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ABSTRACT

The public is increasingly concerned about the practices of large
technology companies with regards to privacy and many other
issues. To force changes in these practices, there have been
growing calls for “data strikes.” These new types of collective
action would seek to create leverage for the public by starving
business-critical models (e.g. recommender systems, ranking
algorithms) of much-needed training data. However, little is
known about how data strikes would work, let alone how
effective they would be. Focusing on the important commercial
domain of recommender systems, we simulate data strikes under
a wide variety of conditions and explore how they can augment
traditional boycotts. Our results suggest that data strikes can be
effective and that users have more power in their relationship
with technology companies than they do with other companies.
However, our results also highlight important trade-offs and
challenges that must be considered by potential organizers.
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1 Introduction

Large technology companies are facing a growing wave of public
criticism. Just in the last year, these companies have been
condemned for a wide range of practices, including those related
to privacy [13, 55], harassment [20], addiction [10], effects on
democracy [12], and automation [1]. The breadth and scale of the
public concerns about tech companies has even led to the
popularization of the term “Big Tech” [25], an adaptation of the
terms “Big Oil” and “Big Tobacco” [3, 28].

However, these same companies that anger the public often
are dependent on the public in new ways. Specifically, in addition
to needing users and customers to generate revenue, tech
companies often rely on the public’s “data labor” [44] to power
mission-critical intelligent technologies. For example, Google
requires user clicks to train its ranking algorithm [45]. Similarly,
the highly-profitable recommender systems employed by
companies like Amazon and Netflix require large amounts of
data from users (i.e. ratings, clicks, and views) [17, 53].

Seen through the lens of the public’s concerns about tech
companies, these companies’ dependence on user data to fuel
their intelligent technologies can be understood as a potentially
powerful source of new leverage for the public. To help the
public action this leverage, several authors have proposed the
notion of “data strikes” (e.g. [2, 39, 44, 52]), in which users halt
their data labor [44]. The basic logic that motivates data strikes is
straightforward: if users withhold their data labor from a tech
company, some of the company’s essential services will suffer,
and this would then force the company to make concessions that
are desired by the public. These concessions could range from
improved privacy policies to profit sharing [2, 15].

Despite the growing discussion around data strikes, little is
known about how this new type of collective action would work
or about how data strikes relate to standard forms of collective
action like traditional consumer boycotts (a type of collective
action classified as political consumption [32, 42]). Additionally,
as data strikes increasingly enter the realm of feasibility (see
below), there is little empirical information about how effective
data strikes could be, let alone the data strike configurations that
would be most effective. Activists seeking to organize a data
strike have no guidance regarding the number of users that
would need to join them, the kinds of services most vulnerable,
the types of users that would allow them to be most successful,
or even whether strikes can be successful at all. Similarly, tech
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companies are not aware of the potential damage that could be
inflicted through data strikes.

This paper seeks to improve our basic understanding of data
strikes and provide much-needed empirical information about
their effectiveness. We first situate data strikes in relationship to
traditional boycotts, in which a user stops patronizing a
company entirely. Through the introduction of a lightweight
framework that (partially) describes collective action in a
technology company context, we highlight that most traditional
boycotts against a company operating data labor-dependent
intelligent technologies will implicitly also include a data strike,
but that data strikes can also occur independently from boycotts.
For example, a consumer who continues to purchase products
from an online retailer could engage in a data strike by using
private browsing windows and not providing product ratings.

Next, focusing on the domain of recommender systems, a
family of intelligent technologies that are critical drivers of
revenue [17, 51], we introduce a novel evaluation procedure for
understanding collective action campaigns against technology
companies. Our procedure uses a metric called surfaced hits,
which can capture the effects of both a traditional boycott and a
data strike. Leveraging surfaced hits, we examine how model
performance changes depending on 1) the size of the
participating group, 2) whether the participating group is a
random group of users or a homogeneous group of users who
share some characteristics (e.g. women, people interested in
documentary movies), and 3) whether or not the group is
conducting an independent data strike or are doing so as part of
a traditional boycott.

Our results confirm that users’ data labor power - which is
mostly unique to online platforms and is manifest in a data
strike — provides users with a new source of leverage in their
relationships ~ with  technology = companies. For small
recommenders and in specific product spaces, this added
leverage can be particularly substantial. A moderately-sized data
strike alone — even when not part of a traditional boycott — can
significantly harm the performance of a recommender system.
Indeed, for moderately-sized data strikes, we observe
recommender accuracy decreasing to the levels that defined the
state-of-the-art in recommender algorithms in 1999. This power
comes from the reduced performance for both non-striking users
(who receive recommendations trained on less data) and striking
users themselves (who receive recommendations that are not
personalized). Additionally, our work shows that data strikes
that occur as part of a traditional boycott add data labor power
to the standard consumer power from a boycott, increasing the
overall power of the collective action campaign.

Finally, our work also highlights that data strikes that are not
part of a traditional boycott represent a fundamentally new type
of collective action, one in which the barrier to entry is much
lower than in a boycott. Most notably, we observe that data strike
participants can substantially reduce the utility of a
recommender system without sacrificing access to the
underlying products and services. Given that it has proven
difficult for people with limited financial resources to participate
in political consumption activities like boycotts [32], the
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demonstrated effectiveness of data strikes could democratize
access to these activities (e.g. users who cannot afford to use
expensive alternatives to online platforms can still strike). This is
analogous to an offline boycott in which a user who cannot
afford expensive pizza could still participate in collective action
against a local low-price pizza chain while continuing to buy
their products.

Below, we adopt a standard structure to motivate, explain,
and expand on our findings. We first cover related work, then
discuss methods, followed by results. We close with a discussion
of the issues identified in our results and by highlighting
limitations.

2 Related Work

In this section, we describe how this research draws motivation
from four areas in particular: the growing discussion related to
data strikes, research on the relationships between tech
companies and volunteer-created content, studies that generally
seek to quantify the financial value of user data, and studies that
looks specifically at ways to manipulate recommender system
outputs.

2.1 Data Strikes

This research was most directly motivated by growing calls for
collective action campaigns that force changes in technology
platforms by leveraging the value of user data to these platforms
[2, 11, 16, 23, 37, 44]. These growing calls use different,
potentially conflicting framings of data as capital or data as labor
[1]. With regard to the former (data as capital), collective action
is framed in terms of a boycott, in which users stop their
consumptive activities (e.g. purchasing products through a web
platform, using a social media platform) which in turn prevents
the flow of their capital (data, related revenue like advertising
revenue) to the platform. This framing is exemplified by very
recent boycotts put into practice against Facebook (e.g. [42]). The
data labor view suggests that data “unions” should protect the
interests of those who produce data (i.e. users) [2, 16, 44]. Just as
traditional labor unions have implemented (and threatened)
strikes to gain leverage when collectively bargaining, Lanier and
others [16, 23] have written that data unions might similarly
engage in a “strike”. These authors point out that users can
leverage their data in ways that resemble both traditional
boycotts and strikes.

The diverse understandings of collective action campaigns
that use data leverage needed to be integrated in order to make
these campaigns concrete enough to simulate. Below in the
Framework section, we enumerate one possible integration and
use the corresponding framework to inform the design of our
experiments.

Ideas about collective action campaigns that use data leverage
often imagine a future in which people can “delete their data”
from an online platform, and this future is becoming
increasingly realistic thanks to developments and discussions in
the policy domain. For instance, the European Union recently
adopted the General Data Protection Regulation (GDPR) [30],
which includes a provision ensuring the right to erasure. Barring



special circumstances (e.g. data critical to public health research),
individuals covered by the GDPR will have the right to request
that their personal data be deleted. As such, the GDPR
potentially empowers activists to engage in more powerful data
labor-related collective action than previously possible, in
particular by erasing old data instead of just stopping the flow of
new data. While it remains to be seen how often and how
effectively the right to erasure will be used in practice — and how
it might apply to campaigns that use data leverage specifically —
the inclusion of this right highlights a large shift in regulatory
practices towards data usage. The GDPR could trailblaze the way
for similar or even stronger provisions by other regulatory
bodies (e.g. California’s State Government [6]).

In keeping with this policy trajectory and with the typical
vision of collective action campaigns that use data leverage, we
simulate campaigns in which people can “delete their data” when
they participate. However, our approach also applies to other
contexts, for instance domains in which there is no existing data
like reviews about a new television show or location data used to
predict traffic (and less directly to contexts in which participants
cannot delete data, but do not execute new data labor).
Furthermore, very recent research suggests that simple tools like
browser extensions may help web users successfully join web-
based collective action campaigns with low overhead for the
user, which could help stop the flow of implicit behavioral data
[39].

Finally, it is important to note that the social science
literature can give some guidance as to how large one could
expect the campaigns we examine to be. Data from Europe and
the U.S. found that between 28% and 35% of consumers had
engaged in an act of political consumption [32, 42], which
includes either boycotting or “buycotting” (aligning one’s
purchases with a company that is perceived to align with one’s
political preferences).

2.2 Tech Companies and Volunteer-Created
Content

A related area of research that also helped motivate this study is
work that has sought to understand the dependence of
technology companies on volunteer-created content like
Wikipedia articles. McMahon et al. [40] showed that Google
search effectiveness drops substantially when Wikipedia links
are silently removed from search results, highlighting how
important Wikipedia is to the success of search engines. Outside
of Google’s relationship to Wikipedia, Vincent et al. found that
Stack Overflow and Reddit receive substantial benefits from
Wikipedia in the form of impactful links and references [56];
they showed that these benefits come in the form of both
increased engagement from users and advertising revenue.
Although not originally intended as such, these studies can be
seen as simulating a form of data-related campaign in which
companies are somehow prevented from using Wikipedia
content. Such campaigns would be highly unlikely given
Wikipedia’s content license [58] and other factors, but the design
of these studies helped to inform our methodological approach
outlined below.
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2.3 Financial Value of Data

This work was more generally motivated by a broad body of
literature seeking to understand the financial value of data and
highlighting the importance of this understanding. This research
includes efforts to provide individual users with transparency
into the value they create, such as the Facebook Data Valuation
Tool created by Gonzalez Cabaiias et al. [18], as well as efforts to
broadly understand the value of that data at a macroeconomic
scale (e.g. the value of Wikipedia to GDP statistics [4]). On the
policy front, the World Economic Forum has identified data as a
new “asset class” and suggests that thinking about data
economics demands a new understanding of the personal data
ecosystem [49].

2.4 Recommender System Manipulation

Within the recommender system literature, there has been
research into various ways recommender systems might be
manipulated. For instance, prior work has examined how
recommender systems might be “shilled”, i.e. misled so as to
promote a particular product (e.g. [7, 36]). Like potential strikes,
shilling attacks are an adversarial approach to manipulating the
outputs of a recommender. As we explain below, our
experiments specifically focus on campaigns that withhold data,
so findings related to shilling are not directly applicable.
However, in practice collective action participants might be able
to adopt techniques from shilling, in which case this body of
literature may be useful to both users and the companies against
which they seek to gain leverage.

Recent research from Wen et al. explored recommender
performance under conditions in which users filter some portion
of their preference history to increase privacy and/or
recommender accuracy [57]. Specifically, the authors found that
users can filter out some of their preference history from the
recommender while maintaining, or even
performance for implicit recommendations. This research has

improving,

direct implications for data-related collective action: although
users might be able to perform a “partial strike” by deleting some
of their data without suffering decreased performance, these
partial strikes are unlikely to be very effective, as in some cases,
partial strikes by all users may improve population-level
performance. In our experiments, we focus on directly
simulating conditions in which users withhold all their data, and
we also explicitly consider both data strikes and traditional
boycotts. However, exploring the interplay between strikes,
boycotts and data-filtering tools will be an important area of
future research that is mutually beneficial to both problem
contexts. In particular, the data filtering interfaces described by
Wen et al. could be another outlet for users to actuate data
strikes.

3 FRAMEWORK

As mentioned above, although collective action campaigns that
use data leverage against technology companies have been
discussed as a theoretical possibility, they have not been
characterized in detail. Indeed, in the context of collective action



against technology companies, the distinction between data
strikes, boycotts, and combinations of the two can be unclear.

In order to simulate data strikes, we need to first concretely
define data strikes and their relationship to traditional boycotts.
To do so, we turned to the divergent theoretical underpinnings
of the boycott and strike terms. In a boycott, participants are
consumers who cut off the flow of an asset (e.g. money from
purchases) to a firm. In a strike, participants are laborers who
stop performing work for a firm. Users of an online platform can
therefore boycott the platform by refusing to use the platform as
consumers (e.g. not buying from an e-commerce site, not visiting
a news site or video site, etc.) and strike against the platform by
refusing to provide data (e.g. deleting data, preventing the flow
of new data by using private browsing features or other privacy
techniques like ad blockers or Mozilla’s new Facebook Container
[14]).

In most cases, boycotts against tech companies implicitly
include a data strike. For instance, users of a video platform like
YouTube who boycott (refuse to visit the website) are also
implicitly conducting a data strike by cutting off the flow of
behavioral data like views, likes, and comments. However, it is
often possible to participate in a data strike without boycotting the
platform. This occurs if someone continues to access a website
but withholds data using privacy-preserving techniques (e.g.
private browsing), leverages data management options made
possible through data protection regulation, or - critically for
our context — refuses to comment on products, rate products, or
review products. The inverse, a boycott without a data strike, is
less ecologically valid in the context of our work. Someone who
boycotts Amazon products is unlikely to submit product reviews
and ratings. While there are more nuanced situations in which
this could occur, in this paper, we simulate boycotts in concert
with a strike.

To put the nuanced relationship between boycotts and data
strikes as defined above into better context, we consulted the
literature to identify the various specific means by which these
types of collective action campaigns could affect company
revenue (e.g. [2, 44]). We identified four such pathways to
revenue impacts:

e The direct data labor effects (e.g. algorithmic
performance decreases leading to loss in sales)
e The indirect data labor effects (e.g. because
algorithmic performance goes below some threshold,
users quit the platform leading to loss in sales) [54].
e  The direct consumer effects (e.g. people stop buying
products or viewing ads) [32, 42].
e  The indirect consumer effects (e.g. a large number of
customers stop buying products or viewing ads, so
there is a loss of economy of scale advantages) [50].
The consumer effects above (which make up consumer
power) are those that exist in traditional boycotts and have been
felt by targeted businesses since well before intelligent
technologies came into common use. The data labor effects
(which make up data labor power) are specific to collective
action campaigns against companies that use data-hungry
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intelligent technologies. While a traditional boycott only
includes direct and indirect consumer effects, a simultaneous
data strike and boycott includes all four of the above
components.

A Framework for Data Strikes and
Boycotts

Data Labor Power Consumer Power

- Direct ™,

i \ . Indirect
Direct Data | [ Indirect Data
) Caonsumer Consumer
ITabor Eﬂet.:F_s Labor Effects Effects _ Effects
( Pure Data /' Traditional
Strike  / — Boycott

Joint N
\ DaBt: Sct':fll(el / ¢ , What we study
. 4 —in this paper

Figure 1: Graphical summary of our framework for
defining data strikes and boycotts. Blue indicates aspects
on which we focus.

This simple framework, depicted in Figure 1, provides a
much-needed lens into the ontology of these types of collective
action campaigns, but it also highlights that researchers —
especially those outside a technology platform - can only
simulate a portion of the effects of data strikes and boycotts. For
instance, without exact sales numbers, both the direct and
indirect sales effects are very difficult to study externally.
Similarly, the indirect long-term effects of reduced recommender
performance would be difficult to capture both for researchers
external or internal to a platform (although there is at least one
case of this being done internally in the search literature using
an A/B test framework [54]).

Fortunately, in this paper, we show by focusing on the direct
data labor effects while still considering the direct consumer
effects, we can still learn a great deal about collective action
campaigns that use data leverage. As we discuss below, our
results support the effectiveness of data strikes, suggesting the
unique relationship between users and technology companies
can empower users beyond what would be the case in other
contexts. We also discuss how our results can be interpreted as a
lower bound for the effects of data strikes and boycotts against
tech companies because we cannot measure indirect effects.

As discussed above, the data strikes we simulate correspond to
a person “deleting their account” and using the recommender as a
“guest”, with no account history. Similarly, the boycotts we
simulate (which include a joint strike) correspond to someone
deleting their account and not using the system at all. In both
cases, users not participating in a strike or boycott receive
recommendations from a model that has been trained without
strikers’ or boycotters’ data. As we discuss in Limitations, there
are many other configurations one can imagine - especially those
related to strikes that do not involve the deletion of past data and
play out over time - and we believe these to be important
directions of future work.



4 METHODOLOGY

In this section, we first describe aspects of our methods that
were consistent across all our experimental configurations. We
then describe the two broad types of collective action campaigns
we simulated: “general” groups comprised of randomly selected
users and “homogenous groups” of users who share some
characteristic (e.g. power users, fans of comedy movies).

4.1 Design of Experiments

In each experiment, we evaluate recommender systems under a
variety of simulated data strike and boycott conditions. While
the campaigning groups differ by experiment, the basic methods
are the same.

4.1.1 Datasets. Our primary dataset was MovieLens-1M (ML-
1M), which consists of 1 million “1 to 5 star” ratings for 3,706
movies provided by 6,040 users with self-reported demographic
data [22]. To better understand performance against large
recommenders, we additionally performed experiments with the
much newer MovieLens-20M (ML-20M) dataset [22], which
contains 20x more ratings but no demographic data about users.
The MovieLens datasets have been hugely influential and have
been central to recommender system research for decades [22].

4.1.2 Algorithm Choice and Implementation. For each
experiment, we focus on the well-known and high-performing
Singular Value Decomposition (SVD) recommender algorithm
[41]. As validation, we also performed a smaller set of ML-1M
experiments with an older and mathematically distinct
algorithm: item-based K-Nearest Neighbors (k-NN) [48]
adjusting for item and user baselines as described by Koren [33].
Both algorithms are implemented in the open-source Python
library Surprise [27], which we extended for our experiments.
All code used for our experiments and analyses is available for
replication and extension on GitHub!. We validated the accuracy
of the SVD implementation by ensuring results were comparable
to published results on the ML-1M dataset [26, 34, 38, 46]. These
successful comparisons are summarized in the linked GitHub
repository.

4.1.3 Evaluation Procedure. We evaluated the recommender
with five-fold cross-validation; for each evaluation fold, 20% of
total data is available for testing and each rating is tested in
exactly one fold. While data that is held out because of a
simulated campaign cannot be used for training, it can be used
for testing. This means we can consider results from the
perspective of striking users, who will receive non-personalized
recommendations which are based on each movie’s average
producing
recommendations for users who lack personalized data and it is a
widely-used way to provide preference information in a non-
personalized fashion (e.g. displaying a movie’s average rating
instead of predicted rating for a given user).

4.1.4 Metrics for Evaluating Strikes and Boycotts. When
evaluating the accuracy of explicit rating predictions for
recommender systems, one common approach is to measure the

rating. This is a standard baseline for

1 https://github.com/nickmvincent/surprise_sandbox
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error in individual predictions, e.g. through an accuracy metric
such as root-mean-squared error (RMSE) which was used for the
well-known Netflix Prize [41], or using information retrieval
metrics such as gain (NDCG) [5] or precision. Retrieval metrics
have been favored in recent years because of their ecological
validity [8, 31] (e.g. “Top Ten Movies for You”).

However, these standard metrics only capture performance
for users who receive recommendations, and do not capture the
consumer effects of users leaving due to boycotts. Therefore, this
approach is not well-suited to understand boycotts from the
perspective of the system owner, because the loss in revenue
from boycotting users will not be visible in traditional metrics.
For instance, if we simulate an 80% boycott and measure the
RMSE of predicted ratings for the remaining 20% of users, the
change in RMSE does not account for the users who left the
system entirely.

To understand the relationship between data strikes and
boycotts, it is critical to capture both the direct consumer effects
of boycotting users and the direct data labor effects of striking
users. To do so, we introduce a new metric, which we call
surfaced hits. The metric measures the fraction of hits (defined
as a rating of at least 4.0, as is common in prior work, e.g. [34])
across an entire group of users (perhaps all users, or non-
boycotting users). The underlying assumption, that one hit
corresponds to one unit of value for a recommender system, is
supported by the widespread use of analytic metrics such as
click-through-rate in online systems [17]. A perfect algorithm
will surface all hits, and therefore have a surfaced hits value of
1.0. This metric can be effectively viewed as a variant of
precision that sums (rather than averages) across all users and
sets individual thresholds for precision equal to how many
positive ratings each user has. More explicitly,

for each user u:
tu = u’s test ratings
nu = number of true ratings >=41in tu
pu = top nyof t, ordered by predicted rating

hu = number of true ratings >=4in pu
surfaced hits = sum({hd}) / sum({nu})

As stated earlier, for both data strikes and boycotts combined
with data strikes, participating users’ ratings are withheld from
all training data sets. Users who boycott contribute zero hits to
the numerator of surfaced hits for their test ratings (hu = 0). In
other words, the surfaced hits value is “penalized” by marking all
positive ratings for the user as a non-hit. For users in a data
strike, we included the user’s test ratings in the calculation of
surfaced  hits, but “penalize” via non-personalized
recommendations (i.e. movie averages) because the user’s
training data is not available due to the strike.

Overall, the surfaced hits metric has three useful properties
for studying data strikes and boycotts. First, when users boycott,
surfaced hits is reduced proportionally to the number of positive
ratings in the boycotting group. In other words, if enough users
boycott to remove half of all the “hits” in the dataset, surfaced
hits will be reduced by at least half. This allows us to understand
the effects of strikes and boycotts from within a single reference
frame. Second, this metric also accounts for differences in user
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behavior: a user with 1000 hits in their rating history has 10x the
impact of a user with 100 hits in their history. This captures the
potentially disproportional economic value of more active users.
Third, we can calculate surfaced hits for different subsets of users
(e.g. all users, non-striking users, users similar to striking users)
to understand the effects of collective action from different
perspectives. We verified that these metrics perform very
similarly to well-established list metrics including NDCG and
precision while at the same time capturing the damage that
occurs when boycotting users leave a system (see Section 5.3 and
the code repository).

4.2 Campaign Configurations

4.2.1 General campaigns. To get a general understanding of the
relationship between campaign size and recommender system
performance, we first simulated a series of “general” campaigns
with random wuser selection. In these campaigns, the
demographic make-up of the groups approximates the
distribution of all users. We selected a sequence of 16 different
group sizes ranging from 0.01% of users to 99% of users. For each
group size, we randomly selected a group of that size to
participate in the campaign. To reduce noise associated with
different random configurations, we repeated each of these 16
experiments 250 times with a new random user sample for the
ML-1M dataset and 40 times for the ML-20M dataset.

4.2.2 Homogeneous campaigns. We also simulated campaigns
executed by “homogeneous” groups defined by shared patterns
in rating behavior or shared demographic information. More
specifically, we created five types of homogenous campaigns:
campaigns by “fans” of specific movie genres, campaigns by
three categories of demographic groups, and campaigns defined
by rating behavior. We created groups of “fans” for each movie
genre by identifying all users who rated at least ten movies of
that genre and have an average rating for the genre of four or
higher. To simulate demographically-defined campaigns, we
created groups based on user-reported demographics,
specifically male/female, age bracket, and occupation. For rating
behavior campaigns, we created campaigns for “power users,”
defined as the top 10% of raters and “low frequency” users, the
bottom 10% of raters.

For each of the five types of homogeneous groups, we
simulated campaigns in which 50% of users within a given group
participated. For example, we simulated campaigns with groups
such as 50% of all women, or 50% of all comedy movie fans, and
so on. Importantly, 50% participation allows us to simulate what
happens to similar users who do not participate. In other words,
if some women participate in a data strike, what happens to
women who do not? We also viewed 50% group participation as
more realistic than full participation.

Our homogenous experiments focus on the data labor effects
of data strikes. The consumer effects of a homogenous boycott
scale with the size of the boycott as measured by the number of
positive ratings, and as we show in our general campaign
experiments, this effect is substantially larger than that of
strikes, but this does not negate a strike’s value.
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For each homogenous campaign configuration, we
performed experiments with 50 sampled groups. We also
compared the observed campaign effects to the expected effects
for a random campaign with the same number of ratings. In
order to obtain a relatively simple estimate of the “expected”
effect of a data strike of some size, we computed a quadratic
interpolation of our results shown in Figure 2. Our homogeneous
experiments only consider the ML-1M dataset due to the lack of
demographic information in ML-20M.

5 RESULTS

In this section, we first describe the relationship we observed
between recommender performance and campaign size in the
case of general (random users) collective action campaigns,
focusing on comparing pure data strikes to strikes coupled with
traditional boycotts and examining the overall effectiveness of
campaigns across datasets. Next, we describe the key findings
from our homogeneous group experiments, focusing on the
finding  that groups,  defined
demographically or behaviorally, can exert their data labor
power to disproportionately affect similar users, indicating the
potential for data strikes that target specific preference spaces to
boost their effectiveness.

unique  homogenous

This section uses the surfaced hits metric, described above.
We focus on the popular SVD algorithm because the item-based
k-NN algorithm behaved similarly in our initial experiments (see
GitHub repository).

5.1 General Campaign Experiments

We begin by examining the effect of general data strikes and
boycotts (i.e. with random users) from the perspective of the
system owner (e.g. Google, Facebook, operators of MovieLens).
Next, still focusing on the perspective of system owners, we
specifically zoom in on performance changes relative to un-
personalized results.

Figure 2 shows the effect of data strikes (blue line) and joint
data strikes and boycotts (green line) on surfaced hits (y-axis)
across the system for both ML-1M (left column) and ML-20M
(right column). As a reminder, a value of 1.0 would correspond
to an algorithm that produces perfect ranked lists for every user.

These plots include dotted horizontal lines that provide
important context: the black line shows performance of SVD
with full access to the dataset (which gives 77.4% of hits), the red
line shows the results of “MovieMean,” which gives completely
un-personalized ratings (movies are ranked in order their mean
rating) and the gold line shows the results of completely
randomly ranked lists (i.e. worst-case performance). Note the
high number of hits associated with random lists: this is because
MovieLens users tend to give movies high ratings, so when
evaluating even random lists many of the items suggested for a
given user will be hits. We address this phenomenon below by
focusing not only on raw changes in surfaced hits, but also on
performance relative to un-personalized performance, ie. we
zoom in on performance change between the black and red lines.
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Figure 2: The relationship between campaign size and surfaced hits. Surfaced hits include all users (including strikers and
boycotters), and therefore reflect the perspective of the system owner. Dotted horizontal lines provide comparisons: black
(uppermost) shows fully personalized SVD, red (middle) shows un-personalized results, and gold (bottom) shows random

results.

The most significant trend in Figure 2 is that boycotts are
substantially more effective than data strikes. For instance, while
a 30% boycott of ML-1M reduces hits to from 77.4% to 53.9%, a
30% data strike only reduces hits by 0.7% to 76.7% (ML-20M,
right column, shows a similar trend). Furthermore, for both
datasets a boycott of about 20% of users reduces surfaced hits to
the amount expected for completely randomized
recommendations. This result means that at first glance, the loss
in hits caused by users who leave the system strongly outweighs
the loss in hits from reduced algorithmic performance.
Importantly, this finding does not fully explicate the potential of
data strikes, as we will describe below.

We note that the gaps in Figure 2 between un-personalized
results (red lines) and fully personalized results (black lines)
appear to be small and correspond to a loss of 1.4% of surfaced
hits for ML-1M and 3.3% for ML-20M. This reflects the non-linear
value of recommender algorithms; the small margin between un-
personalized and personalized algorithms corresponds to a large
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amount of value for a recommender system operator. For
example, in Netflix’s case, the margin between un-personalized
algorithms and personalized algorithms accounts for a 2-4x
increase in engagement with recommended items and $1 billion
in revenue [17] (see below). Thus, we now specifically focus on
the change in performance relative to un-personalized results to
inspect how data strikes leverage direct data labor effects to
lower recommendation performance towards un-personalized
levels.

Figure 3 zooms in on surfaced hits during a data strike using
the same y-axis as Figure 2. Again, the black horizontal line
marks personalized performance and the red horizontal line
marks un-personalized performance. Additionally, in Figure 3
the horizontal cyan line shows the performance of simple item-
based k-NN (which we evaluated with full access to each
dataset), a technique that was introduced in 1999. This context
shows the ability of campaigns to essentially set recommender
system performance “back in time”.

Effect on Surfaced Hits, ML-20M

Surfaced Hits

S . )

Fraction of Users Participating

Figure 3: The relationship between data strike size and surfaced hits. Dotted horizontal lines provide comparisons: black
(top) shows fully personalized SVD, cyan (middle) shows item-based k-NN (1999), and red (bottom) shows un-personalized

results.
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In Figure 3, the potential power of data strikes becomes
clearer. The left side of the figure shows that campaigns had
substantial effects on recommender performance for ML-1M
relative to non-personalized ratings. For instance, a strike with
30% of users (which is a realistic size based on research on
political consumption; see Related Work) degrades performance
such that users lose roughly half the benefits of personalization.
These results also illustrate the power of collective action to
potentially negate decades of algorithmic advances. Looking
again at MovieLens-1M, a strike by 37.5% of users can roll back
hits to a level equivalent to the classic item-based k-NN
algorithm introduced in 1999 [48] (cyan dotted line in Figure 3).

The ML-20M results (right column), however, suggest a
somewhat more complicated story for recommenders using
larger datasets. When the dataset size is increased by a factor of
20, a strike by the same percentage of users becomes somewhat
less effective. If 30% of ML-1M strike (1800 users), we see a 50.2%
reduction in the benefits of personalization, but if 30% of ML-
20M strike (41400 users), it would only cause a 37.0% reduction.

A likely explanation of why the relationship between strike
size and strike power differs between ML-1M and ML-20M lies in
the two effects of a data strike, the effect on the strikers
themselves and the effect on non-strikers. The first effect
captures how the removal of the strikers’ data lowers
performance of the recommender for non-strikers (i.e. the ability
of strikers to affect the experience of non-strikers). While we see
similar directional relationships between ML-1M and ML-20M,
this effect is more pronounced for ML-1M. For instance, at 30%
strike participation, we see a 25.4% reduction in personalization
for non-striking ML-IM users but just a 4.2% reduction in
personalization for ML-20M (analysis in GitHub repo). ML-20M
does not see an equivalent reduction in personalization for non-
strikers until strike participation rates hit 77%. The explanation
for this difference is likely straightforward: ML-20M has more
redundant encodings of preference patterns due to its sheer size,
so an equivalent percentage of strikers cannot have as much of
an effect on the experience of non-strikers.

The second factor driving the strike results is the fact that,
during a data strike (rather than boycott), by definition, striking
users can still use the system. Because these users must still
receive a ranked list of items (e.g. to power a Netflix-style
interface), what used to be a personalized ranked list must now
become a non-personalized ranked list. As noted above (Section
4.1.3), we implement this non-personalized ranked list in the
most ecologically valid way possible: using the average movie
rating from other users (item mean). As such, for each new user
who strikes, the recommender will inch towards item mean by
default, regardless of the effect on non-striking users. In other
words, even in the face of large amounts of training data, users can
hurt the system by refusing to provide the input data needed to
make predictions for themselves.

Finally, we reiterate that evidence from industry suggests
that in commercial systems, a change in surfaced hits has a non-
linear value to recommender operators. In other words, the
visually-small performance change between the red and black
horizontal lines in Figures 2 and 3 may have an outsized effect
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on platform revenue. As mentioned before, the small surfaced
hits improvement due to personalization may correspond to a 2-
4x increase engagement with recommended items in other
contexts [17]. Similarly, in 2010 YouTube published findings that
suggest recommendations add substantial value: almost 30% of
video views came from their recommender system and the
recommender was the main source of views for most videos [59].
An industry report from consulting company McKinsey
estimates that recommender systems account for 35% of Amazon
purchases and 70% of Netflix views [24]. Taken together, this
means that in many contexts, the revenue effects of data strikes
seen above would be magnified relative to their appearance in
the figures.

5.2 Homogeneous Campaign Group
Experiments

In our homogenous campaign experiments, we examine what
would occur if a demographics- or taste-defined group engaged
in a data strike (e.g. women or documentary fans). Specifically,
for the reasons defined above, we simulate the effects of 50% of
the group striking, examining the impact on the remaining 50%
in the group, as well as on the recommender overall. We use the
term Similar Users to describe non-striking members of the
striking campaign group (e.g. non-striking women in a strike by
women) and Not Similar Users for all other non-striking users
(e.g. non-women in a strike by women). Then, we define the
Similar User Effect Ratio as the percent change in surfaced
hits for Similar Users divided by the percent change in surfaced
hits for Not Similar Users. One challenge with analyzing these
homogenous boycotts is that the various groups are very
different in size (see Table 1). Therefore, this set of analyses
focuses specifically on percent change in surfaced hits, which
partially mitigates the challenge in comparing data strikes by
groups that are very different in size. Furthermore, when looking
at the aggregate effects of homogeneous campaigns, we
specifically look at the perspective of non-participating users, as
both the direct consumer effects and the effects from striking
users seeing un-personalized recommendations are functions of
campaign size.

The results from our homogenous campaign experiments
show that data strikes may be especially effective at impacting
recommendations within targeted topical domains. Specifically,
we observe that if homogeneous groups of people strike, non-
striking users that share the same characteristic as the
homogenous striking group will experience larger reductions in
recommender accuracy than other users. For example, striking
horror movie fans can make a large movie recommender suffer
for other horror fans, potentially giving a competing movie site
an opening. A secondary, related observation from these
experiments, which we return to at the end of this section, is
that homogenous groups’ aggregate effects on non-participating
users are not consistent: some groups have an outsized aggregate
effect relative to their size, and vice versa.



Table 1: Examples of homogenous groups, the number of
ratings in each group, percent change in surfaced hits, and
the Similar User Effect Ratio.

% ch: % ch
change % change Similar
“ surfaced surfaced User
Name . hits, hits, Not
Ratings . . Effect
Similar Similar Ratio
Users Users
men 753769 -0.71 -0.64 1.11
women 246440 -0.38 -0.09 4.24
f: f
hi)l;sr:r 48464  -0.24 -0.03 7.16
under 18 27211 -0.27 -0.03 9.02
25-34 395556 -0.38 -0.3 1.28
56+ 38780 -0.18 -0.03 6.97
artist 50068 0.15 -0.07 -2.26
power users 381407 -0.76 -0.45 1.71

Table 1, which includes a variety of example groups,
highlights the primary finding that some groups are especially
effective at lowering performance for Similar Users compared to
other users. For instance, looking at Table 1, we see that when
half of women strike, surfaced hits decreased for non-striking
women by 0.38% while surfaced hits decreased for non-women
by 0.09%. Therefore, the Similar User Effect Ratio is 0.38 / 0.09 =
4.24. This effect is exaggerated even further in the case of the
“under 18” group, which has a Similar User Effect Ratio of 9.02.
On the other hand, the “25-34” age group has a more or less
“flat” ratio of 1.28, and the same is the case for men.

It is clear from Table 1 that some homogenous groups are
able to “punch above their weight” with respect to affecting the
experience of non-striking users, at least those within their
homogenous group. This is particularly important with respect
to large recommenders, which we saw above are more robust to
this component of the data strike effect (the effect of strikers on
the experience of non-strikers). Regardless of the scale of data
resources available to a recommender, it appears that
recommendation quality for some wusers may always be
vulnerable to targeted data strikes by Similar Users.

One hypothesis that explains why some data strikes hurt
Similar Users more than other users lies in a holistic view of the
user preference space. If a group of users has substantial
uniqueness— or more specifically, mathematical independence —
in their preferences when compared to other groups, a campaign
by that group is less likely to hurt users not in that group. At the
extreme, a group whose preferences are completely orthogonal
to every other group may be able to execute a campaign without
substantially affecting personalization for any other group (one
realistic example might be groups based on language
proficiency).

To understand this relationship, we compared a group’s
Similar User Effect Ratios from Table 1 to a measure of
preference independence based on overlap in rate/no-rate
behaviors. To calculate preference independence, we first create
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a vector with a column for each movie (3706 columns) and value
equal to the proportion of users in the group who have rated the
movie (i.e. the group implicit rating vector). A group’s
preference independence is the cosine distance of that group’s
vector to the similarly calculated vector for the all groups (i.e.
the centroid). We focus on groups with over 20k ratings,
ignoring the six very small groups for which Similar User effects
are extremely noisy.

Similar User Effect Ratio and Uniqueness
>ynder 18

;ans of horror

>Iemale users

Similar User Effect Ratio
=N

xmale users power users )@ns of documentary
0 )Eans of film-noir
-2 Jrtist
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Uniqueness: Group Implicit Rating Cosine Distance from Centroid

Figure 4: Scatterplot showing how homogeneous data
strikes (with > 20k ratings) affect similar users differently
than the general population. Along the x-axis, groups are
organized by increasing uniqueness, defined by the cosine
distance between the group implicit rating vector for the
group and the general population. The y-axis shows the
Similar User Effect Ratio. Gray dotted line shows ratio of 1.
Pearson correlation is 0.55. “X” markers indicate labeled
examples.

Figure 4 shows a full scatterplot of Similar User Effect Ratio
for all groups with over 20k ratings. On the x-axis, we plot
preference independence as defined above and on the y-axis, we
plot Similar User Effect Ratio (note that negative values
correspond to strikes that improve surfaced hits for Similar
Users). Our experiments suggest a moderate positive relationship
between a group’s preference independence and the effect of a
strike on non-participating Similar Users (Pearson’s r = 0.55, p <
0.001), although this is likely driven by a non-trivial number of
strong outliers (e.g. “under 18”7, “fans of horror” in Figure 4)
given the Spearman correlation (r = 0.18, p > 0.05) is not
statistically significant. The full interplay between preference
independence and strike effectiveness is a fertile ground for
research, and future work could more closely study how
preference spaces might be operationalized for the purpose of
data strikes.

The outsized Similar User effects for many homogenous
strikes point to both strategic advantages and effects that may
limit adoption. For example, if women data strike against a
company to affect some lasting change (e.g. ending
discriminatory  practices, launching profit sharing), a
homogenous strike that focuses on recruiting other women may
be especially effective, with large Similar User strike effects
potentially driving women away from the company to
competitors and substantially reducing company revenue.
However, these effects may decrease strike adoption in some



contexts. For instance, returning to a strike by women against a
major tech company, imagine that the tech company provides
important services to large populations (e.g. online shopping in
areas with few brick-and-mortar stores, low-cost communication
in areas without similarly priced options). Many potential
participants may be unwilling to participate in a campaign that
will disproportionately damage these services for other women,
thus limiting the adoption of homogenous campaigns in certain
contexts.

A related secondary observation from these experiments is
that homogenous groups have varying effects on all non-strikers
(rather than just Similar Users) compared to the “expected”
effects based on their number of ratings (determined by a
quadratic interpolation of our general results, as described
above). In other words, homogenous strikes vary in their ability
to “punch above their weight” with respect to their capacity to
decrease performance for all non-participating users: In 34 of 50
homogeneous groups, surfaced hits for non-participating users
decreased more than would be expected for a random group with
an equal number of ratings. Ratios of observed to expected effect
ranged from 0.52 for the group of users whose occupation was
“retired” to 1.84 for “power users”, with other examples
including a 0.7 ratio for “fans of comedy” and a 1.35 ratio for
“fans of fantasy” (see GitHub repository for more details).

Based on this secondary finding, it seems that homogenous
campaigns will not always be effective at damaging the general
population of users because some groups are under-performing,
and even over-performing groups are limited by size in their
ability to affect the general population. However, organizing
campaigns with preference spaces in mind (i.e. campaigns that
are homogenous in topical preferences) likely will be effective
and, critically, may provide a way to challenge recommenders
when the number of strikers is not sufficient to cause more
general damage to performance.

5.3 Generalizing Beyond “Surfaced Hits” and
SVD

In presenting our results, we have focused on our “surfaced hits”
metrics. However, we also computed the more typical
recommender systems evaluation metrics of RMSE, NDCG with
all items, NDCG@k, Precision@k, and Recall@k for k = {5, 10}.
We additionally calculated these metrics when only including
“long-tail” (i.e. unpopular) movies. All these metrics produce
similar results regarding the effects of various data strikes
configurations, although they did not afford us the ability to
analyze boycotts. The full dataset of results is available in our
GitHub repository. We also note that in our early experiments
using item-based k-NN, ML-1M, and traditional metrics, we
observed very similar general trends, e.g. the effect of data
strikes on the NDCG@10 of an item-based k-NN recommender
mirrored effects on other traditional metrics for SVD.

6 DISCUSSION

In this paper, we have taken the previously hypothetical notion
of data strikes, identified a wide variety of realistic campaign
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configurations (including when they are combined with
traditional boycotts), and simulated the effect of these
configurations in the recommender systems domain using best-
practice evaluations. Comparing these campaign configurations
and looking specifically at direct effects, we find that while the
consumer power of boycotts still substantially outweighs the
data labor power of data strikes, data strikes represent a
potentially powerful new form of leverage. Moreover, we saw
that strike organizers might specifically target preference spaces
within a recommender to achieve especially effective data strikes
within those spaces. Below, we discuss some of the more
general implications of these results.

6.1 Barriers to Entry vs. Impact

Our results suggest that collective action organizers targeting
companies that operate intelligent technologies like
recommender systems have more options than is the case in
traditional collective action. Specifically, these organizers have
the ability to optimize for impact or for barrier to entry. Our
results show that boycotts have a larger impact, but they require
all participants bear the cost of not using a potentially valuable
service. Strikes, on the other hand, allow users to continue to
benefit from the use of technology platforms without completely
losing the ability to collectively bargain. Historically,
participation in political consumption has been easier for
affluent groups [32] - data strikes represent an approach that
may be substantially more accessible. Notably, our results
suggest that new technologies focused on privacy (e.g. initiatives
from Mozilla [14]) and online political consumption (e.g. recent
work from Li et al. [39]) are a promising approach to
empowering more individuals to participate in collective action.

This notion of low-barrier-to-entry collective action echoes
early research on digital activism by Earl and Kimport, who
argued that the web reduces costs for participating in protest
behavior like boycotts, petitions, and email campaigns [9].
Specifically, data strikes can be seen as another tool in the
toolbox of low-barrier-to-entry techniques, offering an additional
avenue for people to take action against technology companies.
However, we also observed that this increased accessibility is
coupled with reduced power.

6.2 Towards a Holistic View of Data Strikes

Although our results give us important insight into the potential
impact of data strikes and boycotts, our work likely only
captures a portion of the real-world effect of a collective action
against an intelligent technology. In particular, as is discussed in
the Framework section, we cannot measure directly the indirect
effects of traditional boycotts or data strikes. This means that our
results should be interpreted as a lower bound on the effects of
any data labor-related collective action campaign.

A related point that emerges from our results viewed with
the lens of our framework is that collective action against
technology companies will largely be more powerful than
collective action against non-technology companies. The effect of
a boycott against, for instance, a clothing company, would
largely not include either direct or indirect loss of data labor



value (excluding edge cases like long-term sales and marketing
data). Since our results suggest that these factors will be non-
trivial in most tech company boycotts, a user boycotting a tech
company is likely to have a greater effect on revenue than would
be expected in a boycott with a more traditional type of target.
We expand on these power dynamics further below.

6.3 The Power of Algorithms vs. The Power of
Public Data

Outside of the context of boycotts and data strikes, our results
can also be viewed as a means to better understand the power of
data provided by the public relative to the power of algorithms.
Namely, we observed that moderately-sized strikes can bring
recommender accuracy down to the levels of early recommender
systems from 1999. These results, along with the work of
McMahon et al. [40] and others [18, 23], emphasize the data
leverage that the public has in its relationship with data-hungry
intelligent technologies and the companies that operate them.
While the public perception of intelligent technologies like
recommender systems is that they are largely the
accomplishment of tech companies and the computer scientists
they employ, these technologies are in fact a highly cooperative
project between the public and companies. Without the
companies and computer scientists, the intelligent technologies
do not exist. But the same is also true for the public’s
contributions of data (i.e. data labor). This implies a much
different power dynamic than is currently assumed by most
people on both sides of this relationship.

6.4 Limitations

This work has several limitations not yet discussed above that
should be highlighted. First and foremost, this paper focused on
recommender systems which, while a business-critical family of
intelligent technologies, is only one family of intelligent
technologies that could be vulnerable to collective action
campaigns. Future work should seek to replicate our research for
other intelligent technologies, for instance search ranking
algorithms (e.g. [45]), “newsfeed”-style technologies (e.g. [43]),
traffic prediction (e.g. [21]), and wi-fi geolocation (e.g. [19]).

As noted above, we simulate boycotts in concert with strikes
owing to that being the more ecologically valid choice in the
context of our study. We note that one could imagine boycotts
coupled only with partial strikes: e.g. someone who boycotts a
system but does not delete their past ratings. Exploring these
types of configurations - and longitudinal considerations in
general - is an important direction of future work.

While we used best-practice evaluation techniques in the
recommender systems community [8, 22, 46], these techniques
have several limitations that also affect the large literature of
recommender systems research that employs them. In particular,
we considered only explicit ratings and did not consider implicit
preferences expressed through user behavior (which are not
available in the MovieLens dataset). We also only considered our
recommenders in an offline environment (as opposed to in a live
experiment). Finally, to gain more insight into the nuances of
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recommenders, it will be valuable explore other recommender
system datasets, particularly datasets from industry contexts.

Another important limitation is that in our experiments, we
had to operationalize male/female as a binary variable due to the
data available in the MovieLens dataset. Similarly, we were not
able to test other types of demographic groups (e.g. LGBT
communities, political groups). Relatedly, our use of the term
“homogenous” refers to a specific demographic or topical
dimension; it does not consider the diversity within our
“homogenous” groups, and doing so would be a fruitful area of
future work.

Finally, this paper focused on understanding the effect of
collective action campaigns of various sizes and types, but it did
not consider the collective action problem of organizing or
actuating these campaigns. Fortunately, this problem maps to a
deep body of work within social computing and related fields on
sociotechnical strategies for motivating collective action online
(e.g. [35, 47]). An obvious direction of future work in this
research space involves building tools to organize data strikes
and boycotts that leverages this body of work (either using
GDPR or restricting new data collection). Recent research
suggests that user-friendly tools like browser extensions may be
an effective approach for making collective action campaigns
easy to join and conduct [39].

6.5 Potential Negative Impacts

In response to calls for the computing community to better
engage with the negative impacts of our research [29], we wish
to highlight two major concerns with this work. First, we
emphasize that our findings may be equally useful to organizers
of campaigns as to they are to companies interested in
mitigating the effectiveness of such campaigns. Relatedly, it is
entirely possible that using a simulated data strike methodology,
companies could identify which groups of users are and are not
“useful to the algorithm”, i.e. they could rank groups based on
their utility to some intelligent technology and use this ranking
to justify ignoring the interests of some groups. If this occurred
along demographic lines, this could lead to troubling societal
outcomes, e.g. if majority groups can collectively bargain with
tech companies and minority groups cannot. Technologies to
organize data strikes and boycotts could help mitigate this issue
by recruiting users from a variety of demographic groups
(perhaps, guided by future work, specifically targeting some
preference space like Comedy movies or electronics products).
Our results suggest that this should be a priority in the design of
these technologies.

Moreover, our ability to perform simulated campaigns was
predicated on the public availability of the MovieLens dataset.
Substantially more accurate simulations could be run using
much richer datasets available only to corporations, so in any
“data strike simulation arms race”, there will be a clear
advantage for corporations. This means that corporations may be
able to prepare models in advance to counteract boycotts or
strikes. This might be mitigated through crowdsourced data
collection or other means, a ripe area for future work.
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