


static search-based and a mixed-integer contact planner. Our

results suggest that our approach produces more dynamically

robust motions compared to the quasi-static planner which

allows us to traverse dynamically challenging environments,

and can be orders of magnitude more efficient than mixed-

integer based planners in large unstructured environments.

II. RELATED WORK

Footstep planning for humanoid robots has been studied

extensively [14–20]. In these works, the planner plans a foot-

step sequence to avoid obstacles on the ground and remain

inside the specified contact regions on a flat or piecewise-

flat ground. To increase the likelihood of success, they

incorporate an approximation of robot balance and kinematic

reachability into the contact transition model, and do not

explicitly perform balance check online. There are also works

addressing contact planning in unstructured environment

using both palm and foot contacts [1–5]. However, these

approaches assume quasi-static motions, and drop solutions

involving dynamic motions.

Approaches to synthesize dynamically feasible multi-

contact motions have also been extensively studied [21–25].

However, it is not trivial to include planning of contact poses

in these approaches because contacts planning in general

involves discrete or non-convex constraints for the contact

poses. [20] addresses the non-convexity by decomposing the

environment into a set of convex regions and approximating

the rotation using piecewise affine functions. The problem

is then formulated as a mixed integer convex program and

solved to global optimality. Although [20] only uses foot

contact, and does not consider dynamics, it points a direction

to include contact planning in an optimization problem.

Extensions of [20] for dynamic planning of a contact

sequences are proposed in [10], [26], which extend [20] with

the selection of contact timings or hand contacts respectively.

More recent works [12], [27] use the same concept to plan

gait sequences for quadruped robots and produce dynam-

ically robust motions. However, mixed-integer approaches

scale poorly against the number of integer decision variables.

For instance, their applicability is limited to online contact

generation in environments with few convex terrain regions,

and short planning horizons.

[28] proposes a kinodynamic sampling-based contact plan-

ner to plan kinodynamically feasible contact sequences. They

use a simplified robot model to dynamically plan smooth

center of mass (CoM) trajectories based on convex opti-

mization and then search for kinematically feasible contact

poses around it. It shows a unified planning framework to

consider dynamics and kinematics constraints, but it suffers

from long planning time. [29] proposes an efficient dynamic

feasibility check by conservatively reformulating the prob-

lem as a linear program. While the check guarantees to

reject dynamically infeasible motions, they do not address

dynamical robustness in the stability check. [30] learns

quadratic dynamics objective of humanoid walking motion,

and apply this learned model to select steps in a search-based

footstep planner. However, their dynamics model assumes

flat contact, and does not consider palm contacts, which

limits the applicability of the approach.

III. PROBLEM STATEMENT

In this paper, we focus our efforts on the dynamic plan-

ning of contact sequences for humanoid robots. Given an

environment specified as a set of polygonal surfaces, a start

stance, and a goal region, we seek to produce a dynamically-

feasible contact sequence along with a dynamics sequence,

which includes centroidal momentum trajectories and contact

wrenches at each time step of the trajectory, to move the

robot from the start stance to the goal region within a

specified planning time. The robot always uses feet contacts,

but can also optionally use palm contacts when they are avail-

able. As considering variable transition times significantly

increases the branching factor of the search, we assume

fixed timing for each contact transition. We also assume the

friction coefficient of the environment is given and fixed.

IV. CENTROIDAL MOMENTUM DYNAMICS

OPTIMIZATION

The momentum dynamics have been widely adopted to

plan dynamically feasible motions for floating base robots

[31], [32]. In this work, we use the fixed-time formulation

of the centroidal dynamics optimizer proposed in [13]. In the

following, we briefly summarize them and explain how we

use them to generate robust motion plans. The dynamics of

a floating-base robot with n degrees of freedom is

H(q)q̈+C(q, q̇) = ST τ + JT
e λ (1)

where q =
[

qT , xT
]T

denotes the generalized robot states

including joint positions q ∈ R
n, and floating base frame

x ∈ SE(3). H ∈ R
(n+6)×(n+6) is the inertia matrix,

and C ∈ R
n+6 stands for the Coriolis, centrifugal, and

gravity forces. S = [In×n 0] is a selection matrix, τ ∈ R
n

is the torques vector, Je is the end-effector jacobian, and

λ =
[

· · · fTe τTe · · ·

]T
comprises the force fe and torque τe

of each end-effector contact. We can then decompose Eq. (1)

to actuated parts (Eq. (2a)), and unactuated parts (Eq. (2b))

Ha(q)q̈+Ca(q, q̇) = τ + JT

e,aλ

Hu(q)q̈+Cu(q, q̇) = JT

e,uλ

(2a)

(2b)

Under the assumption that enough torque can always be

generated by the robot, if there exist robot states q, q̇, q̈,

and the external forces λ that satisfy Eq. (2b), Eq. (2a) is

also satisfied. With the assumption and decomposition, Eq.

(2b) verifies the dynamic feasibility, and Eq. (2a) is only

required to verify torque limits and kinematic constraints.

Eq. (2b) is equivalent to the Newton-Euler equations of the

robot [33], which means that the momentum rate equals the

applied external contact wrenches. The centroidal dynamics

expressed at the robot CoM is




ṙ

l̇

k̇



 =





1
M
l

Mg +
∑

fe
∑

(Te(ze)− r)× fe + τe



 (3)

r is the CoM position. l and k are linear and angular

momenta, respectively. M is the robot mass. ze is the center

of pressure (CoP) of each contact in the contact frame. fe
and τe are the contact force and torque at the CoP of each









Test Approach (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Rubble Field
Environment

Quasi-static
Contact Planner

47/50 47/47 1.17 3498.5 12.0 12.7 0.472 0.706 0.767 0.012 0.062 0.0068

The Proposed
Approach

50/50 50/50 1.02 3334.2 6.00 9.68 0.581 0.559 0.763 0.010 0.079 0.0079

Rubble Corridor
Environment

Quasi-static
Contact Planner

44/50 44/44 1.05 3418.7 11.5 11.16 0.523 0.618 0.768 0.013 0.082 0.0069

The Proposed
Approach

50/50 49/50 1.59 2392.5 4.38 4.83 1.378 0.349 0.631 0.025 0.088 0.0173

Fig. 8. Results for the rubble field corridor environments: (1) Contact planning and (2) Dynamics optimization success rates (3) Average number of tested
contact sequence to find a dynamically feasible sequence (4) Mean dynamics objective of the whole contact sequence (5) Mean lin. momentum norm
(kg·m/s) (6) Mean lin. momentum rate norm (kg·m/s2) (7) Mean angular momentum norm (kg·m2/s) (8) Mean angular momentum rate norm (N·m) (9)
Mean RMS contact force norm (10) Mean contact torque (N·m) (11) Mean lateral contact force norm (12) Mean CoP distance to contact boundary (m).
Contact forces are normalized by the robot weight and are unitless. In (5)-(12), means are computed over all time steps of all dynamically feasible trials.

As shown in Figure 7, the mixed integer contact planner

using the simplified model still takes much longer than the

proposed approach to find a feasible solution. Furthermore,

the mixed integer contact planner requires the user to specify

the number of contacts used in the plan. Since the planning

is in unstructured environments, it is not trivial to decide how

many contacts are needed, and different number of contacts

can have a great impact on the planning time (Figure 7).

Compared to the quasi-static contact planner, the proposed

approach produces contact sequences with similar dynamics

objective. However, as shown in Figure 8, the proposed

approach generates motion with lower linear momentum and

rates of linear and angular momenta. The angular momentum

of the proposed approach is higher because it does not always

produce straight walking motion as the quasi-static contact

planner normally does, instead it may take a detour to achieve

more robust locomotion using our approach.

D. Rubble Corridor Environment Test

In this test, we set up the rubble corridor environment,

where palm contacts are available, and test the planner’s

ability to find dynamically robust contact sequence in such

environment. The surfaces are randomly tilted as in Sec-

tion VIII-C. Without any user specification, the proposed

approach is able to discover palm contacts in the search, as

shown in Figure 5. The quasi-static contact planner, on the

other hand, does not consider the dynamics, and favors path

with shorter traveling distance and fewer number of contacts.

Therefore, it outputs solutions without palm contact, as

shown in Figure 6. Compared to the quasi-static contact

planner, the proposed approach generates motion with lower

linear momentum, rates of the linear and angular momenta,

and higher CoP clearance to the contact boundary, as shown

in Figure 8. Although the angular momentum of the motion

generated by the propose approach is much higher, the robot

momenta rates are much lower, which results in a much lower

dynamics objective of the whole contact sequence.

E. Prediction of Dynamics Optimizer Results

Here, we analyze the performance of the neural network

in predicting useful information to guide the planner to find

dynamically robust contact sequences. Figure 9 summarizes

the networks’ performance on predicting the results of the

dynamics optimization over each contact transition. For each

motion category, we use 105 training data, and tested with

another 1000 data. The proposed approach estimates the

Contact
Transition
Category

Index

Dynamic
Feasibility
Prediction
Accuracy

Mean
Actual

Dynamics
Objective

Mean Absolute
Error in Regression

Dynamics
Objective

Final
CoM
(mm)

Final CoM
Velocity
(mm/s)

0 90.3% 1436.10 62.45 7.5 6.6

1 97.0% 740.85 40.38 6.0 5.4

2 95.3% 164.96 20.70 9.0 5.4

3 93.5% 119.85 11.07 6.7 4.7

4 94.3% 516.53 45.06 7.1 4.1

5 95.2% 87.80 12.39 9.1 4.1

6 98.1% 53.47 8.10 7.3 4.1

7 96.6% 50.66 17.28 8.1 2.4

8 96.1% 88.00 15.18 9.0 3.0

9 98.3% 62.40 7.56 8.1 3.7

Fig. 9. Performance of the neural networks to predict dynamic feasibility,
dynamics objective, final CoM and CoM velocity of a contact transition.
Refer to Figure 3 for the meaning of each contact transition category index.

Fig. 10. Relationship between the sum of the predicted dynamics objective
of contact transitions and the actual dynamics objective of the whole contact
sequence. Data taken from the rubble field and rubble corridor environments.
The linear model showing the correlation is fit with robust regression [45].

dynamics objective of the whole contact sequence with the

sum of dynamics objective in each contact transition of the

contact sequence. As shown in Figure 10, this estimates is

not accurate as it neglects previous and later contact poses

in each optimization over a contact transition. However,

the estimates and the actual dynamics objective are highly

correlated, which makes the estimates a suitable edge cost

function to select branches which lead to lower dynamics

objective of the whole contact sequence.

IX. CONCLUSION

We proposed a contact planner which finds dynamically

robust contact sequence involving both foot and palm con-

tacts. Costly dynamics optimization is replaced by a learned

prediction of dynamic feasibility and edge cost. The planner

can leverage these learned functions to efficiently evaluate

contact options in the planning loop. In the future, we would

like to extend the contact planner to further consider timing

of each contact transition [13], so that the contact planner

can generate a wider variety of dynamic motions.
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