞
∑

n=0

an(f)q
n

with q = e2πiz for z ∈ H. If f is a cusp form, then
a0(f) = 0.

There are Hecke operators Tn for each n ≥ 1
that act on modular forms by summing over the ac-
tion of representatives of the double coset Γ ( 1 0

0 n ) Γ
as a union of right cosets. A modular form is an
eigenform if it is a simultaneous eigenform for all
Hecke operators. If an eigenform is normalized
so that a1(f) = 1, then Tn(f) = an(f)f for all
n ≥ 1. The Fourier coefficients an(f) of a nor-
malized eigenform f are algebraic numbers that are
integral for n ≥ 1, and the coefficient field they
generate is a number field.

Eisenstein series form a class of modular forms
that are not cusp forms. For instance, for a positive
even integer k ≥ 4, we have an Eisenstein series

Ek = −Bk

2k
+

∞
∑

n=1

∑

d|n

dk−1qn

which is an eigenform of weight k for Γ = SL2(Z)
itself. When an odd prime p divides ζ(1 − k) =
−Bk/k, the constant term of Ek is zero modulo p.
In this case, the reduction of Ek modulo p may be
lifted to a cuspidal eigenform with coefficients in
the ring of integers of a number field. For exam-
ple, E12 is congruent modulo 691ZJqK to the unique
normalized cusp form

q

∞
∏

n=1

(1− qn)24

of weight 12 for SL2(Z).

To a normalized cuspidal eigenform f of weight
k ≥ 2, work of Shimura and Deligne attached a p-
adic Galois representation ρf : GQ → GL2(Kf ),
with Kf the field obtained by adjoining to Qp the
Fourier coefficients of f . Equivalently, it is a two-
dimensional Kf -vector space Vf with a commuting
GQ-action. This representation ρf is irreducible, it
is odd (i.e., it has determinant −1 on complex con-
jugation), and it has the property that the trace of
ρf (ϕℓ) for a Frobenius element ϕℓ of an unramified
prime over a rational prime ℓ is equal to aℓ(f).

Inside Vf , there is a rank two module Lf for
the valuation ring Of of Kf that is preserved by
the GQ-action. Roughly, this says that ρf can
be viewed as taking values in GL2(Of ). So, it
makes sense to reduce ρf modulo the maximal ideal
of Of and talk about the resulting representation
ρ̄f : GQ → GL2(Fq) over the residue field Fq. This
residual representation is unique up to isomorphism
if and only if it is irreducible. Otherwise, its iso-
morphism class depends upon the choice of Lf .
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The method of Ribet-Mazur-Wiles

Ribet and Mazur-Wiles employed congruences be-
tween cusp forms and Eisenstein series to construct
unramified abelian extensions of cyclotomic fields.
As we’ve noted, if p | Bk for an even k < p, then
there exists a cuspidal eigenform f congruent to Ek

modulo the maximal ideal ofOf . The fixed field of
the kernel of the Galois representation ρf is rami-
fied only at the prime p. Ribet used this to construct
an unramified abelian p-extension of F = Q(ζp) on

which∆ acts through ωp−k. By class field theory, if

the extension is nontrivial, then A(p−k) is nonzero,
which is Ribet’s converse to Herbrand’s theorem.

The method works by playing two facts forced
by the congruence off of each other. The first is that
f is ordinary in the sense that ap(f) is a p-adic unit.
For ordinary forms, there exists a basis of Vf such
that ρf restricted to a decomposition group at p is
upper triangular as a map to GL2(Of ). If needed,
one can rescale so that the map φ : GQ → Fq to
the residue field Fq given by the reduction of the
lower-left hand corner of ρf modulo the maximal
ideal of Of is nonzero on the larger group GQ.

The second fact is that the residual Galois rep-
resentation ρ̄f is reducible. The above basis can
actually be chosen so that ρ̄f has the form

ρ̄f (σ) =

(

ωk−1(σ) 0
φ(σ) 1

)

on σ ∈ GQ, viewing ω as a character ofGQ. The re-

striction ofφ toGal(Q/F ) is then a homomorphism
that is unramified at the prime over p by construc-
tion, so it factors through the Galois group of a non-
trivial unramified abelian p-extension H of F that
is Galois over Q. The group ∆ acts on Gal(H/F )
compatibly with conjugation of matrices, which is
to say that it acts by ωp−k = (ωk−1)−1.

Mazur and Wiles generalized and refined Ri-
bet’s method in the context of Iwasawa theory in
order to prove the main conjecture and its gener-
alization to arbitrary abelian extensions of Q. By
studying the Galois actions on Jacobians of modular
curves, they construct an unramified abelian exten-
sion of the field F∞ of all p-power roots of unity

with Galois group a Λ-module quotient of X
(p−k)
∞

that has characteristic ideal (fk).

Having proven that (fk) | char(X(p−k)
∞ ), Mazur

and Wiles apply a consequence of analytic class
number formula to obtain the main conjecture. That
is, Iwasawa had shown in 1972 that

(p−3)/2
∑

j=1

λ(X(p−2j)
∞ ) =

(p−3)/2
∑

j=1

deg f2j .

From this, it follows that one divisibility for all odd
eigenspaces implies the other.

Later work of Wiles gave a more streamlined
perspective, casting the proof in terms of the theory
of families of ordinary modular forms of Haruzo
Hida. That is, Wiles employed the residual rep-
resentation of a Galois representation ρF : GQ →
GL2(If ) attached to a p-adically continuously vary-
ing family F of ordinary cuspidal eigenforms con-
gruent to a family of Eisenstein series, where If is
a finite local Λ-algebra.

The method of Euler systems

Work of Francisco Thaine and Victor Kolyvagin led
to a new and more explicit, though technically com-
plex, approach to the main conjecture, which Karl
Rubin completed to a full proof. The method uses
what Kolyvagin termed an Euler system, the first
example of which consists of cyclotomic units in
abelian extensions of Q. This system of elements
is used to bound the order of an even eigenspace
of the p-part of the class group by the order of an
eigenspace of the quotient of the global units by the
cyclotomic units.

The key property is a norm compatibility from
Q(ζNℓ) to Q(ζN ) for p dividing N and a prime ℓ.
Explicitly, if ℓ ∤ N , one has

NQ(ζNℓ)/Q(ζN )(1− ζNℓ) =
1− ζN

1− ζℓ
−1

N

.

With this relation, one applies a Galois-theoretic
derivative construction to elements 1−ζNℓ for good
choices of primes ℓ congruent to±1 modulo a suffi-
ciently high power of p to obtain field elements that
are powers of chosen non-principal ideals.

Up the cyclotomic tower, the method of Euler
systems shows that

char(X(k)
∞ ) | char(E(k)∞ /C(k)∞ )

for even k ∈ Z. This is equivalent to the opposite
divisibility to that of Mazur-Wiles, and again the
analytic class number formula yields equality.

Totally real and CM fields

The Iwasawa main conjecture generalizes directly
from Q to totally real fields, those number fields
with only real archimedean embeddings. The rele-
vant p-adicL-functions were separately constructed
by P. Deligne and Ribet, P. Cassou-Noguès, and
D. Barsky. Wiles proved a main conjecture for
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odd eigenspaces of the unramified Iwasawa mod-
ule X∞ over the cyclotomic Zp-extension F∞ of
an abelian extension F of a totally real field using
Galois representations attached to Hilbert modular
forms [Wi]. Ralph Greenberg has conjectured that
the even eigenspaces of X∞ are finite.

The existence of an Euler system in abelian ex-
tensions of totally real fields was conjectured by
Harold Stark and Rubin, but it still unproven. This
is related to Hilbert’s 12th problem, or Kronecker’s
Jugendtraum, of an explicit class field theory over
totally real fields. In contrast, abelian extensions
of imaginary quadratic fields contain analogues of
cyclotomic units called elliptic units that do form
an Euler system. In this case, there is an explicit
form of class field theory arising from the theory
of complex multiplication (CM) of elliptic curves
that we’ll discuss. Elliptic units are generated by
values at torsion points of a theta function that is a
meromorphic function on a CM elliptic curve.

In 1977, John Coates and Wiles proved an ana-
logue of Iwasawa’s theorem on local units modulo
cyclotomic units for an imaginary quadratic field K
with hK = 1 [CW]. Choosing a split prime p with
pOK = pp̄, their theorem states that the quotient of
the local units at p modulo elliptic units up a Zp-
extension of K ramified only at p is isomorphic to
the quotient of the one-variable Iwasawa algebra by
a power series corresponding to a p-adic L-function
constructed by Nick Katz.

The compositum of Zp-extensions of an imagi-

nary quadratic fieldK has Galois groupZ2
p. Its Iwa-

sawa algebra is a power series ring in two variables
over Zp. The unramified Iwasawa module X∞ over

the correspondingZ2
p-extension of an abelian exten-

sion of K is conjecturally small enough to have unit
characteristic ideal. The main conjecture here com-
paresX∞ and the quotient of global units by elliptic
units. It was proven by Rubin using the method of
Euler systems in 1991 [Ru]. If p splits in K, one
can instead replace X∞ with a larger Iwasawa mod-
ule that allows ramification at exactly one of the
two primes over p. This gives an equivalent form
involving a two-variable Katz p-adic L-function.

In 1994, Hida and Jacques Tilouine gave an al-
ternate proof of the specialization of this conjec-
ture to an anticyclotomic Zp-extension using an ap-
proach closer to that of Mazur-Wiles. Their work
extends to analogues of imaginary quadratic fields
over totally real fields known as CM fields for which
one once again has no known Euler system to em-
ploy. More recently, progress has been made on a
divisibility in a general main conjecture over CM
fields, in particular by Ming-Lun Hsieh.

Elliptic curves and BSD

Elliptic curves over number fields provide a next
step beyond the theory of multiplicative groups that
we’ve been in effect describing. In this setting,
the arithmetic objects that replace class groups are
known as Selmer groups. We run quickly through
the arithmetic theory of elliptic curves, from the ba-
sic theory to deep results and a famous conjecture,
before we begin passing up towers.

A complex elliptic curve E is defined by an
equation

y2 = x3 + ax+ b

with a, b ∈ C and 4a3+27b2 6= 0 to ensure smooth-
ness. More precisely, it is the projective curve of
genus one defined by the homogenization of the
above polynomial. Effectively, this means adding a
single point∞ at infinity.

The set E(C) of points of E with complex co-
ordinates has an abelian group law with ∞ as its
identity. It is given by drawing a line between two
points P and Q and declaring the third point of the
line in E(C) to be−P −Q, taking multiplicity into
account. We’ll assume that a, b ∈ Q, which is to say
that E is rational. The Mordell-Weil group E(F ) of
points with coordinates in a number field F is then
a finitely generated subgroup of E(C).

The group E(Q) has a canonical action of
GQ via the action on coordinates. A point of
E(C) ∼= (R/Z)2 is said to ben-torsion if it has order
dividing n. The group E[n] of all n-torsion points

is a subgroup of E(Q) isomorphic to (Z/nZ)2.
A rational elliptic curve E has a ringO of endo-

morphisms consisting of nonzero Q-rational maps
E → E taking ∞ to itself. Among these are the
morphisms given by multiplication by integers us-
ing the group law of E. If O 6= Z, then O is a
finite index subring of the integer ring of an imagi-
nary quadratic field. In this case, we say that E has
complex multiplication, or CM, by O.

The cohomology of a group G with coefficients
in a module M for its group ring is a sequence of
abelian groups H i(G,M) that allows one to study
the group action using the tools of homological al-
gebra. For Galois groups, the closely related theory
of Galois cohomology is a crucial tool in Iwasawa
theory. Many theorems of class field theory can
be phrased in terms of duality in Galois cohomol-
ogy, and abelian groups of arithmetic interest can
be encoded in cohomology.

For a number field F , the group E(F )/nE(F )
is contained in H1(Gal(Q/F ), E[n]). In fact, it
is contained in a smaller subgroup of cohomology
classes that are unramified at all but finitely many
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primes and partially vanish locally at the remaining
primes. The direct limit overn of these subgroups of
H1(Gal(Q/F ), E[n]) is the Selmer group SelE(F )
we wish to study.

The most important thing to know about the
Selmer group is that it intertwines the Mordell-Weil
group with a mysterious, conjecturally finite group
called the Shafarevich-Tate group XE(F ) of E.
That is, there is an exact sequence:

0→ E(F )⊗Q/Z→ SelE(F )→XE(F )→ 0.

This is analogous to what happens with cohomol-
ogy with coefficients in roots of unity: in that case,
the unit and class groups get wrapped up together.

The intertwining of E(Q) and XE(Q) is also
reflected in analytic formulas. One can construct an
L-series for E from the data of the number of Fp-
points of mod p reductions of a minimal equation
for E. It has analytic continuation to C by the mod-
ularity of rational elliptic curves proven by Wiles,
Taylor-Wiles, and Breuil-Conrad-Diamond-Taylor,
which tells one that E has an associated cuspidal
eigenform with the same L-series.

The Birch and Swinnerton-Dyer conjecture, or
BSD, was formulated in 1965 and is one of the Clay
Math Institute’s Millennium Problems.

Conjecture (Birch and Swinnerton-Dyer). The or-

der of vanishing of the L-function L(E, s) at s = 1
is equal to the rank of E(Q).

The BSD conjecture has a refined form that links
the leading term of L(E, s) in its Taylor expansion
about s = 1 to the orders of the torsion subgroup
E(Q)tor of Mordell-Weil and of XE(Q). The con-
jectural BSD formula has the form

L(r)(E, 1)

r!
=
|XE(Q)|ΩERE

∏

ℓ cℓ
|E(Q)tor|2

, (1)

where r is the order of vanishing, RE is a regulator
related to the heights of rational points, the quantity
ΩE is a real period, and each cℓ for a prime ℓ is the
number of components of a certain mod ℓ reduction
of E, all but finitely many being 1.

Much of the progress on BSD to date employs
Iwasawa theory. For instance, the first major result
that serves as theoretical evidence for BSD was due
to Coates-Wiles. As a consequence of their theorem
on local units modulo elliptic units, they proved that
if r = 0 and E has CM by a subring of OK for K
with hK = 1, then E(Q) is finite.

Iwasawa theory of elliptic curves

We turn to the question of how Selmer groups of
a rational elliptic curve E grow in the cyclotomic
Zp-extension Q∞ of Q. This amounts to studying
the finitely generated Λ-module

XE = Hom(SelE(Q∞),Qp/Zp)

that is the Pontryagin dual of the direct limit
SelE(Q∞)[p∞] of p-power torsion subgroups of the
Selmer groups SelE(Qn).

The elliptic curve E has good reduction at p
if its mod p reduction Ep is nonsingular, and it is
then ordinary if Ep has a point of order p. For such
elliptic curves, Mazur and Swinnerton-Dyer con-
structed a p-adic L-function Lp(E, s) interpolating
values of L(E, s) up to certain Euler factors, and
again it is determined by a power series LE . Mazur
then formulated the following main conjecture.

Conjecture (Main conjecture for elliptic curves).
Suppose that E has good ordinary reduction

at p and that E(Q)[p] is an irreducible GQ-

representation. Then XE is Λ-torsion and

char(XE) = (LE).

For elliptic curves with complex multiplication,
this is equivalent to the main conjecture for imag-
inary quadratic fields and split primes p proven by
Rubin. The general divisibility char(XE) | (LE)
was proven by Kazuya Kato via the method of Euler
systems [Ka]. Kato’s Euler system is constructed
using cohomological products formed from pairs of
Siegel units on a modular curve parameterizing E,
first studied by A. Beilinson. The other divisibility
was proven under fairly mild hypotheses by Chris
Skinner and Eric Urban using Galois representa-
tions attached to automorphic forms on the unitary
group GU(2, 2) [SU]. With no analytic class num-
ber formula that can be used in this setting, one
needs both methods.

We mention a bit of what’s known for elliptic
curves with good supersingular (i.e., non-ordinary)
reduction. For p ≥ 5, there are in this case not
one but two Selmer groups constructed by Shinichi
Kobayashi, and two p-adic L-functions constructed
by Rob Pollack. The corresponding main conjec-
ture was proven by Rubin and Pollack for CM curves
in 2004. In this case, p does not split in K, and
the main conjecture is closely related to Rubin’s
main conjecture without L-functions for imaginary
quadratic fields. The main conjecture for non-CM
curves has recently been proven by Xin Wan under a
hypothesis on the congruence subgroup. F. Sprung
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has additionally treated the prime 3, in particular
employing work of B.D. Kim and A. Lei in the for-
mulation.

The main conjecture for elliptic curves implies a
p-adic analogue of BSD of Mazur-Tate-Teitelbaum
that relates the rank of E(Q) to the order of vanish-
ing ofLp(E, s) at 1. AsL(E, s) is complex analytic
and Lp(E, s) is p-adic analytic, the derivatives are
not clearly related, and neither form of BSD obvi-
ously implies the other in the case of positive rank.

The order r of vanishing of L(E, s) at s = 1
is known as the analytic rank of E, and the actual
rank of E(Q) is known as the algebraic rank. Koly-
vagin used an Euler system of Heegner points and a
theorem of B. Gross and D. Zagier to prove that if
the analytic rank of E is r ≤ 1, then the algebraic
rank is r and XE(Q) is finite. Both the converse
to this and the BSD formula follow from the main
conjecture for r = 0. Recent work of Skinner and of
Wei Zhang implies a converse for r = 1 under mild
hypotheses, and for r = 1 significant progress has
been made towards the BSD formula as well, par-
ticularly in work of D. Jetchev, Skinner, and Wan.

Recent directions

Iwasawa theory extends to study the growth of other
arithmetic objects attached to Galois representa-
tions in towers of number fields. Beginning in the
late 1980s, Greenberg proposed main conjectures
for a whole host of ordinary motivic Galois repre-
sentations, and even continuously p-adically vary-
ing families thereof. Since then, main conjectures
have been extended to more general towers, to non-
ordinary families, to finer-grained analogues, and
even to characteristic p base fields. Recent develop-
ments have seen considerable progress on methods
of proof of both divisibilities. Here’s a sampling.

The early part of the new millennium saw the de-
velopment of Iwasawa theory over towers of number
fields with Galois groups that are isomorphic to sub-
groups of GLn(Zp) for some n. The breakthrough
came in a paper of Coates, Fukaya, Kato, Sujatha,
and Venjakob containing a noncommutative main
conjecture for elliptic curves. Invariants playing the
roles of characteristic ideals and p-adic L-functions
lie in a first K-group of a localization of the non-
commutative Iwasawa algebra. Soon after, Fukaya
and Kato formulated a remarkably general noncom-
mutative main conjecture that relates closely to the
equivariant Tamagawa number conjecture of Burns
and Flach which in turn generalized a conjecture of
Bloch and Kato on special values of L-functions.

At the start of this decade, a noncommutative

main conjecture for totally real fields was proven
through work of Ritter and Weiss, Burns, and
Kakde, assuming Iwasawa’s conjecture on the van-
ishing of the µ-invariant. The key step is the verifi-
cation of congruences among Deligne-Ribet p-adic
L-functions over different totally real fields to re-
duce to the main conjecture proven by Wiles.

The work of Skinner-Urban has inspired a rush
of new theorems on divisibilities in main con-
jectures, with recent progress on the construction
of Galois representations attached to automorphic
forms in the sense of the Langlands program pro-
viding a boon for the area. The construction of
p-adic L-functions that interpolate special values of
complex L-functions is a whole industry unto itself
and often proceeds via distributions formed out of
modular symbols or computations of local integrals.

Euler systems have long had a reputation as dif-
ficult to construct that has only recently begun to
soften. An approach to construct them via geomet-
ric methods starting from cycles on varieties was
initiated in work of Bertolini, Darmon, Prasanna,
and Rotger and carried further in work of Loef-
fler, Zerbes, Lei, Kings, and Skinner. One typically
computes complex and p-adic regulators to prove
nonvanishing of Euler systems and relate them with
(p-adic) L-functions.

Beyond Mazur-Wiles

I end with a brief discussion of a deeper relation-
ship between the geometry of modular curves and
the arithmetic of cyclotomic fields. In a 2011 paper,
I formulated a conjecture relating relative homology
classes {α→ β} of paths between cusps on a mod-
ular curve, taken here to beX1(p), and cup products
x ∪ y of cyclotomic units in a Galois cohomology
group that agrees with A− modulo p. In fact, there
is a simple explicit map

{

a

c
→ b

d

}

7→ (1− ζcp) ∪ (1− ζdp )

taking one set of elements to the other (for ad−bc =
1 and p ∤ cd). On a certain Eisenstein quotient of the
plus part of homology, I conjectured this to provide
an inverse to a canonical version of the map that
appeared in the proof of Ribet’s theorem.

Up the cyclotomic tower, this yields what can
be viewed as a refinement of the Iwasawa main con-
jecture. That is, it provides not only an equality
of characteristic ideals, but an isomorphism given
by a recipe on special elements. Fukaya and Kato
proved a major result in this direction in which the
derivative of the p-adic L-function plays a crucial
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and potentially unavoidable intermediate role. Their
result implies the conjecture for p < 231.

Fukaya, Kato, and I expect this to be a spe-
cial case of a general phenomenon of the geometry
and topology of locally symmetric spaces of higher
dimension informing the arithmetic of Galois repre-
sentations attached to lower-dimensional automor-
phic forms. This begs the question of its elliptic
curve analogue, which is but one of a wealth of
intriguing possibilities for future directions in Iwa-
sawa theory.
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