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Abstract—A primitive relay channel (PRC) has one source
(S) communicating a message to one destination (D) with the
help of a relay (R). The link between R and D is considered
to be noiseless, of finite capacity, and parallel to the link
between S and (R,D). Prior work has established, for any fixed
number of channel uses, the minimal R-D link rate needed so
that the overall S-D message rate equals the zero-error single-
input multiple output outer bound (Problem 1). The zero-error
relaying scheme was expressed as a coloring of a carefully defined
“relaying compression graph”. It is shown here that this relaying
compression graph for n channel uses is not obtained as a strong
product from its n = 1 instance. Here we define a new graph, the
“primitive relaying graph” and a new “special strong product”
such that the n-channel use primitive relaying graph corresponds
to the n-fold special strong product of the n = 1 graph. We show
how the solution to Problem 1 can be obtained from this new
primitive relaying graph directly. Further study of this primitive
relaying graph has the potential to highlight the structure of
optimal codes for zero-error relaying.

I. INTRODUCTION AND CONTRIBUTION

A primitive relay channel (X,p(y,yr|z),Y X Vg, k)
(PRC), shown in Fig. 1, consists of a family of conditional
probability mass functions p(y,yg|z) relating inputs z € X
to outputs y € YV and yr € Vg at the destination and relay
respectively, and an out-of-band link between the relay and
destination able to support up to k € R bits/channel use.

Quantities of interest may then be the maximal number of
codewords (the message rate) that can be reliably commu-
nicated for a given R-D link rate k£ (the relay rate), or the
minimal relay rate needed to transmit at a desired message rate
(provided the desired message rate is feasible at all). When the
R-D link rate k is large enough, the relay can forward its entire
observation to the destination terminal. Thus, the primitive re-
lay channel effectively turns into a point-to-point channel with
a single input and two outputs, say (X, p(y,yr|z),Y X Vr),
for which we have finite n (or n-shot, where n is the number
of channel uses) and asymptotic expressions (though they
cannot currently be calculated / evaluated) for the zero-error
capacity. This capacity is an upper bound to the message rate
achievable for any finite relay rate. The question (Problem 1)
posed and solved in [1] is, for fixed number of channel uses
n, the minimal relay rate needed to ensure that the overall
message rate achieves the capacity of the single-input multiple
output (SIMO) channel (X, p(y,yr|z),Y X Vr). The small-
error version of this question was considered in [2], [3], with
much interesting recent progress in [4], [5].

Contributions. The zero-error relaying scheme solving
Problem 1 was expressed in [1] as a coloring of a carefully
defined “relaying compression graph”. It is shown here that
this relaying compression graph for n channel uses cannot
be obtained by a strong product from its n = 1 instance.
In seeking to understand the structure of zero-error relaying,
one question is whether a graph characterizing this form of
zero-error relaying admits any strong product form at all.
We answer this in the positive by defining a new graph, the
“primitive relaying graph” (PRG) and a new “special strong
product” such that the n-channel use PRG corresponds to the
n-fold special strong product of the n = 1 PRG. We show
how the solution to Problem 1 expressed as in [1] can be
obtained from this new primitive relaying graph. For binary
[|X]] = 1|1Y|| = ||Yr|| we solve Problem 1 exactly. We provide
several examples of how to use the newly proposed PRG and
the special strong product. A full version of this paper (with
proofs in the Appendix) is available at [6].

Fig. 1. An n-shot protocol (n, X, h, g) for zero-error communication over
a PRC: codebook X, relaying function h, decoding function g.

II. PROBLEM DEFINITION

An n-shot protocol for m > 1 channel uses de-
noted by (n,X,h,g) for communication over the PRC
(X, p(y,yr|x),Y X Vg, k), shown in Fig. 1 comprises a code-
book X C X", a relaying function h : Y3 — Wk, and a
decoding function g : V" x Wi — X.

When a conditional joint pmf p(y,yr|z) with support X
and output ) x Vg is restricted to input K, we denote its
induced conditional pmf, support, and output by pic(y, yr|z),
K and yJ K X Yr|x respectively.

Let R = Llog||X|| be the message rate, and
Llog [|Wk]|| be the relay rate. Then, a rate pair (R, r{M)
is said to be achievable if first, zero error communication is
attainable, i.e. Pr(g(Y", Wg) # X | X sent] =0 for all X €
X, and second, there exists an n-shot protocol (n, X, h,g)
such that the relaying function uses less than k bits per channel
use on average, i.e. r{ = Liog [|Wr|| < k. For n channel
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uses, we set Cg")(k) to be the maximum Rg"), such that there
exists an achievable (RS”, rin)) pair (i.e. for which P < k).
The zero-error capacity of the relay channel at R-D link rate
k, defined as C.(k), is the supremum over n of Cg")(k:).

Some notation. We call one usage of the channel “one-
shot”, and this is governed by p(y,yr|z). If we use the
channel twice, we use the notation p(y1y2, YR, Yr,|T122) =
p(Y1, YR, |21) - P(Y2, YR, |22) to denote two channel uses.

A graph G(V, E) consists of a set V' of vertices (sometimes
denoted as V(G)) or nodes together with a set FE of edges
(sometimes denoted as F/(G)), which are two-element subsets
of V. Two nodes connected by an edge are called adjacent.
We will usually drop the V, E indices in G(V, E). Let =
denote the isomorphism relation between two graphs. The
adjacency matrix A of a graph G is a matrix with rows
and columns labeled by graph vertices, with a 1 or 0 in
position (v;, v;) indicating whether v; and v; are adjacent or
not. Our convention is to put 0’s on the diagonal (nodes are
not adjacent to themselves). The strong product G X H of
two graphs GG and H is defined as the graph with vertex set
V(GR H) = V(G) x V(H), in which two distinct vertices
(g,h) and (¢', h') are adjacent iff g is adjacent or equal to ¢’
in G and h is adjacent or equal to i/ in H. G®" denotes the
strong product of n copies of G.

A. Problem 1: Minimal R-D link rate r;(n) needed to achieve
the SIMO bound for a fixed n:

For fixed number of channel uses n, by giving the destina-
tion the relay output y7, one obtains the single-input multiple
output outer bound SIMO(n) on C{™ (k):

SIMO(n) := log {/a([Gx |y v,x])®"),

where the confusability graph G x|y y;, has vertices the input
alphabet X and an edge between x # z’ if there exists a
(y,yr) € ¥ x Vg such that p(y,yr|z) - p(y,yrlz’) > 0.
Clearly, if k£ > log||Yr|| this bound is achievable by simply
having the relay forward the received Y7 sequence perfectly
over the out-of-band link. An interesting question is how small
this link rate k£ may be so as to hit this SIMO(n) upper bound,
i.e. to find 3™ defined as:

Definition 1 (The n-shot minimum R-D link rate 7“:(") to
achieve the n-shot SIMO bound).

i = min{r, : O (r,) = SIMO(n)}. (1)

This was solved for fixed n in [1], where r:(") is exactly

characterized as an n-letter extension of the one-shot “color-
and-forward” scheme, outlined next.

Problem 1 can be re-stated and solved as follows. For the
PRC (X, p(y,yr|z), Y X Vr,log||Yr||) (where the R-D link
rate is initially set to log ||Vg|| for notational convenience),
let K be a maximal independent set of the confusability graph
Gx|v,vy- Note that K need not be unique.

Question. Find the minimum cardinality relaying function
h : Yrlk — Whr (and its cardinality) such that (Y, h(YR))
can distinguish X without error, namely, for each (y, h(yr))

with positive probability, there exists at most one z € K
for which p(y, h(yR)\x; > 0. This is a reformulation of the
problem of finding i for the PRC (K, pc(y, yr|z), Y| X
Yrli,log||Yr||). To answer this, we construct a new graph,
the relaying compression graph Gg) i, for which a coloring
provides the optimal relaying scheme. Gg)| K has:

o Vertices: Yr|x
o Edges: vertices yg # yy both in Yg|x share an edge
when 3r € K and 32’ € K, ©z # 2’ such that
p(y, yr|z) > 0 and p(y, yr|z’) > 0 for some y € V|x.
Answer: Coloring of the relaying compression graph
Gg%l‘))c. Color the graph at its chromatic number and let h(yg)
be one of the corresponding minimal colorings. We term this
processing and forwarding at the relay as “color-and-forward”
relaying. It is easy to see how Gg)| x may be extended to n
channel uses to obtain Gg‘) licn)- Then, [1] showed:

Theorem 1. (Chen, Devroye [1]) For the PRC,

1 n
- log X(ng)bc(n)%

2

where X(G%L)|,C(n>) is the chromatic number of graph

T*(n) _

o min

K): () is a max. ind. set of G;E;TY.YR

Gg)bc(n), constructed via the algorithm described in the
Answer above with restricted input / codebook K™.

III. PRIMITIVE RELAYING GRAPH

The main contribution is the introduction of the primitive
relaying graph-like structure (PRG), and a new “special strong
product” (SSP) that allows the graph Gg) needed to describe
the optimal relaying scheme (optimal in the sense of Problem
1) to be computed recursively. We note that what we define in
the following is strictly speaking not a graph (hence the usage
of graph-like structure) , since we will introduce different types
of edges between vertices, but we have been unable to find a
better terminology. We will use graph in the following rather
than graph-like structure for brevity.

In [1], given an independent set C of confusability graph
Gx|y,y the relay compression graph Gg)\ x places an edge
between vertices yr # y both in Yz|x when 3z € K and
Jz’ € K, x # 2’ such that p(y, yr|z) > 0 and p(y, yz|z’) > 0
for some y € Y. For (n = 2) an edge between vertices
YR, YR, 7 Yp,Yp, both in YIE%TI)C(2> in Gg)bc(z) exists when
3129 € K@ and 32y, € K@), 2125 # o2y such that both
P(Y1Y2, YR, YR, [T172) > 0, and p(y192, Y, Vg, |71 25) > 0 for
some Y1y € yQ\,C@). The question is whether Gg) can be
obtained from a strong product of Gg) with itself. Example
3 shows that this is not possible even when the confusability
graph is edge free, the main reason being that the regular
strong product of the compression graph ignores the delicate
interaction between the Yg’s and the channel inputs (it is the
inputs we want to distinguish at the destination, not the Yy’s).

A. Graph Definition

From the PRC (X,p(y,yr|z),Y X Vg, k), we introduce
the Primitive Relaying Graph (PRG) - like structure denoted
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by Gx y,|y- The vertices of Gx y,y consist of a set V C
X x Ygr of pairs v = (z,yr) corresponding to a given
input x € X and a relay channel output yp € Vg, so that
p(y,yr|z) > 0 for some y € Y. Let V, and V,, denote
the sets of all the z-coordinates, and yr coordinates of V,
respectively. The edge set E consists of pairs of vertices
e = (v,v") £ (z,yr)(z',yR) connected by an edge in the
PRG, and is given by £ = E; U Eq U E,, where E, Ey, E,
are mutually disjoint sets defined as:

1) Solid edge set E, 2 {(x, yr)(«', y) : @ # @', yn # v
and 3y : p(ylz,yr) - p(y|z’,yR) > 0}. A solid edge
occurs whenever two different channel inputs z, 2’ pro-
duce different relay outputs yg,y} for some y. These
yr’s cannot be compressed.

Dotted edge set Eq = {(z,yr)(z,yR) : Yyr # Uk

and 3y : p(y|z, yr)-p(y|x, y) > 0}. This type of edge
arises when for a single channel input z and channel
output y, there are two different yr and y’, relay outputs.
These yr’s in theory be compressed / assigned the same
color for a single channel use, but must be distinguished
because when looking at multiple channel uses, when
combined with a confusable or solid edge, may lead to
a solid edge in which the yr’s must be distinguished.
Confusable edge set E, = {(z,yr)(z',yr) : © # o'
and Jy : p(y|lz,yr) - p(y|z’,yr) > 0}. A confusable
edge corresponds to the case of two different channel
inputs x,z’ that produce the same relay output ygr
for the same channel output y. These x’s cannot be
distinguished even when y and yr are both available.
These edges will yield the confusability graph G x|y,y;-

2)

3)

Our notation for the graph G'x y,|y is reminiscent of the
confusability graph notation in point-to-point channels, G'x |y,
where an edge between two vertices x # ' in X exists if there
exists a y : p(y|z)p(y|z’) > 0 (i.e. two inputs are confusable).
In the above, we have similar notions for confusable (z,ygr)
pairs, but since the destination, who has access to y, cares
only about recovering x and not necessarily yr (or only to
the extent that it may help in recovering z), different types of
edges are relevant. To the best of our knowledge, this type of
graph has not been considered.

B. Special Strong Product

Due to presence of several types of edges in the PRG we
introduce a new graph product, which we term the “special
strong product” (SSP) and denoted by &, for two PRG G and
H (G ® H), as (following graph products definitions [7]):

o V(G ® H) is the Cartesian product of V(G) and V (H).

o For any PRG G, there is an incidence function, dg :

V(G) x V(G) — {A, s,d,c,0} defined as:

A if (z1,yR,) = (T2, Yr,)
s if (x1,yr, ) (2, YR,) € Es

6c((z1,yR, ), (22, yR,))=S d if (x1,Yr,)(22,yR,) € Eq -
c if (x1,yr,)(T2,YR,) € Ee
0  Otherwise

The incidence function between two vertices indicates
what type of edge exists between them (if any).
o The SSP multiplication table for the F operation is:

A s d ¢ 0

A s d 0
S s s s s O
d|d s d s 0
c|lc s s ¢ O
0j]0 O O 0 O

Notice that A behaves like a multiplicative identity.

o If ($17yR1)a (wQasz) € V<G)’ (37379;%1)’ (wé’y}%’,z) €
V(H), then the incidence function for G ® H is

6GH((x1x27yR1sz)7 (xll‘rl%y;%ly}?g))
= 5g((l'1, yR1)7 ($2, yR2)) 5H((£L'/1, y/R1)7 (“L./Qv yg{z))

and indicates the type of edge of G ® H: 0 means no
edge, s solid, d dotted and ¢ confusable edge.

All finite graphs can be represented by their adjacency matrix.
Usually, this matrix consists of binary elements. However,
given the distinct types of edges defined for the PRG, the
adjacency matrix of a PRG must also carry this information.
We do this by allowing elements of the form 0, s, d, or ¢, to
indicate no, solid, dotted, or confusable edges, respectively.
Moreover, the elements on the diagonal are all zeros by
convention, and given that this is an undirected graph, the
adjacency matrix is symmetric. An example of an adjacency
matrix of a PRG can be seen in Equation (5). We denote the
adjacency matrix of Gx» YRy by Agyn ypyn

Properties of SSP. The SSP is commutatlve associative,
distributive over a disjoint union, and that K is a unit for
the SSP if |[V(K)| = 1. In addition, the SSP reduces to the
regular strong product when all edges are of the “s” type (in
E,), ie. if E4(G) = E.(G) = E4(H) = E.(H) = 0, then
GEH=GXH.

C. PRC related subgraphs and operations

We show how GX7L|yn7y£ and Gg) from [1] may be ob-
tained from the PRG and its SSP. Given PRG Gy v,y (V, E),
consider subgraph H. defined as V(H.) = V(Gx v,y ), and
E(H.) = Ec(Gx yzy) € E(Gx,yz|y)- Then one can show
the following, which can be extended to any n.

Lemma 2. Graph H,. is p,-homomorphic to G X[V, Yir Pa
V(Gx,ygy) =+ Vz is the projection p,(x,yr) = x.

For an independent set KC C V(G x|y,y, ). let Hs|xc denote
the subgraph with V(Hs|x) = {(z,yr) € V : z € K}, and
E(Hs|x) = {(z,yr) (@', yR) € Es - x € K}

Lemma 3. Given independent set IC for confusability graph
Gx|y,yn graph Hg|x is py,-homomorphic to the relaying
compression graph Gpgx, where py, : V. — V. is the
projection py, (z,Yr) = Yr.

Lemma 4. Given PRG Gx y,|y, for any n > 2

En
CTVX JYR|YD

3)

GX7L7Y§1IY!L
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En
where GX7YR‘Y

PRG Gx y,|y and mimics the notation G®" for the conven-
tional n-fold strong product of G. For adjacency matrices:

denotes the n-fold special strong product of

(n) _ (1) (n—1)
AR = (AGX,YR‘Y + A]I) ® (AGX,YR|Y + AH) — AL
“)
where A(él) denotes the adjacency matrix of the n-fold SSP of
G. The above shows that AGxn,ng\yn = A(C?i,ymy'

In the Kronecker product in (4), multiplication follows the
SSP multiplication table. We also note that if Ar and Ag are
the adjacency matrices of graphs I' and @ then the adjacency
matrix of the (regular) strong product may be obtained from
these as (Ar +1)® (Ag 4+ 1) — L. Our special strong product is
of a similar form, with the identity matrix part changed to Al
(for A defined in the incidence function) and multiplication
replaced by the SSP multiplication table.

Example 1. Given the conditional probability mass function
p(y|x, yr) shown in Fig. 2 we obtain the PRG G x y,,|y using
the definition in Section IlI-A. This example then shows how
this PRG can be used to obtain Gx|yy, (Lemma 2) and
Gyy|x, (Lemma 3), needed to solve Problem I as in [1] and
Theorem 1. Here, there are two independent sets of G'x|y,yy:
K1 ={1,3} and Ky = {2,3}. From these, Lemma 3 and the
PRG allow one to obtain the two compression graphs GYR‘IC,L’
fori=1,2, as in Fig. 2.

(2,3) (1,1) (2,2) 3
" ] —
| ] ¢
p c Lemma 2 .
RN | ———— >
i te . . 3
3.1) (1.2) (3.3) (1) (1,2) (33) ]
Graph H, Graph Guy.yy+
o G '
A N Relaying compression graph Gryc, ...
H Lemma 3 .
Section 11l A “A 23) (L1 (22)
i 1 . . . s
sk | R L] R, \/

" 1 * % 0 0 = 0 00 = 1 p " I 3
¥ 2 0+ 0 00 * * 00 3 G @2 (33)

X=1 X-2 X=-3 Graph H,|K; sraph G,
Conditional probability mass func-
tion: p(y|z, yr), where s(p(ylz, yr)) = ey 4 (2 :
* when p(y|z, yr) > 0 and 0 else. . . 1 20
@1) 2 (3.3) 8
Graph H,|Ks Graph Gy,

Fig. 2. Construction of the PRG G'x y, |y from a probability mass function
p(y, yr|z) for a primitive relay channel, and how to obtain graphs H. and
Gx|v,yy (Lemma 4) and graphs Hs|xc, and associated G|, -

Example 2. This example shows how to use Lemma 4 to
obtain the PRG iteratively for any n. Consider the channel
transition probability matrix presented in Table I. The adja-
cency matrix for the PRG Gx y,|y is (5).

TABLE 1
CONDITIONAL PROBABILITY MASS FUNCTION: p(y|z, yr), WHERE
s(p(y|z,yr)) = * WHEN p(y|x,yr) > 0 AND O ELSE.

sy, yrlr)) | 2YR3 4 |1 2YR3 4
1 ¥« 0 % 0 0« 0 =
y 2 0000 | 0 0 x
3 * 0 % 0 00 0 0
X=1 X=2
(LY (1,3 (2,2) (2,9
0 d S S (171)
4D _| d 0 s s | (1,3) (5)
Gx,vp|y s s 0 d (2,2)
s s d 0 (2,4)

Then, A(é?( vy Can be computed for any n, according to
YR

Lemma 4, and in particular Equation (4). We use the short

A + AH). For this example,

. /
notation A’ to refer to ( Gxoyply

given the adjacency matrix (5), A(él;ymy is given by
A" dA" sA’ sA’
(n) _|dA" AT sAT sA
Gxomir = |sa' sAY A dar| TAL©
sA" sA’ dA A

We notice in the above that only diagonal elements are sub-
tracted (with the convention that s—0 = s,c—0 =¢,d—0=d
and A — A = 0), and that the diagonal of is indeed zero.

Once the PRG graph is obtained for a particular n, it is
possible to generate the confusability graph GE?I)Y,YR and all
the corresponding compression graphs for each independent
set KC; found in this graph. The benefit comes from having a
recursive, compact way to build up the n-fold graphs needed.
As a future potential benefit still under exploration, we believe
this graph and SSP may point out the structure of optimal
relaying / compression schemes.

IV. USING THE PRG TO SOLVE FOR ri(")

In this section we show how the SSP can be used to
obtain the n-shot relaying compression graph Gglzc for any
independent set K when n > 1, hence solving Problem
1 more easily than in [1] due to the smaller, and recursively
defined PRG needed to compute the quantities in Corollary 1.

As an aside before tackling general alphabets, for binary
primitive relay channels where || X|| = ||Vg|| = ||V|| = 2,
we are able to show the following. A binary PRC is called
trivial if o(G(X™|Y™,Y7)) = 1 (the capacity of PRC is zero)
or a(G(X™|Y™)) = 2" (relaying is useless). The following
proposition show and the definition of non-trivial PRCs imply
that for binary alphabets and any n, the relay is either not used
at all, or simply forwards its received signal, in order to be
optimal in the sense of Problem 1.

Proposition 5. For any non-trivial binary PRC channel, no
compression is possible, i.e. T:(n) =1 for any n.
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Algorithm 1 SSP Algorithm for obtaining r'™
t: Input p(y|yg, x)
2 Output: r2'" , and B! for 1 <i < n.
3 Derive PRG Gx y,|v corresponding to p(ylyg, )
& for(i=1toi<n)do
5. Initialize 7 = ilog |V and R = log | X).
&  Compute the i—fold SSP (Gx v, v )™
T Dhtai.“. Gxilyi1y't;. = Pz (HE{GX,YFﬂY]Ei}
B
9

for each max ind. set A”' of Gxsjys y; do
Compute nghcm = Py, (Ha(Gr vy &)

10 if Llogx (G i) < %" then

t: i = Llog x (G o), B = Llog KW,
12 end if

13 end for

14: end for

Algorithm 1 shows a greedy approach to obtain = ™ for
any finite n. It mimics that in [1], but instead of computing
Gxijyiy; and G|y directly, they are obtained more
easily from projections of the PRG (via Lemmas 2 and

3). The benefit is that G?Ynlv is obtained as a special

strong product, whereas G{Rij| joro must be obtained directly
from the channel for each i and for each K'" indepen-
dent set of Gy:y:y;. The computation of G%'y . re-
quires about the same computational complexity as a conven-
tional strong product and may be iteratively computed. For
any i, Gy:yiyi = Pr(He(Gxygy)®') and G lkw =
Pyn (Hs(Gxoio) v, v )®')) may be obtained from G?h:lv by
simple projections. The complexity is thus reduced, and the
structure of the problem is simplified.

We next obtain a lower bound on r=™ directly from the
PRG, avoiding the need to repeatedly project.

Proposition 6. Given an independent set K'™ of G xn |y~ ¥
Let Ho(Gicimy ypv )" be the PRG restricted to input set
K™, Then, r2'™ > x (Ha(Gim yppv )®")-

Example 3. We demonstrate a channel for which r2* <
2"V and for which relaying compression graph G r|xBGg|x
is a strict subset af Gg}kx x- This illustrates that the relaying
compression graph does not obey the (regular) strong product.
Instead, we can use the method presented here to compute the
SSP of the PRG, and then generate the compression graph for
any n using homomorphic projections, as in Section I1I-C.

Consider the channel transition probability marrix and its
PRG shown in Fig. 3. Note that dashed boundaries have
been drawn to identify node-pairs with the same inputs. Since
there are no confusable edges, the maximal independent set of
Gx|v.yy i5 the input set itself I = {1,2}. We can construct
Gk by performing the homomorphic projection as in Section
INI-C and obtain the pentagon-shaped compression graph,
which is minimally colored using 3 colors, and consequently,
2 — log,(3) = 1.5850 bits.

i, (L4 (L1
Tu r - R
spmpRll) [ ) 9 3 4 5| 123 45
T + 0000 |0« 00
¥ 7 0e0s0|00e.00]| |2 | |
3 D00 0| 0000 .| !
X =1 X =2 | 23y (2,5} (22}
Conditional probability mass functicn: ply|z, 2r), whero

s{plylz, zr)) — + whan pipiz, zx) = 0, and D olsa. Primitive ralay graph (PRO) Gy, v

Fig. 3. Conditional probability mass function and its associated PRG.

Moareaver, to illustrate how this method can be used for
n = 1, consider n = 2. In particular, K'* = K x K is the
maximal independent set of of Gxajyayz2. The compression
graph nglxxx next to its corresponding adjacency matrix
{black squares denote the presence of an edge, white the
absence of an edge) are shown in Fig. 4.

Fig. 4 (a) Compression graph G |k, for n = 2, and its adjacency
matrix (b). The adjacency matrix of the strong product is shown in (c).

In particular, colaring Gg} |licsexc requires 7 colors, and so
rs® = 3 loga(7) = 1.4037 bits. Next, we can visually observe
that Grlx ® Galx € G |cxx It is clear that there are
several edges that are not captured by simple performing the

strong product, motivating the SSP developed.
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