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Wave propagation problems for heterogeneous media are known to have many applications 
in physics and engineering. Recently, there has been an increasing interest in stochastic 
effects due to the uncertainty, which may arise from impurities of the media. This 
work considers a two-dimensional wave equation with random coefficients which may be 
discontinuous in space. Generalized polynomial chaos method is used in conjunction with 
stochastic Galerkin approximation, and local discontinuous Galerkin method is used for 
spatial discretization. Our method is shown to be energy preserving in semi-discrete form 
as well as in fully discrete form, when leap-frog time discretization is used. Its convergence 
rate is proved to be optimal and the error grows linearly in time. The theoretical properties 
of the proposed scheme are validated by numerical tests.

Published by Elsevier Inc.

1. Introduction

Consider the following second order deterministic wave equations

∂2u(t,x)

∂t2
= div(a2(x)∇u(t,x)), x ∈ D, t ∈ T ,

u(x,0) = u0(x), ut(x,0) = v0(x),

subject to homogeneous Dirichlet or periodic boundary conditions. Here D denotes a two-dimensional physical domain, 
T denotes a time range, and a(x) denotes the speed of wave propagation. An important property of the wave equation is 
its conservation of energy. Therefore, recently there is an increasing interest in energy conserving numerical methods for 
wave equations, and it has been shown that these methods preserve the shape and phase of smooth shaped waves.

Here we focus on discontinuous Galerkin (DG) method for discretization in physical space. Historically, there are basically 
two approaches to design energy conserving DG methods. One approach is to use staggered meshes. Chung and Engquist 
have used this approach and proposed an optimal and energy conserving DG scheme for the first-order wave equation [3,4]. 
The other approach is to use the central numerical flux in DG method [6]. However, the convergence for this scheme is 
suboptimal theoretically, and numerically shown to be optimal/suboptimal for even/odd degree polynomial basis [6]. As an 
alternative, Xing and Chou developed a local discontinuous Galerkin (LDG) ([2,15]) that produces both energy conservation 
and optimal convergence rate.
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In practical applications, the wave propagation speed a is unlikely to be deterministic, because the media in which the 
wave propagates often have random impurities. This leads us to consider a as a function of both space and random vari-
ables, and its associated solution u, a function of space, time and random variables. To characterize the stochastic function u, 
a popular and robust approach is Monte–Carlo method. As a brute-force sample-based method, a large number of samples 
are usually needed to achieve satisfactory accuracy, and therefore it is known to be computationally expensive. One efficient 
alternative is polynomial chaos (PC) approximation, originally developed by Ghanem and Spanos using Wiener–Hermite ex-
pansion and finite element discretization for a range of problems [8]. It was later extended by Xiu and Karniadakis [16]
to generalized polynomial chaos (gPC) expansion, in which general orthogonal polynomials were considered. Based on gPC 
expansion and stochastic Galerkin projection, the original random PDE can be transformed into a system of deterministic 
equations which can be solved by existing numerical methods [1,8,7,16]. Among the existing work, the stochastic Galerkin 
methods for the first-order random hyperbolic problems were considered in [9,10,14]. On a different front, stochastic col-
location methods have also been considered for scalar hyperbolic equations ([13]) and second-order wave equation with a 
discontinuous random speed ([12]). Stochastic Galerkin and stochastic collocation are the two main approaches for problems 
with random inputs. They have different properties and both are useful for different problems. Their comparison is beyond 
the scope of this paper. Here we focus on the properties of stochastic Galerkin method for wave equations particularly in 
conjunction with LDG method for energy conservation.

In this paper, we apply the gPC Galerkin framework, along with LDG, to the second-order wave equation directly, without 
transforming it into a first order hyperbolic system. Our method is thus a Galerkin approximation in both physical space and 
random space. More importantly, we demonstrate that the resulting numerical scheme is energy conserving. Consequently, 
it induces much less errors for long time integration. We first examine the stability of the stochastic wave equation, with 
respect to the random wave speed a by characterizing its solution dependence on the random coefficient. This is similar to 
the previous work for the elliptic problem [11]. Upon presenting the detail of the numerical scheme, we then prove that 
the numerical scheme is energy conserving in both semi-discrete and fully discrete forms. Finally, we show that by taking a 
suitable projection for the initial conditions, our numerical scheme achieves optimal convergence rate.

The paper is organized as follows. In Section 2, the stability of the problem with respect to the random coefficient a is 
proved. In Section 3, we present our numerical method of gPC expansion and LDG framework. The energy conserving prop-
erties are proved for both semi-discrete and fully-discrete (leap-frog) schemes. In Section 4, error estimates are presented 
for the semi-discrete numerical method. In Section 5, we present numerical tests with random a, continuous or discontinu-
ous in space, to demonstrate the energy conserving properties and error estimates proved in previous sections. Concluding 
remarks are given in Section 6.

2. Dependence of solution on random wave speed

In this paper, consider the following two-dimensional wave equation with random coefficient

∂2u(t,x,y)

∂t2
= div(a2(x,y)∇u(t,x,y)), (2.1)

where x denotes the spatial variables in the two-dimensional domain D and y = (y1, y2, . . . , yN) ∈R
N , N ≥ 1, is a random 

vector with independent and identically distributed components. Equation (2.1) is subject to initial condition

u(0,x,y) = u0(x,y), ut(0,x,y) = v0(x,y), (2.2)

and the homogeneous Dirichlet boundary conditions

u(t,x,y) = 0 x ∈ ∂D. (2.3)

The coefficient a2(x, y) is assumed to be positive for all x and y. Because a(x, y) is associated with the media in which 
the wave propagates, Eq. (2.1) models wave propagation in heterogeneous media subject to random variations. For the 
convenience of applying the LDG framework later, we first rewrite (2.1) into the equivalent system

∂2u(t,x,y)

∂t2
= div(a(x,y)q(t,x,y)), (2.4)

q(t,x,y) = a(x,y)∇u(t,x,y) q ∈R
2×1. (2.5)

In this section, we would like to establish the stability of Eqs. (2.4) and (2.5) with respect to the wave speed coefficient 
a(x, y); in other words, we will show that if a small perturbation is made on a, in either x or y, the solution will be close to 
that without perturbation. The stability of the problem is relevant because in real applications, the function a(x, y) may be 
approximated and not exact. Hence it is necessary to show that as long as the approximation on a is sufficiently accurate, 
the resulting solution will be sufficiently close to the exact solution.

First, we take the time derivative of (2.5),

qt(t,x,y) = a(x,y)∇ut(t,x,y). (2.6)
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After taking the expectation with respect to y on both sides of the weak form of (2.4) and (2.6), we obtain the following: 
u ∈ L2(RN ; H2(T ; H−1(D))) ∩ L2(RN ; L2(T ; H1

0(D))) and q ∈ (L2(RN ; L2(T ; H1(D))))2 satisfy

E [(utt, p)D]+E [(aq,∇p)D] = 0 ∀p ∈ L2(RN ; H1
0(D)), (2.7)

E [(qt,w)D]+E [(aut,divw)D]+E [(∇aut ,w)D] = 0 ∀w ∈ (L2(RN ;H1(D)))2, (2.8)

where H1
0(D) denotes the set of functions in H1(D) with vanishing boundary values. Here we use (· , ·)D to denote the 

integral of the product (inner product) over D if the arguments are scalar (vector) functions.
Suppose ̃a(x, y) is a perturbed function of a(x, y), and its corresponding solutions are ̃u(t, x, y) and ̃q(t, x, y). Then ̃u and 

q̃ satisfy

E [(̃utt, p)D]+E [(̃ãq,∇p)D] = 0 ∀p ∈ L2(RN ; H1
0(D)), (2.9)

E(̃qt ,w) +E(̃ãut,divw) +E(∇ã(̃u)t ,w) = 0 ∀w ∈ (L2(RN ;H1(D)))2. (2.10)

We assume that both a and ̃a are bounded from above and from below away from 0, that is, a2(x, y) and ̃a2(x, y) belong to 
L∞(RN , W 1,∞(D)) and

0 < amin ≤ ∥a2(x,y)∥L∞(RN ;W 1,∞(D)) ≤ amax < +∞ a.e. inD ×R
N ,

0 < ãmin ≤ ∥̃a2(x,y)∥L∞(RN ;W 1,∞(D)) ≤ ãmax < +∞ a.e. inD ×R
N .

Based on the above assumptions, and assuming that a(x, y) and ̃a(x, y) have the same sign, we can easily show that given 
an arbitrary ϵ > 0, if

∥a2(x,y) − ã2(x,y)∥L∞(RN ;W 1,∞(D)) ≤ ϵ, (2.11)

then

∥a(x,y) − ã(x,y)∥L∞(RN ;W 1,∞(D)) ≤ C1ϵ,

where C1 = C(
√
ãmax +

√
amax)/(

√
ãmin +

√
amin)

2 .

We define the difference between the solutions of the perturbed and the original systems to be δu = u − ũ and δq = q − q̃. 
In the following theorem, we prove the bound of the averaged L2 norm of the difference between the solutions in terms of 
the perturbation in the coefficient a(x, y).

Theorem 2.1. Let u(t, x, y) and ̃u(t, x, y) be solutions of (2.7)–(2.8) and (2.9)–(2.10), respectively. If the initial conditions satisfy
(
E[∥ut(0,x,y) − ũt(0,x,y)∥2L2(D)

] +E[∥q(0,x,y) − q̃(0,x,y)∥2
L2(D)

]
) 1
2 ≤ Cϵ,

then we have
(
E[∥(δu)t∥2L2(D)

]
) 1
2 +

(
E[∥δq∥2L2(D)

]
) 1
2 ≤ C(t + 1)ϵ.

Proof. Subtracting (2.9)–(2.10) from (2.7)–(2.8) respectively, we have

E [((δu)tt, p)D]+E [(aq− ã̃q,∇p)D] = 0 ∀p ∈ L2(RN ; H1
0(D)), (2.12)

E
[
((δq)t,w)D

]
+E [(aut − ã̃ut,divw)D]+E [(∇aut − ∇ã̃u,w)D] = 0 ∀w ∈ (L2(RN ;H1(D)))2. (2.13)

Choosing p = (δu)t in (2.12), w = δq in (2.13) and applying integration by parts to the second term of (2.12) yields

E [((δu)tt, (δu)t)D]+E
[
((δq)t, δq)D

]
+E

[
(aut − ã̃ut,div δq)D

]
+E

[
((∇aut − (∇ ã̃ut, δq)D

]

−E [(∇a · q− ∇ã · q̃, (δu)t)D]−E [(a divq− ã div q̃, (δu)t)D] = 0. (2.14)

Consider the fourth and the fifth terms on the left-hand side of (2.14), we have

−E
[
(∇aut − ∇ã̃ut , δq)D

]
+E [(∇a · q− ∇ã · q̃, (δu)t)D]

= −
(
E[(∇a · q, ũt)D] −E[(∇ã · q, ũt)D

)
−

(
E[(∇ã · q̃,ut)D] −E[(∇a · q̃,ut)D

)

=E[(∇ (̃a − a) · δq,ut)D] −E[(∇ (̃a − a) · q, (δu)t)D]

≤∥∇ (̃a − a)∥L∞(D×RN )E[∥ut∥L2(D)∥δq∥L2(D)] + ∥∇ (̃a − a)∥L∞(D×RN )E[∥q∥L2(D)∥(δu)t∥L2(D)]

≤Cϵ(E[∥δq∥2L2(D)
] +E[∥(δu)t∥2L2(D)

])1/2, (2.15)
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where C = C1(E[∥ut∥2L2(D)
] +E[∥q∥2

L2(D)
)1/2 .

Consider the third and the sixth term on the left-hand side of (2.14), we have

−E[(aut − ã(̃u)t,div δq)D] +E[(adivq− ãdiv q̃, (δu)t)D]

=E[(aut(t,x,y),div q̃)D] +E[(̃a(̃u)t,divq)D] −E[(̃aut,div q̃)D] −E[(a(̃u)t,divq)D]

= −E[(a − ã,divq (̃u)t − div q̃ut)D]

= −E[(a − ã,divq (̃u)t − divqut)D] −E[(a − ã,divqut − div q̃ut)D]

≤∥̃a − a∥L∞(D×RN )E
[
∥divq∥L2(D)∥(δu)t∥L2(D)

]
+ ∥̃a − a∥L∞(D×RN )E

[
∥∇ut(t,x,y)∥L2(D)∥δq∥L2(D)

]

+ ∥∇ (̃a − a)∥L∞(D×RN )E
[
∥ut(t,x,y)∥L2(D)∥δq∥L2(D)

]

≤Cϵ(E[∥δq∥2L2(D)
] +E[∥(δu)t∥2L2(D)

])1/2, (2.16)

where C = C1(E[∥∇ut∥2L2(D)
] +E[∥ut∥2L2(D)

] +E[∥divq∥2
L2(D)

])1/2 .

By (2.14)–(2.16), we have

1

2

d

dt

(
E[∥(δu)t∥2L2(D)

] +E[∥δq∥2L2(D)
]
)
≤ C

(
E[∥δq∥2L2(D)

] +E[∥(δu)t∥2L2(D)
]
)1/2

,

and therefore

d

dt

(
E[∥(δu)t∥2L2(D)

] +E[∥δq∥2L2(D)
]
) 1
2 ≤ Cϵ.

Because

(
E[∥(δu)t(0,x,y)∥2L2(D)

] +E[∥δq(0,x,y)∥2L2(D)
]
) 1
2 ≤ Cϵ,

we obtain
(
E[∥(δu)t∥2L2(D)

]
) 1
2 +

(
E[∥δq∥2L2(D)

]
) 1
2 ≤ C(t + 1)ϵ. ✷

3. An energy conserving numerical method

Assume that the solution of (2.4)–(2.5) can be expanded using polynomial chaos expansion

u(t,x,y) =

∞∑

m=1

vm(t,x)$m(y), (3.1)

q(t,x,y) =

∞∑

m=1

pm(t,x)$m(y), (3.2)

where {$m(y)}∞m=1 are N-variate orthonormal polynomials, and the choice of the polynomials is based on the underlying 
probability density function ρ(y) for the random variable y [16]. Specifically,

∫
ρ(y)$m(y)$m′(y)dy = δmm′ , (3.3)

where δmm′ are the Kronecker delta functions. These orthonormal polynomials can be written as the products of univariate 
polynomials,

$m(y) = φm1(y1)φm2(y2) · . . . · φmN
(yN), (3.4)

with mi being the degree of φ(yi) in the yi-direction and m the corresponding index integer for the vector index 
(m1, m2, · · · , mN). ρ(y), the joint probability distribution function for y, can be written as a product of univariate prob-
ability density function 

∏N
i=1 ρi(yi), with ρi(yi) being the probability density function for yi .

Substituting (3.1) and (3.2) into Eqs. (2.4)–(2.5), we have for all k

∂2vk

∂t2
(t,x) =

∞∑

j=1

div(akj(x)p j), (3.5)

pk(t,x) =

∞∑

j=1

akj(x)∇v j, (3.6)
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where

akj(x) =

∫
a(x,y)$k(y)$ j(y)ρ(y)dy, j,k ≥ 1. (3.7)

If we look for the P -th order gPC approximation of u and q, i.e.,

u(t,x,y) ≈ uM(t,x,y) :=

M∑

m=1

v̂m(t,x)$m(y), (3.8)

q(t,x,y) ≈ qM(t,x,y) :=

M∑

m=1

p̂m(t,x)$m(y), (3.9)

where M =

(
N+P

N

)
, then by Galerkin projection, the coefficients in (3.8)–(3.9) satisfy

∂2 v̂k

∂t2
(t,x) =

M∑

j=1

div(akj(x)̂p j), (3.10)

p̂k(t,x) =

M∑

j=1

akj(x)∇ v̂ j, (3.11)

where akj(x) is defined in (3.7).
We denote v̂ = (̂v1, ̂v2, . . . , ̂vM)T ∈ RM×1 and Ŝ = (̂pT

1 , ̂pT
2 , . . . , ̂pT

M)T ∈ RM×2 . By definition in (3.7), the matrix A(x) =
(akj)1≤ j,k≤M is symmetric positive definite ([17]). Thus, equations (3.10)–(3.11) can be rewritten as the following:

∂ 2̂v

∂t2
(t,x) = div(A(x)̂S(t,x)), (3.12)

Ŝ(t,x) = A(x)∇v̂(t,x), (3.13)

with initial and the boundary conditions

v̂(0,x) = v̂0(x), v̂t(0,x) = v̂1(x), (3.14)

v̂(t,x)|∂D = 0. (3.15)

3.1. LDG discretization

To look for numerical approximation of (3.12)–(3.15), we discretize the domain D into K i j := I i × J j := [xi− 1
2
, xi+ 1

2
] ×

[z j− 1
2
, z j+ 1

2
] for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nz and consider the following piecewise polynomial space

V k
h :=

{
r ∈ L2(D) : r|D i j

∈ Pk(K i j), i = 1,2, · · · ,Nx, j = 1,2, · · · ,Nz

}
, (3.16)

where Pk(K i j) denotes the space of polynomials with degree up to k in the domain K i j . We define Vk
h
as a space of vectored 

functions whose entries are in V k
h
. In the following we use dot (·) to denote a binary operation between two vectors or 

matrices which calculates the inner product of the corresponding row vectors (scalar multiplication in the case of vectors) 
and outputs a single column vector. The divergence operator is applied in a row-wise fashion.

The LDG method for Eqs. (3.12)–(3.13) is to seek ̂vh ∈ H2([0, T ]; Vk
h
), ̂Sh ∈ (L2([0, T ]; Vk

h
))2 such that

∫

K i j

∂ 2̂vh

∂t2
· phdx+

∫

K i j

ÂSh · ∇phdx− (Â̂Sh · ν,ph)∂K i j
= 0 ∀ph ∈ Vk

h, (3.17)

∫

K i j

Ŝh ·whdx +

∫

K i j

Âvh · div (wh)dx+

∫

K i j

Ā̂vh ·whdx − (Â̂vh,wh · ν)∂K i j
= 0 ∀wh ∈ (Vk

h)
2, (3.18)

subject to the initial conditions ̂vh(0, x) = P+
h
v̂0(x), (̂vh)t(0, x) = Ph v̂1(x), where the projections P+

h
and Ph will be specified 

later in Section 4. In Eq. (3.18), Ā denotes the matrix with each entry being the gradient of the corresponding entry of A.
A critical step is to choose the numerical fluxes, which ultimately determines the property of the resulting scheme. 

Assuming that A is piecewise smooth and the possible discontinuity occurs only along the direction aligned with the spatial 
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discretization. We choose the flux associated with A to be the same as the test functions, namely, from inside of the cell 
in (3.18), then (3.18) becomes

∫

K i j

Ŝh ·whdx +

∫

K i j

Âvh · div (wh)dx+

∫

K i j

Ā̂vh ·whdx − (Â̂vh,wh · ν)∂K i j
= 0 ∀wh ∈ (Vk

h)
2. (3.19)

Writing more explicitly, the LDG method (3.17) and (3.19) is to seek ̂vh ∈ H2([0, T ]; Vk
h
), ̂Sh ∈ (L2([0, T ]; Vk

h
))2 such that

∫

K i j

∂ 2̂vh

∂t2
· phdx+

∫

K i j

ÂSh · ∇phdx− (Â̂S1
h
,p−

h
) J j + (Â̂S1

h
,p+

h
) J j (3.20)

−(Ã̂S2
h
,p−

h
)I i + (Ã̂S2

h
,p+

h
)I i = 0 ∀ph ∈ Vk

h,∫

K i j

Ŝ1h ·w1
hdx +

∫

K i j

Âvh · (w1
h)xdx+

∫

K i j

Ax̂vh · w1
hdx (3.21)

−(Â̂vh, (w1
h)

−) J j + (Â̂vh, (w1
h)

+) J j = 0 ∀w1
h ∈ Vk

h,∫

K i j

Ŝ2h ·w2
hdx +

∫

K i j

Âvh · (w2
h)ydx+

∫

K i j

Ay v̂h · w2
hdx (3.22)

−(A˜̂vh, (w2
h)

−)I i + (A˜̂vh, (w2
h)

+)I i = 0 ∀w2
h ∈ Vk

h,

subject to the initial conditions v̂h(0, x) = P+
h
v̂0(x), (̂vh)t(0, x) = Phv̂1(x). Here Ŝih denotes the i-th column of Ŝh . In the 

boundary terms of (3.21)–(3.22) the matrix A will be evaluated from the inside of the cell as in (3.19). As for the numerical 
fluxes in Eqs. (3.20)–(3.22), we choose alternating flux, that is,

Â̂S1
h

= A−(̂S1h)
−, ̂̂vh = v̂+

h
, (3.23)

or

Â̂S1
h

= A+(̂S1h)
+, ̂̂vh = v̂−

h
, (3.24)

where A+ and A− denote the matrices obtained by choosing a+
kj

and a−
kj

as their kj-th compotents respectively for each 
kj-th component akj of matrix A. Similarly, we can choose

Ã̂S2
h

= A−(̂S2h)
−, ˜̂vh = v̂+

h
, (3.25)

or

Ã̂S2
h

= A+(̂S2h)
+, ˜̂vh = v̂−

h
. (3.26)

3.2. Semi-discrete energy law

Using the fluxes defined above, we can prove that the semi-discrete method in (3.17) and (3.19) is energy conserving. 
Here we only consider the case in (3.23) and (3.25), and the proof with (3.24) and (3.26) is similar.

Theorem 3.1. The semi-discretized energy

Eh(t) :=

∫

D

(
∂ v̂h

∂t
·
∂ v̂h

∂t
+ Ŝh · Ŝh

)
dx (3.27)

is conserved by the semi-discretized scheme (3.17) and (3.19) for all time t > 0.

Proof. By taking the time derivative of Eq. (3.19) and choosing wh = Ŝh , we obtain
∫

K i j

(̂Sh)t · Ŝhdx+

∫

K i j

A(̂vh)t · div (̂Sh)dx+

∫

K i j

Ā(̂vh)t · Ŝhdx− (A(̂v+
h
)t, Ŝh · ν)∂K i j

= 0. (3.28)
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Taking ph = (̂vh)t in (3.17) yields

∫

K i j

∂ 2̂vh

∂t2
· (̂vh)tdx+

∫

K i j

ÂSh · ∇ (̂vh)tdx− (A−Ŝ−
h

· ν, (̂vh)t)∂K i j
= 0. (3.29)

Adding (3.28) to (3.29) and using integration by parts on the second term of (3.29), we have

∫

K i j

(̂Sh)t · Ŝhdx +

∫

K i j

∂ 2̂vh

∂t2
· (̂vh)tdx+ (ÂSh · ν, (̂vh)t)∂K i j

− (A(̂v+
h
)t, Ŝh · ν)∂K i j

− (A−Ŝ−
h

· ν, (̂vh)t)∂K i j
= 0. (3.30)

After summing over K i j , Eq. (3.30) can be written as

∑

K i j∈Th

∫

K i j

(̂Sh)t · Ŝhdx+
∑

K i j∈Th

∫

K i j

∂ 2̂vh

∂t2
· (̂vh)tdx+

∑

E∈Eh

(A−Ŝ−
h

· ν, (̂v−
h
)t)E (3.31)

−
∑

E∈Eh

(A+Ŝ+
h

· ν, (̂v+
h
)t)E −

∑

E∈Eh

(A−(̂v+
h
)t, Ŝ

−
h

· ν)E +
∑

E∈Eh

(A+(̂v+
h
)t , Ŝ

+
h

· ν)E

−
∑

E∈Eh

(A−Ŝ−
h

· ν, (̂v−
h
)t)E +

∑

E∈Eh

(A−Ŝ−
h

· ν, (̂v+
h
)t)E = 0.

By applying Dirichlet boundary conditions (3.15) and summing over K i j , we get

d

dt

∫

D

(
∂ v̂h

∂t
·
∂ v̂h

∂t
+ Ŝh · Ŝh

)
dx = 0. (3.32)

Therefore, Eh(t) is invariant in time. ✷

3.3. Fully discrete energy law

Next, we consider the fully-discrete LDG method with leap-frog time discretization. Let 0 = t0 ≤ t1 ≤ · · · ≤ tN = T be a 
uniform partition of the interval [0, T ] with time step size 't . We use v̂n

h
, ̂Sn

h
to denote the numerical solutions at t = tn . 

Thus the scheme is to seek ̂vn+1
h

∈ Vk
h
, ̂Sn

h
∈ (Vk

h
)2 such that for all K i j , the following equations hold:

∫

K i j

v̂n+1
h

− 2̂vn
h
+ v̂n−1

h

('t)2
· phdx+

∫

K i j

ÂSnh · ∇phdx− (A−(̂Snh)
− · ν,ph)∂K i j

= 0 ∀ph ∈ Vk
h, (3.33)

∫

K i j

Ŝnh ·whdx+

∫

K i j

Âvnh · div (wh)dx +

∫

K i j

Ā̂vnh · whdx (3.34)

−(A(̂vnh)
+,wh · ν)∂K i j

= 0 ∀wh ∈ (Vk
h)

2,

subject to the initial conditions ̂v0
h
(0, x) = P+

h
v̂0(x), (̂vh)0t (0, x) = Phv̂00(x).

In the following we show the fully-discrete energy law.

Theorem 3.2. The fully-discrete energy, defined by

En+1
h

:=

∥∥∥∥
v̂n+1
h

− v̂n
h

't

∥∥∥∥
2

+

∥∥∥∥
Ŝn+1
h

+ Ŝn
h

2

∥∥∥∥
2

−
('t)2)

4

∥∥∥∥
Ŝn+1
h

− Ŝn
h

't

∥∥∥∥
2

(3.35)

is conserved by the fully-discrete scheme (3.33) and (3.34) for all n.

Proof. In (3.33), we choose the test function to be ph =
v̂n+1
h

−̂vn−1
h

2't
, then

∫

K i j

v̂n+1
h

− 2̂vn
h
+ v̂n−1

h

('t)2
·
v̂n+1
h

− v̂n−1
h

2't
dx +

∫

K i j

ÂSnh · ∇(
v̂n+1
h

− v̂n−1
h

2't
)dx− (A− (̂Snh)

− · ν,
v̂n+1
h

− v̂n−1
h

2't
)∂K i j

= 0. (3.36)
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Considering the equation (3.34) at time tn−1 and tn+1 , and taking the test function wh = 1
2't

Ŝn
h
, we obtain

∫

K i j

Ŝn+1
h

− Ŝn−1
h

2't
· Ŝnhdx+

∫

K i j

A
v̂n+1
h

− v̂n−1
h

2't
· div (̂Snh)dx +

∫

K i j

Ā
v̂n+1
h

− v̂n−1
h

2't
· Ŝnhdx (3.37)

−(A
( v̂n+1

h
− v̂n−1

h

2't

)+
, Ŝnh · ν)∂K i j

= 0.

By adding (3.36) to (3.37), summing over K i j , and using integration by parts, we have

0 =
∑

K i j∈Th

∫

K i j

v̂n+1
h

− 2̂vn
h
+ v̂n−1

h

('t)2
·
v̂n+1
h

− v̂n−1
h

2't
dx+

∑

K i j∈Th

∫

K i j

Ŝn+1
h

− Ŝn−1
h

2't
· Ŝnhdx (3.38)

=
∑

K i j∈Th

∫

K i j

(̂vn+1
h

− v̂n
h
) − (̂vn

h
− v̂n−1

h
)

('t)2
·
(̂vn+1

h
− v̂n

h
) + (̂vn

h
− v̂n−1

h
)

2't
dx

+
∑

K i j∈Th

∫

K i j

Ŝn+1
h

+ 2̂Sn
h
+ Ŝn−1

h

4
·
Ŝn+1
h

− Ŝn−1
h

2't
dx−

∑

K i j∈Th

∫

K i j

·
Ŝn+1
h

− 2̂Sn
h
+ Ŝn−1

h

4

Ŝn+1
h

− Ŝn−1
h

2't
dx

=
1

2't
(En+1

h
− Enh),

with En
h
defined in (3.35). Thus the discrete energy is conserved over time. ✷

Remark 3.3. There is a term with uncertain sign in En+1
h

, and this term comes from the use of the explicit leapfrog scheme. 
By some calculations, we know

En+1
h

=

∥∥∥∥
v̂n+1
h

− v̂n
h

't

∥∥∥∥
2

+ (̂Snh, Ŝ
n+1
h

).

Formally 't needs to be small enough to guarantee En+1
h

≥ 0.

4. Error estimates

In this section, we provide error estimate for the spatial discretization in the semi-discrete scheme (3.17) and (3.19). We 
will show that the error bound is optimal and is linear in time. Let u(t, x, y) and q(t, x, y) be the exact solution of (2.4)
and (2.5), and uh(t, x, y) and qh(t, x, y) are numerical solutions

uh(t,x,y) =

M∑

m=1

(̂vm)h(t,x)$m(y),

qh(t,x,y) =

M∑

m=1

(̂pm)h(t,x)$m(y), (4.1)

where (̂vm)h and (̂pm)h are the m-th row of ̂vh and ̂Sh . We consider the errors:

eu = u − uh = (u − uM) + (uM − uh) (4.2)

eq = q− qh = (q− qM) + (qM − qh), (4.3)

where the uM and qM are the gPC approximations defined in (3.8) and (3.9). We call the first term on the right-hand side 
of (4.2)–(4.3) the gPC approximation error and the second term the spatial discretization error. In the following, we provide 
the error estimates in semi-discrete energy norm and show that the convergence is optimal.

Theorem 4.1. Let eu and eq defined by (4.2) and (4.3), and initial conditions satisfy

v̂h(x,0) = P+
h
v̂(x,0), (̂vh)t(x,0) = Phv̂t(x,0). (4.4)
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For any given ϵM , if we choose M in (3.8)–(3.9) sufficiently large so that

∞∑

j=M+1

∥̂p j∥H1(D) ≤ ϵM ,

∞∑

j=M+1

∥̂v j∥H1(D) ≤ ϵM , (4.5)

then with (3.8)–(3.9) and the LDG approximation (3.17) and (3.19), the error estimate in the energy norm is
(
E[∥(eu)t∥2L2(D)

]
)1/2

+
(
E[∥eq∥2L2(D)

]
)1/2 ≤ C(t + 1)ϵM + C(t + 1)hk+1.

Proof. We divide our proof into two parts, corresponding to bounds for the gPC approximation error and semi-discretization 
error, respectively.

Part 1 (The gPC approximation error). First we rewrite Eqs. (3.5)–(3.6) as

∂2vk

∂t2
(t, x) =

M∑

j=1

div(akj(x)p j) +

∞∑

j=M+1

div(akj(x)p j), k = 1,2, · · · , (4.6)

pk(t, x) =

M∑

j=1

akj(x)∇v j +

∞∑

j=M+1

akj(x)∇v j. (4.7)

Denoting v = (v1, v2, . . . , vM)T and S = (pT
1 , pT

2 , . . . , pT
M)T , then Eqs (4.6)–(4.7) for k = 1, · · · , M can be written as

∂2v(t,x)

∂t2
= div (A(x)S(t,x)) + r(t,x), (4.8)

S(t,x) = A(x)∇v(t,x) + R(t,x), (4.9)

where A is defined as in (3.7). In (4.8), r(t, x) is a vector, with the k-th component defined by

rk =

∞∑

j=M+1

div (a jk(x)p j),

and in (4.9), R(t, x) is a matrix with its k-th row as

Rk =

∞∑

j=M+1

a jk(x)∇v j .

Subtracting Eqs. (3.12)–(3.13) from Eqs. (4.8)–(4.9), we get

∂2(v− v̂)

∂t2
= div (A(x)(S − Ŝ)) + r, (4.10)

S− Ŝ = A(x)∇(v − v̂) + R. (4.11)

We first multiply (4.10) by vt − v̂t and integrate in space over D, and then take the time derivative of (4.11), followed 
by multiplying (4.11) with St − Ŝt and integration over D. With the fact that the coefficients a jk are bounded, we obtain the 
estimate:

1

2

∂

∂t

(
∥vt − v̂t∥2L2(D)

+ ∥(S − Ŝ)∥2
L2(D)

)

= (r,vt − v̂t) + (R,S − Ŝ)

≤ ∥r∥L2(D)∥vt − v̂t∥L2(D) + ∥R∥L2(D)∥S− Ŝ∥L2(D)

≤ C

∞∑

j=M+1

∥p j∥H1(D)∥vt − v̂t∥L2(D) + C

∞∑

j=M+1

∥v j∥H1(D)∥S− Ŝ∥L2(D). (4.12)

By (4.5), we have
(
E

[
∥(u)t − (uM)t∥2L2(D)

])1/2
+

(
E

[
∥q− qM∥2

L2(D)

])1/2
≤ C(t + 1)ϵM . (4.13)

Part 2 (The spatial discretization error). Consider the weak formulation of (3.12)–(3.13): finding v̂ ∈ H2(T ; H−1(D)) ∩
L2(T ; H1(D)), ̂S ∈ (L2(T ; H1(D)))2 such that
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∫

K i j

∂ 2̂v

∂t2
· pdx+

∫

K i j

ÂS · ∇pdx − (A− (̂S)− · ν,p)∂K i j
= 0 ∀p ∈ H1(D), (4.14)

∫

K i j

Ŝ ·wdx+

∫

K i j

Âv · divwdx+

∫

K i j

Ā̂v ·wdx− (Âv+,w · ν)∂K i j
= 0 ∀w ∈ (H1(D))2. (4.15)

Note that the jump conditions v̂− = v̂+ and A+ (̂S)+ = A− (̂S)− are assumed on the mesh boundaries, and Ā is defined in 
Section 3.1.

On the other hand, the LDG approximation is to look for ̂vh and ̂Sh such that

∫

K i j

∂ 2̂vh

∂t2
· phdx+

∫

K i j

ÂSh · ∇phdx− (A−(̂Sh)
− · ν,ph)∂K i j

= 0 ∀ph ∈ Vk
h, (4.16)

∫

K i j

Ŝh ·whdx +

∫

K i j

Âvh · divwhdx +

∫

K i j

Ā̂vh ·whdx− (A(̂vh)
+,wh · ν)∂K i j

= 0 ∀wh ∈ (Vk
h)

2. (4.17)

Here we define Ph to be the usual projection of a vectored function u associated with matrix A, that is,

(Phu,Av)K i j
= (u,Av)K i j

∀v ∈ Vk
h,

and define P+
x , P−

x , P+
y and P−

y as the following special projections

(P−
x u,Av)K i j

= (u,Av)K i j
, ∀v ∈ Vk−1

h
and (P−

x u)−(xi+ 1
2
) = u−(xi+ 1

2
),

(P+
x u,Av)K i j

= (u,Av)K i j
, ∀v ∈ Vk−1

h
and (P+

x u)+(xi− 1
2
) = u+(xi− 1

2
),

(P−
y u,Av)K i j

= (u,Av)K i j
, ∀v ∈ Vk−1

h
and (P−

y u)−(yi+ 1
2
) = u−(yi+ 1

2
),

(P+
y u,Av)K i j

= (u,Av)K i j
, ∀v ∈ Vk−1

h
and (P+

y u)+(yi− 1
2
) = u+(yi− 1

2
).

We further define the errors by

ēu = v̂− v̂h, ξu= v̂− P+
h
v̂, ηu = P+

h
v̂− v̂h,

ēq = Ŝ− Ŝh, ξq= Ŝ− P−
h
Ŝ, ηq = P−

h
Ŝ− Ŝh,

where P+
h

= P+
x ⊗ P+

y and P−
h

= P−
x ⊗ P−

y .

Subtracting (4.16)–(4.17) from (4.14)–(4.15), and using the above definitions, we can rewrite the error equations into

∫

K i j

∂2ηu

∂t2
· phdx +

∫

K i j

∂2ξu

∂t2
· phdx +

∫

K i j

ηq · A∇phdx (4.18)

−(η−
q · ν,A−ph)∂K i j

= 0 ∀ph ∈ Vk
h,∫

K i j

ξq · whdx+

∫

K i j

ηq ·whdx +

∫

K i j

ηu · Adivwhdx +

∫

K i j

ξu · Adivwhdx (4.19)

+

∫

K i j

Āηu ·whdx+

∫

K i j

Āξu ·whdx

−(Aη+
u ,wh · ν)∂K i j

− (Aξ+
u ,wh · ν)∂K i j

= 0 ∀wh ∈ (Vk
h)

2.

Taking the time derivative of (4.19) and choosing wh = ηq and ph = (ηu)t , the sum of these equations yields
∫

K i j

(ηu)tt · (ηu)tdx+

∫

K i j

(ηq)t · ηqdx (4.20)

= −
∫

K i j

(ξu)tt · (ηu)tdx−
∫

K i j

ηq · A∇(ηu)tdx −
∫

K i j

(ξq)t · ηqdx
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−
∫

K i j

(ηu)t · Adivηqdx−
∫

K i j

(ξu)t · Adivηqdx−
∫

K i j

Ā(ηu)t · ηqdx −
∫

K i j

Ā(ξu)t · ηqdx

+ (η−
q · ν,A−(ηu)t)∂K i j

+ (A(η+
u )t,ηq · ν)∂K i j

+ (A(ξ+
u )t,ηq · ν)∂K i j

.

By integration by parts to the fourth term on the right-hand side of (4.20), and summing over all cells K i j , we have

∫

Th

(ηu)tt · (ηu)tdx+

∫

Th

(ηq)t · ηqdx (4.21)

= −
∫

Th

(ξu)tt · (ηu)tdx−
∫

Th

(ξq)t · ηqdx

−
∫

K i j

(ξu)t · Adivηqdx+ (A(ξ+
u )t,ηq · ν)∂K i j

−
∫

K i j

Ā(ξu)t · ηqdx.

By the Cauchy–Schwarz’s inequality and (3.3) in [2] or Lemma 3.7 in [5], we have

1

2

d

dt

(
∥(ηu)t∥2 + ∥ηq∥2

)
(4.22)

≤ Chk+1
(
∥(ηu)t∥ + ∥ηq∥

)
+ Chk+1∥ut∥Hk+2∥ηq∥ + ∥Ā∥L∞(D)∥(ξu)t∥∥ηq∥

≤ Chk+1
(
∥(ηu)t∥2 + ∥ηq∥2

)1/2
.

If we choose the initial conditions specifically to be (4.4) then we have ([2,15])

∥(ηu)t(0)∥ ≤ Chk+1, ∥ηq(0)∥ ≤ Chk+1, (4.23)

and therefore

(
∥(ηu)t∥2 + ∥ηq∥2

)1/2 ≤ C(t + 1)hk+1. (4.24)

By the properties of the projections,

(
∥(ēu)t∥2 + ∥ēq∥2

)1/2 ≤ C(t + 1)hk+1. (4.25)

The proof is then completed by combining (4.13) and (4.25). ✷

5. Numerical tests

In this section, we present two numerical examples to validate the theoretical results. Continuous and discontinuous 
coefficients are considered in these two problems, respectively. The rates of convergence in the probability space and the 
physical space are both examined in each test. In all the numerical tests, leap-frog time integration is used to achieve energy 
conservation.

Test 1 (Continuous coefficient). Consider the following wave equation

∂2u(t,x,y)

∂t2
= div(a2(x,y)∇u(t,x,y)) in T ×D ×R

2, (5.1)

where T = [0, T ] is the time domain, D = [0, 2] × [0, 2] is the physical domain and R2 = [−1, 1] × [−1, 1] is the domain 
for y. For simplicity, we impose the exact solution (see below) as its boundary conditions. The coefficient a is defined by

a2(x,y) =
2

(1 + δy1)2 + (1+ δy2)2
,

where y1 and y2 are two independent random variables with uniform distributions on [−1, 1], and δ is a small number 
representing the magnitude of perturbation. The exact solution is

u(t,x,y) = cos(
√
2πt) sin(π(1+ δy1)x1) sin(π(1 + δy2)x2).
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Table 1

L∞(L2) errors and order of accuracy with linear elements in LDG method. M = 15, δ = 0.01, 't = 1.5625 × 10−5 , T = 1.5625 × 10−3 .

h u ux u y

error order error order error order

0.5 1.0113E-01 2.6454E-01 2.6454E-01

0.25 2.6248E-02 1.9459 6.8421E-02 1.9510 6.8421E-02 1.9510

0.125 6.6183E-03 1.9877 1.7243E-02 1.9884 1.7243E-02 1.9884

0.0625 1.6580E-03 1.9970 4.3192E-03 1.9972 4.3192E-03 1.9972

Table 2

L∞(L2) errors and order of accuracy with cubic elements in LDG method. M = 15, δ = 0.001, 't = 1.5625 × 10−5 , T = 1.5625 × 10−3 .

h u ux u y

error order error order error order

0.5 1.2556E-03 3.3474E-03 3.3474E-03

0.25 8.0147E-05 3.9696 2.1351E-04 3.9707 2.1351E-04 3.9707

0.125 5.0356E-06 3.9924 1.3414E-05 3.9925 1.3414E-05 3.9925

0.0625 3.1514E-07 3.9981 8.4178E-07 3.9942 8.4178E-07 3.9942

Fig. 1. L∞(L2) error of uh with different orders of the gPC expansion. Cubic elements are used in LDG method, with δ = 0.01, 't = 1.5625 × 10−5 , 
T = 1.5625 × 10−3 .

The errors of the numerical solution are defined as:

∥eu∥L∞(L2) := max
t∈[0,T ]

(∫

D

E[(uh − u)2]dx

) 1
2

, (5.2)

∥eq∥L∞(L2) := max
t∈[0,T ]

(∫

D

E[(qh − q)2]dx

) 1
2

. (5.3)

For simplicity, above we use Lp(Lq) to denote Lp(T ; (Lq(D)), where 1 ≤ p, q ≤ ∞. Table 1 shows the L∞(L2) errors and 
the convergence rates for u, ux and u y , when linear elements are used in LDG discretization. We take M = 15 (P = 4) in 
the gPC expansion, δ = 0.01, time step 't = 1.5625 × 10−5 and final time T = 1.5625 × 10−3 . Second order accuracy can 
be observed, as expected. As cubic elements are used in the LDG method, a clear 4-th order can be obtained, as shown in 
Table 2.

To test the convergence of gPC expansion in the probability space, we use different orders in the expansion, while fixing 
the LDG discretization with cubic elements. In Fig. 1 we observe that the L∞(L2) error decreases exponentially when the 
order of expansion is increased. However, the error saturates for an order larger than 3 because the error from spatial 
discretization dominates.

Next, we demonstrate the advantage of energy conservation property by tracking the errors for a long time simulation. 
Fig. 2 shows the L∞(L2) errors when linear elements are used in LDG and M = 3 (P = 1) in gPC expansions. In these test 
cases, both small and large magnitudes of noise (δ) are considered; the time step is 't = 6.25 × 10−5 and the final time is 
T = 125. It can be seen that the growth of errors is on average linear or linearly bounded for both cases.
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Fig. 2. Long time L∞(L2) errors of uh with linear elements in LDG method. Noise with magnitude δ = 10−6 is used in the left figure, and δ = 10−2 is used 
in the right figure. M = 3, 't = 6.25 × 10−5 , T = 125.

Table 3

L∞(L2) errors and order of accuracy with linear elements in LDG method. M = 15, δ = 0.01, 't = 1.5625 × 10−5 , T = 1.5625 × 10−3 .

h u ux u y

error order error order error order

0.5 5.3285E-01 3.5918E+00 2.9336E+00

0.25 3.0264E-01 0.8161 1.7426E+00 1.0435 1.4927E+00 0.9747

0.125 9.2197E-02 1.7148 5.0773E-01 1.7791 4.4723E-01 1.7388

0.0625 2.4080E-02 1.9369 1.3518E-01 1.9092 1.1663E-01 1.9391

Table 4

L∞(L2) errors and order of accuracy with cubic elements in LDG method. M = 15, δ = 0.001, 't = 2.5 × 10−8 , T = 2.5 × 10−6 .

h u ux u y

error order error order error order

0.5 2.0522E-01 1.2190E+00 1.0025E+00

0.25 2.1785E-02 3.2358 1.2041E-01 3.3397 1.0582E-01 3.2439

0.125 1.5483E-03 3.8146 8.4204E-03 3.8379 7.5177E-03 3.8152

0.0625 9.9907E-05 3.9540 5.4516E-04 3.9491 4.8506E-04 3.9541

Test 2 (Discontinuous coefficient). Consider the same equation (5.1) as in Test 1. The spatial domain D = D1 ∪ D2 =

[−1, 1] × [−1, 1], with D1 = [−1, 0] × [−1, 1], D2 = (0, 1] × [−1, 1]. The coefficient a is defined by

a2(x,y) =

⎧
⎨
⎩

1
(1+δy1)2+(1+δy2)

2 inD1,

9
25(1+δy1)2+9(1+δy2)

2 inD2,

where y1 and y2 are two independent random variables with uniform distributions on [−1, 1], and δ is the magnitude of 
the noise. We again impose the following exact solution on the boundaries.

The exact solution is

u(t,x,y) =

{
cos(3πt) sin(3π(1 + δy1)x1) sin(3π(1+ δy2)x2) inD1,

cos(3πt) sin(5π(1 + δy1)x1) sin(3π(1+ δy2)x2) inD2.

Note that the random coefficient is discontinuous along the vertical line x = 0. Table 3 shows the rate of convergence of the 
numerical method in L∞(L2) norm. We can see that for u, ux and u y all the errors converge in second order, as expected. 
In this accuracy test we use M = 15 (P = 4) in the gPC expansion with δ = 0.01, time step 't = 1.5625 × 10−5 and final 
time T = 1.5625 ×10−3 . Optimal convergence rates are also observed for high order cubic elements, as shown in Table 4. In 
this test, δ = 0.001, 't = 2.5 ×10−8 and T = 2.5 ×10−6 are used. In Fig. 3, we show that given a fixed spatial discretization 
in LDG (with cubic elements), the error in u decreases exponentially as the order of gPC expansion becomes higher and 
saturates when the spatial error dominates.

Fig. 4 shows the L∞(L2) errors when linear elements are used in LDG with M = 3 (P = 1) in gPC expansions. In these 
test cases, we consider δ = 10−6 and 10−2 , with the time step being 't = 6.25 × 10−5 and final time is T = 125. The errors 
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Fig. 3. L∞(L2) error of uh with different orders of the gPC expansion. Cubic elements are used in LDG method, with δ = 0.01, 't = 2.5 × 10−8 , T =

2.5 × 10−6 .

Fig. 4. Long time L∞(L2) errors of uh with P1 in LDG method. Smaller noise δ = 10−6 is used in the left graph, and bigger noise δ = 10−2 is used in the 
right graph. M = 3, 't = 6.25 × 10−5 , T = 125.

appear to be large because we used M = 3 to save the computational time; however, the errors for both large and small δ’s 
are linearly bounded as expected from the theoretical results.

6. Concluding remarks

In this paper, we have presented a numerical scheme for solving second-order wave equation with random wave speed 
coefficient. Our method is based on gPC expansion with stochastic Galerkin method for probability space, and LDG dis-
cretization for physical space. We are able to show the energy conserving property of the proposed method in both 
semi-discrete form and fully-discrete form when leap-frog time discretization is used. The error estimate shows that the 
convergence of the scheme is optimal, and the grow of the error is at most linear in time. Taken together, the numerical 
solution will benefit from these properties and have small shape error (including both dissipative and dispersive errors) and 
phase error after long time integration. Our numerical tests further validate the theoretical findings.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .12 .018.
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