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Abstract—Integrating renewable energy sources (RESs) into
power grid increases complexity and non-linearity in power
system input profiles. Receding horizon control (RHC) approach
has the potential to mitigate the complexity of power system
optimization problems by reducing the future prediction effects.
However, designing the horizon window size is being a classical
issue of RHC optimization. In this paper, we study the effect
of horizon size on an energy scheduling optimization problem
with the integration of RESs. We conduct two different experi-
ments and consider both single (only photovoltaic) and multiple
(photovoltaic and wind) RESs, and show the performance of
the RHC approach with different horizon windows. We validate
the performance of the RHC approach with tuned horizon
size comparing with our reference mixed integer programming
approach. With increasing penetration of renewable energy
resources, a longer horizon window may be needed to improve
the optimization performance.

Index Terms—Receding horizon control, horizon window size,
renewable energy sources, real-time operation, and mixed integer
linear programming.

I. INTRODUCTION

Power share of renewable energy sources (RESs) in global

electricity generation is increasing day by day due to their

environmental and economical features [1], [2]. The integra-

tion of RESs, energy storage system, and other distributed

energy resources (DERs) help the modern power system to

spread the electricity all over the world specially in remote

areas [3]. These RESs are intermittent in nature which requires

special attention in terms of scheduling the generation units

efficiently to guarantee a reliable and economic operation [4],

[5]. In last decade, a significant improvement is observed in

day-ahead optimization of the DERs using offline optimization

techniques. Due to the uncertain behavior of the RESs and

variable intra-day forecast data, real-time energy optimization

of the DERs attracts serious attention in order to have a

cost-effective solution of the power grid. Therefore, the real-

time optimization with the presence of DERs is still a great

challenge for the modern power system, especially in cases

with the high penetration of RESs.

In the past decades, most of the energy optimization prob-

lems with the DERs are solved considering offline optimiza-

tion approaches. In [6], a smart energy management system is

developed using a matrix real-coded genetic algorithm (GA)

to optimally coordinate the microgrid generation units so that

the operational costs of microgrid can be minimized. In [7], a

conditional value-at-risk optimization technique is proposed to

solve an optimal energy storage management problem under

risk consideration and transaction costs of trading energy

with the power grid. A GA based methodology for optimal

sizing and economic analysis of the energy storage system is

proposed in [8]. In [9], a deterministic superstructure mixed

integer linear programming (MILP) approach is proposed for

distributed energy system planning in residential microgrid.

A combined sizing and energy management methodology,

formulated as a leader-follower problem are presented in

[10]. The leader problem determines the optimal size of

the microgrid components using a genetic algorithm and the

follower problem solves the unit commitment problem using

the MILP. These offline optimization techniques require the

exact information of the entire optimization time frame and

can not be applied for online/real-time optimization. In this

case, the performance of the power grid operation may degrade

if any expected things happen during the optimization time

period.

Online optimization approaches are also proposed to inves-

tigate the real-time operation and optimization of the power

grid. In [11], an energy optimization scheme is proposed where

a multi-objective energy optimization problem is solved using

a GA approach named NSGA-II to minimize the generation

cost and to minimize the battery life loss. In [12], the au-

thors proposed a decentralized, myopic, techno-economical,

charging management method for electric vehicles connected

to distribution grids. Myopic approach is also investigated

for solving the real-time energy storage management problem

in [13]. In the myopic approach, the optimization problems

are solved based on current hour input information without

considering the knowledge of future events which may fail to

provide long-term cost-effective solution for the power grids.

Recent years, receding horizon control (RHC) based ap-

proaches are also proposed in the field of power system

optimization and stability control which has the potential to

reduce the effect of prediction errors during the optimization

process [14], [15]. This approach is also commonly known

as model predictive control (MPC) [16]. In [17], a two layer

model predictive control method is proposed to minimize the

running cost and to improve the robustness against uncertain-

ties resulting from load demand and photovoltaic (PV) power

in the islanded microgrid. An MPC based online optimal



operation algorithm with a feedback correction to compen-

sate for prediction error is proposed in [18]. A MPC-based

home energy management system (HEMS) control strategy

is proposed for a residential microgrid where a MPC-based

framework is used to incorporate both forecasts and newly

updated information for the HEMS [19]. The RHC based

optimization techniques are also investigated in [20], [21].

The optimal horizon size of the RHC approach depends on

the input profiles of the model. The RHC approach with a

fixed horizon size may not suitable for all the non-linear

input profiles and the performance of the RHC approach may

degrade due to this issue.

Motivated by the above mentioned literature, in this paper,

we investigate the effect of horizon size on the RHC approach

for solving energy scheduling problem with the presence of

RESs. We consider a microgrid model and formulate the

energy optimization problem with the RHC principle. Through

the experiments, we observe that the RHC approach with

the fixed horizon window may not be suitable for all input

patterns and the errors can be mitigated by tuning the horizon

size. We also show the effect of increasing penetration of

RESs on the horizon window size of the RHC technique. We

conduct two different experiments with single and multiple

RES environments, and validate the performance of the RHC

technique for different horizon window sizes comparing with

the reference MILP approach. The results show that the

increasing penetration of RESs requires a longer horizon

window, and the RHC approach can achieve the optimal

performance if the horizon size can be tuned based on the

input information.

The rest of this paper is structured as follows. In Section

II, the model description and the mathematical formulations

are discussed. In Section III, the RHC approach and the

reference MILP technique are demonstrated. Simulation setup

and results analysis are carried out in Section IV. Finally, the

conclusions are drawn in Section V.

II. MODEL DESCRIPTION AND MATHEMATICAL

FORMULATIONS

In this paper, we consider a microgrid model with the

DERs. In the microgrid model, the generation unit consists of

RESs, grid level battery and the grid. A residential community

load demand is considered as a demand of the microgrid.

The microgrid controller receives real-time information of the

generation units and load demand, and generates real-time

microgrid operation policy considering the intra-day forecast

based on the day-ahead forecasted profiles of the generation

units and load demands. The goal of the controller is to

schedule the generation units efficiently so that the microgrid

daily operational cost can be minimized with satisfying the

operational constraints.

At any time t, the real-time and intra-day forecast data of

the microgrid exogenous information can be expressed as,

St = (Rt, It, Ît+1, ..., Ît+H). (1)

where, Rt represents the available energy in the battery

at time t. Here, It is a set of exogenous information as

It = (Wt, Dt, Pt), where Wt, Dt, and Pt represent the total

available power from the RESs in kW , the load demand in

kW , and the grid price in cents/kWh at time t, respectively.

In equation (1), Î refers as the predicted future intra-day

forecast information at time t. For scheduling the microgrid

generation units smartly, the controller requires intra-day fore-

cast data for a specific predictive horizon window (Ît+1:t+H ).

Here, H represents the horizon window size.

The decision vector of the microgrid can be defined as,

at = {agdt , ardt , awd
t , awg

t , awr
t , agrt }, at ≥ 0. (2)

where, the decision vector at contains the decision variables

which represent the amount of power transferred from one unit

to another unit at time t. In the decision vector, the superscripts

g, r, w, and d represent the grid, battery, RESs and demand,

respectively. For example, the decision variable awd
t indicates

the total amount power allocated from the RESs to fulfill the

demand by the controller.

The objective of this microgrid energy optimization problem

is to minimize the daily operational cost of the microgrid

considering the microgrid operational constraints. If the op-

erational cost of the microgrid at time t can be defined as

C(t, St), then the objective function can be written as,

F = min
at

E

[ T∑
t=1

C(t, St)

]
. (3)

where, T represents the final time step of the time frame

{1, 2Δt, ...., T − Δt, T} where Δt = 1. The cost function

of the microgrid at time t can be defined as,

C(t) = Pt(a
gr
t + agdt ). (4)

where, the battery charging cost and the cost of buying energy

from the grid to fulfill the demand are considered.

The objective function subjects to the microgrid operational

constraints as,

agdt + ardt + awd
t = Dt, (5)

awd
t + awg

t + awr
t ≤ Wt, (6)

−1 ≤ (awr
t + agrt )

θ
− ardt

θ
≤ 1, (7)

SOCmin ≤ SOCt ≤ SOCmax, (8)

where, the constraint (5) is defined to balance the microgrid

generation side and load demand side. The constraint (6) limits

the transferred power from the RES unit to other units within

the generation of the RESs. The constraint (7) determines the

battery mode of operation where θ represents the maximum

charging/discharging limit of the battery in kW . The integer

output of this constraints should be within the range as

{−1, 0, 1} which indicates the discharging, idle, and charging

modes of the battery, respectively. The constraint (8) keeps the



state of charge (SOC) of the battery within a certain range at

any time t. In this paper, it is assumed that the battery charges/

discharges at its maximum charging/discharging limit.

The goal is to schedule the generation units efficiently

at every time step considering the available future intra-day

forecast information as

at(St) = argmin
ai

t+H∑
i=t

C(i, St). (9)

so that the total daily operational cost of the microgrid can be

minimized.

The battery transition function can be formulated as,

SOCt+1 =
1

Rcap
(Rt + (awr

t + agrt )− ardt ), (10)

Rt+1 = SOCt+1Rcap, (11)

where, Rt+1 and Rcap represent the available battery energy

at time (t+ 1) and the capacity of the battery, respectively.

III. RECEDING HORIZON BASED CONTROL APPROACH

AND REFERENCE TECHNIQUE

A. Receding Horizon Based Control Approach

The RHC is an online optimization approach which solves

the optimization problem repeatedly over a sliding time hori-

zon with the goal to achieve the optimization policy of

the current time step considering the future outcome of the

forecast errors, disturbances, and constraints [22]. The working

principle of the RHC approach is illustrated in Figure 1.

FuturePast

Control output 
at time t

t t+1 t+H
Predictive Horizon 

Optimization at Time Step t

Predicted 
Future Output

0

Figure 1. Real-time decision making process of the receding horizon based
control approach.

In the figure, the x-axis represents the time scale. The

left and right y-axis represent the input and the output,

respectively. Here, it is assumed that the output is a control

signal which is an integer number with the possible values

0, 1, and 2. According to the figure, at any time t, the

RHC approach collects the real-time input information and

the predicted future forecast information for the time frame

t+1 : t+H . Note, the horizon size H plays an important role

for solving the optimization problem with the RHC principle.

Please refer to Section IV for the description of the tuning

horizon size H . After receiving the real-time data and the

forecasted data, the RHC approach solves the optimization

problem (equation (9)) and outputs the optimization policy for

the current time step. The RHC approach can also predict the

future control outputs as shown in the figure with the brown

stairs curve. However the RHC approach only execute the

control output for the current time step, because the future

predicted outputs are subjected to change based on the future

predicted forecast. After solving the optimization problem for

the current time step, the predictive horizon window shifts

to next time step, collects the real-time and forecasted data

similarly, and solves the optimization problem repeatedly for

the whole time frame. This procedure continues until the time

frame ends.

B. Reference Technique

In this paper, we use MILP approach as a reference ap-

proach to evaluate the performance of the RHC approach. The

MILP approach is a linear optimization technique which can

solve the constrained optimization problem with both integer

and continuous variables [23]. The MILP approach is widely

used in the existing literature for generating optimal solution

through offline optimization process which requires the true

input information over the optimization horizon. Note, the

MILP approach is suitable for offline optimization problems

and applying this approach online can not guarantee the

optimality. For instance, to generate the optimal solution of

our microgrid energy optimization problem using the MILP

approach, we assume that the operator knows the future input

profiles of the microgrid and generate the optimal solution

of the problem. Simulation parameters and the experimental

results are presented in Section IV.

IV. SIMULATION SETUP AND RESULTS ANALYSIS

In this section, we present the parameter settings of the

microgrid and report the results analysis based on numerical

experiments. We present two different experiences with single

RES and multiple RESs, and provide the results to illustrate

the effect on the optimization problem. All the experiments are

conducted using the MATLAB R2018b environment. We use

MILP toolbox provided by the MATLAB software for solving

the optimization problem using the MILP approach.

Table I
BATTERY INFORMATION

Battery Lead-Acid
Capacity 200 kWh

Charging and discharging efficiency (α) 80%
Maximum charging and discharging rates (θmax) 50 kWh/Δt

Battery charging/discharging limit (θ = α ∗ θmax) 40 kWh/Δt

The battery parameter settings of the microgrid is presented

in Table I where the charging and discharging rate of the



battery (θ) is determined using the charging and discharging

efficiency (α) of the battery. The residential microgrid load

demand and electricity price profiles are presented in Figure

2. The residential load profile of the city of Minneapolis in

Minnesota are collected from [24]. The grid price profile in

cents per kWh is taken from [25].
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Figure 2. (A) Residential load-demand of the city of Minneapolis in
Minnesota, (B) Grid electricity price.

The performance of the optimization techniques are evalu-

ated using the optimization error (%) as,

Error =
|F − F ∗|

F ∗ × 100%. (12)

where, F ∗ and F are the optimal total operational cost of

the microgrid and the total operational cost of the microgrid

obtained from a specific optimization approach, respectively.

Note, the value of F ∗ obtained from the MILP approach.

A. Experiment 1: Integration of single RES

In this experiment, we use only photovoltaic (PV) system

as a RES with the capacity of 100kW. The outputs of the PV

system are collected from the system advisory model (SAM)

by National Renewable Energy Laboratory for the city of

Minneapolis, MN [26]. The PV power outputs are presented

in Figure 3.
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Figure 3. The PV output power where the maximum capacity of the PV
output power is 100kW.
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Figure 4. The effect of horizon size in terms of optimization errors.

With the given parameter settings, we analyse the effect of

the horizon size in the RHC approach in terms of optimization

error. The result of optimization error over the horizon size is

presented in Figure 4. The result shows that tuning the horizon

size, the performance of the RHC approach can be improved.

According to Figure 4, the RHC approach incurs more than

20% of optimization error when the prediction window size is

H = 0. The performance of the RHC approach improves with

the increment of the horizon size, and the result shows that

at H = 9, the RHC approach achieves the optimal solution.

So, for this problem, the optimal horizon size is H = 9. It

is better not to choose H > 9 because it may increase the

computation time and also if any unexpected change happened

in the intra-day forecast, the performance of the RHC approach

may degrade.

Table II
PERFORMANCE COMPARISON OF THE OPTIMIZATION TECHNIQUES.

Approach Operation Error
Cost ($) (%)

MILP 28.34 -
RHC approach 28.34 0

with horizon size H = 9
RHC approach 29.84 5.29

with horizon size H = 5
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Figure 5. The operational profile of the microgrid to fulfill the demand and
the battery SOC profile.

The results in terms of operational cost of the microgrid and

optimization errors are presented in Table II. Note, we consider

the result of the MILP approach as an optimal solution. The

results show that the RHC approach can achieve the optimal

solution with the horizon size H = 9. We also report the

results of RHC approach with a fixed horizon size (H = 5)



where we observe the optimization error as 5.29%. According

to the result analysis, we can observe that the RHC approach

has the potential to achieve the optimal solution by tuning

the horizon size with the help of intra-day future forecast

information.

In addition, we also present the microgrid operational profile

to fulfill the load demands and the battery SOC profile of

the day. The results are illustrated in Figure 5. The results

show that the load demands are fulfilled mostly by the battery

and the grid at the beginning time steps of the day. At the

middle time steps of the day, the microgrid utilizes the output

power of the RES (PV) to fulfill the demand and to charge

the battery so that in future time steps when the PV output

power won’t be available, the battery can supply the energy,

and minimize the operational costs. The battery and the grid

share the load demand mostly at the time steps of the end

of the day because of low PV output powers. The battery

SOC profile is also presented in Figure 5, where we can see

that when the PV outputs are available in the microgrid, the

microgrid charges the battery so that the battery energy can be

utilized in future time steps to minimize the total operational

cost of the microgrid.

B. Experiment 2: Integration of multiple RESs

In this case study, we consider multiple RESs in the RES

unit where the output from the PV panels and wind turbines

(WTs) are combined to represent the total power generation

from the RES unit. The output power of the PV panels and

WT are collected using the SAM software where the capacity

of each RES is assumed as 50kW. The power output profiles

of the RESs are presented in Figure 6.
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Figure 6. The total power output from the RESs where the maximum capacity
of the output power is 100kW.

Due to the addition of WT output power, the non-linearity

of the RES power output profile is increased which actually

affects the horizon window size of the RHC approach in terms

of percentage of optimization error. We observe that the RHC

approach with horizon size H = 9 incurs optimization error as

4.74%. Therefore, the horizon size of the RHC approach needs

to be tuned so that the RHC approach can achieve the optimal

policy. The effect of horizon size in terms of optimization

errors for multiple RESs is illustrated in Figure 7. The result

shows that the horizon size of the RHC approach needs to

be increased to get reach to the optimal solution. We observe

that the RHC approach can achieve the optimal solution with

the horizon size H = 17. So, the horizon size H = 17 is the

optimal horizon size for this experiment.
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Figure 7. The effect of horizon size in terms of optimization errors for
multiple RESs.

Table III
PERFORMANCE COMPARISON OF THE OPTIMIZATION TECHNIQUES

Approach Operation Error
Cost ($) (%)

MILP 13.28 -
RHC approach 13.28 0

with horizon size H = 17
RHC approach 13.36 0.60

with horizon size H = 12
RHC approach 13.91 4.74

with horizon size H = 9

In this experiment, we also present the performance com-

parison which is summarized in Table III. The RHC approach

with the horizon size H = 17 achieves the optimal solution

where the RHC technique with the horizon size H < 17 incurs

some errors.

Table IV
ALLOCATION OF MICROGRID ENERGY RESOURCES FOR FULFILLING THE

LOAD DEMAND OF THE TOTAL TIME FRAME

Approach
Percentage Share

RESs Battery Grid
RHC approach 51% 31% 18%

with horizon size H = 17
RHC approach 57% 25% 18%

with horizon size H = 9
RHC approach 49% 33% 18%

with horizon size H = 12

Moreover, the energy allocation of the microgrid generation

units for fulfilling the demand using the RHC approach with

different horizon window sizes are summarized in Table IV.

The results show that all three approaches buy 18% of the total

load demand of the day from the grid. The RHC approach

with fixed horizon H = 9 allocates highest 57% of total load

demand of the day to the RES unit. The RHC approach with

fixed horizon H = 12 utilizes the battery energy to fulfill

33% of the total load demand of the day which is the highest

battery utilization rate compared to other two approaches. The

RHC approach with the horizon size H = 17 allocates 6%



less power to the RES unit to fulfill the demand compared

to the RHC approach with fixed horizon H = 9, and utilizes

this amount of energy to charge the battery so that the future

cost of the energy can be minimized. In this experiment, the

prediction horizon window size H = 17 helps to schedule the

microgrid generation units efficiently considering the future

outcome of the current operation decision and to minimize

the total operational cost. According to the results, we can

conclude that the RHC approach is a powerful optimization

technique which can be strengthened by tuning the horizon

size to achieve the optimal policy at every time step.

V. CONCLUSION

In this paper, we investigate the effect of horizon window

size on the RHC technique for solving energy scheduling

problem with the presence of RESs. We formulate the energy

optimization problem of the microgrid with the RHC principle.

We conduct two different experiments with single and multiple

RESs in the microgrid RES unit. Through the numerical

results, we show that the optimization performance of the

RHC technique depends on the horizon window size, and the

microgrid optimal operation can be achieved by tuning the

horizon size. We also report the effect of increasing penetration

of RESs on the horizon window size of the RHC technique.

The performance of the RHC approach with different hori-

zon sizes is validated comparing with the reference MILP

approach. During the experiment, we observe that the horizon

window size of the RHC approach needs to be updated with

the addition of RESs in the microgrid to guarantee the optimal

performance.
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