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Abstract—A primitive relay channel (PRC) has one source
(S) communicating a message to one destination (D) with the
help of a relay (R). The link between R and D is considered
to be noiseless, of finite capacity, and parallel to the link
between S and (R,D). Prior work has established, for any fixed
number of channel uses, the minimal R-D link rate needed so
that the overall S-D message rate equals the zero-error single-
input multiple output outer bound (Problem 1). The zero-error
relaying scheme was expressed as a coloring of a carefully defined
“relaying compression graph”. It is shown here that this relaying
compression graph for n channel uses is not obtained as a strong
product from its n = 1 instance. Here we define a new graph, the
“primitive relaying graph” and a new “special strong product”
such that the n-channel use primitive relaying graph corresponds
to the n-fold special strong product of the n = 1 graph. We show
how the solution to Problem 1 can be obtained from this new
primitive relaying graph directly. Further study of this primitive
relaying graph has the potential to highlight the structure of
optimal codes for zero-error relaying.

I. INTRODUCTION AND CONTRIBUTION

A primitive relay channel (X , p(y, yR|x),Y ⇥ YR, k)
(PRC), shown in Fig. 1, consists of a family of conditional
probability mass functions p(y, yR|x) relating inputs x 2 X
to outputs y 2 Y and yR 2 YR at the destination and relay
respectively, and an out-of-band link between the relay and
destination able to support up to k 2 R+ bits/channel use.

Quantities of interest may then be the maximal number of
codewords (the message rate) that can be reliably commu-
nicated for a given R-D link rate k (the relay rate), or the
minimal relay rate needed to transmit at a desired message rate
(provided the desired message rate is feasible at all). When the
R-D link rate k is large enough, the relay can forward its entire
observation to the destination terminal. Thus, the primitive re-
lay channel effectively turns into a point-to-point channel with
a single input and two outputs, say (X , p(y, yR|x),Y ⇥ YR),
for which we have finite n (or n-shot, where n is the number
of channel uses) and asymptotic expressions (though they
cannot currently be calculated / evaluated) for the zero-error
capacity. This capacity is an upper bound to the message rate
achievable for any finite relay rate. The question (Problem 1)
posed and solved in [1] is, for fixed number of channel uses
n, the minimal relay rate needed to ensure that the overall
message rate achieves the capacity of the single-input multiple
output (SIMO) channel (X , p(y, yR|x),Y ⇥ YR). The small-
error version of this question was considered in [2], [3], with
much interesting recent progress in [4], [5].

Contributions. The zero-error relaying scheme solving
Problem 1 was expressed in [1] as a coloring of a carefully
defined “relaying compression graph”. It is shown here that
this relaying compression graph for n channel uses cannot
be obtained by a strong product from its n = 1 instance.
In seeking to understand the structure of zero-error relaying,
one question is whether a graph characterizing this form of
zero-error relaying admits any strong product form at all.
We answer this in the positive by defining a new graph, the
“primitive relaying graph” (PRG) and a new “special strong
product” such that the n-channel use PRG corresponds to the
n-fold special strong product of the n = 1 PRG. We show
how the solution to Problem 1 expressed as in [1] can be
obtained from this new primitive relaying graph. For binary
||X || = ||Y|| = ||YR|| we solve Problem 1 exactly. We provide
several examples of how to use the newly proposed PRG and
the special strong product. A full version of this paper (with
proofs in the Appendix) is available at [6].

S

R

Y
n
R

D

Perfect link, out of band

Xn Y n

WR := h(Y n
R ) 2 {1, · · · , kWRk}

ˆX := g(Y n,WR)

X 2 X ✓ Xn

Fig. 1. An n-shot protocol (n,X , h, g) for zero-error communication over
a PRC: codebook X , relaying function h, decoding function g.

II. PROBLEM DEFINITION

An n-shot protocol for n � 1 channel uses de-
noted by (n,X , h, g) for communication over the PRC
(X , p(y, yR|x),Y ⇥ YR, k), shown in Fig. 1 comprises a code-
book X ✓ Xn, a relaying function h : Yn

R ! WR, and a
decoding function g : Yn ⇥WR ! X .

When a conditional joint pmf p(y, yR|x) with support X
and output Y ⇥ YR is restricted to input K, we denote its
induced conditional pmf, support, and output by pK(y, yR|x),
K and Y|K ⇥ YR|K respectively.

Let R(n)
z :=

1
n log kXk be the message rate, and r

(n)
z :=

1
n log ||WR|| be the relay rate. Then, a rate pair (R(n)

z , r
(n)
z )

is said to be achievable if first, zero error communication is
attainable, i.e. Pr[g(Y n,WR) 6= X | X sent] = 0 for all X 2
X , and second, there exists an n-shot protocol (n,X , h, g)
such that the relaying function uses less than k bits per channel
use on average, i.e. r(n)z :=

1
n log ||WR||  k. For n channel
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uses, we set C(n)
z (k) to be the maximum R

(n)
z , such that there

exists an achievable (R(n)
z , r

(n)
z ) pair (i.e. for which r

(n)
z  k).

The zero-error capacity of the relay channel at R-D link rate
k, defined as Cz(k), is the supremum over n of C(n)

z (k).
Some notation. We call one usage of the channel “one-

shot”, and this is governed by p(y, yR|x). If we use the
channel twice, we use the notation p(y1y2, yR1yR2 |x1x2) =

p(y1, yR1 |x1) · p(y2, yR2 |x2) to denote two channel uses.
A graph G(V,E) consists of a set V of vertices (sometimes

denoted as V (G)) or nodes together with a set E of edges
(sometimes denoted as E(G)), which are two-element subsets
of V . Two nodes connected by an edge are called adjacent.
We will usually drop the V,E indices in G(V,E). Let ⇠

=

denote the isomorphism relation between two graphs. The
adjacency matrix A of a graph G is a matrix with rows
and columns labeled by graph vertices, with a 1 or 0 in
position (vi, vj) indicating whether vi and vj are adjacent or
not. Our convention is to put 0’s on the diagonal (nodes are
not adjacent to themselves). The strong product G ⇥ H of
two graphs G and H is defined as the graph with vertex set
V (G ⇥ H) = V (G) ⇥ V (H), in which two distinct vertices
(g, h) and (g0, h0

) are adjacent iff g is adjacent or equal to g0

in G and h is adjacent or equal to h0 in H . G⇥n denotes the
strong product of n copies of G.
A. Problem 1: Minimal R-D link rate r

⇤(n)
z needed to achieve

the SIMO bound for a fixed n:
For fixed number of channel uses n, by giving the destina-

tion the relay output ynR, one obtains the single-input multiple
output outer bound SIMO(n) on C

(n)
z (k):

SIMO(n) := log

n

q
↵([GX|Y,YR

]

⇥n
),

where the confusability graph GX|Y,YR
has vertices the input

alphabet X and an edge between x 6= x0 if there exists a
(y, yR) 2 Y ⇥ YR such that p(y, yR|x) · p(y, yR|x0

) > 0.
Clearly, if k � log ||YR|| this bound is achievable by simply
having the relay forward the received Y n

R sequence perfectly
over the out-of-band link. An interesting question is how small
this link rate k may be so as to hit this SIMO(n) upper bound,
i.e. to find r

⇤(n)
z defined as:

Definition 1 (The n-shot minimum R-D link rate r
⇤(n)
z to

achieve the n-shot SIMO bound).

r⇤(n)z := min{rz : C(n)
z (rz) = SIMO(n)} . (1)

This was solved for fixed n in [1], where r
⇤(n)
z is exactly

characterized as an n-letter extension of the one-shot “color-
and-forward” scheme, outlined next.
Problem 1 can be re-stated and solved as follows. For the

PRC (X , p(y, yR|x),Y ⇥ YR, log ||YR||) (where the R-D link
rate is initially set to log ||YR|| for notational convenience),
let K be a maximal independent set of the confusability graph
GX|Y,YR

. Note that K need not be unique.
Question. Find the minimum cardinality relaying function

h : YR|K ! WR (and its cardinality) such that (Y, h(YR))

can distinguish X without error, namely, for each (y, h(yR))

with positive probability, there exists at most one x 2 K
for which p(y, h(yR)|x) > 0. This is a reformulation of the
problem of finding r

⇤(1)
z for the PRC (K, pK(y, yR|x),Y|K ⇥

YR|K, log ||YR||). To answer this, we construct a new graph,
the relaying compression graph G

(1)
R |K, for which a coloring

provides the optimal relaying scheme. G(1)
R |K has:

• Vertices: YR|K
• Edges: vertices yR 6= y0R both in YR|K share an edge

when 9x 2 K and 9x0 2 K, x 6= x0 such that
p(y, yR|x) > 0 and p(y, y0R|x0

) > 0 for some y 2 Y|K.
Answer: Coloring of the relaying compression graph

G
(1)
R|K . Color the graph at its chromatic number and let h(yR)

be one of the corresponding minimal colorings. We term this
processing and forwarding at the relay as “color-and-forward”
relaying. It is easy to see how G

(1)
R |K may be extended to n

channel uses to obtain G
(n)
R |K(n) . Then, [1] showed:

Theorem 1. (Chen, Devroye [1]) For the PRC,

r⇤(n)z = min

K(n): K(n) is a max. ind. set of G⇥n
X|Y,YR

1

n
log�(G

(n)
R |K(n)),

(2)
where �(G

(n)
R |K(n)) is the chromatic number of graph

G
(n)
R |K(n) , constructed via the algorithm described in the

Answer above with restricted input / codebook K(n).

III. PRIMITIVE RELAYING GRAPH

The main contribution is the introduction of the primitive
relaying graph-like structure (PRG), and a new “special strong
product” (SSP) that allows the graph G

(n)
R needed to describe

the optimal relaying scheme (optimal in the sense of Problem
1) to be computed recursively. We note that what we define in
the following is strictly speaking not a graph (hence the usage
of graph-like structure) , since we will introduce different types
of edges between vertices, but we have been unable to find a
better terminology. We will use graph in the following rather
than graph-like structure for brevity.
In [1], given an independent set K of confusability graph

GX|Y,YR
the relay compression graph G

(1)
R |K places an edge

between vertices yR 6= y0R both in YR|K when 9x 2 K and
9x0 2 K, x 6= x0 such that p(y, yR|x) > 0 and p(y, y0R|x0

) > 0

for some y 2 Y|K. For (n = 2) an edge between vertices
yR1yR2 6= y0R1

y0R2
both in Y

(2)
R|K(2) in G

(2)
R |K(2) exists when

9x1x2 2 K(2) and 9x0
1x

0
2 2 K(2), x1x2 6= x0

1x
0
2 such that both

p(y1y2, yR1yR2 |x1x2) > 0, and p(y1y2, y0R1
y0R2

|x0
1x

0
2) > 0 for

some y1y2 2 Y2|K(2) . The question is whether G
(2)
R can be

obtained from a strong product of G(1)
R with itself. Example

3 shows that this is not possible even when the confusability
graph is edge free, the main reason being that the regular
strong product of the compression graph ignores the delicate
interaction between the YR’s and the channel inputs (it is the
inputs we want to distinguish at the destination, not the YR’s).

A. Graph Definition
From the PRC (X , p(y, yR|x),Y ⇥ YR, k), we introduce

the Primitive Relaying Graph (PRG) - like structure denoted
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by GX,YR|Y . The vertices of GX,YR|Y consist of a set V ✓
X ⇥ YR of pairs v = (x, yR) corresponding to a given
input x 2 X and a relay channel output yR 2 YR, so that
p(y, yR|x) > 0 for some y 2 Y . Let Vx and VyR denote
the sets of all the x-coordinates, and yR coordinates of V ,
respectively. The edge set E consists of pairs of vertices
e = (v, v0) , (x, yR)(x

0, y0R) connected by an edge in the
PRG, and is given by E = Es [ Ed [ Ec, where Es, Ed, Ec

are mutually disjoint sets defined as:
1) Solid edge set Es , {(x, yR)(x0, y0R) : x 6= x0, yR 6= y0R

and 9y : p(y|x, yR) · p(y|x0, y0R) > 0}. A solid edge
occurs whenever two different channel inputs x, x0 pro-
duce different relay outputs yR, y

0
R for some y. These

yR’s cannot be compressed.
2) Dotted edge set Ed , {(x, yR)(x, y0R) : yR 6= y0R

and 9y : p(y|x, yR)·p(y|x, y0R) > 0}. This type of edge
arises when for a single channel input x and channel
output y, there are two different yR and y0R relay outputs.
These yR’s in theory be compressed / assigned the same
color for a single channel use, but must be distinguished
because when looking at multiple channel uses, when
combined with a confusable or solid edge, may lead to
a solid edge in which the yR’s must be distinguished.

3) Confusable edge set Ec , {(x, yR)(x0, yR) : x 6= x0

and 9y : p(y|x, yR) · p(y|x0, yR) > 0}. A confusable
edge corresponds to the case of two different channel
inputs x, x0 that produce the same relay output yR
for the same channel output y. These x’s cannot be
distinguished even when y and yR are both available.
These edges will yield the confusability graph GX|Y,YR

.
Our notation for the graph GX,YR|Y is reminiscent of the
confusability graph notation in point-to-point channels, GX|Y ,
where an edge between two vertices x 6= x0 in X exists if there
exists a y : p(y|x)p(y|x0

) > 0 (i.e. two inputs are confusable).
In the above, we have similar notions for confusable (x, yR)
pairs, but since the destination, who has access to y, cares
only about recovering x and not necessarily yR (or only to
the extent that it may help in recovering x), different types of
edges are relevant. To the best of our knowledge, this type of
graph has not been considered.

B. Special Strong Product

Due to presence of several types of edges in the PRG we
introduce a new graph product, which we term the “special
strong product” (SSP) and denoted by ⇠, for two PRG G and
H (G ⇠ H), as (following graph products definitions [7]):

• V (G⇠H) is the Cartesian product of V (G) and V (H).
• For any PRG G, there is an incidence function, �G :

V (G)⇥ V (G) ! {�, s, d, c, 0} defined as:

�G((x1, yR1),(x2, yR2))=

8
>>>>>><

>>>>>>:

� if (x1, yR1) = (x2, yR2)

s if (x1, yR1)(x2, yR2)2Es

d if (x1, yR1)(x2, yR2)2Ed

c if (x1, yR1)(x2, yR2)2Ec

0 Otherwise

.

The incidence function between two vertices indicates
what type of edge exists between them (if any).

• The SSP multiplication table for the ⇠ operation is:
⇠ � s d c 0

� � s d c 0

s s s s s 0

d d s d s 0

c c s s c 0

0 0 0 0 0 0

Notice that � behaves like a multiplicative identity.
• If (x1, yR1), (x2, yR2) 2 V (G), (x0

1, y
0
R1

), (x0
2, y

0
R2

) 2
V (H), then the incidence function for G ⇠ H is

�G⇠H((x1x2, yR1yR2), (x
0
1x

0
2, y

0
R1

y0R2
))

:= �G((x1, yR1), (x2, yR2)) ⇠ �H((x0
1, y

0
R1

), (x0
2, y

0
R2

))

and indicates the type of edge of G ⇠ H: 0 means no
edge, s solid, d dotted and c confusable edge.

All finite graphs can be represented by their adjacency matrix.
Usually, this matrix consists of binary elements. However,
given the distinct types of edges defined for the PRG, the
adjacency matrix of a PRG must also carry this information.
We do this by allowing elements of the form 0, s, d, or c, to
indicate no, solid, dotted, or confusable edges, respectively.
Moreover, the elements on the diagonal are all zeros by
convention, and given that this is an undirected graph, the
adjacency matrix is symmetric. An example of an adjacency
matrix of a PRG can be seen in Equation (5). We denote the
adjacency matrix of GXn,Y n

R |Y n by AGXn,Y n
R

|Y n .
Properties of SSP. The SSP is commutative, associative,

distributive over a disjoint union, and that K is a unit for
the SSP if |V (K)| = 1. In addition, the SSP reduces to the
regular strong product when all edges are of the “s” type (in
Es), i.e. if Ed(G) = Ec(G) = Ed(H) = Ec(H) = ;, then
G ⇠ H ⇠

=

G⇥H .

C. PRC related subgraphs and operations

We show how GXn|Y n,Y n
R

and G
(n)
R from [1] may be ob-

tained from the PRG and its SSP. Given PRG GX,YR|Y (V,E),
consider subgraph Hc defined as V (Hc) = V (GX,YR|Y ), and
E(Hc) = Ec(GX,YR|Y ) ✓ E(GX,YR|Y ). Then one can show
the following, which can be extended to any n.

Lemma 2. Graph Hc is px-homomorphic to GX|Y,YR
, px :

V (GX,YR|Y ) ! Vx is the projection px(x, yR) = x.

For an independent set K ✓ Vx(GX|Y,YR
), let Hs|K denote

the subgraph with V (Hs|K) = {(x, yR) 2 V : x 2 K}, and
E(Hs|K) = {(x, yR)(x0, y0R) 2 Es : x 2 K}.

Lemma 3. Given independent set K for confusability graph
GX|Y,YR

, graph Hs|K is pyR -homomorphic to the relaying
compression graph GR|K, where pyR : V ! VyR is the
projection pyR(x, yR) = yR.

Lemma 4. Given PRG GX,YR|Y , for any n � 2

GXn,Y n
R |Y n

= G⇠n
X,YR|Y , (3)
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where G⇠n
X,YR|Y denotes the n-fold special strong product of

PRG GX,YR|Y and mimics the notation G⇥n for the conven-
tional n-fold strong product of G. For adjacency matrices:

A
(n)
GX,YR|Y

=

⇣
A

(1)
GX,YR|Y

+�I
⌘
⌦
⇣
A

(n�1)
GX,YR|Y

+�I
⌘
��I,

(4)
where A(n)

G denotes the adjacency matrix of the n-fold SSP of
G. The above shows that AGXn,Y n

R
|Y n = A

(n)
GX,YR|Y

.

In the Kronecker product in (4), multiplication follows the
SSP multiplication table. We also note that if A� and A� are
the adjacency matrices of graphs � and � then the adjacency
matrix of the (regular) strong product may be obtained from
these as (A�+ I)⌦ (A�+ I)� I. Our special strong product is
of a similar form, with the identity matrix part changed to �I
(for � defined in the incidence function) and multiplication
replaced by the SSP multiplication table.

Example 1. Given the conditional probability mass function
p(y|x, yR) shown in Fig. 2 we obtain the PRG GX,YR|Y using
the definition in Section III-A. This example then shows how
this PRG can be used to obtain GX|Y,YR

(Lemma 2) and
GYR|Ki

(Lemma 3), needed to solve Problem 1 as in [1] and
Theorem 1. Here, there are two independent sets of GX|Y,YR

:
K1 = {1, 3} and K2 = {2, 3}. From these, Lemma 3 and the
PRG allow one to obtain the two compression graphs GYR|Ki

,
for i = 1, 2, as in Fig. 2.

4

Then the following is easy to see:

Lemma 4. Graph Hc is px-homomorphic to GX|Y,YR

px is a projection map px : V (GX,YR|Y ) ! Vx

px(x, yR) = x.

For an independent set K ✓ Vx(GX|Y,YR
), let Hs|K

the subgraph with V (Hs|K) = {(x, yR) 2 V : x 2
E(Hs|K) = {(x, yR)(x0, y0R) 2 Es : x 2 K}.

Lemma 5. Given independent set K for confusability
GX|Y,YR

, graph Hs|K is pyR -homomorphic to the
compression graph GR|K, where pyR is a projection
there a conditioning on K missing somewhere in this
tion map? I think not, just want to be sure pyR : V
defined as pyR(x, yR) = yR.

Proof. According to the definition of Hs|K, given
dent set K, an edge e 2 E(Hs|K) means that there
x, x0, yR, y

0
R such that e := (x, yR)(x

0, y0R) 2 Es.
there exists a y 2 Y such that p(y|x, yR) · p(y|x0, y0R
Using this, it is easy to verify that e 2 E(Hs|K)

(pyR(x, yR), pyR(x
0, y0R)) = (yR, y

0
R) 2 E(GR|K).

given K, graph Hs|K is homomorphic to GR|K. ???
Hs|K ! GR|K).

Need to add a third lemma here that says that you
up this PRG graph for n channel uses iteratively and that
lemmas continue to hold for any n – i.e. right now in
2 you put one of the main points of the paper, but it
an example!

Example 1. This example shows how the PRG can
to obtain GX|Y,YR

and GYR|Ki
, needed to solve

2 as in [?] and Theorem 1 and its Corollary 2.
accomplished by showing that Lemma 4 and PRG G
yields GX|Y,YR

(from which we may obtain its
sets Ki), and that the PRG GX,YR|Y and Lemma 5

, where
defined as

denote
K}, and

graph
relaying
map is
projec-
! VyR

indepen-
exist

Hence,
) > 0.
implies
Thus,
(pyR :

can build
these

Example
is just

be used
Problem
This is
X,YR|Y

independent
yield the

relaying compression graphs G(1)
R|Ki

.

TABLE I
CONDITIONAL PROBABILITY MASS FUNCTION: p(y|x, yR), WHERE

s(p(y|x, yR)) = ⇤ WHEN p(y|x, yR) > 0 AND 0 ELSE.

s(p(y, yR|x))
YR YR YR

1 2 3 1 2 3 1 2 3

Y
1

2

⇤ ⇤ 0

0 ⇤ 0

0 ⇤ 0

0 0 ⇤
0 0 ⇤
⇤ 0 0

X = 1 X = 2 X = 3

Given the conditional probability mass function p(y|x, yR)
shown in Table I, we obtain the PRG GX,YR|Y (shown in
Figure 2) using the definition in Section III-A. Note that there
are nine edges, seven of them are of the solid-edge type,
two are of the dotted-edge type (denoted by d) and one is
a confusable-edge (denoted by c).

(3,1) (1,2) (3,3)

(2,3) (1,1) (2,2)

c
d

GX,YR,|Y

Fig. 2. Construction of the PRG GX,YR|Y

Using Lemma 4, it is easy to generate graph Hc, the px-
homomorphic to PRG confusability graph GX|YR,Y , as shown
in Figure 3.

(3,1) (1,2) (3,3)

(2,3) (1,1) (2,2)

c

Graph Hc

1 2

3

Graph GX|Y,YR

Fig. 3. Construction of Graph Hc and its confusiblity graph GX|Y,YR
.

There are two independent sets of GX|Y,YR
: K1 = {1, 3}

and K2 = {2, 3}. From these, it is possible to generate from
the PRG, the two compression graphs GYR|Ki

, for i = 1, 2,
by means of Lemma 5, shown in Fig. 4.

(3,1) (1,2) (3,3)

(2,3) (1,1) (2,2)

Graph Hs|K1

1 2

3

Graph GR|K1

(3,1) (1,2) (3,3)

(2,3) (1,1) (2,2)

Graph Hs|K2

1 2

3

Graph GR|K2

Fig. 4. Construction of Graph H2|Ki for i = 1, 2 and corresponding
compression graphs GR|Ki

Example 2. This example shows how one may use the special
strong product to build up the PRG for any n incrementally

4

Then the following is easy to see:

Lemma 4. Graph Hc is px-homomorphic to GX|Y,YR
, where

px is a projection map px : V (GX,YR|Y ) ! Vx defined as
px(x, yR) = x.

For an independent set K ✓ Vx(GX|Y,YR
), let Hs|K denote

the subgraph with V (Hs|K) = {(x, yR) 2 V : x 2 K}, and
E(Hs|K) = {(x, yR)(x0, y0R) 2 Es : x 2 K}.

Lemma 5. Given independent set K for confusability graph
GX|Y,YR

, graph Hs|K is pyR -homomorphic to the relaying
compression graph GR|K, where pyR is a projection map is
there a conditioning on K missing somewhere in this projec-
tion map? I think not, just want to be sure pyR : V ! VyR

defined as pyR(x, yR) = yR.

Proof. According to the definition of Hs|K, given indepen-
dent set K, an edge e 2 E(Hs|K) means that there exist
x, x0, yR, y

0
R such that e := (x, yR)(x

0, y0R) 2 Es. Hence,
there exists a y 2 Y such that p(y|x, yR) · p(y|x0, y0R) > 0.
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can be computed for any n, by performing

the operation: Isn’t this supposed to be a lemma? I think so,

Conditional probability mass func-

tion: p(y|x, yR), where s(p(y|x, yR)) =
⇤ when p(y|x, yR) > 0 and 0 else.

Section III A

Fig. 2. Construction of the PRG GX,YR|Y from a probability mass function
p(y, yR|x) for a primitive relay channel, and how to obtain graphs Hc and
GX|Y,YR

(Lemma 4) and graphs Hs|Ki and associated GR|Ki
.

Example 2. This example shows how to use Lemma 4 to
obtain the PRG iteratively for any n. Consider the channel
transition probability matrix presented in Table I. The adja-
cency matrix for the PRG GX,YR|Y is (5).

TABLE I
CONDITIONAL PROBABILITY MASS FUNCTION: p(y|x, yR), WHERE

s(p(y|x, yR)) = ⇤ WHEN p(y|x, yR) > 0 AND 0 ELSE.

s(p(y, yR|x))
YR YR

1 2 3 4 1 2 3 4

Y
1

2

3

⇤ 0 ⇤ 0

0 0 0 0

⇤ 0 ⇤ 0

0 ⇤ 0 ⇤
0 ⇤ 0 ⇤
0 0 0 0

X = 1 X = 2

A
(1)
GX,YR|Y

=

(1, 1) (1, 3) (2, 2) (2, 4)
2

64

3

75

0 d s s (1, 1)

d 0 s s (1, 3)

s s 0 d (2, 2)

s s d 0 (2, 4)

(5)

Then, A(n)
GX,YR|Y

can be computed for any n, according to
Lemma 4, and in particular Equation (4). We use the short
notation A0 to refer to

⇣
A

(n�1)
GX,YR|Y

+�I
⌘
. For this example,

given the adjacency matrix (5), A(n)
GX,YR|Y

is given by

A
(n)
GX,YR|Y

=

2

664

A0 dA0 sA0 sA0

dA0 A0 sA0 sA0

sA0 sA0 A0 dA0

sA0 sA0 dA0 A0

3

775��I (6)

We notice in the above that only diagonal elements are sub-
tracted (with the convention that s�0 = s, c�0 = c, d�0 = d
and ��� = 0), and that the diagonal of is indeed zero.

Once the PRG graph is obtained for a particular n, it is
possible to generate the confusability graph G

(n)
X|Y,YR

and all
the corresponding compression graphs for each independent
set Ki found in this graph. The benefit comes from having a
recursive, compact way to build up the n-fold graphs needed.
As a future potential benefit still under exploration, we believe
this graph and SSP may point out the structure of optimal
relaying / compression schemes.

IV. USING THE PRG TO SOLVE FOR r
⇤(n)
z

In this section we show how the SSP can be used to
obtain the n-shot relaying compression graph G

(n)
R|K for any

independent set K(n) when n � 1, hence solving Problem
1 more easily than in [1] due to the smaller, and recursively
defined PRG needed to compute the quantities in Corollary 1.
As an aside before tackling general alphabets, for binary

primitive relay channels where ||X || = ||YR|| = ||Y|| = 2,
we are able to show the following. A binary PRC is called
trivial if ↵(G(Xn|Y n, Y n

R )) = 1 (the capacity of PRC is zero)
or ↵(G(Xn|Y n

)) = 2

n (relaying is useless). The following
proposition show and the definition of non-trivial PRCs imply
that for binary alphabets and any n, the relay is either not used
at all, or simply forwards its received signal, in order to be
optimal in the sense of Problem 1.

Proposition 5. For any non-trivial binary PRC channel, no
compression is possible, i.e. r⇤(n)z = 1 for any n.
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Al g o rit h m 1 S S P  Al g orit h m f or o bt ai ni n g r
⇤ ( n )
z

1: I n p ut: p (y |y R , x)

2: O ut p ut: r
⇤ ( i )
z , a n d R

( i )
z f or 1  i  n .

3: D eri v e P R G G X, Y R |Y c orr es p o n di n g t o p (y |y R , x)
4: f o r (i = 1 t o i  n ) d o
5: I niti ali z e r

( i )
z = i l o g | YR | a n d R

( i )
z = l o g | X |.

6: C o m p ut e t h e i� f ol d S S P
�
G X, Y R |Y

� ⇠ i

7: O bt ai n G X i |Y i , Y i
R

= p x

�
H c ( G X, Y R |Y ) ⇠ i

�

8: f o r e a c h  m a x i n d. s et K i of G X i |Y i , Y i
R

d o

9: C o m p ut e G
( i )
R |K ( i ) = p y R

�
H s ( G K ( i ) , YR |Y ) ⇠ i )

�

1 0: if 1
i l o g � (G

( i )
R |K ( i ) ) < r

( i )
z t h e n

1 1: r
( i )
z = 1

i l o g � (G
( i )
R |K ( i ) ) , R

( i )
z = 1

i l o g | K( i ) |.
1 2: e n d if
1 3: e n d f o r
1 4: e n d f o r

Al g orit h m 1 s h o ws a gr e e d y a p pr o a c h t o o bt ai n r
⇤ ( n )
z f or

a n y fi nit e n . It  mi mi cs t h at i n [ 1], b ut i nst e a d of c o m p uti n g

G X i |Y i , Y i
R

a n d G
( i )
R |K ( i ) dir e ctl y, t h e y ar e o bt ai n e d  m or e

e asil y fr o m pr oj e cti o ns of t h e P R G ( vi a  L e m m as 2 a n d
3).  T h e b e n e fit is t h at G ⇠ i

X, Y R |Y i s o bt ai n e d as a s p e ci al

str o n g pr o d u ct,  w h er e as G
( i )
R |K ( i ) m u st b e o bt ai n e d dir e ctl y

fr o m t h e c h a n n el f or e a c h i a n d f or e a c h K ( i ) i n d e p e n-
d e nt s et of G X i |Y i , Y i

R
.  T h e c o m p ut ati o n of G ⇠ i

X, Y R |Y r e-
q uir es a b o ut t h e s a m e c o m p ut ati o n al c o m pl e xit y as a c o n v e n-
ti o n al str o n g pr o d u ct a n d  m a y b e it er ati v el y c o m p ut e d. F or

a n y i, G X i |Y i , Y i
R

= p x

�
H c ( G X, Y R |Y ) ⇠ i

�
a n d G

( i )
R |K ( i ) =

p y R

�
H s ( G K ( i ) , YR |Y ) ⇠ i )

�
m a y b e o bt ai n e d fr o m G ⇠ i

X, Y R |Y b y
si m pl e pr oj e cti o ns.  T h e c o m pl e xit y is t h us r e d u c e d, a n d t h e
str u ct ur e of t h e pr o bl e m is si m pli fi e d.

We n e xt o bt ai n a l o w er b o u n d o n r
⇤ ( n )
z dir e ctl y fr o m t h e

P R G, a v oi di n g t h e n e e d t o r e p e at e dl y pr oj e ct.

P r o p ositi o n 6. Gi v e n a n i n d e p e n d e nt s et K ( n ) of G X n |Y n , Y n
R

,
L et H s ( G K ( n ) , YR |Y ) ⇠ n b e t h e  P R G r estri ct e d t o i n p ut s et

K ( n ) . T h e n, r
⇤ ( n )
z � �

�
H 2 ( G K ( n ) , YR |Y ) ⇠ n

�
.

E x a m pl e 3. We d e m o nstr at e a c h a n n el f or  w hi c h r
⇤ ( 2 )
z <

r
⇤ ( 1 )
z , a n d f or  w hi c h r el a yi n g c o m pr essi o n gr a p h G R |K ⇥ G R |K

i s a stri ct s u bs et of G
( 2 )
R |K ⇥ K . T his ill ustr at es t h at t h e r el a yi n g

c o m pr essi o n gr a p h d o es n ot o b e y t h e (r e g ul ar) str o n g pr o d u ct.
I nst e a d,  w e c a n us e t h e  m et h o d pr es e nt e d h er e t o c o m p ut e t h e
S S P of t h e  P R G, a n d t h e n g e n er at e t h e c o m pr essi o n gr a p h f or
a n y n usi n g h o m o m or p hi c pr oj e cti o ns, as i n S e cti o n III- C.

C o nsi d er t h e c h a n n el tr a nsiti o n pr o b a bilit y  m atri x a n d its
P R G s h o w n i n  Fi g. 3.  N ot e t h at d as h e d b o u n d ari es h a v e
b e e n dr a w n t o i d e ntif y n o d e- p airs  wit h t h e s a m e i n p uts. Si n c e
t h er e ar e n o c o nf us a bl e e d g es, t h e  m a xi m al i n d e p e n d e nt s et of
G X |Y , Y R

i s t h e i n p ut s et its elf K = { 1 , 2 } .  We c a n c o nstr u ct
G R| K b y p erf or mi n g t h e h o m o m or p hi c pr oj e cti o n as i n S e cti o n
III- C a n d o bt ai n t h e p e nt a g o n-s h a p e d c o m pr essi o n gr a p h,
w hi c h is  mi ni m all y c ol or e d usi n g 3 c ol ors, a n d c o ns e q u e ntl y,

r
⇤ ( 1 )
z = l o g 2 ( 3)  = 1 .5 8 5 0 bits.

s (p (y, y R |x ))
Y R Y R

1 2 3 4 5 1 2 3 4 5

Y
1
2
3

⇤ 0 0 0 0
0 ⇤ 0 ⇤ 0
0 0 0 ⇤ 0

0 ⇤ 0 0 ⇤
0 0 ⇤ 0 0
0 0 0 0 ⇤

X = 1 X = 2

C o n di ti o n al p r o b a bili t y  m a s s f u n c ti o n: p ( y |x, x R ),  w h e r e
s ( p ( y |x, x R ) )  = ⇤ w h e n p ( y |x, x R ) > 0, a n d 0 el s e.

( 2, 3) ( 2, 5) ( 2, 2)

( 1, 2) ( 1, 4) ( 1, 1)

P ri mi ti v e r el a y g r a p h ( P R G ) G X, Y R |Y

Fi g. 3.  C o n diti o n al pr o b a bilit y  m ass f u n cti o n a n d its ass o ci at e d P R G.

M o r e o v er, t o ill ustr at e h o w t his  m et h o d c a n b e us e d f or
n � 1 , c o nsi d er n = 2 . I n p arti c ul ar, K ( 2 ) = K ⇥ K is t h e
m a xi m al i n d e p e n d e nt s et of of G X 2 |Y 2 , Y 2

R
. T h e c o m pr essi o n

gr a p h G
( 2 )
R |K ⇥ K n e xt t o its c orr es p o n di n g a dj a c e n c y  m atri x

( bl a c k s q u ar es d e n ot e t h e pr es e n c e of a n e d g e,  w hit e t h e
a bs e n c e of a n e d g e) ar e s h o w n i n  Fi g. 4.

Fi g. 4. ( a)  C o m pr essi o n gr a p h G
( 2 )
R |K ⇥ K f or n = 2 , a n d its a dj a c e n c y

m atri x ( b).  T h e a dj a c e n c y  m atri x of t h e str o n g pr o d u ct is s h o w n i n ( c).

I n p arti c ul ar, c ol ori n g G
( 2 )
R |K ⇥ K r e q uir es 7 c ol ors, a n d s o

r
⇤ ( 2 )
z = 1

2 l o g2 ( 7) = 1 .4 0 3 7 bits.  N e xt,  w e c a n vis u all y o bs er v e

t h at G R |K ⇥ G R |K ⇢ G
( 2 )
R |K ⇥ K It is cl e ar t h at t h er e ar e

s e v er al e d g es t h at ar e n ot c a pt ur e d b y si m pl e p erf or mi n g t h e
str o n g pr o d u ct,  m oti v ati n g t h e S S P d e v el o p e d.
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