
Exploratory Study of Slack Q&A Chats as a
Mining Source for Software Engineering Tools

Preetha Chatterjee∗, Kostadin Damevski†, Lori Pollock∗,
Vinay Augustine‡, and Nicholas A. Kraft‡
∗ University of Delaware, Newark, DE, USA

{preethac, pollock}@udel.edu
† Virginia Commonwealth University, Richmond, VA, USA

kdamevski@vcu.edu
‡ABB Corporate Research, Raleigh, NC, USA
{vinay.augustine, nicholas.a.kraft}@us.abb.com

Abstract—Modern software development communities are in-
creasingly social. Popular chat platforms such as Slack host
public chat communities that focus on specific development
topics such as Python or Ruby-on-Rails. Conversations in these
public chats often follow a Q&A format, with someone seeking
information and others providing answers in chat form. In this
paper, we describe an exploratory study into the potential use-
fulness and challenges of mining developer Q&A conversations
for supporting software maintenance and evolution tools. We
designed the study to investigate the availability of informa-
tion that has been successfully mined from other developer
communications, particularly Stack Overflow. We also analyze
characteristics of chat conversations that might inhibit accurate
automated analysis. Our results indicate the prevalence of useful
information, including API mentions and code snippets with
descriptions, and several hurdles that need to be overcome to
automate mining that information.

I. INTRODUCTION

Researchers have demonstrated that various software engi-
neering tasks can be supported by mining information from
emails, bug reports, tutorials, and Q&A forums. For example,
information mined from emails and bug reports is used to
re-document source code [1] or to recommend mentors in
software projects [2]. Further, the natural language text in
tutorials is analyzed to aid API learning [3], [4]. Over the
years, researchers have also mined the knowledge embedded
in Q&A forums, such as Stack Overflow, for supporting
IDE recommendation [5]–[10], learning and recommendation
of APIs [11]–[13], automatic generation of comments for
source code [14], [15], and in building thesauri and knowledge
graphs of software-specific terms and commonly-used terms in
software engineering [16], [17]. These successes suggest that
other kinds of developer communications may also provide
information for mining-based software engineering tools.

Software developers are increasingly having conversations
about software development via online chat services. In partic-
ular, developers are turning to public chat communities hosted
on services such as Slack, IRC, Hipchat, Gitter, Microsoft
Teams, and Freenode to discuss specific programming lan-
guages or technologies. Developers use these communities
to ask and answer specific development questions, with the
aim of improving their own skills and helping others. Over

eight million active users participate daily on Slack, which
is currently the most popular platform for these public chat
communities and hosts many active public channels focused
on software development technologies [18].

While chat communities share some commonalities with
other developer communications, they also differ in intent and
use. Overall, Q&A forum content is archival, while chat com-
munity content is transient. Q&A forums encourage longer,
more in-depth questions that receive one or more well-thought-
out answers. The question and its answers are subsequently
read by many developers. Developer chats are typically infor-
mal conversations, with rapid exchanges of messages between
two or more developers, where several clarifying questions and
answers are often communicated in short bursts. Chats thus
contain shorter, quicker responses, often interleaved with non-
information-providing messages. The chat conversations are
usually short-lived, often available only for a relatively short
period of time1, and over the life of the community, similar
questions may be repeated (and answered) many times.

Most studies of developer chat communities have focused
on learning about how they are used by development teams
or for analyzing developer behaviors/interactions [19]–[24].
Panichella et al. [25] investigated how developer collaboration
links differ across three various kinds of communication
channels, including mailing lists, issue trackers, and IRC
chat logs. However, limited work has focused on mining
and extracting specific types of information from developer
chats. For instance, Alkadhi et al. [23], [26] examined the
frequency and completeness of available rationale in HipChat
and IRC messages, and the potential of automatic techniques
for rationale extraction. To the best of our knowledge, no
previous work has investigated chat communities from the
perspective of understanding what kind of information can be
mined from them, how much of that information is available,
and how difficult that information is to extract.

In this paper, we investigate the potential usefulness and
challenges of mining developer Q&A chat conversations for

1For example, Slack’s free tier only provides access to the most recent
10,000 chat messages.



supporting software maintenance and evolution tools in com-
parison with Q&A forums. We report on an exploratory
study to compare the content in Q&A-focused public chat
communities (hosted on Slack) to a Q&A-based discussion
forum (Stack Overflow), because both resources share the
intent of supporting learning and information sharing among
developers.

We explore the availability and prevalence of information in
developer Q&A chat conversations, which provides us with the
first insight into the promise of chat communities as a mining
source. We study the characteristics of information mined
from the chat communities, e.g., analyzing the characteristics
of embedded code snippets and of the natural language text
describing the code snippets, and quantify the novel challenges
in mining this data source. The overall goal is to gain insight
into whether it is worth mining chat communities for informa-
tion to support software maintenance and evolution tools, and
whether there are additional opportunities from mining chat
communities that are not offered by Q&A forums.

In total, we automatically analyzed 23,893 developer Q&A
chat conversations from five programming communities on
Slack and 825,294 posts labeled with the corresponding tags
on Stack Overflow. Since some of the measures that we wanted
to investigate for chat communities are not easily automated
with high accuracy, we created data sets of 400 conversations
in Slack and 400 posts in Stack Overflow for manual analysis.
Our results indicate the prevalence of useful information in
developer Q&A chats, and thus provide insights that will aid
future research in using the available information.

II. BACKGROUND AND RELATED WORK

A. Chat Communities for Software Engineers

Public chats comprise multiple communities focused on
particular topics such as a technology (e.g., Python or Ruby-
on-Rails), with specific channels within a given community
assigned to general discussion or to particular subtopics [27].
Within each channel, users participate in chat conversations, or
chats, by posting messages. Chats in some channels follow a
Q&A format, with information seekers posting questions and
others providing answers, possibly including code snippets or
stack traces, as shown in Figure 1.

Studies on chat communities have typically focused on
learning about how they are used by development teams
and the usefulness of the conversations for understanding
developer behaviors. Shihab et al. [19] analyzed developer
Internet Relay Chat (IRC) meeting logs to analyze the content,
participants, their contribution and styles of communications.
Yu et al. [20] conducted an empirical study to investigate
the use of synchronous (IRC) and asynchronous (mailing list)
communication mechanisms in global software development
projects. Lin et al. [21] conducted an exploratory study to
learn how Slack impacts development team dynamics. Lebeuf
et al. [22] investigated how chatbots can help reduce the
friction points that software developers face when working
collaboratively. Paikari et al. [28] characterized and compared
chatbots related to software development in six dimensions

Fig. 1. Sample of a conversation in Slack (Python-dev community)

(type, direction, guidance, predictability, interaction style, and
communication channel). Alkadhi et al. [23], [26] conducted
exploratory studies to examine the frequency and completeness
of available rationale in chat messages, and the potential
of automatic techniques for rationale extraction. They also
designed a tool for annotating chat messages that contain
rationale in Slack [29]. The purpose of all of these analyses
is to empirically study specific behavior of developers in chat
channels, while ours is to holistically assess public Q&A chat
as a mining source for improving software tools.

B. Mining Software Artifacts for SE Tools

For several years, researchers have been developing tech-
niques to mine Stack Overflow and other software artifacts
for information to help software developers. A key mechanism
for providing the mined information is through recommen-
dations in an Integrated Development Environments (IDE).
Common recommendations include programming errors and
exceptions [6], [7], [10], linking relevant discussions to any
source code based on context [8], [9] or through a query in
the IDE [5], [30].

Treude and Robillard proposed an approach for automat-
ically augmenting API documentation with informative sen-
tences from Stack Overflow [31]. Rahman et al. [12] proposed
a technique that takes a natural language query as input and
uses keyword-API associations mined from Stack Overflow
to produce API recommendations as output. Other works
for enriching API documentations include augmenting code
examples [32], [33], identifying iOS and Android API classes



for which developers regularly face usage obstacles [13], and
integrating crowdsourced frequently asked questions (FAQs)
from the web into API documents [34].

Code snippets and their descriptive text in Stack Overflow
have also been analyzed to automatically generate comments
for source code in open source projects [14], [15]. Nagy
and Cleve [35] mined code blocks that appear in Stack
Overflow questions to identify common error patterns in
SQL statements. Yang et al. [36] investigated the usability of
code snippets on Stack Overflow. Badashian et al. [37] used
developers’ contributions to Stack Overflow as a proxy for
their expertise for consideration during bug triaging.

Stack Overflow has also been analyzed to build thesauri and
knowledge graphs of software-specific terms and commonly-
used terms in software engineering [16], [17], [38]. Others
have applied topic analysis and mining of domain-specific
information [39], [40], exploring gender bias [21], [41], [42],
and emotions [43], [44].

Stack Overflow includes built-in quality signaling in the
form of up & down votes, accepted answers, and user reputa-
tion. Some researchers [5], [6], [8], [14], [15], [36] have used
these quality signals to filter the posts that they use as input for
their mining techniques. The need for such filtering partially
motivates our study, as we want to understand, for instance,
whether and how developers indicate accepted answers in chat
communities.

To our knowledge, no research has focused on mining
similar information from chat communities. However, Slack
provides easy integration to other frequently used developer
tools (e.g., Github, Bitbucket, JIRA, and Jenkins) through a set
of conversation-based bots and apps. These bots and apps have
been widely adopted by many developers for different software
engineering tasks such as maintaining code quality, testing,
conducting development operations, supporting customers, and
creating documentation [22].

III. EXPLORATORY STUDY

A. Research Questions

We designed our study to explore the potential of Slack
and similar chat communities supporting Q&A conversations
to serve as sources for mining information similar to Stack
Overflow as mined for software engineering tool use, by
seeking to answer the following questions:

RQ1: How prevalent is the information that has been
successfully mined from Stack Overflow Q&A forums to
support software engineering tools in developer Q&A chats
such as Slack?

RQ2: Do Slack Q&A chats have characteristics that might
inhibit automatic mining of information to improve software
engineering tools?

B. Data Set Creation

1) Community Selection and Extraction: We established
several requirements for dataset creation to reduce bias and

threats to validity. To conduct an effective comparison between
Q&A forums and chat communities, we needed to identify
groups that primarily discussed software development topics,
had a substantial collection of participants, and had a presence
on both kinds of systems.

For this study, we chose Stack Overflow and Slack as
modern, popular instantiations of Q&A forums and developer
chat communities, respectively. We selected four programming
communities with an active presence on both systems: clojure,
elm, python and racket. Within those selected communities, we
focused on channels that follow a Q&A format.

Because programmatic access to the data in Slack commu-
nities is controlled by the administrators of the Slack team,
we contacted several public Slack teams and asked for an
API token that would allow us to read and store their data.
Public Slack teams typically use Slack’s free tier, which only
stores the most recent 10,000 messages. Thus, for each Slack
community that we selected for our study, we downloaded
all of the discussion data from each channel every day for
489 days (June 2017- November 2018). Since Stack Overflow
regularly publishes all of its data in XML format via the Stack
Exchange Data Exchange, we extracted posts for this study
from the 27-August-2017 release of the Stack Exchange Data
Dump [45].

2) Documents, Posts, Conversations, and Disentanglement:
To answer our research questions, we needed to curate data
from both developer Q&A chats and Q&A forums. The first
decision is what constitutes a “document” for analysis in each
of these communities.

In a Q&A forum, we use a question and its corresponding
multiple answers, votes, and comments, as the basis for a
document. For our analysis, we limit a document to be the
question and the two most popular answers (based on votes).
We omit further, less relevant, answers to the question which
are more likely to be unnoticed by developers and to contain
noise. While the two most popular answers often include
the accepted answer, this is not always the case. In Stack
Overflow, the original questioner indicates which answer is
the accepted one. If the vote total differs from this, it is
because other users have found a different answer more
useful or because the context around the question has changed
(necessitating a new answer).

The most reasonable equivalent to a Q&A forum post within
a chat community is a single conversation that follows a Q&A
format with someone seeking information and others providing
answers in chat form. However, messages in chats form a
stream, with conversations often interleaving such that a single
conversation thread is entangled with other conversations,
thus requiring preprocessing to separate, or disentangle, the
conversations for analysis.

The disentanglement problem has been studied before in the
context of IRC and similar chat platforms [46]. We leveraged
the technique proposed by Elsner and Charniak [47] that learns
a supervised model based on a set of features between pairs
of chat messages that occur within a window of time of



TABLE I
DATA SETS AND SIZES

Community # Conversations Community # Posts
(Slack Channels) Slackauto Slackmanual (StackOverflow Tags) StackOverflowauto StackOverflowmanual

clojurians#clojure 5,013 80 clojure 1,3920 80
elmlang#beginners 7,627 80 elm 1,019 160
elmlang#general 5,906 80 - - -
pythondev#help 3,768 80 python 806,763 80
racket#general 1,579 80 racket 3,592 80
Total 23,893 400 Total 825,294 400

each other. The features include the elapsed time between the
message pair, whether the speaker in the two messages is the
same, occurrence of similar words, use of cue words (e.g.,
hello, hi, yes, no), and the use of technical jargon. For the
training set, we manually disentangled a set of 500 messages
from each channel and trained the model using the combined
set.

After we observed that some Slack channels can become
dormant for a few hours at a time and that participants can
respond to each other with considerable delay, we modified
Elsner and Charniak’s algorithm to compute features between
the current utterance and every utterance that 1) occurred ¡=
1477s prior to it, or 2) is within the last 5 utterances observed
in the channel We also enhanced the set of features used by
Elsner and Charniak, introducing several specific to Slack, for
instance, the use of emoji or code blocks within a message.
We also followed the procedure prescribed by Elsner and
Charniak to create a better set of technical words for the model
by extracting all of the words occurring in Stack Overflow
documents tagged with a particular tag that do not co-occur
in the English Wikibooks corpus. To measure the accuracy of
the disentangling process, we manually disentangled a separate
set of 500 messages from the python-dev channel. The model
with our enhancements produced a micro-averaged F-measure
of 0.79; a strong improvement over the vanilla Elsner and
Charniak approach’s micro-averaged F-measure of 0.57. We
corrected or removed all poorly disentangled conversations
prior to our annotation.

3) Curating a Slack-Stack Overflow Comparison Dataset:
To enable comparison study between related communities on
Stack Overflow and Slack, we first selected Slack program-
ming communities and then identified related Stack Overflow
communities by extracting all of the posts tagged with the
language name from the Stack Exchange Data Dump. Table I
shows the programming language communities (channels on
Slack and tags on Stack Overflow) used as subjects of study. A
key concern in comparing Slack and Stack Overflow was that
the Slack conversations may not contain the same distribution
of subtopics within a particular technology as Stack Overflow
(e.g., if most conversations on pythondev#help were on Django
but not a significant proportion of ‘python‘ tagged Stack
Overflow questions). To address this concern, we curated
our comparison dataset by organizing the extracted Slack
conversations and Stack Overflow posts by similar subtopics,

using the following workflow:
1) Remove URLs and code snippets from the Slack and

Stack Overflow datasets. Filter out terms that appear
in more than 80% of documents or in less than 15
documents.

2) Train a Latent Dirichlet Allocation (LDA) topic model
using the larger Stack Overflow data. By manually
examining topics for interpretability and coherence, we
chose to extract 20 LDA topics in each community.

3) Remove background topics, if they exist, which are very
strongly expressed in the corpus (strongest topic for >
50% of documents) and do not express technical terms.

4) Infer topic distributions for each document (i.e., post in
Stack Overflow and conversation in Slack).

5) Select documents that strongly express the same LDA
topic in Stack Overflow and Slack.

Throughout this paper, we refer to these comparison
datasets as StackOverflowauto and Slackauto. As Table I
shows, Slackauto consists of 23,893 conversations, while
StackOverflowauto contains 825,294 posts.

4) Datasets for Manual Analysis: Some of the measures
we wanted to investigate for chat communities are not eas-
ily automated with high accuracy. Thus, we created sub-
sets of Slackauto & StackOverflowauto which we call
Slackmanual & StackOverflowmanual, respectively. In order
to obtain statistical significance with confidence of 95%±5%,
we sampled 400 conversations for Slackmanual and 400 posts
for StackOverflowmanual, distributing the samples equally
across the different communities.

Two of the coauthors computed the measures in section
III-C on the Slackmanual dataset using the following process.
We wanted to insure that the inter-rater agreement is sufficient
to allow two researchers to compute measures separately with-
out duplication, to create a larger manual set with confidence.
First, both authors computed all the measures on a shared
set of 60 Slack conversations on Slackmanual. Using this
initial shared set, we computed the Cohen’s Kappa inter-
rater agreement metric between the two authors, observing
an agreement of more than 0.6 for each measure, which
is considered to be sufficient [48]. Choosing a shared sam-
ple of 60 conversations also ensured the sample produced
high confidence in the computed value of Cohen’s Kappa
based on the number of categories in our measures [49].
Second, the authors divided and separately computed the



measures in the remaining manual samples to reach a total
of 400 conversations in Slackmanual and 400 questions in
StackOverflowmanual.

Table I includes the number of conversations from each
Slack channel and number of posts from each Stack Overflow
community.

C. Methodology

Conversations in Slack following different discussion for-
mats might require different mining strategies. In this paper,
we focus on Q&A conversations to compare with Stack
Overflow Q&A forums as both are knowledge sharing. To gain
a sense of the prevalence of Q&A conversations on the Slack
channels we monitored, we computed the total number of con-
versations that follow a Q&A format and contain discussions
that are about software-specific issues using Slackmanual. We
found that a high percentage (91.50%) of conversations in our
Slack data set were of Q&A format, containing discussions
about issues in software.

We also conducted a qualitative analysis using Zagalsky
et al.’s knowledge types, which they developed to compare
Stack Overflow to the R-help mailing list [50]. Namely, we
computed the occurrence of questions, answers, updates, flags,
and comments on our channels to determine whether Slack
Q&A conversations are similar in structure to Stack Overflow
Q&A. In the context of Q&A chat conversations, ‘question’
represents the primary question which initiates the main topic
of discussion; ‘answer’ provides a solution to the primary
question; ‘update’ requests a modification to a question or
answer; ‘comment’ provides clarification to a specific part of
the question or answer; and ‘flag’ requests moderator attention
(e.g., off-topic or repeated questions, spam).

We found the following number of knowledge types
in each of these categories in our Slack data set:
(#Questions(393), #Answers(447), #Updates(159), #Com-
ments(1947), and #Flags(19)). These counts indicate that in
our Slackmanual data set of 400 conversations, almost every
conversation contains at least one question and more answers
than questions, with some updates and flags, and a large
number of comments compared to questions and answers.

In the remainder of this section, we describe the measures
that we used to investigate each of our research questions.
We also explain how we computed each measure either
automatically or manually.

RQ1: How prevalent is the information that has been
successfully mined from Stack Overflow Q&A forums to
support software engineering tools in developer Q&A chats
such as Slack?

To answer this question, we focused on information that
has been commonly mined in other software artifacts. Specif-
ically, we analyzed code snippets, links to code snippets,
API mentions, and bad code snippets. To provide context, we
also collected data on document length in Slack and Stack
Overflow. Table II shows the measures computed.

The first step in analysis is identifying the particular el-
ements in Slack and Stack Overflow documents, (e.g., code
snippet, link, API mention). Since the text of each Slack
document is stored in the Markdown text format, we used
regular expressions to extract the code snippets and the URLs
of links to code snippets from each conversation. Since the
text of each Stack Overflow post is stored as HTML, we used
the HTML parser, Beautiful Soup [51], to extract the code
and link elements from each post. We wrote Python scripts
to analyze conversations and posts for all the automatically
collected information shown in Table II. Next, we describe
how and why we computed each measure for RQ1.

First, we compute the document lengths for context in
understanding the prevalence of the measures described below.
Document length is defined as the number of sentences in a
document (i.e., a Slack conversation or a Stack Overflow post).
We computed this measure on the natural language text in each
document using the sentence tokenizer from NLTK [59].

High occurrence of code snippets within a forum indicates
more opportunity to support various software engineering tasks
such as IDE recommendation, code clone detection, and bug
fixing. Code snippet count is computed as the number of
code snippets per document, for which we counted all inline
and multiline code snippets in a document. The answers that
solve the original question on Stack Overflow mostly contain
multiple line snippets, so the measure can be an indicator of
snippet quality [52]. Code snippet length is the number of
non-whitespace characters in each code snippet. For multiline
snippets, we also counted the number of non-blank lines in
each snippet.

URLs that link different software artifacts are useful to
establish traceability between documents, which has been
shown to be useful for tasks such as automatic comment gen-
eration. Specifically, by establishing mappings between code
and associated descriptive text, it is possible to automatically
generate descriptive comments for similar code segments in
open-source projects [53]. We counted all URLs to Gist and
Stack Overflow in a document. For instance, for Gist links,
we counted all links to http://gist.github.com. For Stack Over-
flow links, we counted all links to either stackexchange.com
or stackoverflow.com. The StackOverflowauto dataset also
includes relative links in this measure.

High frequency of API mentions in code and text show po-
tential to build tools such as API linking and recommendation
and augmenting API documentation [54]–[56]. API mentions
in code snippets and text are the numbers of APIs mentioned in
the code snippets and in the natural language text, respectively,
for each document.

Bad code snippets could be mined to build tools for debug-
ging and bug fixing, testing and maintenance, e.g., in designing
test cases for mutation testing [57], [58]. Percentage of bad
code snippets is defined to be the number of “bad” code
snippets divided by the total number of (inline and multiline)
code segments in a document. Bad code snippets are defined as
code segments that are described by negative words or phrases
such as “ugly,” “error”, “does not work”, or “horrible.” These



TABLE II
MEASURES FOR RQ1. THE MEASURES LABELED auto ARE COMPUTED BY APPLYING SCRIPTS TO THE Slackauto AND StackOverflowauto DATASETS,

WHEREAS THE MEASURES LABELED manual ARE COMPUTED MANUALLY USING THE Slackmanual AND StackOverflowmanual DATASETS.

Measure Definition Datasets used
Document length number of sentences in a chat conversation or Q&A post auto
Code snippet count number of code snippets in a document auto
Code snippet length number of characters in a code snippet auto
Gist links number of links to Gist in a document auto
Stack Overflow links number of links to Stack Overflow in a document auto
API mentions in code snippets number of APIs mentioned in code snippets in a document manual
API mentions in text number of APIs mentioned in non-code text in a document manual
Bad code snippets percentage of erroneous code snippets in a document manual

descriptors indicate that one or more of the forum or chat

participants find that the code snippet does not implement the

desired functionality, is inefficient, or has poor readability or

syntax errors. We manually searched for the presence of such

negative indicators in the natural language text to identify and

count bad code snippets in the documents. We did not evaluate

the code snippet itself for badness, as we were interested in

bad code snippets based on participant interpretation, not our

annotators’ interpretations.

RQ2: Do Slack Q&A chats have characteristics that might
inhibit automatic mining of information to improve software
engineering tools?

To answer this question, we focused on measures that

could provide some insights into the form of Slack Q&A

conversations (participant count, questions with no answer,

answer count) and measures that could indicate challenges

in automation (how participants indicate accepted answers,

questions with no accepted answer, natural language text

context pertaining to code snippets, incomplete sentences,

noise within a document, and knowledge construction process)

that suggest a need to filter. All measures shown in table

III were computed manually on the Slackmanual dataset,

except Participant count, which could be computed with high

accuracy automatically with scripts. Manual analysis was

performed by two of the authors. Since the research question

investigates challenges in mining information in developer

chat communications to support software engineering tools,

we only computed the measures on Slack.
Conversations with high participant counts suggest richness

of information since they generally contain different opinions,

additional information, and examples. To compute Participant
count, we counted the number of unique users in each Slack

conversation. For example, a conversation with 10 messages

posted by 3 users has a participant count of 3. We report the

minimum, median, and maximum participant frequencies over

all Slack conversations in Slackauto.
Questions without answers are not helpful for developers

seeking help online on specific programming tasks. Higher

percentage of questions with no response also undermines

the potential of chat communications as a mining resource

for software engineering tools. Questions with no answer in

Slackmanual was computed by counting the number of disen-

tangled conversations that do not have any answer in response

to the initial question in the conversation. We report the

measure as a percentage of all conversations in Slackmanual.

Higher answer count indicates variety to the pool of solu-

tions, which gives the developers an option to select the answer

most specific to the problem in context. However, identifying

multiple answers is non-trivial as it requires identifying the

responsive sentences and the question to which those sentences

are responding. For computing Answer count, we manually

determined which sentence mapped to a given question and

counted the number of solutions proposed in response to

the initial question in the conversation that explained the

problem. Specifically, we calculated the number of Zagalsky

[50] “Answer” type of artifact in a conversation, and computed

the minimum, median, and maximum number of answers per

conversation in Slackmanual.

Accepted answers are an indicator of good quality in-

formation. Higher percentage of accepted answers provides

confidence to leverage the information for both developers and

software engineering tools. We computed the Questions with
no accepted answer percentage as a ratio of the number of

conversations with no accepted answers, to the total number

of conversations in Slackmanual. Questions are deemed not

to have an accepted answer if they lack an explicit acceptance

indicator.

Unlike Stack Overflow, Slack does not provide an option

to accept a suggested solution in the platform. However, the

correct solutions are often followed by positive emojis, such

as . In addition, there are prevalent textual clues that indicate

that the suggested solution worked, and/or helped in solving

the problem being discussed in the conversation. By manually

analyzing all the natural language text in Slackmanual conver-

sations, we built a list of words/phrases/emojis that participants

used as acceptance indicators. The potential reasons for no

acceptance of answers could be incorrectness/inefficiency of

the suggested solutions, the user’s discretion to acknowledge

and show acceptance, etc.

Embedded code snippets in Slack conversations are sur-

rounded by natural language (NL) text that describes various

code metadata such as the functionality being implemented,

data structures, code complexity and effectiveness, errors and



TABLE III
MEASURES FOR RQ2.

Measure Definition Datasets used
Participant count Number of participants in a conversation Slackauto
Questions with no answer Percentage of conversations that have no answer Slackmanual

Answer count Number of answers for a question in a conversation Slackmanual

Indicators of accepted answers List of emojis and textual clues used in conversations/votes in Q&A posts Slackmanual

Questions with no accepted answer Percentage of conversations with no accepted answer Slackmanual

NL text context per code snippet Number of NL sentences related to a code snippet Slackmanual

Incomplete sentences Percentage of incomplete sentences describing code in a conversation Slackmanual

Noise in document Percentage of conversations containing noise Slackmanual

Knowledge construction process Percentage of conversations in each type of knowledge construction (participatory, crowd) Slackmanual

exceptions. NL text context per code snippet is defined as the
number of sentences used to describe a particular code snippet.
Extracting such sentences or phrases that provide additional
information about a code segment embedded in a forum
is valuable to software engineering tasks such as automatic
comment generation and augmentation of documentation [15],
[53], [56]. Identifying such sentences is not straightforward
due to the informal and intertwined nature of utterances in
conversations. Thus, we manually analyzed all the sentences
in the disentangled conversations to count the number of NL
sentences related to a particular code snippet. We report the
minimum, median, and maximum counts of sentences describ-
ing code per code segment in conversations of Slackmanual.

Developer chat communications are informal by nature.
Therefore, conversations include incomplete sentences, which
potentially makes mining of essential information difficult.
We computed the percentage of Incomplete sentences as the
number of incomplete sentences describing code divided by
the total sentences describing code in a conversation. For this
measure, we are not considering all the incomplete sentences
in a conversation, but only the incomplete sentences that
describe code.

Presence of many types of information makes it more
challenging to disentangle conversations and automatically
classify and extract specific types of information. In addition,
noise in conversations makes mining more challenging. Noise
are sentences that do not provide useful information for mining
e.g., ‘What do you mean?’, ‘Yes.’, ‘Any idea?’. We report the
percentage as the ratio of conversations which contain noise
to the total number of conversations in Slackmanual.

We also examined the approach to constructing knowledge
as the percentage of conversations belonging to each type
of knowledge construction in Slackmanual dataset, per Za-
galsky’s definitions - participatory versus crowd knowledge
construction [50]. In participatory knowledge construction,
answers are contributed by multiple users in the same thread.
Participants enrich each others’ solutions by discussing several
aspects such as the pros and cons of each answer, different
viewpoints, additional information, and examples. In crowd
knowledge construction, participants add solutions individu-
ally, without discussing other solutions, thereby creating a
resource of independent solutions. The knowledge construc-
tion process is computed as the percentage of conversations

belonging to each category of knowledge construction in
Slackmanual dataset.

D. Threats to Validity

Construct validity: As with any study involving manual
human analysis, there might be some cases where the humans
may have incorrectly analyzed the documents. To limit this
threat, we ensured that the authors who analyzed the manual
data set had considerable experience in programming and qual-
itative analysis, and followed a consistent coding procedure
that was piloted in advance. We computed the Cohen’s Kappa
inter-rater agreement metric between the two sets of results,
observing an agreement of more than 0.6 for each measure,
which is considered to be sufficient [48].

Internal validity: In examining the automatically disentan-
gled conversations, we observed occasional errors, the most
egregious of which resulted in orphaned sequences of one or
two messages, which poses a threat to internal validity. We
mitigated this problem in the manual dataset by performing a
validation step, filtering out conversations that we were able
to detect as poorly disentangled. However, the threat may
still exist for some metrics and could have resulted in some
imprecision.

In addition, since we are considering the question and
two most popular answers for Stack Overflow, we may be
missing relevant information in the remaining answers, For
instance, the Bad code snippets measure could be affected by
not including unpopular answers, which could contain a higher
proportion of bad code snippets (as the reason for their lack
of popularity).

External validity: We selected the subjects of our study
from Stack Overflow and Slack, which are the most popular
systems for Q&A forums and chat communities, respectively.
Our study’s results may not transfer to other Q&A forums or
chat platforms. To mitigate this threat, we selected four active
programming language communities for our study. There is a
broad array of topics related to a particular programming lan-
guage; we also used LDA to curate the Slack-Stack Overflow
comparison dataset, thus ensuring that we compared Q&A
posts and conversations about similar topic areas (in case the
two sources were unbalanced in their emphasis on topics).

It is also possible that our smaller datasets for manual
analysis are not representative of the full corpus of Slack
conversations or Stack Overflow posts for a given community.



TABLE IV
STATISTICAL RESULTS FOR RQ1 (SLACK VS. STACK OVERFLOW).

Measure U p-value
Document length 162.0 < 0.001
Code snippet count 90.5 < 0.001
Code snippet length 1549.5 < 0.001
Gist links 3551.5 0.04
Stack Overflow links 335.0 < 0.001
API mentions in code snippets 32815.5 < 0.001
API mentions in text 101361.0 < 0.001
Bad code snippets 19235.5 < 0.001

The size of these datasets was chosen to give us a statistically
representative sample, feasible for our annotators to analyze.
However, scaling to larger datasets for the manual analysis
might lead to different results.

E. Findings

In this section, for each research question, we first report
the quantitative results of our study and then discuss the
implications of those results.

RQ1: How prevalent is the information that has been
successfully mined from Stack Overflow Q&A forums to
support software engineering tools in developer Q&A chats
such as Slack?

For RQ1, we display the results primarily as box plots in
Figure 2. The box plots for Gist links, Stack Overflow links,
and Bad code snippets would be difficult to read because the
median of the metric was 0. Therefore, we present the results
for links as an aggregate in Figure 2d. For Bad code snippets,
despite the medians being 0, the mean for Stack Overflow
(21.2) was more than double the mean for Slack (9.4).

Table IV presents the results of Mann Whitney U tests
comparing our measures using the Slack and Stack Overflow
datasets. All tests are two-tailed, checking the null hypothesis
that the metric values for Slack and Stack Overflow do not
differ significantly. The ‘U’ and ‘p’ columns list the U statistic
and the corrected p-value, respectively. For all measures, we
can reject the null hypothesis (at p < 0.05) of no difference
between the two sources.
Much of the information mined from Stack Overflow is also
available on Slack Q&A channels. Approaches for mining
of Stack Overflow for software maintenance and evolution
tools focus on code snippets and API mentions in code and
text, thus we focus on those results here. For all of these
measures, we found that Slack conversations indeed contain
all of these items — code snippets, and API mentions in code
and text. Thus, chat communities provide availability of all of
this information for mining.

However, most of this information, with the exception of
API mentions, is available in larger quantities on Stack Over-
flow. For instance, Figure 2b indicates that Stack Overflow
posts can have a much larger number of code snippets than
Slack conversations. This suggests that code snippets could be
mined from chat communities, but more conversations than

posts would need to be analyzed to extract similar numbers of
code snippets from Slack. We also observed this as we were
curating our datasets for this study.

As shown in Figure 2c, the median code snippet lengths
from both sources are similar, although the variation of snippet
length is much larger for Stack Overflow code snippets than
those included in Slack conversations. Thus, if one wants to
mine sources where longer snippets might be available, this
data suggests to mine Stack Overflow rather than Slack.

Conversations and posts are the most natural unit of gran-
ularity for representing a document in our analysis of chats
and Q&A forums, respectively. Our data shows that median
conversation length is indeed shorter than median post length
with statistical significance. Recall that we define a Stack
Overflow post as being only the question and the top two
most-voted answers. This shows that Slack conversations are
likely to require more external context or assumptions when
mined.
API mentions are available in larger quantities on Slack Q&A
channels. We did observe statistically significant evidence that
there are more API mentions in Slack conversations in general
than in Stack Overflow documents. While both sources had a
fairly low median occurrence of API mentions in text, Slack
had a higher value and more variance. During our manual
analysis, we also observed that APIs are mentioned often in
Slack conversations, as many conversations centered around
API use. This result suggests that Slack could be used for
mining based on API mentions, similar to Stack Overflow, but
perhaps providing even a richer and more interesting source.
Links are rarely available on both Slack and Stack Overflow
Q&A. Before the study, we anticipated that developers on
Slack would often use links to answer questions, saving time
by pointing askers to an existing information source, such as
Stack Overflow. Alternatively, we expected askers to use Gist
to post code prior to asking questions, in order to benefit from
the clean formatting that enables the display of a larger block
of code. While both of these behaviors did occur, they were
fairly infrequent and occur with a higher frequency on Stack
Overflow than on Slack.

RQ2: Do Slack Q&A chats have characteristics that might
inhibit automatic mining of information to improve software
engineering tools?

Table V and Table VI present the results for RQ2. Table
V shows all the natural language clues (words, phrases,
and emojis) used as accepted answer indicators over all
analyzed Slack communities. The most prevalent indicator
is “Thanks/thank you”, followed by phrases acknowledging
the participant’s help such as “okay”, ”got it”, and other
positive sentiment indicators such as “this worked”, “cool”,
and “great”. Accepted answers were also commonly indicated
using emojis as listed in the table.

Table VI presents the results for the remaining measures.
Results represented as percentages are reported directly, while
other results, computed as simple counts, are reported as



(a) Document length. (b) Snippet count. (c) Snippet length.

(d) URL count. (e) API mentions in snippets. (f) API mentions in text.

Fig. 2. Box plots of RQ1 measurements by community.

TABLE V
INDICATORS OF AN ACCEPTED ANSWER IN Slackmanual DATASET.

Words/Phrases: good find; Thanks for your help; cool; this works; that’s it, thanks a bunch for the swift and adequate pointers; Ah, ya that
works; thx for the info; alright, thx; awesome; that would work; your suggestion is what I landed on; will have a look thank you; checking it out
now thanks; that what i thought; Ok; okay; kk; maybe this is what i am searching for; handy trick; I see, I’ll give it a whirl; thanks for the
insight!; thanks for the quick response @user, that was extremely helpful!; That’s a good idea! ; gotcha; oh, I see; Ah fair; that really helps; ah,
I think this is falling into place; that seems reasonable; Thanks for taking the time to elaborate; Yeah, that did it; why didn’t I try that?

Emojis: ; ; ;

pp

TABLE VI
FINDINGS FOR RQ2. CELL DATA IS OF THE FORM

Min < Median < Max OR A PERCENTAGE.

Measure Datasets Used Results
Participant frequency Slackauto 1 < 2 < 34
Questions with no answer Slackmanual 15.75%

Answer frequency Slackmanual 0 < 1 < 5
Questions with no
accepted answer

Slackmanual 52.25%

NL context (No.
sentences) per snippet

Slackmanual 0 < 2 < 13

Incomplete sentences
describing code

Slackmanual 12.63%

Noise in document Slackmanual 10.5%

Knowledge construction Slackmanual
61.5% crowd;

38.5% participatory

minimum < median < maximum. For example, participant

frequency in Slacktopic ranged from a single participant

in a conversation to 34 participants, with a median of 2

participants. A single participant conversation was one with

no answers. Based on the results reported in Table VI,

approximately 16% of questions go unanswered, while the

maximum number of answers was five for a question. Of the

questions with answers, approximately 52% of questions have

no accepted answer.

Code snippets have from 0 to 13 sentences that contained

some kind of descriptive information about the code snip-

pet. The results also indicate that the number of incomplete

sentences describing code is low, 13%, and similarly the

noise in a conversation can be as high as 11%. We also

observed that 61.5% conversations followed an approach of

crowd knowledge construction, while the rest 38.5% were

participatory [50], where multiple developers collaborate to

settle on an answer to a challenging question. To gain insight

into the semantic information provided in Slack conversations,

we analyzed the kinds of information provided in the conver-

sations. Using the labels defined by Chatterjee et al. [60], we

categorized the information as providing context in terms of

design, efficiency, erroneous nature of the code, explanatory

description of the functionality of the code, or a detail about

the structure of the code. Figure 3 presents the prevalence of

each type of information in our Slackmanual dataset.

The largest proportion of Slack Q&A conversations discuss
software design. We observed that the most prevalent types of

information on Slack is “Design”. This aligns with the fact that

the main purpose of developer Q&A chats is to ask and answer

questions about alternatives for a particular task, specific to

using a particular language or technology. Often the focal point

of conversations are APIs, mentions to which we observed

occur often on Slack Q&A channels, where a developer is

asking experts on the channel for suggestions on API or proper

idioms for API usage. Conversations that were “Explanatory”

often involved a developer explaining, in long form, the

lineage of a particular decision in the language or technology,

or contrasting the capabilities of different languages, while

“Structure” conversations often focused around a specific data

structure (e.g., representing a dictionary in Elm) or control



Fig. 3. Percentage conversations of each type in Slackmanual

structure (e.g., how code can be split in multiple files in
Clojure).

Accepted answers are available in chat conversations, but
require more effort to discern. The existence of an accepted
answer, selected by the question asker using a subsequent re-
sponse, present the clearest indication of a Slack conversation’s
quality. There is a significant proportion of accepted answers
available in Slack, based on Table VI. The median number
of answers is only one, which suggests that there are expert
people on the channels, such that only one answer is given and
it is accepted. One might think it is then easy to automatically
identify the answer to a given question, especially with the use
of emojis and the word/phrase indicators of accepted answers.
However, an automatic mining tool needs to automatically
identify the sentence in a conversation that is an answer to
a question and which question it is answering. This implies
that NLP techniques and sentiment analysis will most likely
be needed to automatically identify and match answers with
questions. Due to the speed of Slack conversations, we ob-
served cases where the question asker accepts an answer, only
to come back a few minutes later to declare that the answer
did not help. Therefore, mining techniques have to be able to
track the conversation to the final accepted answer.

Participatory conversations provide additional value but re-
quire deeper analysis of conversational context. Nearly 40%
of conversations on Slack Q&A channels were participatory,
with multiple individuals working together to produce an
answer to the initial question. These conversations present an
additional mining challenge, as utterances form a complex
dependence graph, as answers are contributed and debated
concurrently. However, the discussion also holds numerous
interesting insights about specific technologies or APIs, as
the developers are continually criticizing and improving upon
existing suggestions.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we reported on an exploratory study to
investigate the potential of developer Q&A chats in Slack
as a mining resource for software maintenance and evolution
tools. We found that Q&A chats provide, in lesser quantities,
the same information as can be found in Q&A posts on
Stack Overflow. However, Q&A chats generally provide more
information on API mentions than do Q&A posts.

At first sight, one might believe that the informal nature
and interleaved conversations of Slack would make it difficult
to mine automatically. There is also no pre-defined notion of
conversation; each could span from two messages to hundreds.
However, our work to implement this study required us to
disentangle conversations. We found that adapting the tech-
nique and training sets can indeed achieve high accuracy in
disentangling the Slack conversations.

The availability of complete sentences and indicators of
accepted answers suggest that it is feasible to apply automated
mining approaches to chat conversations from Slack. However,
the lack of inbuilt formal Q&A mechanisms on Slack does re-
sult in some potential mining challenges. Notably, identifying
an accepted answer is non-trivial and requires both identifying
the responsive sentence(s) and the question to which those
sentences are responsive. Part of this challenge stems from the
free-form style of chat conversations, in which a question may
be followed by a series of clarification or follow-up questions,
and contextual clues must be followed to determine which
question is ultimately being answered.

Our study reveals several new opportunities in mining chats.
While there were few explicit links to Stack Overflow and
GitHub Gists in our dataset, we believe that information is
often duplicated on these platforms, and that answers on one
platform can be used to complement the other. Future work
includes further investigating this linking between public Slack
channels to Stack Overflow.

Participatory Q&A conversations are available on Slack on
large quantities. These conversations often provide interesting
insights about various technologies and their use, incorporating
various design choices. While such conversations have also
been observed on mailing lists, on Slack, the availability
and speed of such conversations is much higher. Because of
this, as future work, we intend to investigate mining such
conversations for software development insights.

During our study, we also observed that developers use
Slack to share opinions on best practices, APIs, or tools (e.g.,
API X has better design or usability than API Y ). Stack
Overflow explicitly forbids the use of opinions on its site.
However, it is clear that receiving opinions is valuable to
software developers. The availability of this information in
chat may lead to new mining opportunities for software tools.
As our future work, we plan to investigate the mining of
opinion statements available in public Slack channels.

ACKNOWLEDGMENT
We acknowledge the support of the National Science Foundation under

grant no. 1812968, 1813253 and the DARPA MUSE program under Air Force
Research Lab contract no. FA8750-16-2-0288.



REFERENCES

[1] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,” in
2012 20th IEEE International Conference on Program Comprehension
(ICPC), June 2012, pp. 63–72.

[2] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who
is going to mentor newcomers in open source projects?” in
Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 44:1–44:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393647

[3] H. Jiang, J. Zhang, Z. Ren, and T. Zhang, “An unsupervised approach
for discovering relevant tutorial fragments for apis,” in Proceedings of
the 39th International Conference on Software Engineering, ser. ICSE
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 38–48. [Online].
Available: https://doi.org/10.1109/ICSE.2017.12

[4] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering information
explaining api types using text classification,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 869–879.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818859

[5] L. B. L. de Souza, E. C. Campos, and M. d. A. Maia, “Ranking crowd
knowledge to assist software development,” in Proc. 22nd Int’l Conf. on
Program Comprehension, May 2014, pp. 72–82.

[6] M. Rahman, S. Yeasmin, and C. Roy, “Towards a context-aware IDE-
based meta search engine for recommendation about programming
errors and exceptions,” in Proc. IEEE Conf. on Software Maintenance,
Reengineering, and Reverse Engineering, Feb. 2014, pp. 194–203.

[7] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommendation
to support problem solving in software development,” in Proc. 3rd
Int’l Wksp. on Recommendation Systems for Software Engineering, May
2012, pp. 85–89.

[8] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to turn the IDE into a self-confident program-
ming prompter,” in Proc. 11th Working Conf. on Mining Software
Repositories, May 2014, pp. 102–111.

[9] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing Stack Overflow
for the IDE,” in Proc. 3rd Int’l Wksp. on Recommendation Systems for
Software Engineering, May 2012, pp. 26–30.

[10] V. Amintabar, A. Heydarnoori, and M. Ghafari, “ExceptionTracer: A
solution recommender for exceptions in an integrated development en-
vironment,” in Proc. IEEE 23rd Int’l Conf. on Program Comprehension,
May 2015, pp. 299–302.

[11] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions — incorporating relational and categorical knowledge into
word embedding,” in Proc. IEEE 23rd Int’l Conf. on Software Analysis,
Evolution, and Reengineering, Mar. 2016, pp. 338–348.

[12] M. Rahman, C. Roy, and D. Lo, “RACK: Automatic API recommenda-
tion using crowdsourced knowledge,” in Proc. IEEE 23rd Int’l Conf. on
Software Analysis, Evolution, and Reengineering, Mar. 2016, pp. 349–
359.

[13] W. Wang and M. Godfrey, “Detecting API usage obstacles: A study of
iOS and Android developer questions,” in Proc. 10th Working Conf. on
Mining Software Repositories, May 2013, pp. 61–64.

[14] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining question and an-
swer sites for automatic comment generation,” in Proc. 28th IEEE/ACM
Int’l Conf. on Automated Software Engineering, 2013, pp. 562–567.

[15] M. M. Rahman, C. K. Roy, and I. Keivanloo, “Recommending insightful
comments for source code using crowdsourced knowledge,” in Proc.
IEEE 15th Int’l Working Conf. on Source Code Analysis and Manipu-
lation, Sep. 2015, pp. 81–90.

[16] Y. Tian, D. Lo, and J. Lawall, “Automated construction of a software-
specific word similarity database,” in Proc. IEEE Conf. on Software
Maintenance, Reengineering, and Reverse Engineering, Feb. 2014, pp.
44–53.

[17] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in Proc. 39th
Int’l Conf. on Software Engineering, 2017, pp. 450–461.

[18] T. S. P. Statista, “https://www.statista.com/statistics/652779/
worldwide-slack-users-total-vs-paid/,” 2018.

[19] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of developer
irc meetings in open source projects,” in 2009 IEEE International
Conference on Software Maintenance, Sept 2009, pp. 147–156.

[20] L. Yu, S. Ramaswamy, A. Mishra, and D. Mishra, Communications in
Global Software Development: An Empirical Study Using GTK+ OSS
Repository, 2011, pp. 218–227.

[21] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers
are slacking off: Understanding how software teams use Slack,” in Proc.
19th ACM Conf. on Computer Supported Cooperative Work and Social
Computing Companion, 2016.

[22] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “How software developers
mitigate collaboration friction with chatbots,” in Proc. 20th ACM Conf.
on Computer-Supported Cooperative Work and Social Computing, 2017.

[23] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge, “Rationale in
development chat messages: An exploratory study,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR),
May 2017, pp. 436–446.

[24] S. A. Chowdhury and A. Hindle, “Mining StackOverflow to filter out
off-topic IRC discussion,” in Proc. IEEE/ACM 12th Working Conf. on
Mining Software Repositories, May 2015, pp. 422–425.

[25] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol,
“How developers’ collaborations identified from different sources tell
us about code changes,” in 2014 IEEE International Conference on
Software Maintenance and Evolution, Sept 2014, pp. 251–260.

[26] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How
do developers discuss rationale?” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), vol. 00, March 2018, pp. 357–369. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SANER.2018.8330223

[27] M.-A. Storey, A. Zagalsky, F. F. Filho, L. Singer, and D. M. German,
“How social and communication channels shape and challenge a partici-
patory culture in software development,” IEEE Transactions on Software
Engineering, vol. 43, no. 2, 2017.

[28] E. Paikari and A. van der Hoek, “A framework for understanding
chatbots and their future,” in Proceedings of the 11th International
Workshop on Cooperative and Human Aspects of Software Engineering,
ser. CHASE ’18. New York, NY, USA: ACM, 2018, pp. 13–
16. [Online]. Available: http://doi.acm.org.udel.idm.oclc.org/10.1145/
3195836.3195859

[29] R. Alkadhi, J. O. Johanssen, E. Guzman, and B. Bruegge, “React: An
approach for capturing rationale in chat messages,” in 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), Nov 2017, pp. 175–180.

[30] C. Greco, T. Haden, and K. Damevski, “StackInTheFlow: Behavior-
driven recommendation system for Stack Overflow posts,” in Proceed-
ings of the International Conference on Software Engineering, 2018.

[31] C. Treude and M. Robillard, “Augmenting API documentation with
insights from Stack Overflow,” in Proc. IEEE/ACM 38th Int’l Conf. on
Software Engineering, May 2016, pp. 392–403.

[32] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 643–652.

[33] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching Documents with
Examples: A Corpus Mining Approach,” ACM Trans. Inf. Syst., vol. 31,
no. 1, pp. 1:1–1:27, Jan. 2013.

[34] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced
FAQs into API documentation,” in Companion Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 456–459.

[35] C. Nagy and A. Cleve, “Mining Stack Overflow for discovering error
patterns in SQL queries,” in Proc. IEEE Int’l Conf. on Software
Maintenance and Evolution, Sep. 2015, pp. 516–520.

[36] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
An analysis of stack overflow code snippets,” in Proc. IEEE/ACM 13th
Working Conf. on Mining Software Repositories, May 2016, pp. 391–
401.

[37] A. S. Badashian, A. Hindle, and E. Stroulia, “Crowdsourced bug
triaging,” in Proc. IEEE Int’l Conf. on Software Maintenance and
Evolution, Sep. 2015, pp. 506–510.

[38] X. Zhao, Z. Xing, M. A. Kabir, N. Sawada, J. Li, and S. W. Lin,
“HDSKG: Harvesting domain specific knowledge graph from content
of webpages,” in Proc. IEEE 24th Int’l Conf. on Software Analysis,
Evolution and Reengineering, Feb. 2017, pp. 56–67.

[39] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “An empirical
study on Stack Overflow using topic analysis,” in Proceedings of the
12th Working Conference on Mining Software Repositories, 2015, pp.
446–449.



[40] I. K. Villanes, S. M. Ascate, J. Gomes, and A. C. Dias-Neto, “What are
software engineers asking about Android testing on Stack Overflow?” in
Proceedings of the 31st Brazilian Symposium on Software Engineering,
2017, pp. 104–113.

[41] S. Morgan, “How are programming questions from women received on
Stack Overflow? a case study of peer parity,” in Proceedings Companion
of the 2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity,
2017, pp. 39–41.

[42] D. Ford, J. Smith, P. Guo, and C. Parnin, “Paradise unplugged:
Identifying barriers for female participation on Stack Overflow,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 846–857.

[43] N. Novielli, F. Calefato, and F. Lanubile, “Towards discovering the role
of emotions in Stack Overflow,” in Proceedings of the 6th International
Workshop on Social Software Engineering, 2014, pp. 33–36.

[44] ——, “The challenges of sentiment detection in the social programmer
ecosystem,” in Proceedings of the 7th International Workshop on Social
Software Engineering, 2015, pp. 33–40.

[45] S. Exchange, “Stack exchange data dump,” https://archive.org/details/
stackexchange, 2017, [Online; accessed 2017-08-27].

[46] D. C. Uthus and D. W. Aha, “Multiparticipant chat analysis: A survey,”
Artificial Intelligence, vol. 199, pp. 106–121, 2013.

[47] M. Elsner and E. Charniak, “You talking to me? a corpus and algorithm
for conversation disentanglement,” in Proc. Association of Computa-
tional Linguistics: Human Language Technology, 2008, pp. 834–842.

[48] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[49] M. A. Bujang and N. Baharum, “A simplified guide to determination
of sample size requirements for estimating the value of intraclass
correlation coefficient: a review.” Archives of Orofacial Science, vol. 12,
no. 1, 2017.

[50] A. Zagalsky, D. M. German, M.-A. Storey, C. G. Teshima, and G. Poo-
Caamao, “How the R community creates and curates knowledge: An
extended study of Stack Overflow and mailing lists,” Empirical Software
Engineering, 2017.

[51] L. Richardson, “Beautiful soup,” https://www.crummy.com/software/
BeautifulSoup/, 2017, [Online; accessed 2017-05-07].

[52] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable code:
An analysis of stack overflow code snippets,” in Proceedings of the
13th International Conference on Mining Software Repositories, ser.
MSR ’16. New York, NY, USA: ACM, 2016, pp. 391–402. [Online].
Available: http://doi.acm.org/10.1145/2901739.2901767

[53] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and
answer sites for automatic comment generation,” in Proceedings of
the 28th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 562–567. [Online]. Available: https://doi.org/10.1109/ASE.2013.
6693113

[54] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q a
discussions – incorporating relational and categorical knowledge into
word embedding,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
March 2016, pp. 338–348.

[55] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api recom-
mendation using crowdsourced knowledge,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, March 2016, pp. 349–359.

[56] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), May 2016, pp. 392–403.

[57] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing q amp;a sites (t),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), Nov 2015, pp. 307–318.

[58] F. Chen and S. Kim, “Crowd debugging,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 320–332.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786819

[59] S. Bird, E. Loper, and E. Klein, Natural Language Processing with
Python. O’Reilly Media Inc., 2009.

[60] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and
N. A. Kraft, “What information about code snippets is available in dif-
ferent software-related documents? an exploratory study,” in Proc. 24th

IEEE Int’l Conf. on Software Analysis, Evolution, and Reengineering,
Feb. 2017.


