Session: Microarchitecture

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

COREF: Coalescing Operand Register File for GPUs

Hodjat Asghari Esfeden
University of California, Riverside
Riverside, CA
hodjat.asghari@email.ucr.edu

Daniel Wong
University of California, Riverside
Riverside, CA
danwong@ucr.edu

Abstract

The Register File (RF) in GPUs is a critical structure that
maintains the state for thousands of threads that support the
GPU processing model. The RF organization substantially
affects the overall performance and the energy efficiency of
a GPU. For example, the frequent accesses to the RF con-
sume a substantial amount of the dynamic energy, and port
contention due to limited ports on operand collectors and
register file banks affect performance as register operations
are serialized. We present CORF, a compiler-assisted Coalesc-
ing Operand Register File which performs register coalesc-
ing by combining reads to multiple registers required by a
single instruction, into a single physical read. To enable reg-
ister coalescing, CORF utilizes register packing to co-locate
narrow-width operands in the same physical register. CORF
uses compiler hints to identify which register pairs are com-
monly accessed together. CORF saves dynamic energy by
reducing the number of physical register file accesses, and
improves performance by combining read operations, as well
as by reducing pressure on the register file. To increase the
coalescing opportunities, we re-architect the physical reg-
ister file to allow coalescing reads across different physical
registers that reside in mutually exclusive sub-banks; we call
this design CORF++. The compiler analysis for register allo-
cation for CORF++ becomes a form of graph coloring called
the bipartite edge frustration problem. CORF++ reduces the
dynamic energy of the RF by 17%, and improves IPC by 9%.

“This work was done while the author was at Georgia Tech.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 19, April 13-17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304026

Farzad Khorasani®
Tesla, Inc.
Palo Alto, CA
fkhorasani@tesla.com

701

Hyeran Jeon
San Jose State University
San Jose, CA
hyeran.jeon@sjsu.edu

Nael Abu-Ghazaleh
University of California, Riverside
Riverside, CA
nael@cs.ucr.edu

CCS Concepts + Computer systems organization —
Architectures; Single instruction, multiple data; - Soft-
ware and its engineering — Compilers.

Keywords register coalescing; GPU; register file; microar-
chitecture; compiler; graph coloring; register packing;
ACM Reference Format:

Hodjat Asghari Esfeden, Farzad Khorasani, Hyeran Jeon, Daniel
Wong, and Nael Abu-Ghazaleh. 2019. CORF: Coalescing Operand
Register File for GPUs. In 2019 Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’19), April 13-17,
2019, Providence, RI, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3297858.3304026

1 Introduction

Over the past decade, GPUs have continued to grow in terms
of performance and size. The number of execution units has
been steadily increasing, which in turn increases the number
of concurrent thread contexts needed to keep these units
utilized [24-26, 37, 38, 40, 41, 47]. In order to support fast
context switching between large groups of active threads,
GPUs invest in large register files to allow each thread to
maintain its context. This design enables fine-grained switch-
ing between executing groups of threads, which is necessary
to hide the latency of data accesses. For example, the Nvidia
Volta GPU has 80 streaming multiprocessors each with a
256KB register file (64K registers, each 32-bit wide) for a
total of 20MB of register file space. Due to its continuous
access, the register file is a critical structure for sustaining
performance. The register file is the largest SRAM structure
on the die and one of the most power-hungry components
on the GPU. In 2013, it was estimated that the register file
is responsible for 18% of the total power consumption on a
GPU chip [28], a percentage that is likely to have increased
as the size of the RF has continued to grow.

In this paper, we seek to improve the performance and
energy efficiency of GPU register files by introducing register
coalescing'. Similar to memory coalescing where contigu-
ous memory accesses are combined into a single memory

1“Register coalescing” is analogous to memory coalescing where requests
are coalesced [8], and distinct from register coalescing in compiler register
allocation which is used to eliminate copy instructions [13, 19, 43].

Session: Microarchitecture

request, register coalescing combines multiple register reads
from the same instruction into a single physical register
read, provided these registers are stored in the same physical
register entry. Specifically, register coalescing opportunities
are possible when we use register packing [16, 56], where
multiple narrow-width registers are stored into the same
physical register. In contrast to register packing, which re-
quires one separate read access for each architectural register
read, register coalescing allows combining of read operations
to multiple architectural registers that are stored together in
the same physical register entry. Register coalescing reduces
dynamic access energy, improves register file bandwidth,
reduces contention for register file and operand collector
ports, and therefore improves overall performance.

We propose a Coalescing Operand Register File (CORF) to
take advantage of register coalescing opportunities through
a combination of compiler-guided register allocation and
coalescing-aware register file organization. The key to in-
creasing register coalescing opportunities is to ensure that
related registers—registers that show up as source operands in
the same instruction—are stored together in the same phys-
ical register entry. CORF first identifies exclusive common
pairs of registers that are most frequently accessed together
within the same instruction. If both common pair registers are
narrow-width and are packed together into the same phys-
ical register entry, then accesses to these registers (in the
same instruction) can be coalesced. CORF reduce physical
register accesses, resulting in ~8.5% reduction in register file
dynamic energy, and ~4% increase in IPC.

A limitation of COREF is that each register may only be
coalesced exclusively with one other register, which limits
the opportunities for coalescing registers that are frequently
read with several other registers. To further increase reg-
ister coalescing opportunities, we present CORF++ which
presents a re-architected coalescing-aware register file orga-
nization that enables coalescing reads from non-overlapping
sub-banks across different physical register entries. Thus,
reads to any two registers that reside in non-overlapping
sub-banks, even if they reside in different physical register
entries, can be coalesced. To maximize the opportunities
for coalescing, we introduce a compiler-guided run-time
register allocation policy which takes advantage of this re-
organization. In particular, we show that the compiler must
solve a graph coloring variant called the bipartite edge frus-
tration problem to optimize allocation. Since the problem is
NP-hard, we use a heuristic to determine how to allocate the
registers effectively. CORF++ is able to substantially improve
register coalescing opportunities, leading to a reduction in
dynamic register file energy by 17% and an IPC improvement
of ~9% over the baseline.

As a secondary contribution, we show that CORF can be
combined seamlessly with register file virtualization [21] to
further reduce the overall effective register file size, result-
ing in an overall reduction of over 50%. In particular, both

702

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

register file packing and register virtualization are orthog-
onal and combine in benefit, where both utilize indirection
using a renaming table, amortizing this common overhead.
This reduction in register file size can be leveraged for other
optimizations, such as power gating unused registers to save
static power [1], or enabling more kernel blocks/threads to
be supported using the same register file to improve perfor-
mance [56].
This paper makes the following contributions:

e We introduce the idea of register read coalescing, en-
abling the combination of multiple register reads into
a single physical read. CORF implements coalescing
with the aid of compiler-guided hints to identify com-
monly occurring register pairs.

e We propose CORF++, consisting of a re-organized reg-
ister file to enable coalescing across different physical
registers, and a compiler-guided allocation policy that
optimizes allocation against this new register file. This
new policy relies on compile-time graph coloring anal-
ysis, solving the bipartite edge frustration problem.

e We combine CORF++ and register file virtualization,
observing that their benefits add up (CORF++ opti-
mizes in space, while virtualization optimizes in time),
but their overheads do not (both share a renaming ta-
ble), resulting in the smallest known effective register
file size among register compression proposals.

2 Background

In this section, we first overview the organization of modern
GPU register files as well as its impact on performance and
power. Next, we discuss the concept of register packing [16,
56], from which register coalescing opportunities arise.
GPU Register File: Modern GPUs consist of a number of
Streaming Multiprocessors (SMs), each of which has its own
register file, and a number of integer, floating point, and
specialized computational cores. A GPU kernel, i.e. program,
is decomposed into one or more Cooperative Thread Arrays
(CTAs, also known as thread blocks) that are scheduled to the
SMs. The threads within a block are grouped together into
warps, or wavefronts, typically of size 32. The threads within
a warp execute together in lockstep, following a Single In-
struction Multiple Thread (SIMT) programming model. Each
warp is assigned to a warp scheduler that issues instructions
from its pool of ready warps to the operand collection unit
(OC) and then to the GPU computational cores.

Each warp has its own set of dedicated architectural reg-
isters indexed by the warp index. There is a one-to-one
mapping between architectural registers and physical regis-
ters [29]. To provide large bandwidth without the complex-
ity of providing a large number of ports, the register file is
constructed with multiple single-ported register banks that
operate in parallel. A banked design allows multiple concur-
rent operations, provided that they target different banks.

Session: Microarchitecture

1024 * 4-bits Free Register Map
>

Rename Table

—

— (e —
J—>| Bank3 |—>

Interconnect

¢ Array of Packers |
Bank Arbitrator

- - ;)
o Valid | Reg ID | Ready |Operand
% Valid | Reg ID | Ready [Operand
128 bit Write In R 128 bit Read =
ntry Valid | Reg ID | Ready | Operand
7 ’-each 128 bit 7 o Y| Operand)

Figure 1. Baseline GPU register file design with proposed
enhancements (in dark purple) for register packing [16, 56].
CU0-CU3 are operand collector units.

When multiple operations target registers in the same bank,
a bank conflict occurs and the operations are serialized.
Figure 1 shows our baseline register file organization for
the Fermi generation of Nvidia GPUs. It has a register file
size of 128 KB per SM split across four banks. A bank is made
up of 8 sub-banks that are 128 bits wide each. All 32 registers
belonging to the 32 threads in the same warp are statically
allocated to consecutive sub-banks (in a single bank) with
the same entry index. Thus, a full register for all the threads
within a warp can be striped using one entry of one bank,
allowing it to be operated on in a single cycle. Each bank
can store up to 256 warp-registers.
Impact of Register File on Performance and Power:
When a warp instruction is scheduled by the warp sched-
uler, an operand collector (OC) unit is assigned to collect its
operands for execution. An OC fetches the register operands
from the register banks they reside in, bound by the two
following constraints: (1) OC port serialization: Each OC has
only one port and therefore it has to serialize reads when
an instruction has multiple operands (instructions may need
up to 3 source operands); and (2) Register bank conflicts:
While operands from different banks may be concurrently
read from different OCs, operands that access the same bank
cause bank conflicts and cannot be issued together. The port
constraints causing these conflicts are difficult to bypass by
increasing the number of ports [9]: the cost of a port is ex-
tremely high when considering the width of a warp register.
Register coalescing can help with both of these constraints:
by coalescing operands, it allows multiple operands to be
read by an OC in a single cycle, overcoming port serializa-
tion. Moreover, by reducing the overall number of register
reads, the pressure on the register file is reduced, potentially
reducing register bank conflicts. By reducing the overall
number of reads to the RF, energy efficiency is improved.

703

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Moreover, improving performance leads to shorter run times,
also improving energy efficiency.

Register Packing: Register coalescing opportunities arise
when two registers needed by the same instruction are stored
in the same physical register entry. This opportunity only
exists when we allow multiple registers to be packed in the
same physical register entry, a known architectural tech-
nique called register packing [16, 56]. In particular, register
packing maps narrow-width values (values which do not
need all 32 bits to be represented) of multiple architectural
registers to a single physical register.

Since each architectural register read in prior register pack-
ing implementations requires a separate uncoalesced physi-
cal register read, a greedy first-fit allocation policy has been
utilized to pack registers. This simple policy is sufficient to
achieve the main goal of register packing, which is reducing
the effective register file size; enabling unused registers to be
power gated, or enabling the register file to be provisioned
with a smaller number of physical registers. However, as
we will show in the next section, this policy leads to very
few register coalescing opportunities. Thus, a key to register
coalescing is to pack related registers that are frequently
read together, which is the goal of our compiler analysis.

3 The Virtues of Register Coalescing

In this section, we motivate register coalescing, and the need
to design coalescing-aware register files to maximize the ben-
efits of register coalescing. All experiments are collected with
the GPGPU-Sim simulator [7], modeling a Fermi GPU?. We
utilize benchmarks from Rodinia [15], Parboil [53], NVIDIA
CUDA SDK [39], and Tango DNN Benchmark Suite [22].
More details of experimental setup are discussed in Section 7.

&
& &

L3

M 1-byte @ 2-bytes O 3-bytes O 4-bytes

120%
100%
80%
60%
40%
20%
0%

INT-intensive

I

o S8 >, &yéoo@@e\&&@@
&

Percentage

Sof $ £
é”'e"

Figure 2. Width distribution of registers accessed from RF

Register operand characteristics: Figure 2 showcases the
prominence of narrow-width values in GPU applications. We
classify narrow-width values into four size classes: 1 byte, 2
bytes, 3 bytes, and 4 bytes (full-width). On average, 65% of all
register operations contain narrow-width values, with over
33% of operations consuming no more than a single byte.
This demonstrates that there exists a significant amount
of register operands amenable to register coalescing. For
floating point (FP)-intensive benchmarks (such as sgemm
and blackscholes), the percentage of narrow-width values is

ZRegister coalescing opportunities are agnostic to hardware architecture.

Session: Microarchitecture

less than that for integer-intensive benchmarks (such as bfs
and btree). This is due to the IEEE 754 encoding of floating
point values, which makes use of all 32 bits.

70%

o 60% INT-intensive FP-intensive
80 50%
£ 40%
9 30%
o 20%
o LLLLLL 11al]
0%
"i‘ ' @‘\‘3? 0 °° > 4 Le‘;@e:\@i\s‘\@e i@:@&”«"@e &
& O
[& @ «5’ o 0&16‘ L«b& & Q\g

Figure 3. Unused RF bandwidth (also proportional to wasted
dynamic energy).

Opportunity—- Register file bandwidth: Figure 3 shows
the unused register file bandwidth due to carrying the un-
needed bits of narrow-width values. In addition to wasting
bandwidth, these unneeded bits also cause wasted dynamic
energy, as they are unnecessarily carried through to the
operand collector. We observe more wasted bandwidth in
integer applications, since narrow-width values are more
common in them than in floating point applications.

While register packing is able to reduce the effective size
of the register file, each register read still requires a sepa-
rate physical register read. Therefore, this wasted bandwidth
is not recovered with simple register packing. To this end,
our proposed register coalescing aims to read multiple re-
lated registers used by the same instruction through a single
register read operation in order to utilize the register file
bandwidth more efficiently.

M First-fit O Upper bound
100%
@ 80%
2 60%
8 0%
& 20%
0% o & & o4 \ S D © N { O ©
0 L O
MOCERE AT A S R S
& LS & S O o
EE F§ v,c*oﬁ e &

L)

Figure 4. Instructions with coalesceable register reads; first
fit is clearly weak in promoting coalescing.

Register coalescing opportunity: Figure 4 shows the
prevalence of operand coalescing opportunities. We profile
the register operand values at run-time and measure the frac-
tion of all dynamic instructions which contains two register
source operands that are both narrow and can fit together
in a single register entry. We consider instructions that have
two or more register source operands because they could
benefit from coalescing. We find that around 40% of the in-
structions have two or more register source operands, but
more importantly, because they read multiple registers, they
are responsible for over 70% of the register file reads. On
average, 69% of all dynamic instructions with two or more
operands have the potential for operand coalescing, because

704

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

their register operands can be packed, with up to 91% in some
benchmarks like Sad and Gaussian. Clearly, we have more
coalescing opportunities in integer intensive applications
compared to floating point.

If we extend register packing to enable coalescing but
keep the greedy first-fit register allocation policy, we can
only leverage register coalescing opportunities in around 4%
of instructions with two or more operands. This is a tiny
fraction of the 69% of such instructions where a coalescing
opportunity is potentially available! To improve coalescing
opportunities, CORF incorporates a compiler-guided register
allocation policy to identify pairs of registers commonly read
from the same instruction and map them into the same physi-
cal register entry. In addition, we propose a coalescing-aware
register file sub-bank organization and associated compiler-
guided allocation policy (CORF++) which can coalesce regis-
ter operands that are not stored in the same physical register
entry, but in non-overlapping byte slices in the sub-bank.

4 COREF: Coalescing Operands in Register
File

In this section, we present the design of CORF, which coa-
lesces register reads to improve the RF performance. For two
reads to be coalesceable, they have to be destined to registers
that are packed in the same physical register entry. To im-
prove the opportunity for coalescing, CORF utilizes compiler-
assisted hints to pack related registers together. CORF is the
first register file optimization technique that simultaneously
improves performance and reduces power (both leakage and
dynamic power). Coalescing enables higher performance
by combining read operations, reducing port serialization
of operand collector units and register file port conflicts.
Coalescing reduces dynamic power, by decreasing the num-
ber of read operations to the register file, and lowers the
overall GPU energy consumption because it leads to overall
performance improvement that enable programs to finish
faster. In Section 5, we will present CORF++, which further
re-architects the register file organization to create more
coalescing opportunities.

1 Profile Register Pairings Common Pairs Identification CORF RF
Kernel !]
i 2 (r1,r3) -]
Binary] ®, .@ » , »
I T’ (r2,r4) [3 |
P @ © Fhrd]

Execution time

| Compile time

Figure 5. CORF overview. Compiler-generated register pairs
guide register allocation to create coalescing opportunities

4.1 CORF Overview

COREF identifies register pairs—registers that are used as
source operands in the same instruction—at compile time
through static analysis or, alternatively, profiling. For exam-
ple, in Figure 5, we have four registers (r1, r2, r3, r4), where

Session: Microarchitecture

register r1 is read 8 times with r2, 10 times with r3, and 2
times with r4. In this example, we select (r1, r3) and (r2,
r4) as target exclusive common pairs for coalescing. During
run-time, if any of these common pairs happen to be compat-
ible narrow-width values, they will be dynamically packed
together. If any instruction requires both r2 and r4 as source
operands, we can coalesce the operand access using a single
read of the register file. However, in this example, during
run-time (r1, r3) could not be packed since their combined
size exceeds the size of a physical register entry. Since each
register can only be coalesced with at most one other register,
we lose opportunities to coalesce operands from instructions
with different register pairings, such as (r1, r2), a limitation
which we will target in Section 5.

4.2 Generating Compiler-assisted Hints

Identifying exclusive common pairs: The first step in
identifying common pairs is to profile the frequency of reg-
ister pairings in order to build a Register Affinity Graph, as
shown in Figure 5. In order to determine the edge weights,
we task the compiler to estimate the dynamic frequency
of occurrence for each instruction in each kernel. This is,
in general, a difficult problem at compile time, which we
approximate as follows. For each instruction outside of a
loop with two or more operands, we consider every pair of
operands to occur once. Inside of loops, if the loop iteration
count is statically resolvable, we use that count to increment
the edge weight for register pairs that occur in the loop. If the
iteration count is not a resolvable constant, we give a fixed
weight to each register pair in instructions inside the loop.
We use the same approach for nested loops. While these
weights are not exact, they serve as a heuristic to assign
relative importance to register pairs.

In order to identify exclusive common pairs, we must
remove edges of the registers that have more than one edge.
Considering only registers with more than one edge, we
repeatedly remove the edge with the least weight until we
end up with only exclusive pairs of registers. If there are
any pair of registers that have all of their edges removed, we
check if an edge can be restored between them.

Passing compiler-assisted hints to hardware: The set of
exclusive register pairs that are identified by the compiler
are annotated in the executable’s preamble of a kernel and
delivered to the hardware through a metadata instruction.
The register pair information is maintained in a small as-
sociative structure. Specifically, we use a 64-bit metadata
instruction (to be aligned with existing SASS binaries) in the
beginning of each kernel in order to carry the compiler hints
to the hardware. Consistent with the SASS instruction set
that uses 10 bits as opcode for each instruction, we reserved
10 bits as opcode and the remaining bits for storing the com-
mon pairs of the registers. Since in Fermi architecture, each
thread may have up to 63 registers, we need 6 bits as the
register number. Each metadata instruction can carry up to

705

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

four common pairs. Multiple instructions are used if more
than 4 pairs need to be communicated. This design can also
be adapted to support newer GPUs with more registers.

4.3 CORF Run-time Operation

We complete the description of CORF by explaining how
registers are allocated to control the allocation of compiler
identified pairs. We will also describe how coalescing oppor-
tunities are identified.

COREF register allocation policy: The register allocation
policy for CORF attempts to pack the identified register pairs
into the same physical register entry to increase coalescing
opportunities. A register is allocated for the first time it ap-
pears as the destination of an instruction. Additionally, it
could be reallocated when its size changes. When an alloca-
tion event occurs, we check the register pair information to
see if the register belongs to a common pair. If it is, the allo-
cator uses the common pair allocation logic. If the register
does not belong to a common pair, it is allocated using the de-
fault allocation policy (assumed to be first-fit). We illustrate
the common pair allocation using an example. Assume that
r1 and r2 are identified as a common pair. When the first
operand (say r1) arrives and is to be allocated, it is identified
as a common pair register and mapped to any free full-width
physical register. The rationale is to reserve any remaining
slices of the physical register for a future allocation of the
other register in the pair. When the buddy register (the reg-
ister complementing the pair, which is r2 in this example) is
allocated, we check to see if it fits the physical availability
in the register allocated to r1. If it fits, it is allocated to the
same physical register. Otherwise, it is mapped using the
default policy.

100%
80%
60%
40%
20%
0%

Percentage

é‘,@- @‘o‘“ S ‘,v@&é\ox@yé\be\ec S e’ e&e\‘s &
SR
o S S D 4,
e & Yo ca v\o\e&& @“ B &
& @

Figure 6. Percentage of successful combinations of compiler
identified register pairs for CORF

In Figure 6, we show that identified common pairs fit
together, and are successfully packed in the same register in
most of the cases (an average of just under 80%). This is a
high percentage despite the fact that we currently carry out
no size estimation in the compiler analysis.

Identifying coalescing opportunities: Recall that pack-
ing registers in the same physical register is enabled by a
renaming table (RT) that maps the architectural register to
the physical register slice where it is stored. The RT is in-
dexed by a tuple of the warp ID and an architectural register
number. Each physical register is split into four 1-byte slices.

Session: Microarchitecture

Thus, each RT entry stores the physical register where this
value is stored, and a 4-bit vector called the allocation mask,
which specifies the bytes in the physical register that the
potentially narrow architectural register resides in. We use a
free register map to keep track of free allocations of physical
register slices when making allocation decisions. The free
register map is a bit-vector where each bit represents a byte
of a physical register (i.e., 4 bits per physical register).

To identify coalescing opportunities as a new instruction

is sent to an operand collector unit, we first look it up in the
renaming table to determine the physical registers where the
operand registers are stored. If the physical registers for two
operands match, the reads to these operands are coalesced
into a single read to the register file. When the physical
register contents are received, the unpacker demultiplexes
the two registers and sign-extends them to recover two full-
length registers.
Incorporating register virtualization [21]: CORF’s im-
plementation seamlessly supports register file virtualization
to further reduce the size of the register file. Specifically, we
observed that register file virtualization, which releases regis-
ters when they are no longer live, can also further reduce the
register file size. At the same time, register file virtualization
can be directly supported within CORF since it also relies on
a renaming table to allocate registers, requiring almost no
additional overhead.

5 CORF++: Re-architected RF

COREF coalescing opportunities are limited to registers stored
within the same physical register entry. If a register is com-
monly accessed with two or more other registers, coalescing
is possible with only one of them. To relax this limitation,
CORF++ re-organizes the register file to enable more operand
coalescing opportunities.

Specifically, CORF++ (Figure 7) re-architects the register
file to enable coalescing of registers within the same physical
register bank, provided they reside in non-overlapping sub-
banks. Recall that each bank consists of eight sub-banks of
16 bytes wide. Since we are no longer restricted to coalescing
exclusive pairs of registers packed into the same physical
register entry, the compiler’s task of guiding register alloca-
tion to promote coalescing becomes substantially different.
In this section, we overview CORF++. We first present the
compiler support to optimize coalescing opportunities in
CORF++, then describe the implementation of the coalescing
aware register file, and finally discuss its operation during
run-time.

5.1 Compiler-assisted Register Allocation

CORF++ allows coalescing registers in non-overlapping sub-
banks, even if the values reside in two different physical
register entries. The main challenge of efficient register al-
location in CORF++ is in assigning commonly read register

706

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

i - ' {an V| ===
Kernel # Graph Coloring : : : : C e RF
. 1 N 1
Binary | i @@ i Left Right HE [- |

PG W [fe] ey FETEE

L P P sl

] T HH =

Compile time Execution time

Figure 7. CORF++ overview. At compile time, we identify
which registers should be left-aligning, or right-aligning
through graph coloring algorithm, so that we can maximize
coalescing opportunities. This information will then guide
register allocation in our coalescing-aware register file.

pairs in different sub-banks. We simplify the allocation to
a selection of left-aligning and right-aligning assignments;
provided that two registers are in separate alignments, they
have a chance of being coalesced (subject to their combined
size being smaller or equal to 4 bytes).

Similar to the compiler analysis for CORF, we start by con-
structing the Register Affinity Graph where edges between
registers indicate the expected frequency of reading the two
registers together in the same instruction. An optimal assign-
ment maximizes the weight of the edges between registers
assigned to alternate alignments. This problem maps to a
graph coloring problem variation (where each alignment is
a color). We are attempting to remove the minimum edge
weight (thus, forsaking the least coalescing opportunities)
to enable the graph to be colorable by two colors (left or
right). This variation of graph coloring is called the bipar-
tite edge frustration problem, and is NP-hard even with two
colors [61].

To derive an efficient heuristic for register mapping, we
first observe that any graph with no odd cycles (cycles made
up of an odd number of edges) is 2-colorable. Thus, to solve
the problem, we should remove the minimum set of edges,
considering weight, that will break all odd cycles (to iden-
tify odd cycles, we used a modified version of the algo-
rithm in [12]). Since the optimal solution is NP-hard, we
develop the following heuristic, as illustrated in Figure 8.
In the initial graph state (left-most graph), we have four
odd cycles: (r1,r2,r3),(r3,r4,r6),(r2,r3,r4,r6,r5),and
(r1,r3,r6,r5,r2). We assign each edge a weight corre-
sponding to its original weight, divided by the number of
odd cycles that removing it would break. We then remove
the edge with the minimum weight (among the edges that
are part of odd cycles), and update the weights. We repeat
this process until all odd cycles are eliminated, enabling us
to trivially 2-color the graph.

Similar to COREF, the register allocation information is
passed through metadata instructions. We use a metadata
instruction to encode the register assignments to either left-
aligning, right-aligning, or don’t-care. This encoded data is
expanded to store 2 bits per register to indicate alignment.
This data is stored using a single bit-vector for each kernel,
resulting in a storage overhead of 128 bits per kernel. Other

Session: Microarchitecture

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Figure 8. CORF++ register assignment heuristic example

designs that reduce or completely remove this overhead are
possible, for example, having the compiler preset the register
alignments (e.g. all even registers right aligned).

5.2 Coalescing-aware RF Organization

Mapping registers to banks: In the baseline register file,
registers belonging to the same warp are interleaved across
the register banks with the goal of minimizing bank conflicts
across warps (Figure 9, left side). Since coalescing occurs
only within a single instruction of a warp, CORF++ maps
all registers belonging to the same warp to a single register
bank in order to maximize coalescing opportunities (Figure 9,
right side). This new mapping ensures that all accesses to
registers within the same warp are in the same bank and
therefore potentially coalesceable.

Counter-intuitively, our goal is to create more bank con-
flicts within warps, which gives us more opportunities to
convert bank conflicts into beneficial coalescing opportuni-
ties. Note that since the operand collector unit can read no
more than one register in each cycle, there is no lost opportu-
nity in terms of reading registers from different banks for the
same instruction. With respect to conflicts across warps, on
average, the new mapping does not increase conflicts, since
the probability of two registers from two different warps
being in the same bank remains %, where n is the number of
banks. However, with the new mapping, two warps either
always conflict (because they are mapped to the same bank)
or they never do (mapped to different banks) and there is
a possibility for pathologies arising, for example, from two
active warps being mapped to the same bank. However, we
did not observe any such behavior in our experiments.

wO0:r0 wo:rl wO0:r0 | wi0 | [w2ir0
wi:r3 wi:r0 wo:rl wi:irl
w2:r2 2 w0:r2 wil:r2
w3:rl w3:r2 w0:r3 | owir3 | w2
Bank0 Bank1l Bank2 Bank3 Bank0 Bank1 Bank2 Bank3

Figure 9. Modified register to bank mapping where all reg-
isters belonging to a warp maps to the same bank.

Sub-bank organization: CORF++ allows multiple read op-
erations to registers that reside in non-overlapping sub-
banks to be coalesced. To support this functionality, we
change the mapping of the registers to sub-banks. For clarity,
we denote the bytes of a 32-bit register values as B3B;B; By.

In Figure 10 @) we show how registers are organized
across the 8 sub-banks in current GPUs. A register is stored
across all 8 sub-banks, where each sub-bank is 128 bits wide.

707

Each sub-bank stores a 32-bit register value for 4 threads. For
example, sub-bank 0 stores the register values for threads 0 -
3 in sequential order, where the first 4 contiguous bytes are
from thread 0, the next 4 bytes are from thread 1, and so on.

Now let us assume that r1 and r4 are 1-byte narrow val-
ues, and r2 and r3 are 3-byte narrow values. Figure 10 @
shows how these four architectural registers are stored after
they are packed into two physical registers. For example,
in physical register PO, r1 and r3 are packed together. In
this example, since r3 is 3-bytes, r3 will only utilize the 3
least significant bytes (Ba—o). This mapping leaves the most
significant byte (Bs) available, which is packed with r1. r2
and r4 are also packed similarly. In this scenario, we can
only coalesce reads if they require r1 and r3, or r2 and r4,
as these pairs reside in the same physical register entry. Here
we lose coalescing opportunities for other compatible pairs,
such as r1 and r2, or r3 and r4 since parts of every register
are spread across all sub-banks.

To address this limitation, we present a re-organized sub-
bank mapping, as shown in Figure 10 @. Instead of storing
registers in sequential ordering of the entire 32-bit register
value, we will instead interleave the storage of register values
across the sub-banks. In this scenario, we first store the most
significant bytes (Bs) of threads 0 - 31 consecutively, then
store the next significant bytes (B,) of threads 0 - 31, etc. In
this organization, Bs is stored in sub-banks 0 and 1, B; is
stored in sub-banks 2 and 3, and so on.

Sub-bank0 Sub-bankl Sub-bank7

P1|
J L

Sub-bank0 Sub-bankl Sub-bank7

b J
Y T
o 128B: WarpO_R1 128B: Warp0_R2
r2 [T - —
] L)

T T
128B: Warp0_R3 128B: WarpO_R4

Sub-bank0 Sub-bank1 Sub-banks2,3,4,5,6 Sub-bank7

I EEEEEEEEEEEN
—

Single 32bit register

Sub-bank0 Sub-bank1 Sub-banks2,3,4,5,6 Sub-bank7

O NI [[T T T [T

P [[[[T T T
Figure 10. Baseline register sub-bank organization shown
in). Sub-bank organization when packing R1 w/ R3, and
R2 w/ R4 @. Coalescing-aware sub-bank organization @
enables coalescing across different physical registers with
non-overlapping sub-banks.

Session: Microarchitecture

When storing packed values in CORF++, we store the nar-
row registers as either left-aligning, or right-aligning. In the
case of r1 and r3, r1 is stored into PO as left-aligning, and
r3 is stored as right-aligning. In this new sub-bank organiza-
tion, we are able to coalesce r1 and r3, and r2 and r4. Note
that if each sub-bank can address different physical register
addresses, then it would also be possible to coalesce registers
in non-overlapping sub-banks. For example, r1 and r2, as
well as r3 and r4 would be coalesceable.
Dual-addressable banks: To support coalescing across dif-
ferent physical register entries, we introduce dual-addressable
banks (Figure 11). We add additional MUXes to pick between
Address1 and Address2, which represent a left-aligning and
a right-aligning register being coalesced. If we wish to co-
alesce r1 and r2, then P1 would be sent to Address1, and
PO to Address2. By default, the MUXes select Address1, and
utilize the 4-bit allocation mask from Address2’s entry in the
renaming table as the selector. In this scenario, we use r1’s
allocation mask, which would be 1000.

Address 1
:E{ g :E{ g ’E{ Q :E-[g
> |
8 N = 2
Address 2

Figure 11. Dual address register file.

5.3 CORF++ Run-time Operation

Next, we explain the run-time operation of CORF++ through
an illustrative example to demonstrate register allocation
and coalescing.

CORF++ register allocation: When an allocation event
occurs (e.g., writing into r2 in Figure 12 @), we check the
register alignment to see if it is a right-aligned or left-aligned
register. For don’t-care registers, we default to the first-fit
allocation.

Identifying coalescing opportunities: Similar to CORF,
to identify coalescing opportunities as a new instruction is
sent to an operand collector unit, we look up the allocation
mask in the renaming table for the source operands. Any
two source operands could be coalesced if the AND of their
allocation masks becomes 0000.

Figure 12 shows an illustrative example of CORF++ with
three physical registers.) shows a piece of SASS code. The
value loaded in r1 in @) is detected by a width detection unit
as a narrow-width value that needs 2 bytes, and since r1
is an unallocated don’t-care register, we map it to the first
available spot (using first-fit policy). The next instruction
writes into r2 which is right-aligned, so we map it to the
first available right part of a physical register. In @, the
instruction writes into r4 and is allocated to the first available
right part of a physical register. @) shows a local load into r3,

708

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

so we map it to the first available left spot (which is P0). In @),
we first coalesce the read operation for r2 and r3 and then
write into r5, so the allocator maps it to the first available left
spot. Finally, in @, CORF++ coalesces the read operations
for r4 and r5 and later r3 and r4. In this example, we were
able to coalesce all available opportunities. In contrast, CORF
is not able to coalesce read operations for r3 and r4 because
we can only pick exclusive common pairs.

6 Additional Implementation Details

COREF assumes as a starting point a register file that imple-
ments register packing RF [16, 56] and extends it in three
important ways: (1) It supports operand coalescing: the abil-
ity to identify opportunities for reading registers that are
packed in the same physical register (CORF) or in mutually
exclusive sub-banks (CORF++), and the support to read them
together and unpack them; (2) It receives compiler hints to
guide register allocation decisions and uses them to guide
allocation to promote coalescing; and (3) It also supports
register virtualization [21], allowing it to free registers when
they cease to be live. Additionally, CORF++ rearchitects the
register file to enable coalescing reads from mutually exclu-
sive sub-banks as we described in the previous section. In
this section, we describe additional important components
of CORF and CORF++.
Renaming Table (RT): The renaming table is a table in-
dexed by a tuple of the warp ID and an architectural register
number. Each entry stores the physical register where this
value is stored, and a 4-bit allocation mask. The table consists
of (max_num_of _warps_per_SM X max_regs_per_thread)
entry, which is 48 X 63 = 3024 in our reference register file.
Each entry has a width of 14 bits (10 bits to represent the
physical register number, and the 4-bit allocation mask).
The renaming table needs to be accessed on register reads
to resolve the mapping to the physical register. The number
of ports needed must at least match the number of read ports
on the register file to keep port conflicts from becoming a
bottleneck. The renaming table can be implemented as a
general multi-ported table. However, to reduce complexity,
we implement it as a dual-ported sub-banked structure. We
use two ports to allow fast lookup of potentially coalesceable
registers. We use a design with a separate bank for each
register file bank in the corresponding register file.
Allocation Unit: A small structure that guides the alloca-
tion policy using information provided by the compiler. We
designed and synthesized this structure in detail for CORF++.
It holds an allocation vector that carries the alignment for
each register (left, right or don’t-care). We store 128 bits per
each kernel, for a maximum storage size of 128 bytes per SM
(please note that we may have up to 8 concurrent kernels run-
ning on each SM). The allocation vector is consulted during
allocation in conjunction with a free map that keeps track
of the available physical registers (and register slices). The

Session: Microarchitecture

‘e

~

.

]

% SASS Code:

» GLD ri1, [ex8e]; GLD r1, [0x80];

= ISUB r2, ri, ox7; & > ISUB r2, rl, Ox7; = > SHR r4, rl, 0x8;
= SHR r4, ri, ox8; : :

™ LD r3, [r4]; : 3 : 3

i IADD r5, [r2, r3; i Physical PO | | t Physical PO rl
5 IMUL ri, [r4, r5; i Register P1] 1 * Register P1 L2
: ISUB r2, [r3, rdj; File p2 File p2

@ NN NN NN NN NN NN NN N NN NN NN NN NN NN NN NN SN NN NN NN NN EENEEEE RN ER R RRRER,

EG<L:r3,r5|R: , ra> §G<L:r3,r5|R:r2, > EQQ:

H
H

: H

. H

> LLD r3, [r4]; > IADD r5, [F2, r3} ISUB r2, m H

: H

: H
. H H H
i Physical PO r3 E Physical PO r3 E Physical PO I’3 H
H RESIS'(EI' P1 -l'il H Reglster P1 -l'il H Reglster P1 -". .
File i File r5 i File r5 o

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

*

H H .
,r5 | R:r2, rd> G <L:r3,r5 | R:r2, ra> o <L:r3,r5| R:r2,rd> 1

» IMUL ri, [r4, rS5

'.--‘

Figure 12. lllustrative Example of CORF++ register allocation (@)-@) and read coalescing (@, @)

allocator logic uses the alignment preference as it consults
the free map to identify a target register for allocation. Note
that the renaming logic, free map, and the allocation logic are
present in baseline register packing [16, 56]; our allocation
unit adds the compiler hints and changes the allocation logic
to use them.

Impact on pipeline: Although the RT access latency is low
(0.38ns according to CACTI [52], which is well below the
cycle time of modern GPUs), we want to avoid combining
the RT lookup, coalescing logic, and the register file read in
the same cycle. We note that once the scoreboard marks an
instruction to be ready to issue, we need at least one cycle
to find a free operand collector and move the instruction to
it. Thus, we use this cycle to initiate access to the renaming
table to avoid trying to fit the renaming table access and the
register file access in the same cycle. The RT is dual-ported
and sub-banked; however, in the event of a port conflict, the
arbitrator (which resolves conflicts for the register file) is
extended to delay the register read while the renaming table
read is resolved. We extended the pipeline in the simulator
to model these effects.

Control divergence: When control divergence occurs, only
a subset of SIMT lanes of a warp are active. CORF operation
continues unchanged under divergence but considering all
registers (whether belonging to active or inactive threads)
for all operations (importantly for width determination).
Size changes: If a packed narrow-value register size in-
creases during runtime, we reassign it to another physical
register entry using the same process as the initial assign-
ment. The original mapping is then cleared. Size change
events which require reallocation are rare (less than 0.3% of
writes), which makes these extra accesses to the RT have
negligible effects. In case of a size decrease, we keep the old
mapping and adjust only the size in the renaming table.
Packers and unpackers: Packers and unpackers are placed
as shown in Figure 1 so that packed values only exist in the
register file and operand collection pipeline stage. Registers
are packed as they are written to the register file by first
aligning them into the slice they will be written to, and
writing only that slice of the physical register. Conversely,
when registers are read, they are unpacked by shifting down
(if necessary) and sign-extending such that the registers are

709

recovered to full width. Our unpackers are designed to be
able to unpack two values in the case of coalesced reads.
The number of packers required matches the pipeline width
for writing (in our case, two packers). To unpack coalesced
registers, we have two unpackers working in parallel in each
operand collector, for a total of 8 unpackers per SM.
Width detection units: The register width detection units
are embedded into the final stage of SIMD execution units
in order to detect the width of produced outputs. This is a
combinational circuit: it ORs the 7 least significant bits for
each of the three most significant bytes for every register in
addition to the most significant bit of the byte before it (to
ensure that narrow positive numbers always start with a 0 in
the MSB). For example, for byte 1 which spans bits 8 to 15, we
OR together bits 7 to 14 to identify whether the byte is 0 or
not. This produces a 3-bit output for each register. Moreover,
another 3 bits are obtained by NAND-ing together the same
bits of each byte to track the width of negative numbers.
Again, this ensures that any shortened negative number has
1 in the MSB. We use the most significant bit of the register
to multiplex out either the OR outputs (for positive values)
or the NAND outputs (for negative values). A second stage
ORs the 3 bits output of the MUX per register across all
32 registers in the warp producing a single 3-bit output to
capture the maximum width. This 3-bit sequence is used to
determine the overall size of the register.

7 Performance/Power Evaluation

We have implemented CORF and CORF++ in GPGPU-Sim
v3.2.1 [7], based on an Nvidia Fermi-like GPU configuration
with 15 SMs. Each SM has a 128 KB register file organized
into four banks, and each bank consists of eight sub-banks,
as detailed in Figure 1. We enabled PTXPlus for all of our
evaluations. Since GPGPU-Sim provides a detailed PTX code
parser, we modified the parser to carry out our compiler opti-
mizations. Each SM also has two warp schedulers configured
to use a two-level warp scheduler.

In all experiments, we use 20 benchmarks selected from
Rodinia [15], Parboil [53], NVIDIA CUDA SDK [39], and
Tango [22] benchmark suites. The benchmarks cover a range
of behaviors and operand mixes (integer/floating point).

Session: Microarchitecture

W First-fit [CORF

O CORF++

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

O Upper Bound

100%
80%
60%
40%
20%

0%

INT-intensive

Percentage

FP-intensive

Figure 13. Coalesced instructions: CORF and CORF++ significantly increases the amount of coalescing opportunities.

ECORF OCORF++
40%

()
an 30%
©
i
S 20%
o
bt
O 10%
0%
S & SO0 P P> ODDSDD e & S5 & \© ©
ééé«v‘?@@"e o ,,v«,,é’é\oc‘&@v OO TN F
N %60 s Q’vd“ & & @"‘ A < &
eI v*"o&“ & &
L

Figure 14. Reduction in number of accesses to register file.

Coalescing success: Figure 14 shows the reduction in reg-
ister file accesses due to operand coalescing in CORF and
CORF++. CORF reduces the overall number of register file
accesses, by 12% for integer applications, 4.5% for floating
point applications, and 10% of all applications. This reduc-
tion percentage is computed against all accesses (including
writes, and instructions with a single register operand, which
cannot be coalesced). CORF++ is able to reduce even more
accesses (by 2.3x) because of increased coalescing opportuni-
ties. Specifically, CORF++ reduces register access of integer
applications by 27%, floating point applications by 9.9%, and
23% overall. Figure 13 shows the impact of compiler optimiza-
tions on the success of coalescing. While first-fit allocation
policy results in coalescing only 4% of the instructions with
multiple register operands, CORF and CORF++ are able to
coalesce 23% and 48%, respectively.

Performance: As a result of the reduced register accesses,
performance is improved. Figure 15 shows the performance
impact of CORF and CORF++. Notably, we observe IPC im-
provement across all benchmarks. On average, CORF im-
proves IPC by 4.9% for integer benchmarks and 1.7% for
floating point benchmarks (harmonic mean across all appli-
cations is 4%). For fairness, the IPC computation does not
count metadata instructions since they do not further the
computation (but we include their cost). CORF++ is able to
improve IPC for integer benchmarks by 10.5%, floating point
ones by 3.6%, resulting in a harmonic mean of 9%.
Register file size: A secondary contribution of CORF is
that we combine register packing and register virtualization
to reduce the overall register file size beyond either of these
techniques alone. Virtualization is essentially obtained for
free since it primarily relies on a renaming table such as the
one we already use. Figure 16 shows the reduction in the

710

@ CORF OCORF++

20%
’ INT-intensive

° FP-intensive
o 15%

10%
5%

Percent

0%

Figure 15. IPC Improvement.

number of allocated physical registers using register packing,
register file virtualization (RF-Virtualization) [21], and when
combined together. We tracked the number of allocated phys-
ical registers (each potentially packing several architectural
registers) as a fraction of the total number of architectural
registers averaged over the benchmarks’ execution. Register
packing reduced physical-register allocation by 34%, regis-
ter file virtualization alone reduced it by 35%, while both
together reduced it by 54%. When combined, packing com-
presses spatially, and RF-Virtualization temporally, leading
to synergistic improvements [10, 11]. This is the highest
compression ratio achieved by techniques that attempt to
compress the register file size [21, 27, 56]. The reduction
in effective register file size can be exploited either: (1) by
gating unused registers to save power; (2) by reducing the
register file size while maintaining performance; or (3) by
enabling more threads to be active to improve performance.
We demonstrate the advantage using the first option.

M Register Packing @ RF-Virtualization O Combined(CORF++)
100%

o 80%
£ 60%
8 40%
o
& 20%
0% & & KY > NI S OLe 3
X ® C SIS g
“’g\fg”}*‘ **feg%@%s@@v"ég&e%@ €3 S
@ R o’,g??' ‘?‘:i;féw & ey&

Figure 16. Reduction in allocated physical registers.

RF energy: Figures 17 and 18 show the dynamic energy
and leakage energy impact of our techniques. The small seg-
ments on top of each bar represent the overheads of the
structures added by CORF/CORF++. Dynamic energy sav-
ings in Figure 17 are due to the reduced number of accesses

Session: Microarchitecture

m Dynamic Energy @ Overhead Dynamic Energy

100%

o 80%
£ 60%
8 a0%
2
O 20%
0%
NRNY o5
TIPS I SIIES ST ST
A &8 Q‘,%&t v\"’i‘{&“& & \y&}'
‘70?)
(a) CORF
EDynamic Energy @ Overhead Dynamic Energy
100%
%’ 80%
£ 60%
3 40%
o
& 20%
0%
NS 5 &
SEFS PP EF IS SAAANE SEP S ¢
o CFFF TS é”g,c
VETY @ & K3
‘?.o A
(b) CORF++

Figure 17. Normalized RF dynamic energy

to the register file because of operand coalescing. We ob-
served 8.5% and 17% reduction to the overall dynamic energy
in CORF and CORF++, respectively, after considering the 3%
increase in overheads. The source of dynamic energy over-
heads include the packers and unpackers, width detection
logic, and the accesses to the renaming table.

[Static Energy @ Overhead Static Energy

INT-intensive FP-intensive
o 80%
2 60%
S a0%
2
& 20%
(a) Register packing.
M@ Static Energy O Overhead Static Energy

100% g _ : :
u 80% INT-intensive FP-intensive
2 60%
8 a0%
& 20%

0%

g
(b) Combined with virtualization (CORF++).

Figure 18. Normalized RF leakage energy

Figure 18 shows the leakage energy for register pack-
ing and also the combined register packing and virtualiza-
tion (CORF++), assuming that we power gate unused regis-
ters. Leakage energy is reduced by 33% in register packing
(Figure 18a), and 52% for the combined with virtualization
(CORF++, Figure 18b), after accounting for the overheads. On
average, the leakage overhead, due to the additional struc-
tures (e.g. renaming table, free-register map), is 5.4%, which
is easily out-weighed by the leakage energy savings.

711

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Regist RF RF
Technique IPC epister .

Reads | Dyn. Energy | Size

Register Packing 1 1 1 0.65

Register Packing | 1 1 0.43
+ Virtualization

CORF 1.04 0.9 0.92 0.43

CORF++ 1.09 0.77 0.83 0.43

Table 1. Summary of CORF, CORF++, and register packing
(and register virtualization). All values normalized to the
baseline GPU register file.

We summarize the advantages of CORF/CORF++ com-
pared to register files without coalescing in Table 1. Note
that Wang et al. [56] evaluate the performance of register
packing when they exploit the smaller effective register file
to allow more threads to run concurrently per SM. This IPC
improvement technique is orthogonal to coalescing and can
be combined, therefore we do not include it for comparison.

8 Hardware/Software Overheads

Hardware overheads: The largest additional structure in
COREF is the renaming table, which is also needed for simple
register packing [16, 56]. Each RT entry consists of 14 bits
that encodes the physical register and slice to which an
architectural register is being mapped. Since our baseline
architecture supports up to 48 warps per an SM, and 63
registers per warp, for a total of just over 3000 potential warp
architectural registers. Each register has an entry in the table.
Therefore, RT total size is 5.16K B which is 4% of total 128KB
register file per each SM. The free register map size is 1024 X
4 — bits or 512bytes. Supported by the RT, register packing
and virtualization reduce the effective register file size to
less than half of its original size: the benefits of shrinking the
register file easily offset the overhead, before we even consider
coalescing. We calculate the renaming table and register file
power consumption using CACTI v5.3 [52] and report them
in Table 2.

The overhead of logic, such as the allocation policy logic,
coalescing logic, packers, unpackers, and width detection
units, was estimated by synthesizing its Verilog HDL descrip-
tion using Synopsys Design Compiler and the NCSU PDK
45nm library [36]. The static and dynamic energy of these
logics are also included in our power results. All together,
these logic accounts for 57mW of dynamic power, 0.2mW
static power, and 0.05mm? (or 0.11%) of total on-chip area.

| Parameter | Renaming table | Register bank | Percentage |
Size 5KB 128KB 3.9%
Banks 4 4 -
vdd 0.96V 0.96V -
Access energy 1.83p] 149.76p] 1.2%
Leakage power 5.56mW 89.6mW 6.2%

Table 2. Renaming table overheads in 40nm technology

Session: Microarchitecture

3.0%

o 2.5%
& 2.0%
8
S 1.5%
2 1.0%
j 9]
a 0.5%
0.0% .
FLELSSTS LTFPT LS PP ©
TG LSS LT G e
e Ly SS&E &°
¥ Na
‘—?? <

Figure 19. Static code size increase.

Software overheads: Figure 19 shows the static code in-
crease due to the addition of extra instructions to guide CORF.
Overall, CORF only increases the code size by 1.3%. Passing
information in CORF++ can be simplified, for example, by
having the compiler choose odd register numbers for the left
operands, and even numbers for the right operands without
explicit metadata instructions. When considering dynamic
instruction count, this overhead will be significantly lower.

9 Related Work

Energy efficiency of GPU has been an area of increasing
importance [1-5, 14, 23, 30-34, 46, 48-50, 54, 57-59]. These
prior works have explored improving the performance or
energy efficiency of GPU register files in a number of ways. In
this section, we will highlight works related to GPU register
files.

Warped Register File [1] introduces a tri-modal register
file structure that enables drowsy mode. Pilot Register File [2]
proposed an energy-efficient RF design using FinFETs. Reg-
ister File Caching [17, 18] proposed to add a small register
file cache to reduce overall RF dynamic power by storing
frequently accessed registers in an energy-efficient cache.
However, these techniques solely aim to reduce power, with
the goal of achieving a negligible performance penalty.

Several works aim to improve the performance of register
files. RegMutex [25] improved performance by sharing a
subset of physical registers between warps during the GPU
kernel execution. FineReg [42] achieved a higher number
of concurrent CTAs by partitioning the register file into
two regions, one for active CTAs and another for pending
CTAs. Register file slicing [20] proposed to split the data
path into two 16-bit slices, which enables the register to save
power by power gating a slice if storing narrow-values, or
to improve performance by fetching two 16-bit values. RF
slicing fundamentally trades-off between a power-efficient
mode, or a performance-enhancing mode.

Another commonly used energy efficiency technique is
value compression [6, 27, 35, 44, 45, 51, 55, 60, 62]. Register
File Compression [27], utilize base-delta-immediate (BDI)
compression to compress data within an entry and power-
gate sub-banks. While Register Packing [16, 56] compress
narrow values to use less physical register entries, and power
gates unallocated entries.

712

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

Wang et al. [56] were the first to propose register pack-
ing for GPUs. Specifically, they greedily pack narrow-value
registers together to reduce register file space. They do not
coalesce register reads — each register read still requires a
separate physical register file read operation. Register file vir-
tualization [21] reduces the number of allocated physical reg-
isters required (and power gate unallocated entries), through
register liveness analysis. While achieving power savings,
these techniques do not improve performance. In our work,
by combining packing and virtualization and also harness-
ing coalescing opportunities, we achieve higher compression
ratios, power savings, and performance improvements.

RegLess [26] replaces the register file with a smaller stag-
ing unit with the help of compiler annotations, leveraging the
short-lived and long-lived behaviors of the register. RegLess
achieves lower power and smaller register storage size while
maintaining performance. The Latency-Tolerant Register
File (LTRF) [47] similarly uses compiler-analysis to identify
registers to move into a register cache, which enables toler-
ance of large register files. However, this higher performance
comes at the cost of a larger, more power-hungry register

file.

10 Conclusion

In this paper, we introduce the concept of register coalesc-
ing. We proposed CORF, a coalescing-aware register file
design for GPUs that simultaneously reduces the leakage
and dynamic access power, while improving the overall per-
formance of the GPU. CORF achieves these properties by
enabling the reads to multiple operands that are packed
together to be coalesced, reducing the number of reads to
the RF, and improving dynamic energy and performance.
CORF combines compiler-assisted register allocation with
a re-organized register file (CORF++) in order to maximize
operand coalescing opportunities. Specifically, the new reg-
ister file organization allows operands to be coalesced even
if they reside in different physical registers, provided they
reside in non-overlapping sub-banks. In addition, we show
that our technique can be seamlessly integrated with register
file virtualization to provide even more benefits. Overall, we
save 17% of the dynamic energy of the RF, and 52% of the
leakage energy; reducing the number of reads by 23% and
improving IPC by 9%.

Acknowledgments

We would like to thank Marek Chrobak for identifying the
theoretical structure and potential heuristics for the CORF++
register assignment problem. This work is partially sup-
ported by the National Science Foundation under Grants
CNS-1422401, CNS-1619450, CNS-1619322, and CCF-1815643,
as well as Air Force Office of Scientific Research (AFOSR)
under Award No. FA9550-15-1-0384.

Session: Microarchitecture

References

(1]

—
w
[

(10]

(11]

(12]

[13

[tr}

[14]

(16]

Mohammad Abdel-Majeed and Murali Annavaram. 2013. Warped
register file: A power efficient register file for GPGPUs. In High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on. IEEE, 412-423.

M. Abdel-Majeed, A. Shafaei, H. Jeon, M. Pedram, and M. Annavaram.
2017. Pilot Register File: Energy Efficient Partitioned Register File
for GPUs. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

Mohammad Abdel-Majeed, Daniel Wong, and Murali Annavaram.
2013. Warped Gates: Gating Aware Scheduling and Power Gating for
GPGPUs. In Microarchitecture (MICRO), 2013 46th Annual IEEE/ACM
International Symposium on.

Mohammad Abdel-Majeed, Daniel Wong, Justin Kuang, and Murali
Annavaram. 2016. Origami: Folding Warps for Energy Efficient GPUs.
In Proceedings of the 2016 International Conference on Supercomputing
(ICS ’16).

AmirAli Abdolrashidi, Devashree Tripathy, Mehmet Esat Belviranli,
Laxmi N. Bhuyan, and Daniel Wong. 2017. WIREFRAME: Supporting
Data-dependent Parallelism through Dependency Graph Execution in
GPUs . In MICRO ’17: Proceedings of the 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture.

Alaa R. Alameldeen and David A. Wood. 2004. Adaptive Cache Com-
pression for High-Performance Processors. In Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA "04).
Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and
Tor M Aamodt. 2009. Analyzing CUDA workloads using a detailed
GPU simulator. In Performance Analysis of Systems and Software, 2009.
ISPASS 2009. IEEE International Symposium on. IEEE, 163-174.
Mohammad Bakhshalipour, Aydin Faraji, Seyed Armin Vakil Ghahani,
Farid Samandi, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2019.
Reducing Writebacks Through In-Cache Displacement. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES) 24, 2 (2019),
16.

Mohammad Bakhshalipour, Pejman Lotfi-Kamran, Abbas Mazloumi,
Farid Samandi, Mahmood Naderan, Mehdi Modarressi, and Hamid
Sarbazi-Azad. 2018. Fast Data Delivery for Many-Core Processors.
IEEE Transactions on Computers (ITC) 67, 10 (2018), 1416—-1429.
Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-
Azad. 2018. Domino Temporal Data Prefetcher. In International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE, 131—
142.

Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-
Kamran, and Hamid Sarbazi-Azad. 2019. Bingo Spatial Data Prefetcher.
In International Symposium on High-Performance Computer Architec-
ture (HPCA).

Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia
Pisanti, Romeo Rizzi, and Gustavo Sacomoto. 2013. Optimal listing of
cycles and st-paths in undirected graphs. In Proceedings of the twenty-
fourth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 1884-1896.

Preston Briggs. 1992. Register allocation via graph coloring. Technical
Report.

N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M.
Rhu, and W. J. Dally. 2017. Architecting an Energy-Efficient DRAM
System for GPUs. In 2017 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA).

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark
suite for heterogeneous computing. In Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on. Ieee, 44-54.

Oguz Ergin, Deniz Balkan, Kanad Ghose, and Dmitry Ponomarev. 2004.
Register packing: Exploiting narrow-width operands for reducing
register file pressure. In Proceedings of the 37th annual IEEE/ACM

713

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

International Symposium on Microarchitecture. IEEE Computer Society,
304-315.

Mark Gebhart, Daniel R Johnson, David Tarjan, Stephen W Keckler,
William J Dally, Erik Lindholm, and Kevin Skadron. 2011. Energy-
efficient mechanisms for managing thread context in throughput pro-
cessors. In ACM SIGARCH Computer Architecture News, Vol. 39. ACM,
235-246.

Mark Gebhart, Stephen W Keckler, and William J Dally. 2011. A
compile-time managed multi-level register file hierarchy. In Proceed-
ings of the 44th annual IEEE/ACM international symposium on microar-
chitecture. ACM, 465-476.

Lal George and Andrew W. Appel. 1996. Iterated Register Coalescing.
ACM Trans. Program. Lang. Syst. 18, 3 (May 1996), 300-324.

Syed Zohaib Gilani, Nam Sung Kim, and Michael J Schulte. 2013. Power-
efficient computing for compute-intensive GPGPU applications. In
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on. IEEE, 330-341.

Hyeran Jeon, Gokul Subramanian Ravi, Nam Sung Kim, and Murali
Annavaram. 2015. GPU register file virtualization. In Proceedings of
the 48th International Symposium on Microarchitecture. ACM, 420-432.
Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivaku-
mar, Joshua Skow, Goutam Madhukeshwar Hegde, and Hyeran Jeon.
2019. Tango: A Deep Neural Network Benchmark Suite for Various
Accelerators. In IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE Press.

Onur Kayiran, Adwait Jog, Ashutosh Pattnaik, Rachata Ausavarung-
nirun, Xulong Tang, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu,
and Chita R. Das. 2016. pC-States: Fine-grained GPU Datapath Power
Management. In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation (PACT ’16).

Farzad Khorasani, Hodjat Asghari Esfeden, Nael Abu-Ghazaleh, and
Vivek Sarkar. 2018. In-Register Parameter Caching for Dynamic Neural
Nets with Virtual Persistent Processor Specialization. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 377-389.

Farzad Khorasani, Hodjat Asghari Esfeden, Amin Farmahini-Farahani,
Nuwan Jayasena, and Vivek Sarkar. 2018. Regmutex: Inter-warp gpu
register time-sharing. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE Press, 816-828.
John Kloosterman, Jonathan Beaumont, D Anoushe Jamshidi, Jonathan
Bailey, Trevor Mudge, and Scott Mahlke. 2017. Regless: just-in-time
operand staging for GPUs. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 151-164.
Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro,
and Murali Annavaram. 2015. Warped-compression: Enabling power
efficient gpus through register compression. In ACM SIGARCH Com-
puter Architecture News, Vol. 43. ACM, 502-514.

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gi-
lani, Nam Sung Kim, Tor M Aamodt, and Vijay Janapa Reddi. 2013.
GPUWattch: enabling energy optimizations in GPGPUs. In ACM
SIGARCH Computer Architecture News, Vol. 41. ACM, 487-498.

John Erik Lindholm, Ming Y Siu, Simon S Moy, Samuel Liu, and John R
Nickolls. 2008. Simulating multiported memories using lower port
count memories. US Patent 7,339,592.

Z. Liu, S. Gilani, M. Annavaram, and N. S. Kim. 2017. G-Scalar:
Cost-Effective Generalized Scalar Execution Architecture for Power-
Efficient GPUs. In 2017 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA).

Zhenhong Liu, Daniel Wong, and Nam Sung Kim. 2018. Load-Triggered
Warp Approximation on GPU. In Proceedings of the 2018 International
Symposium on Low Power Electronics and Design (ISLPED ’18).

A. Majumdar, L. Piga, L. Paul, J. L. Greathouse, W. Huang, and D. H.
Albonesi. 2017. Dynamic GPGPU Power Management Using Adaptive
Model Predictive Control. In 2017 IEEE International Symposium on

Session: Microarchitecture

(33]

(34

=

[35

—

(36

—

(37]

(38

—

(39

—

[40

[t

(41

—
o
)

=

[43

[t

[44]

[45

—

[46]

(47]

(50]

High Performance Computer Architecture (HPCA).

Amirhossein Mirhosseini, Mohammad Sadrosadati, Behnaz Soltani,
Hamid Sarbazi-Azad, and Thomas F Wenisch. 2017. BINoCHS: Bimodal
network-on-chip for CPU-GPU heterogeneous systems. In Proceedings
of the Eleventh IEEE/ACM International Symposium on Networks-on-
Chip. ACM, 7.

Sparsh Mittal and Jeffrey S. Vetter. 2014. A Survey of Methods for
Analyzing and Improving GPU Energy Efficiency. ACM Comput. Surv.
47, 2, Article 19 (Aug. 2014), 23 pages. https://doi.org/10.1145/2636342
Sparsh Mittal and Jeffrey S. Vetter. 2016. A Survey Of Architectural
Approaches for Data Compression in Cache and Main Memory Sys-
tems. IEEE Trans. Parallel Distrib. Syst. 27, 5 (May 2016), 1524-1536.
https://doi.org/10.1109/TPDS.2015.2435788
NCSU. 2014. The FreePDK process design kit.
//www.eda.ncsu.edu/wiki/FreePDK.

Negin Nematollahi, Mohammad Sadrosadati, Hajar Falahati, Marzieh
Barkhordar, and Hamid Sarbazi-Azad. 2018. Neda: Supporting direct
inter-core neighbor data exchange in GPUs. IEEE Computer Architec-
ture Letters 17, 2 (2018), 225-229.

Nvidia. 2009. "Whitepaper: Nvidia’s Next Generation CUDA Compute
Architecture: Fermi".

Nvidia. 2009. Nvidia CUDA SDK 2.3. [Online]. Available: http://
developer.nvidia.com/cuda-toolkit-23-downloads.

Nvidia. 2012. "Whitepaper: Nvidia’s Next Generation CUDA Compute
Architecture: KeplerGK110".

Nvidia. 2014. "Whitepaper: Nvidia GeForce GTX 980".

Yunho Oh, Myung Kuk Yoon, William J Song, and Won Woo Ro. 2018.
FineReg: Fine-Grained Register File Management for Augmenting GPU
Throughput. In 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 364-376.

Jinpyo Park and Soo-Mook Moon. 2004. Optimistic Register Coalescing.
ACM Trans. Program. Lang. Syst. 26, 4 (July 2004), 735-765.

G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and
S. W. Keckler. 2016. A case for toggle-aware compression for GPU
systems. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry. 2012. Base-delta-immediate
Compression: Practical Data Compression for On-chip Caches. In
Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT ’12).

Mohammad Sadrosadati, Seyed Borna Ehsani, Hajar Falahati, Rachata
Ausavarungnirun, Arash Tavakkol, Mojtaba Abaee, Lois Orosa, Yaohua
Wang, Hamid Sarbazi-Azad, and Onur Mutlu. 2018. ITAP: Idle-Time-
Aware Power Management for GPU Execution Units. ACM TACO
(2018).

Mohammad Sadrosadati, Amirhossein Mirhosseini, Seyed Borna
Ehsani, Hamid Sarbazi-Azad, Mario Drumond, Babak Falsafi, Rachata
Ausavarungnirun, and Onur Mutlu. 2018. LTRF: Enabling High-
Capacity Register Files for GPUs via Hardware/Software Cooperative
Register Prefetching. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 489-502.

M. H. Santriaji and H. Hoffmann. 2016. GRAPE: Minimizing energy for
GPU applications with performance requirements. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

A. Sethia, G. Dasika, M. Samadi, and S. Mahlke. 2013. APOGEE: Adap-
tive prefetching on GPUs for energy efficiency. In Proceedings of the
22nd International Conference on Parallel Architectures and Compilation
Techniques.

A. Sethia and S. Mahlke. 2014. Equalizer: Dynamic Tuning of GPU
Resources for Efficient Execution. In 2014 47th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture.

Available: http:

714

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

ASPLOS’19, April 13-17, 2019, Providence, RI, USA

A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. 2014.
MemZip: Exploring unconventional benefits from memory compres-
sion. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA).

Premkishore Shivakumar and Norman P Jouppi. 2001. Cacti 3.0: An
integrated cache timing, power, and area model. Technical Report
2001/2, Compaq Computer Corporation.

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-Mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing 127 (2012).

Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2018.
Mobilizing the micro-ops: Exploiting context sensitive decoding for
security and energy efficiency. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 624-637.
Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek
Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir,
Todd C. Mowry, and Onur Mutlu. 2015. A Case for Core-assisted
Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression
with Assist Warps. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (ISCA °15).

X. Wang and W. Zhang. 2017. GPU Register Packing: Dynamically
Exploiting Narrow-Width Operands to Improve Performance. In 2017
IEEE Trustcom/BigDataSE/ICESS.

Daniel Wong, Nam S. Kim, and Murali Annavaram. 2016. Approxi-
mating warps with intra-warp operand value similarity. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA).

G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. 2015.
GPGPU performance and power estimation using machine learning. In
2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA).

Qiumin Xu and Murali Annavaram. 2014. Pattern Aware Scheduling
and Power Gating for GPGPUs. In Parallel Architectures and Compila-
tion Techniques (PACT), 2014 23nd International Conference on.

Jun Yang, Youtao Zhang, and Rajiv Gupta. 2000. Frequent Value Com-
pression in Data Caches. In Proceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO 33).

Zahra Yarahmadi. 2016. Study of the Bipartite Edge Frustration of
Graphs. Springer International Publishing, Cham, 249-267. https:
//doi.org/10.1007/978-3-319-31584-3_15

Youtao Zhang, Jun Yang, and Rajiv Gupta. 2000. Frequent Value Local-
ity and Value-centric Data Cache Design. In Proceedings of the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IX).

	Abstract
	1 Introduction
	2 Background
	3 The Virtues of Register Coalescing
	4 CORF: Coalescing Operands in Register File
	4.1 CORF Overview
	4.2 Generating Compiler-assisted Hints
	4.3 CORF Run-time Operation

	5 CORF++: Re-architected RF
	5.1 Compiler-assisted Register Allocation
	5.2 Coalescing-aware RF Organization
	5.3 CORF++ Run-time Operation

	6 Additional Implementation Details
	7 Performance/Power Evaluation
	8 Hardware/Software Overheads
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

