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Abstract—Integrating renewable energy sources (RESs) into
power grid increases complexity and non-linearity in power
system input profiles. Receding horizon control (RHC) approach
has the potential to mitigate the complexity of power system
optimization problems by reducing the future prediction effects.
However, designing the horizon window size is being a classical
issue of RHC optimization. In this paper, we study the effect
of horizon size on an energy scheduling optimization problem
with the integration of RESs. We conduct two different experi-
ments and consider both single (only photovoltaic) and multiple
(photovoltaic and wind) RESs, and show the performance of
the RHC approach with different horizon windows. We validate
the performance of the RHC approach with tuned horizon
size comparing with our reference mixed integer programming
approach. With increasing penetration of renewable energy
resources, a longer horizon window may be needed to improve
the optimization performance.

Index Terms—Receding horizon control, horizon window size,
renewable energy sources, real-time operation, and mixed integer
linear programming.

I. INTRODUCTION

Power share of renewable energy sources (RESs) in global
electricity generation is increasing day by day due to their
environmental and economical features [1], [2]. The integra-
tion of RESs, energy storage system, and other distributed
energy resources (DERs) help the modern power system to
spread the electricity all over the world specially in remote
areas [3]. These RESs are intermittent in nature which requires
special attention in terms of scheduling the generation units
efficiently to guarantee a reliable and economic operation [4],
[5]. In last decade, a significant improvement is observed in
day-ahead optimization of the DERs using offline optimization
techniques. Due to the uncertain behavior of the RESs and
variable intra-day forecast data, real-time energy optimization
of the DERs attracts serious attention in order to have a
cost-effective solution of the power grid. Therefore, the real-
time optimization with the presence of DERs is still a great
challenge for the modern power system, especially in cases
with the high penetration of RESs.

In the past decades, most of the energy optimization prob-
lems with the DERs are solved considering offline optimiza-
tion approaches. In [6], a smart energy management system is
developed using a matrix real-coded genetic algorithm (GA)
to optimally coordinate the microgrid generation units so that
the operational costs of microgrid can be minimized. In [7], a

conditional value-at-risk optimization technique is proposed to
solve an optimal energy storage management problem under
risk consideration and transaction costs of trading energy
with the power grid. A GA based methodology for optimal
sizing and economic analysis of the energy storage system is
proposed in [8]. In [9], a deterministic superstructure mixed
integer linear programming (MILP) approach is proposed for
distributed energy system planning in residential microgrid.
A combined sizing and energy management methodology,
formulated as a leader-follower problem are presented in
[10]. The leader problem determines the optimal size of
the microgrid components using a genetic algorithm and the
follower problem solves the unit commitment problem using
the MILP. These offline optimization techniques require the
exact information of the entire optimization time frame and
can not be applied for online/real-time optimization. In this
case, the performance of the power grid operation may degrade
if any expected things happen during the optimization time
period.

Online optimization approaches are also proposed to inves-
tigate the real-time operation and optimization of the power
grid. In [11], an energy optimization scheme is proposed where
a multi-objective energy optimization problem is solved using
a GA approach named NSGA-II to minimize the generation
cost and to minimize the battery life loss. In [12], the au-
thors proposed a decentralized, myopic, techno-economical,
charging management method for electric vehicles connected
to distribution grids. Myopic approach is also investigated
for solving the real-time energy storage management problem
in [13]. In the myopic approach, the optimization problems
are solved based on current hour input information without
considering the knowledge of future events which may fail to
provide long-term cost-effective solution for the power grids.

Recent years, receding horizon control (RHC) based ap-
proaches are also proposed in the field of power system
optimization and stability control which has the potential to
reduce the effect of prediction errors during the optimization
process [14], [15]. This approach is also commonly known
as model predictive control (MPC) [16]. In [17], a two layer
model predictive control method is proposed to minimize the
running cost and to improve the robustness against uncertain-
ties resulting from load demand and photovoltaic (PV) power
in the islanded microgrid. An MPC based online optimal



operation algorithm with a feedback correction to compen-
sate for prediction error is proposed in [18]. A MPC-based
home energy management system (HEMS) control strategy
is proposed for a residential microgrid where a MPC-based
framework is used to incorporate both forecasts and newly
updated information for the HEMS [19]. The RHC based
optimization techniques are also investigated in [20], [21].
The optimal horizon size of the RHC approach depends on
the input profiles of the model. The RHC approach with a
fixed horizon size may not suitable for all the non-linear
input profiles and the performance of the RHC approach may
degrade due to this issue.

Motivated by the above mentioned literature, in this paper,
we investigate the effect of horizon size on the RHC approach
for solving energy scheduling problem with the presence of
RESs. We consider a microgrid model and formulate the
energy optimization problem with the RHC principle. Through
the experiments, we observe that the RHC approach with
the fixed horizon window may not be suitable for all input
patterns and the errors can be mitigated by tuning the horizon
size. We also show the effect of increasing penetration of
RESs on the horizon window size of the RHC technique. We
conduct two different experiments with single and multiple
RES environments, and validate the performance of the RHC
technique for different horizon window sizes comparing with
the reference MILP approach. The results show that the
increasing penetration of RESs requires a longer horizon
window, and the RHC approach can achieve the optimal
performance if the horizon size can be tuned based on the
input information.

The rest of this paper is structured as follows. In Section
II, the model description and the mathematical formulations
are discussed. In Section III, the RHC approach and the
reference MILP technique are demonstrated. Simulation setup
and results analysis are carried out in Section IV. Finally, the
conclusions are drawn in Section V.

II. MODEL DESCRIPTION AND MATHEMATICAL
FORMULATIONS

In this paper, we consider a microgrid model with the
DERs. In the microgrid model, the generation unit consists of
RESs, grid level battery and the grid. A residential community
load demand is considered as a demand of the microgrid.
The microgrid controller receives real-time information of the
generation units and load demand, and generates real-time
microgrid operation policy considering the intra-day forecast
based on the day-ahead forecasted profiles of the generation
units and load demands. The goal of the controller is to
schedule the generation units efficiently so that the microgrid
daily operational cost can be minimized with satisfying the
operational constraints.

At any time t, the real-time and intra-day forecast data of
the microgrid exogenous information can be expressed as,

St: (Rt)It7jt+1a-~-aft+H)- (1)

where, R; represents the available energy in the battery
at time t. Here, [; is a set of exogenous information as
I, = (W, Dy, P;), where Wy, Dy, and P, represent the total
available power from the RESs in kW, the load demand in
kW, and the grid price in cents/kW h at time ¢, respectively.
In equation (1), I refers as the predicted future intra-day
forecast information at time ¢. For scheduling the microgrid
generation units smartly, the controller requires intra-day fore-
cast data for a specific predictive horizon window (ft+1:t+ H)-
Here, H represents the horizon window size.

The decision vector of the microgrid can be defined as,
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where, the decision vector a; contains the decision variables
which represent the amount of power transferred from one unit
to another unit at time ¢. In the decision vector, the superscripts
g, 7, w, and d represent the grid, battery, RESs and demand,
respectively. For example, the decision variable a?’? indicates
the total amount power allocated from the RESs to fulfill the
demand by the controller.

The objective of this microgrid energy optimization problem
is to minimize the daily operational cost of the microgrid
considering the microgrid operational constraints. If the op-
erational cost of the microgrid at time ¢ can be defined as
C(t, Sy), then the objective function can be written as,

T
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where, T represents the final time step of the time frame
{1,2A¢,.....,T — At,T} where At = 1. The cost function
of the microgrid at time ¢ can be defined as,

C(t) = Pyal” +ai?). (4)

where, the battery charging cost and the cost of buying energy
from the grid to fulfill the demand are considered.

The objective function subjects to the microgrid operational
constraints as,
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where, the constraint (5) is defined to balance the microgrid
generation side and load demand side. The constraint (6) limits
the transferred power from the RES unit to other units within
the generation of the RESs. The constraint (7) determines the
battery mode of operation where € represents the maximum
charging/discharging limit of the battery in £WW. The integer
output of this constraints should be within the range as
{—=1,0,1} which indicates the discharging, idle, and charging
modes of the battery, respectively. The constraint (8) keeps the



state of charge (SOC) of the battery within a certain range at
any time ¢. In this paper, it is assumed that the battery charges/
discharges at its maximum charging/discharging limit.

The goal is to schedule the generation units efficiently
at every time step considering the available future intra-day
forecast information as

t-+H
a;(S;) = arg min Z C(i,S). 9)
a;
i=t
so that the total daily operational cost of the microgrid can be
minimized.
The battery transition function can be formulated as,

1
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cap
Riy1 = SOC1 1 Reap, (11)

where, ;41 and R.,, represent the available battery energy
at time (¢ + 1) and the capacity of the battery, respectively.

III. RECEDING HORIZON BASED CONTROL APPROACH
AND REFERENCE TECHNIQUE

A. Receding Horizon Based Control Approach

The RHC is an online optimization approach which solves
the optimization problem repeatedly over a sliding time hori-
zon with the goal to achieve the optimization policy of
the current time step considering the future outcome of the
forecast errors, disturbances, and constraints [22]. The working
principle of the RHC approach is illustrated in Figure 1.
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Figure 1. Real-time decision making process of the receding horizon based
control approach.

In the figure, the x-axis represents the time scale. The
left and right y-axis represent the input and the output,
respectively. Here, it is assumed that the output is a control
signal which is an integer number with the possible values
0, 1, and 2. According to the figure, at any time t, the
RHC approach collects the real-time input information and

the predicted future forecast information for the time frame
t+1:t+ H. Note, the horizon size H plays an important role
for solving the optimization problem with the RHC principle.
Please refer to Section IV for the description of the tuning
horizon size H. After receiving the real-time data and the
forecasted data, the RHC approach solves the optimization
problem (equation (9)) and outputs the optimization policy for
the current time step. The RHC approach can also predict the
future control outputs as shown in the figure with the brown
stairs curve. However the RHC approach only execute the
control output for the current time step, because the future
predicted outputs are subjected to change based on the future
predicted forecast. After solving the optimization problem for
the current time step, the predictive horizon window shifts
to next time step, collects the real-time and forecasted data
similarly, and solves the optimization problem repeatedly for
the whole time frame. This procedure continues until the time
frame ends.

B. Reference Technique

In this paper, we use MILP approach as a reference ap-
proach to evaluate the performance of the RHC approach. The
MILP approach is a linear optimization technique which can
solve the constrained optimization problem with both integer
and continuous variables [23]. The MILP approach is widely
used in the existing literature for generating optimal solution
through offline optimization process which requires the true
input information over the optimization horizon. Note, the
MILP approach is suitable for offline optimization problems
and applying this approach online can not guarantee the
optimality. For instance, to generate the optimal solution of
our microgrid energy optimization problem using the MILP
approach, we assume that the operator knows the future input
profiles of the microgrid and generate the optimal solution
of the problem. Simulation parameters and the experimental
results are presented in Section IV.

IV. SIMULATION SETUP AND RESULTS ANALYSIS

In this section, we present the parameter settings of the
microgrid and report the results analysis based on numerical
experiments. We present two different experiences with single
RES and multiple RESs, and provide the results to illustrate
the effect on the optimization problem. All the experiments are
conducted using the MATLAB R2018b environment. We use
MILP toolbox provided by the MATLAB software for solving
the optimization problem using the MILP approach.

Table 1
BATTERY INFORMATION
Battery Lead-Acid
Capacity 200 kWh
Charging and discharging efficiency («) 80%
Maximum charging and discharging rates (0,nqz) 50 kWh/At
Battery charging/discharging limit (0 = « * Oynqaz) | 40 KWh/At

The battery parameter settings of the microgrid is presented
in Table I where the charging and discharging rate of the



battery (¢) is determined using the charging and discharging
efficiency () of the battery. The residential microgrid load
demand and electricity price profiles are presented in Figure
2. The residential load profile of the city of Minneapolis in
Minnesota are collected from [24]. The grid price profile in
cents per kWh is taken from [25].
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Figure 2. (A) Residential load-demand of the city of Minneapolis in

Minnesota, (B) Grid electricity price.

The performance of the optimization techniques are evalu-
ated using the optimization error (%) as,
F— F|

Error = 7 x 100%.

(12)

where, F'* and F' are the optimal total operational cost of
the microgrid and the total operational cost of the microgrid
obtained from a specific optimization approach, respectively.
Note, the value of F'* obtained from the MILP approach.

A. Experiment 1: Integration of single RES

In this experiment, we use only photovoltaic (PV) system
as a RES with the capacity of 100kW. The outputs of the PV
system are collected from the system advisory model (SAM)
by National Renewable Energy Laboratory for the city of
Minneapolis, MN [26]. The PV power outputs are presented
in Figure 3.
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Figure 3. The PV output power where the maximum capacity of the PV
output power is 100kW.
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Figure 4. The effect of horizon size in terms of optimization errors.

With the given parameter settings, we analyse the effect of
the horizon size in the RHC approach in terms of optimization
error. The result of optimization error over the horizon size is
presented in Figure 4. The result shows that tuning the horizon
size, the performance of the RHC approach can be improved.
According to Figure 4, the RHC approach incurs more than
20% of optimization error when the prediction window size is
H = 0. The performance of the RHC approach improves with
the increment of the horizon size, and the result shows that
at H = 9, the RHC approach achieves the optimal solution.
So, for this problem, the optimal horizon size is H = 9. It
is better not to choose H > 9 because it may increase the
computation time and also if any unexpected change happened
in the intra-day forecast, the performance of the RHC approach
may degrade.

Table 1T
PERFORMANCE COMPARISON OF THE OPTIMIZATION TECHNIQUES.

Approach Operation | Error
Cost ($) (%)
MILP 28.34 -
RHC approach 28.34 0
with horizon size H = 9
RHC approach 29.84 5.29
with horizon size H = 5
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Figure 5. The operational profile of the microgrid to fulfill the demand and
the battery SOC profile.

The results in terms of operational cost of the microgrid and
optimization errors are presented in Table II. Note, we consider
the result of the MILP approach as an optimal solution. The
results show that the RHC approach can achieve the optimal
solution with the horizon size H = 9. We also report the
results of RHC approach with a fixed horizon size (H = 5)



where we observe the optimization error as 5.29%. According
to the result analysis, we can observe that the RHC approach
has the potential to achieve the optimal solution by tuning
the horizon size with the help of intra-day future forecast
information.

In addition, we also present the microgrid operational profile
to fulfill the load demands and the battery SOC profile of
the day. The results are illustrated in Figure 5. The results
show that the load demands are fulfilled mostly by the battery
and the grid at the beginning time steps of the day. At the
middle time steps of the day, the microgrid utilizes the output
power of the RES (PV) to fulfill the demand and to charge
the battery so that in future time steps when the PV output
power won’t be available, the battery can supply the energy,
and minimize the operational costs. The battery and the grid
share the load demand mostly at the time steps of the end
of the day because of low PV output powers. The battery
SOC profile is also presented in Figure 5, where we can see
that when the PV outputs are available in the microgrid, the
microgrid charges the battery so that the battery energy can be
utilized in future time steps to minimize the total operational
cost of the microgrid.

B. Experiment 2: Integration of multiple RESs

In this case study, we consider multiple RESs in the RES
unit where the output from the PV panels and wind turbines
(WTs) are combined to represent the total power generation
from the RES unit. The output power of the PV panels and
WT are collected using the SAM software where the capacity
of each RES is assumed as 50kW. The power output profiles
of the RESs are presented in Figure 6.
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Figure 6. The total power output from the RESs where the maximum capacity
of the output power is 100kW.

Due to the addition of WT output power, the non-linearity
of the RES power output profile is increased which actually
affects the horizon window size of the RHC approach in terms
of percentage of optimization error. We observe that the RHC
approach with horizon size H = 9 incurs optimization error as
4.74%. Therefore, the horizon size of the RHC approach needs
to be tuned so that the RHC approach can achieve the optimal
policy. The effect of horizon size in terms of optimization
errors for multiple RESs is illustrated in Figure 7. The result
shows that the horizon size of the RHC approach needs to

be increased to get reach to the optimal solution. We observe
that the RHC approach can achieve the optimal solution with
the horizon size H = 17. So, the horizon size H = 17 is the
optimal horizon size for this experiment.
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Figure 7. The effect of horizon size in terms of optimization errors for

multiple RESs.

Table III
PERFORMANCE COMPARISON OF THE OPTIMIZATION TECHNIQUES

Approach Operation | Error
Cost ($) (%)
MILP 13.28 -
RHC approach 13.28 0
with horizon size H = 17
RHC approach 13.36 0.60
with horizon size H = 12
RHC approach 13.91 4.74
with horizon size H = 9

In this experiment, we also present the performance com-
parison which is summarized in Table III. The RHC approach
with the horizon size H = 17 achieves the optimal solution
where the RHC technique with the horizon size H < 17 incurs
some errors.

Table IV
ALLOCATION OF MICROGRID ENERGY RESOURCES FOR FULFILLING THE
LOAD DEMAND OF THE TOTAL TIME FRAME

Approach Percentage Share
RESs | Battery | Grid
RHC approach 51% 31% 18%
with horizon size H = 17
RHC approach 57% 25% 18%
with horizon size H = 9
RHC approach 49% 33% 18%
with horizon size H = 12

Moreover, the energy allocation of the microgrid generation
units for fulfilling the demand using the RHC approach with
different horizon window sizes are summarized in Table IV.
The results show that all three approaches buy 18% of the total
load demand of the day from the grid. The RHC approach
with fixed horizon H = 9 allocates highest 57% of total load
demand of the day to the RES unit. The RHC approach with
fixed horizon H = 12 utilizes the battery energy to fulfill
33% of the total load demand of the day which is the highest
battery utilization rate compared to other two approaches. The
RHC approach with the horizon size H = 17 allocates 6%



less power to the RES unit to fulfill the demand compared
to the RHC approach with fixed horizon H = 9, and utilizes
this amount of energy to charge the battery so that the future
cost of the energy can be minimized. In this experiment, the
prediction horizon window size H = 17 helps to schedule the
microgrid generation units efficiently considering the future
outcome of the current operation decision and to minimize
the total operational cost. According to the results, we can
conclude that the RHC approach is a powerful optimization
technique which can be strengthened by tuning the horizon
size to achieve the optimal policy at every time step.

V. CONCLUSION

In this paper, we investigate the effect of horizon window
size on the RHC technique for solving energy scheduling
problem with the presence of RESs. We formulate the energy
optimization problem of the microgrid with the RHC principle.
We conduct two different experiments with single and multiple
RESs in the microgrid RES unit. Through the numerical
results, we show that the optimization performance of the
RHC technique depends on the horizon window size, and the
microgrid optimal operation can be achieved by tuning the
horizon size. We also report the effect of increasing penetration
of RESs on the horizon window size of the RHC technique.
The performance of the RHC approach with different hori-
zon sizes is validated comparing with the reference MILP
approach. During the experiment, we observe that the horizon
window size of the RHC approach needs to be updated with
the addition of RESs in the microgrid to guarantee the optimal
performance.
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