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ABSTRACT 1 
Uncovering human travel behavior is crucial for not only travel demand analysis but also 2 

ridesharing opportunities. To group similar travelers, this paper develops a deep learning based 3 

approach to classify travelers’ behaviors given their trip characteristics, including time of day 4 

and day of week for trips, travel modes, previous trip purposes, personal demographics, and 5 

nearby place categories of trip ends. This study first examines the dataset of California 6 

Household Travel Survey (CHTS) between the year of 2012 and 2013. After preprocessing and 7 

exploring the raw data, we construct an activity matrix for each participant. The Jaccard 8 

similarity coefficient is employed to calculate matrix similarities between each pair of 9 

individuals. Moreover, given matrix similarity measures, we construct a community social 10 

network for all participants. We further implement a community detection algorithm to cluster 11 

travelers with similar travel behavior into the same groups. There are five clusters detected: non-12 

working people with more shopping activities, non-working people with more recreation 13 

activities, normal commute working people, shorter working duration people, later working time 14 

people, and individuals needing to attend school. We further build an image of activity map from 15 

each participant’s activity matrix. Finally, a deep learning approach with convolutional neural 16 

network is employed to classify travelers into corresponding groups according to their activity 17 

maps. The accuracy of classification reaches up to 97%. The proposed approach offers a new 18 

perspective for travel behavior analysis and traveler classification. 19 

 20 

Keywords: travel behavior; Jaccard similarity coefficient; community detection; convolutional 21 

neural network in deep learning 22 

 23 

24 
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1. INTRODUCTION 1 
As car ownership inflates rapidly, together with increasing environmental concerns, we have 2 

seen an increased interest in services that enable people to share their automobiles. Ride-sharing 3 

or carpooling services are the ultimate way to make better use of the empty seats in personal 4 

passenger cars in order to reduce fuel consumption, transportation cost, and emissions. Cici et al. 5 

found that if individuals were willing to carpool with others who live and work within 1 km, the 6 

traffic in the city of Madrid would decrease by 59% (1). There are many existing smartphone 7 

apps providing the ride-sharing service. However, this kind of one-time sharing mode offers only 8 

limited benefits. Long-time ride-sharing services can provide more advantages. There are many 9 

kinds of travelers, including ones who depart at the same time of day, ones who do not have 10 

regular departure times, ones who start work later than others, etc. Our assumption is that 11 

travelers with the similar behaviors may enjoy their shared rides better given more common 12 

behaviors. The long-term ride sharing matched according to travel behaviors will provide steady 13 

benefits for transportation, environment, and society. 14 

Household travel survey data, or travel itinerary data, is a major input to travel behavior 15 

modeling. It can be used in many areas, particularly in travel behavior research and activity-16 

based travel demand forecasting. The traditional methods used for collecting these individual 17 

travel data are telephone-based or computer-assisted interviews and activity logs recorded from 18 

study participants. The typical drawbacks of these methods include high recruitment cost, low 19 

response and sampling rates, undersampling or oversampling on certain types of trips, 20 

inaccuracies in times, surrogate reporting and confusion of appropriate trip purpose (2). 21 

Nowadays time-location data becomes accessible with the development of new techniques. 22 

Travel activities can be traced by various sensors such as GPS, GSM, Wi-Fi, RFID, and 23 

Bluetooth that are commonly available in smartphones or cars. Such data are usually collected 24 

when an event is triggered such as making a phone call, passing a toll booth, or turning on 25 

Bluetooth devices. Conducting a household travel survey with GPS devices is a complementary 26 

way of collecting reliable and accurate data. GPS provides high-resolution time-space data. The 27 

main advantages of the high-resolution GPS data include near-continuous location tracking, high 28 

temporal resolution, and minimum report burden for participants, which may significantly 29 

improve the understanding of travel activities in both spatial and temporal dimensions.  30 

The essential goal of this study is to classify travelers based on the characteristics of their 31 

historical travel data. Therefore, travelers within the same category could be potentially paired 32 

and recommended with ride-sharing services. To pursue this goal, this paper constructs a social 33 

network of travelers based on the Jaccard similarity coefficient, and employs a community 34 

detection algorithm to cluster travelers into groups. In this paper, we borrow the concept from 35 

social network to describe people who have similar behavioral patterns rather than construct a 36 

real social network. After detecting travelers’ groups, we manually assign labels to each group 37 

according to trip and activity information. Further, we build an image of the activity map for 38 

each traveler and employ a deep learning based approach to perform image classification. 39 

Therefore, the travelers are classified accordingly into different groups depending on their 40 

activity maps.  41 

The rest of this paper is structured as follow: Section 2 summarizes previous studies in 42 

travel behavior analysis, community detection and deep learning. Section 3 introduces the 43 

datasets and initial result of the data analysis. Section 4 presents the methodology. Section 5 44 

demonstrates the results with some numerical examples. Finally, Section 6 presents the 45 

conclusions and future research. 46 
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2. LITERATURE REVIEW 3 

2.1 Travel behavior data analysis and classification 4 
Household trip data is crucial for travel demand forecasting and transportation system planning. 5 

The survey-based methods used for trip data collection went through the stages of paper and 6 

pencil interviews (PAPI), computer-assisted telephone interviews (CATI), and computer-7 

assisted-self- interviews (CASI) (3). Although the computer-assisted interviews tried to help 8 

respondents to understand questions and recall trips they had during a day, these methods are 9 

restricted by the accuracy of recall, reliability, and compliance (4). Recently, GPS and GIS 10 

technologies have been used to supplement the traditional survey data. GPS and GIS land use 11 

data can be used for trip identification, travel characteristics identification, trip end clustering, 12 

trip purpose prediction (3; 5; 6).  However, the accuracy is influenced by the dilution of precision 13 

of the GPS logs and inaccuracy in the GIS database (3).  Kim et al. developed an activity travel 14 

data collection method facilitated by a smartphone application and an interactive web interface. 15 

The data collected this method in Singapore was further implemented with an ensemble-16 

learning-based classification method to recognize travel patterns (7). Schumpeter et al. devised a 17 

multi-stage hierarchical matching procedure to calculate a cluster center of stop ends by 18 

combining trip ends and identifying trips with obvious purposes with the socio-demographics of 19 

the respondents (8). Some researchers also used decision tree based classifiers to derive trip 20 

purposes and implemented the methods in C4.5, C5.0, or an adaptive boosting environment (9; 21 

10). Some of the previous studies above also require the social-economic characteristics of 22 

respondents (such as age, gender, and household income) for travel behavior analysis.  23 

Researchers have also been making great efforts to classify travelers by using daily travel 24 

data and socio-demographic data. The criteria to select similarity measures depend on the 25 

analysts’ importance ranking of various affecting attributes and the situations to be dealt with 26 

(11). Consequently, the resulting similarity measures could be subjective and case sensitive and 27 

thus derive quite inconsistent results. Hanson et al. divided individuals into five homogeneous 28 

travel behavior groups by using complex multi-day travel data and explained variability in 29 

individuals’ daily travels (12). Shoval et al. implemented a sequence alignment method based on 30 

GPS data and clustered the data into three temporal-spatial time geographies (13). Kitamura and 31 

van der Horn showed that daily participation could be very stable in different types of activities 32 

(based on the categories of working, leisure, shopping and other activities) (14). Axhausen et al. 33 

collected six weeks’ continuous travel diaries from about 300,000 inhabitants in Germany in Fall 34 

1999 (15). Hazard models were used to analyze this high-quality data. A low degree of spatial 35 

variability of daily activities was also found from the analysis. Jiang et al. employed the K-36 

Means algorithm via principal component analysis (PCA) to cluster daily patterns of human 37 

activities in Chicago (16). They separated more than 3000 individuals who participated in a 1-38 

day or 2-day survey conducted by “Travel Tracker Survey” from January 2007 to February 2008 39 

into 8 groups on weekdays and 7 groups on weekends, respectively. The same methodology 40 

applied to kernel density estimation, allowed them to analyze and explore diverse urban spatial-41 

temporal structures. This research indicated how individuals in different activity pattern clusters 42 

make use of different sub-regions for different activity types (17). Travel behavior classification 43 

not only differentiates individuals with different travel patterns, but also uncovers human 44 

mobility patterns. Gonzalez et al. found that travel trajectories show lévy flight or random walk 45 

pattern to a large extent. Individuals show a high probability of returning to a few highly 46 
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frequented locations (18). This means humans are following highly predictable mobility patterns 1 

(19).  Ponieman et al. also retrieved social phenomena information (e.g. commute and major 2 

sport events) from call detail records (CDR) data by just counting how many phone calls made 3 

by users in two different time windows (from 9 p.m. to 5 a.m., and from 12p.m to 4 p.m. during 4 

weekdays) from inside and outside Buenos Aires city. They found the average radius of 5 

commute (ROC) was approximately 7.8 km (19). Nevertheless, that study was limited by the 6 

accuracy of CDR data. With the combination of several machine learning algorithms, Ma et al. 7 

identified travel patterns for transit riders from smart transit card data in order to attract more 8 

users, retain loyal users, and finally improve overall transit services performance (20). Williams 9 

et al. developed a new method derived from the neural coding concept of synchrony and 10 

measured regularity of visiting a specific location for individuals (21). However, this research 11 

only explored three places.  It will provide more information to understand people travel patterns 12 

if investigating how location types will influence visit patterns of individuals.   13 

 14 

2.2 Community detection 15 
Nowadays, lots of complex systems can be represented by networks. For instance, each user can 16 

be a node in the social network. Then the friendship can be represented by edges. Researchers 17 

aim to understand the network by finding community structures. A community is a collection of 18 

nodes that are homogeneous within the group and heterogeneous with other groups in the 19 

network, and this kind of network is known as a community structure.  Newman and Girvan (22) 20 

employed centrality indices to find boundaries of communities. They tested this method on two 21 

networks which are collaboration networks and food web networks. Both cases retrieved 22 

significant and informative community segments. The same authors also developed a community 23 

detection algorithm and proposed a new community structure strength measurement(23). Their 24 

algorithm showed highly effective performance for both computer-generated and real-world 25 

networks while detecting communities. Radicchi et al. (24) developed a fully self-contained new 26 

local algorithm for community detection and tested it on both artificial and real-world network 27 

graphs. This new method demonstrated the potentials of implementing community detection 28 

algorithms in large-scale technological and biological applications. In a community structure, 29 

groups do not need to be necessarily mutually exclusive; they can overlap. Palla et al. (25) 30 

proposed an algorithm which can uncover the overlapping community structure of complex 31 

networks in nature and society. Community detection techniques can also be used for habitat 32 

preservation, animal genetics and wildlife corridors (26). Moreover, it can be implemented in the 33 

transportation field. For example, Lin et al. employed a community detection algorithm to study 34 

vehicle accident causative factors (27). 35 

Compared to traditional clustering algorithms, the community detection algorithm provides 36 

several advantages. First, it is easy to implement, and steps are intuitive.  Second, final networks 37 

can be decomposed into communities for different levels. Third, this algorithm runs fast even for 38 

large and high dimensional datasets. 39 

 40 

2.3 Deep learning 41 
With technological innovation, Artificial intelligence (AI) emerges and integrates into our 42 

everyday life rapidly. From education to finance, from marketing to health care, and from 43 

communication to transportation, with the advent of AI, individuals can save plenty of time, 44 

reduce mistakes, relieve pressures, and stay safe (28).  45 
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Deep learning or deep neural network, as a branch of machine learning and AI, is an 1 

artificial neural network (ANN) that contains more than one hidden layer. This kind of algorithm 2 

has shown superior performance especially in automatic speech recognition, image recognition, 3 

natural language processing, and recommendation systems. Readers can refer to Schmidhuber et 4 

al. (29) for more details of deep learning. Deep neural networks typically can be categorized into 5 

two types, recurrent neural networks (RNN) and convolutional neural networks (CNN). Long 6 

short-term memory RNNs is a widely used algorithm in the field of speech recognition (30; 31). 7 

However, in the field of image recognition, the convolutional neural network (CNN) is the most 8 

prevailing algorithm. Krizhevshy et al. developed a CNN consisting of five convolutional layers, 9 

some of these followed by max-pooling layers and three fully-connected layers. This network 10 

achieved an error rate of 15.3% while implementing the ImageNet Large Scale Visual 11 

Recognition Challenge (ILSVRC)-2012 dataset (32). Simonyan and Zisserman improved CNNs 12 

with utilizing very small convolution filters and reached an error rate of 6.8% on the ILSVRC-13 

2014 dataset. He et al. won the ILSVRC-2015 competition with 3.57% error using deep residual 14 

learning. Further, the winner team Trips-Soushen of ILSVRC-2016 produced a 2.99% error rate 15 

(33; 34). This technique also has been applied in transportation, especially in the visual sensor 16 

data (images, videos) processing domain. Only a few studies implemented deep learning in travel 17 

behavior. Dong et al. employed deep learning to model driving behavior based on GPS data. 18 

They combined CNN and RNN to extract features to represent driver behaviors. A driver 19 

classification task was also conducted and they achieved significant outstanding performance 20 

compared with traditional machine learning algorithms (35).  21 

 22 

3. DATA DESCRIPTION AND PRELIMINARY ANALYSIS 23 
In this paper, we acquire the raw data from the California Household Travel Survey (CHTS) 24 

conducted by the California Department of Transportation (Caltrans) from February 2012 to 25 

January 2013. The CHTS is designed to collect household travel information across all 58 26 

counties of California and three adjacent counties in Nevada by using CATI, website, and GPS 27 

devices. The entire household survey uses three types of GPS devices, wearable GPS device, in-28 

vehicle GPS device, and in-vehicle GPS device plus an on-board diagnostic (OBD) unit. There 29 

are 108,778 individuals belongs to 42,431 households participated this survey in total, and 30 

10,474 respondents from 5460 households carried GPS devices. 31 

For households who conducted the survey with GPS devices, they will generate both 32 

survey and GPS data. The survey data includes activities they completed on the assigned travel 33 

date only. Each participant has one assigned travel date; this indicates that every participant only 34 

has one day of survey data for both non-GPS households and GPS households. However, besides 35 

survey data, GPS households also collect 7 days of GPS data as well.  36 

There are 39 different trip purposes included in this household travel survey. We 37 

categorize these trip purposes into 8 groups, which are home, work, school, 38 

transportation/transitions (transit), shopping/errands (shop), personal business (person), 39 

recreation/entertainment (rec), and other as shown in Table 1. Table 2 verifies the common 40 

knowledge that there are more work and school activities during weekdays, while people have 41 

more recreation, shopping, and personal business activities on weekends. It is found that the 42 

average time individuals spend at home is 13.98 hours per day during weekdays and 16.77 hours 43 

on weekends, respectively. The average time participants spend in the workplace is 7.11 hours 44 

during the weekday and 5.51 hours on the weekend. Also, the average time that participants 45 

spend at school is 5.18 hour during weekdays and 2.92 hours on weekends. 46 
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1. In this study, we only utilize data of participants who have both valid survey and GPS 1 

data. Several rules are created as follows in order to screen the feasible data. Both the first and 2 

last activity location should be ‘home’.  3 

2. Participants need to have more than one activity on the assigned travel date. If individuals 4 

stay at home for a whole assigned travel day, we cannot retrieve any travel information. This 5 

indicates that participants should also make more than 1 trip on the assigned travel date. 6 

3. From the household survey data, we notice that there might be more than one driver 7 

utilizing the same vehicles within a household. It is difficult to distinguish travelers who share 8 

the same car since GPS trips are recorded at the vehicle level, not the person level. In order to 9 

avoid sampling errors arising from multiple drivers when they were sharing the same vehicle, we 10 

remove the records of the vehicles with multiple drivers. 11 

After we apply these rules, 8849 unique individuals remain with 50,103 trips in this 12 

research. The radius of gyration (ROG) in transportation is a measure to describe the activity 13 

territory for each participant. According to Kang (36), we can calculate the ROG for each 14 

participant’s trajectory up to time t by using the following formula: 15 

𝑟𝑔
𝛼(𝑡) = √

1

𝑛𝑐
𝛼(𝑡)

∑ (𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2𝑛𝑐
𝛼(𝑡)

𝑖=1
                                                                  (1) 16 

Where coordinates 𝑥𝑖 , 𝑦𝑖 denote the ith (𝑖 = 1,2, … , 𝑛𝑐
𝛼(𝑡)) position recorded for user 𝛼. And 𝑥𝑐 17 

and 𝑦𝑐 represent the center of the mass of trajectories. 18 

In Figure 1, the blue line is the ROG calculated for weekdays, and the red dashed line is 19 

the ROG for weekends. One can see that these two ROG distributions are almost the same. 20 

Therefore, individuals follow similar travel habits whether weekday or weekend. They seldom 21 

travel farther on weekends. Figure 1 also shows that there is a significant effect of distance 22 

decay. Moreover, based on the probability distribution of ROG, more than 95% of the 23 

participants have ROG values of less than 10 miles, and the mode is around 5 miles. This result 24 

is similar to the ROC calculated in Ponieman et al. (19) which is 7.8 km (4.85 miles). 25 

Figure 2(a) and 2(b) depict the distribution of the first trip departure time and the last trip 26 

return time, respectively. As one can see, there is a significant pattern of departure time in the 27 

morning, and return time in the evening during weekdays. For weekends, individuals depart in 28 

the morning and return home in the evening later than weekdays. Moreover, the distribution of 29 

departure times on the weekend is flatter which means the departure times on the weekend 30 

involve more uncertainty than that on weekdays. The pattern of return time is similar. The mean 31 

first departure times on weekdays and weekends are 8:56 and 10:54, respectively. However, for 32 

the last trip return time, they are 18:28 and 17:55 for weekdays and weekends, respectively. As 33 

shown in Figure 2 (b), there is a small hump near noon. This hump is more flat and larger on 34 

weekends than weekdays. Individuals have more flexible times on weekends, and some of them 35 

may have eating, recreation, or shopping activities and return home at noon then stay home until 36 

the next day. On the contrary, individuals’ departure and return times are restricted by work or 37 

study on weekdays. 38 

 39 

4. METHODOLOGY 40 

4.1 Matrix similarities 41 
In this paper, we represent individuals’ daily activities using a matrix. In order to construct this 42 

matrix, all activity purposes are categorized into 8 groups and 24 hours are divided into 288 five-43 

minute bins. Therefore, the dimension of the matrix is 8x288. Each activity starts from the trip 44 

starting time for this activity and ends when the activity ends. For instance, an individual departs 45 
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from home at 5:30 pm to the supermarket, and arrives at the supermarket at 5:40 pm. This 1 

individual finishes shopping at 6:20 pm and leaves the supermarket. Therefore, this shopping 2 

activity is from 5:30 pm to 6:20 pm. 3 

Individuals only can conduct one of 8 activities shown in Table 3 at one time. So, 4 

𝑥𝑎,𝑡 = {
1 𝑤ℎ𝑒𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎 𝑜𝑐𝑐𝑢𝑟𝑟𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡 

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                    (2) 5 

where 𝑎 represents activity and 𝑎 ∈ {𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝑆𝑐ℎ𝑜𝑜𝑙, 𝑇𝑟𝑎𝑛𝑠, 𝑆ℎ𝑜𝑝, 𝑃𝑒𝑟𝑠𝑜𝑛, 𝑅𝑒𝑐, 𝑂𝑡ℎ𝑒𝑟}. 6 

𝑡 represents time bin number and 𝑡 ∈ [1,288]. In this fashion, a binary matrix is generated in 7 

order to represent daily activities. The two plots in Figure 3 are examples of color-coded daily 8 

activity matrices for two individuals. Figure 3(a) is a daily activity map of a student. This 9 

participant departs from home to school at approximately 7:30 a.m. and stay there until 2:30 p.m. 10 

After goes back home at 6:30 p.m., the student again attends a recreation activity, and returns 11 

home at 8:30 p.m.. Figure 3(b) describes a full time employee’s weekday activities. The 12 

employee departs from home at 6:00 am, conducts a short personal business activity and a 13 

shopping trip after 6:00 pm off work. 14 

Given individual’s activity matrix, we now calculate the similarity between every pair of 15 

participants for constructing the community structure. In this paper, we implement the Jaccard 16 

similarity coefficient to measure similarities for binary matrices of individuals’ daily trips. 17 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
=

𝑀11

𝑀01+𝑀10+𝑀11
                                                                  (3) 18 

where 𝐴 and 𝐵 represents 𝑛 binary entries, respectively. 𝑀01 represents the total number of 19 

entries where the entries of 𝐴 is 0 and the entries of 𝐵 is 1; 𝑀10 represents the total number of 20 

entries where the entries of 𝐴 is 1 and entries of 𝐵 is 0; 𝑀11 represents the total number of entries 21 

where the value of entries of 𝐴 and 𝐵 are both 1. Jaccard similarity coefficient ranges from 0 to 22 

1. If 𝐽(𝐴, 𝐵) = 0, this means A and B are totally different. And if 𝐽(𝐴, 𝐵) = 1, this means A and 23 

B are exactly the same. Moreover, if A and B are both empty, 𝐽(𝐴, 𝐵) is defined as 1. 24 

Another similarity measure is the simple matching coefficient (SMC), shown in Equation 25 

(4). Unlike the Jaccard similarity coefficient, SMC includes 𝑀00 which represents the total 26 

number of entries where the entries of A and B are both 0. SMC is appropriate when 0 and 1 27 

represent equivalent information, such as gender (37). However, in this paper, 0 and 1 do not 28 

carry symmetrical information, and a majority of entries is 0 in the dataset. If we use SMC to 29 

measure similarity, 𝑀00 will dominate the similarity and force it close to 1. Therefore, the 30 

Jaccard similarity coefficient is more suitable to describe similarity for asymmetrical attributives 31 

than SMC.   32 

𝑆𝑀𝐶 =
𝑀00+𝑀11

𝑀00+𝑀01+𝑀10+𝑀11
                                                                                                   (4) 33 

 34 

4.2 Community detection 35 
In this subsection, we first convert our data into a social network. Each participant in the dataset 36 

can be considered as a node. We use Jaccard similarity coefficient to measure the similarity 37 

between two users. If Jaccard similarity coefficient is greater than a threshold 𝜃, it indicates two 38 

users have similar travel behaviors. In consequence, we create an edge between these two uses.  39 

{
𝐸𝑑𝑔𝑒𝑖𝑗 = 1              𝑊𝑖𝑗 ≥ 𝜃

𝐸𝑑𝑔𝑒𝑖𝑗 = 0               𝑊𝑖𝑗 < 𝜃
                                                                                            (5) 40 

And the weight of the edge of user 𝑖 and 𝑗 can be represented by 𝑊𝑖𝑗, this value equals to 41 

Jaccard similarity coefficient between these two users. After building the social network, we 42 

employ the fast unfolding community detection method to cluster nodes(38). This is a kind of 43 
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modularity maximization algorithm which is one of the most widely used methods for 1 

community detection.  2 

In community detection, the modularity of a partition measures the density of edges 3 

within communities while comparing to edges between communities and scales between -1 and 4 

1. In the network where edges have weights, the formula of modularity is shown as following, 5 

𝑄 =
1

2𝑚
∑ [𝑊𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝛿(𝑐𝑖, 𝑐𝑗)]𝑖,𝑗                                                                                         (6) 6 

where 𝑊𝑖𝑗 is the weight of the edge between node 𝑖 and 𝑗; 𝑘𝑖 = ∑ 𝑊𝑖𝑗𝑗  represents the summation 7 

of the weights for edges attached to node 𝑖; 𝑐𝑖 is the community index assigned to this node in 8 

this iteration; 𝛿(𝑐𝑖, 𝑐𝑗) equals to 1 if 𝑐𝑖 = 𝑐𝑗 and 0 otherwise; and 𝑚 =
1

2
∑ 𝑊𝑖𝑗𝑗 .  9 

This algorithm consists two stages. First, each node is assigned to different communities 10 

so that each node is a community, and the initial number of communities is as many as nodes. 11 

Then, for each node 𝑖, we measure the gains of modularity when removing 𝑖 from its community 12 

and adding in neighboring communities respectively. Then for each isolated node 𝑖, we measure 13 

the gain of modularity when removing i from origin community and adding in neighboring 14 

communities respectively. And the node i will be allocated into the community with the maximal 15 

gain, but only if this gain is positive. If the maximum gain is not positive, node 𝑖 will stays in 16 

original community. This stage will proceed recursively until a local maximum of the modularity 17 

is achieved. The second stage of this algorithm is to build a new network with communities 18 

found during the first part. After second stage is complete, we should reactivate the first stage of 19 

this algorithm to reconstruct weighted network. Then this two stages will run alternatively until 20 

there is no more changes and the global modularity maximum (max (𝑞)) is found.  21 

 22 

4.3 Deep learning 23 
Clustering procedure assigns same labels for individuals in same groups, and these labels are 24 

considered as the true label in the classification task. In order to classify travelers according to 25 

their activity maps, we implement the convolutional neural network (CNN) to complete this task. 26 

CNN, which is a kind of feed-forward artificial neural network, is recognized as a powerful and 27 

prevalent tool in image reorganization. Comparing to traditional neural network, CNN not only 28 

contains more layers, but also learn from filters, represented by a vector of weights with which 29 

we convolve the input. Filters are implemented to slide across all the areas of images, and the 30 

size of the commonly used filter is 2x2 which is also utilized in this paper. A CNN is composed 31 

of input and output layers, as well as multiple hidden layers between input and output layers. 32 

There are three kinds of hidden layers, including convolutional layers, pooling layers, and fully 33 

connected layers. The function of convolution layers is applying a convolution task to the input 34 

and pass the result to the next layer. Pooling layers combine the output from one layer and pass it 35 

into a single neuron in the other layer. In our CNN, every convolutional layer is followed by a 36 

pooling layer. Moreover, we implement the max pooling in the pooling layer which will pass the 37 

maximal value from the previous layer to the next layer. Fully connected layers aim to connect 38 

all neurons in the previous layer to all neurons in the next layer. Figure 4 illustrates a CNN with 39 

two convolutional layers and two fully collected layers. We construct this CNN in the next 40 

section. 41 

In the traditional ANN networks, a sigmoid function is utilized to process data. However, 42 

in this paper, we implement Rectified Linear Units (ReLU), as shown below, 43 

𝑓(𝑥) = max (0, 𝑥)                                                                                                             (7) 44 

where 𝑥 is the input to a neuron. 45 
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The sigmoid function contains three problems: the first one is that saturated neurons kill the 1 

gradients that might always be zero. Second, the sigmoid output is not zero-centered. The last 2 

one is that the computation of exponential is very expensive.  However, ReLU will not saturate 3 

in positive region and it is very computational efficient (approximately 6 times faster than 4 

sigmoid function) (32).  5 

In this paper, the proposed CNN includes two fully connected layers, and this may result 6 

in overfitting since fully connected layer occupies most of the parameters. We add dropout 7 

process between two fully connected layers in order to prevent overfitting. Moreover, this 8 

process also can speed up the training process. Finally, we utilize cross entropy as the loss 9 

function as shown in equation 8. 10 

H(p, q) = − ∑ 𝑝(𝑥)log 𝑞(𝑥)𝑥                                                                                            (8) 11 

where 𝑝(𝑥) and 𝑞(𝑥) are two probability distributions over discrete variable 𝑥, and 𝑞(𝑥) is the 12 

estimate distribution for true distribution 𝑝(𝑥). 𝐻(𝑝, 𝑞) is the cross entropy for the distribution 𝑝 13 

and 𝑞.  14 

 15 

5. NUMERICAL EXAMPLES  16 
In the first step, we construct a 1x2034 (=288x8) binary vector to represent the activity chain on 17 

the assigned travel date for each participant. Then we calculate the Jaccard similarity coefficient 18 

for every pair of individuals according to their activity matrices. The Jaccard similarity 19 

coefficient becomes the link weight between a pair of individuals. The Jaccard similarity 20 

coefficient ranges from 0 to 1. In this paper, we build an edge between two individuals in the 21 

community structure when the matrix similarity is greater than 0.9 (𝜃=0.9). An undirected graph 22 

is constructed with 3887 nodes and 98026 edges, shown in Figure 5. We conduct an experiment 23 

to find an appropriate threshold 𝜃 of matrix similarity on 0.85, 0.9, and 0.95. When 𝜃 is 0.85, 24 

there are too many edges and the ratio of edge/node is too high. In this case, there is a very big 25 

cluster and several really small clusters. Therefore, the clustering result is not good for 0.85. 26 

When 𝜃 is set as 0.95, the number of the node is too low and the ratio of edge/node is too low as 27 

well. Each cluster contains not too many nodes. Moreover, most nodes are not clustered in any 28 

group. Therefore, the clustering result is not good for 0.95 neither. Under 0.90, the number of 29 

node, edge and edge/node is reasonable. The number of nodes within clusters is reasonable and 30 

there are significant differences among each cluster. Moreover, the number of nodes which do 31 

not belong to any cluster is not too high. Therefore, we set the threshold 𝜃 as 0.9. In this graph, 32 

we apply community detection algorithm with Gephi, a graph visualization tool. We finally 33 

detect 7 clusters in green (Cluster 1, 905 nodes), blue (Cluster 2, 229 nodes), pink (Cluster 3, 34 

1583 nodes), orange (Cluster 4, 255 nodes), red (Cluster 5, 172 nodes), and yellow (Cluster 6, 35 

147 nodes). The nodes isolated with others or not clustered in any groups are also displayed in 36 

the periphery in gray color, and they are considered as Cluster 7. Each node represents an 37 

individual, and nodes in same colors belong to the same clusters. 38 

After identifying clusters, we summarize and conclude characteristics for each cluster. 39 

From Table 3, one can see that Cluster 1 and Cluster 2 represent individuals who do not go to 40 

work. On the contrary, individuals in Cluster 3, Cluster 4 and Cluster 5 need to work a lot. And 41 

participants in Cluster 6 spend lots of trip to school. Furthermore, Cluster 1 and Cluster 2 can be 42 

differentiated from each other according to shopping and recreation activities in Table 3. From 43 

Table 3, one can see that individuals in Cluster 1 conduct more shopping activities, whereas, 44 

individuals in Cluster 2 contains many more recreation activities. Then Cluster 3, Cluster 4, and 45 

Cluster 5 can be distinguished with the support of Figure 6. Figure 6 (a) shows the starting time 46 
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(including travel time) of first working activity. As one can see, individuals in Cluster 3 and 1 

Cluster 4 go to work mostly at 7 am. However, the departure time of individuals in Cluster 5 is 2 

much later and shows more uncertainty than individuals in other two clusters. Regarding Cluster 3 

5, the departure time for the first working activity is distributed from 10 am to 2 pm more evenly. 4 

To separate Cluster 3 and 4, we refer to Figure 6(b) that presents the working duration 5 

distribution. One can see that Cluster 3 shows a high probability of working approximately 9 6 

hours (including travel time to work) per day.  However, for Cluster 4, the working duration, 7 

which is around 5 hours, is much shorter than Cluster 3. The working duration distribution for 8 

Cluster 5 is also flat and ranges from 4 to 12 hours.  9 

In sum, individuals can be clustered into 7 groups: 10 

 Cluster 1: Non-working individuals with more shopping activities 11 

 Cluster 2: Non-working individuals with more recreation activities 12 

 Cluster 3: Individuals with normal working start time and a full-time job 13 

 Cluster 4: Individuals with part-time job 14 

 Cluster 5: Individuals with late start working time 15 

 Cluster 6: Individuals who need to attend school 16 

 Cluster 7: Individuals that are not in any of the first 6 clusters 17 

With identified travel behavior clusters, we perform a travel behavior classification task 18 

with CNN to classify new travelers according to their activity maps. TensorFlow(39), one of 19 

most powerful deep learning tools, is employed to construct CNN in this paper. According to 20 

aforementioned clustering results, clusters have different sizes. In order to create a balance 21 

training and testing datasets, we randomly select 100 records from each cluster for training, and 22 

40 records from each cluster for test. There are 7 classes in classification task, in addition to the 6 23 

classes which are identified by community detection algorithm, we add class ‘other’ which 24 

represents users that are not in any of the 6 clusters. Moreover, we also implement several 25 

traditional machine learning algorithms as benchmarks.  26 

After training a CNN, we finally achieve accuracy as high as approximately 95% on the 27 

test dataset, and detailed accuracy information for all algorithms are shown in Table 4. 28 

Therefore, CNN is an appropriate and efficient algorithm for classifying participants into groups 29 

with similar travel behavior according to their activity maps.  30 

 31 

6. CONCLUSIONS 32 
In this paper, we use California Household Travel Survey (CHTS) data to analyze and classify 33 

travel behavior. After processing raw data, we find some interesting observations. First, travelers 34 

make more commute trips to work and school during weekdays but more recreation, shopping, 35 

and personal business activities on weekends. Second, most participants’ travel territory is 36 

around 5 miles, and 95% of participants travel within 10 miles for each trip. Third, most 37 

individuals have a low degree of spatial variability.  38 

Based on 5-minute interval and 8 activity types, we further construct activity matrix for 39 

each participant. Jaccard similarity coefficient is employed to calculate the similarity between 40 

every pair of participants. The output similarities are utilized for constructing a social network 41 

for participants. After this, we adopt a community detection algorithm to cluster individuals into 42 

groups with same travel behavior. The algorithm produces seven clusters: (1) non-working 43 

people with more shopping activities, (2) non-working people with more recreational activities, 44 

(3) individuals with normal working start time and a full-time job, (4) Individuals with part-time 45 

job, (5) individuals with late start working time, (6) individuals who need to attend school, and 46 
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(7) individuals that are not in any of the first 6 clusters. Then we classify individuals by using a 1 

CNN and achieve approximately 95% in accuracy. 2 

In future, a variety of data sources, including passive trip trajectory data, transit smart 3 

card data, and social media data can be collected to provide more information about individual 4 

travel behavior. Therefore, the analysis of similar driver behavior can go a step further.  5 
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Table 1 Taxonomy of activity purposes 1 

Activity Purpose 

Category 
Activity Purpose 

Home 

Personal activities (sleeping, personal care, leisure, chores) 

Preparing meals/eating 

Hosting visitors/entertaining guests 

Exercise (with or without equipment) / playing sports 

Study / schoolwork 

Work for pay at home using telecommunications equipment 

Using computer / telephone / cell or smartphone or other 

communications device for personal activities 

All other activities at my home 

Work 

Work / job duties 

Training 

Meals at work 

Work-sponsored social activities (holiday or birthday celebrations, 

etc.) 

All other work-related activities at my work 

Work-related (meeting, sales call, delivery) 

School 

In school / classroom / laboratory 

Meals at school / college 

After school or non-class-related sports / physical activity 

All other after school or non-class related activities (library, band 

rehearsal, clubs, etc.) 

Transportation / 

Transitions (Transit)) 

Change type of transportation / transfer (walk to bus, walk to / from 

parked car) 

Pickup / drop off passenger(s) 

Loop trip (for interviewer only-not listed on diary) 

Shopping / Errands 

(Shop) 

Routine shopping (groceries, clothing, convenience store, household 

maintenance) 

Shopping for major purchases or specialty items (appliance, 

electronics, new vehicle, major household repairs) 

Household errands (bank, dry cleaning, etc.) 

Personal Business 

(Personal) 

Volunteer work / activities 

Drive through other (ATM, bank) 

Service private vehicles (gas, oil, lube, repairs) 

Personal business (visit government office, attorney, accountant) 

Healthcare (doctor, dentist, eye care, chiropractic) 

Recreation / 

Entertainment (Rec) 

Non-work related activities (social clubs, etc.) 

Exercise / sports 
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Drive through meals (snacks, coffee, etc.) 

Eat meal at restaurant / diner 

Outdoor exercise (playing sports / jogging, bicycling, walking, 

waking the dog, etc.) 

Indoor exercise (gym, yoga, etc.) 

Entertainment (movies, watch sports, etc.) 

Social / visit friends / relatives 

Other 

 

Other (specify) [Note: listed on diary) 

Don't know / refused 

 1 

2 
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Table 2 Activity Purpose Statistics 1 

Activity purpose 
Weekday Weekend 

Number of Activity Proportion Number of Activity Proportion 

Home 199554 54.33% 85920 57.16% 

Work 35424 9.64% 4051 2.70% 

School 12410 3.38% 381 0.25% 

Transit 42142 11.47% 11258 7.49% 

Shop 24774 6.75% 14998 9.98% 

Person 15299 4.17% 8440 5.62% 

Rec 34766 9.47% 24036 15.99% 

Other 2911 0.79% 1222 0.81% 

Total 367280 100.00% 150306 100.00% 

 2 

  3 
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Table 3 Statistics of Clusters 1 

A
ctiv

ity
 

p
u

rp
o

se 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 

#
 o

f 

A
ctiv

ities 

P
ercen

tag
e 

# % # % # % # % # % 

Home 2201 55.74% 545 56.83% 3426 48.53% 548 54.69% 377 56.61% 311 56.75% 

Work 37 0.94% 5 0.52% 1936 27.43% 285 28.44% 183 27.48% 1 0.18% 

School 1 0.03% 1 0.10% 1 0.01% 0 0.00% 0 0.00% 155 28.28% 

Transit* 351 8.89% 51 5.32% 696 9.86% 61 6.09% 35 5.26% 36 6.57% 

Shop 650 16.46% 71 7.40% 347 4.92% 46 4.59% 24 3.60% 12 2.19% 

Person# 234 5.93% 24 2.50% 143 2.03% 15 1.50% 12 1.80% 8 1.46% 

Rec 465 11.78% 260 27.11% 504 7.14% 44 4.39% 34 5.11% 24 4.38% 

Other 10 0.25% 2 0.21% 6 0.08% 3 0.30% 1 0.15% 1 0.18% 

* Transit is the abbreviation of “Transportation/Transitions” as mentioned in Table 1. 2 
# Person is the abbreviation of “Personal Business” as mentioned in Table 1. 3 

  4 
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Table 4 Accuracy for traditional machine learning algorithm and CNN 1 

  SVM KNN RF CNN 

Cluster 1 97.5% 100.0% 97.5% 100.0% 

Cluster 2 57.5% 87.5% 60.0% 95.0% 

Cluster 3 95.0% 90.0% 92.5% 97.5% 

Cluster 4 90.0% 97.5% 90.0% 100.0% 

Cluster 5 97.5% 97.5% 100.0% 97.5% 

Cluster 6 92.5% 100.0% 95.0% 95.0% 

Cluster 7 17.5% 35.0% 30.0% 85.0% 

Average Accuracy 78.2% 86.8% 80.7% 95.7% 

  2 
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 1 
Figure 1 ROG plot 2 
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 1 
                                  (a)                                                                           (b) 2 

Figure 2 Distributions of (a) first trip departure time and (b) last trip return time 3 
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 1 
                                  (a)                                                                          (b) 2 

Figure 3 Activity maps 3 
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 1 
Figure 4 The layout of a CNN 2 
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 1 
Figure 5 Clustering results 2 
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