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Abstract—Age of information has been proposed recently
to measure information freshness, especially for a class of
real-time video applications. These applications often demand
timely updates with edge cloud computing to guarantee the
user experience. However, the edge cloud is usually equipped
with limited computation and network resources and therefore,
resource contention among different video streams can contribute
to making the updates stale. Aiming to minimize a penalty
function of the weighted sum of the average age over multiple
end users, this paper presents a greedy traffic scheduling policy
for the processor to choose the next processing request with
the maximum immediate penalty reduction. In this work, we
formulate the service process when requests from multiple users
arrive at edge cloud servers asynchronously and show that
the proposed greedy scheduling algorithm is the optimal work-
conserving policy for a class of age penalty functions.

I. INTRODUCTION

The freshness of information is critical in real-time applica-

tions and systems, such as autonomous driving vehicles, virtual

reality gaming, object tracking and facial recognition. These

real-time applications share a common requirement, which is

maintaining the freshness of data. Recently, an information

freshness metric named the age of information, or simply age,

has been proposed and applied to the evaluation of various

status updating systems [1]–[5]. In [1], the real-time status

updating system is modeled as a one-way communication

between a source and destination pair over a communication

channel. Such an “enqueue and forward” model assumes the

source node receives randomly arriving information packets and

selectively forwards them to the destination. Here, the channel

capacity, and the channel busy/idle state, if it’s available to the

source, present as the impacting factors that the source node

can refer to dynamically adjust the sending frequency.

Networking delay is only part of the story when the source

node needs to further process the incoming information packets,

especially when the computation overhead dominates the

network transmission latency. Many real-time edge applica-

tions indeed demand an alternative “enqueue, process and

forward” (EPF) model. For example, autonomous driving cars

periodically, say every 20 ms, capture the front scenes with

stereo cameras, and send them to a nearby edge cloud. The

edge cloud is then required to perform heavy computer vision

calculations [6]–[8] upon those received stereo images where

the output involves the estimated depth of the surrounding

objects appeared in the images or 3D point cloud. Those
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outputs will be delivered back to the autonomous driving cars

(the destination nodes) for better understanding the traffic

environment.

Timely environment updates are critical to guarantee the

safety and efficiency of the driving experience. However, the

age of those updates can grow substantially as edge clouds

perform computer vision calculations. Importantly, unlike

central clouds with nearly unlimited computing resources,

edge clouds are typically constrained by their computing

capabilities and might be over-utilized when the incoming

traffic is heavy. Thus, resource contention among different

video streams and the randomness of the processing time may

significantly contribute to making information stale.

In this work, we examine the information freshness of

an edge cloud computing system which supports real-time

processing of multiple video streams. The edge cloud is

simplified to a single processing unit that sequentially processes

stereo video frames from multiple users. We view each video

frame arriving at the edge cloud server as a job, and the

monitor at the user itself is receiving the processed results as

information updates. In this case, the source is self-updating

itself through the closed-loop video frame processing at the

edge cloud, and here we assume the processing times are

i.i.d. across all jobs and all users. The age of an update

is then defined as the difference between current time and

the generation time of that particular job at the source. The

objective of this work is to obtain the optimal scheduling policy

for job processing so that the information freshness at each

user is maintained.

There have been many relevant works on the scheduling of

multiple users to minimize the age of information [9]–[13].

The scheduling of updates in an unreliable broadcast network

with a base station and multiple receivers is considered in

[9]. In this system, the base station accumulates updates from

different sources but can only update at most one receiver

at a time. A similar problem is considered in [11], in which

an information update is discarded if it is not selected by

the base station for transmission. Our work is motivated by

the queueing model in [10], in which the job arrival times

are synchronized among all sources. We note that the most

relevant work to ours is [12]. It was shown by experiments

that choosing the source with maximum age reduction leads

to lower average age than several other schemes. A similar

problem in cache updating in which the service facility can

divide its capacity according to the update rate at different
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Fig. 3. Average age vs. average job arrival time with different scheduling
policies.
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Fig. 4. Average age vs. number of users with different policies.

Intuitively. the greedy MIPR policy is optimal if the best

decision made based on the current benefit still remains as

the best decision in the future. This property brings some

restrictions on the growth of the penalty function since the

service time sk is random.

Definition 2. A penalty function f has Base-Independent

Growth (BIG) if for any x and non-negative constant s ≥ 0,

there exists two penalty functions g1 and g2 such that

f(x+ s) = f(x)g1(s) + g2(s).

The definition of BIG states that the evolution of function f
after sk time units can be described by a multiplicative term

g1(s) and a additive term g2(s), both depending on only s.

Note that when the shift is s = 0, f(x) = f(x)g1(0) + g2(0)
holds for all x, which requires g1(0) = 1 and g2(0) = 0.

We note that f(x) = eax is an example of the BIG penalty

function since f(x+ s) = f(x)f(s). In step (13), the initial

difference f(x1) − f(x1 − d1) is amplified by f(s) = eas

as the time s increases. On the other hand, a linear function

f(x) = ax+ b is another BIG penalty where g1(s) = 1 and

g2(s) = as. In this example, f(x1 + s) − f(x1 − d1 + s) =
f(x1) − f(x1 − d1) only depends on the initial difference

instead of the time difference s.

Theorem 1. If the service times are identically distributed

across all the jobs from all users, the MIPR policy is the optimal

(1) causal, (2) work-conserving and (3) non-preemptive policy

for BIG penalty function f , specifically

Psum,MIPR(t) ≤st Psum,π(t), (9)

for any t ≥ 0 and any π ∈ Π, where ≤st is the stochastic

ordering defined in [15].

It follows from Theorem 1 that

E[Psum,MIPR] ≤ E[Psum,π]. (10)

The proof of Theorem 1 in the appendix follows the similar

sample path technique used in [10]. One key idea used in

the proof is the inductive comparison between two policies.

By greedily choosing the user that gives the maximum

penalty reduction, the instantaneous penalty after the service

completion is always smaller than that in any other policy.

Definition 3. Maximum Weighted Age Reduction (MWAR)

Policy. When the server becomes available, the job from the

user i with the maximum weighted age reduction αiDi(tk)
is served among all packets in the buffer, with ties broken

arbitrarily.

Corollary 1. If the penalty function is f(∆) = ∆, then MWAR

is the age optimal MIPR policy.

Corollary 1 follows directly from Theorem 1. In this special

case, the scheduling policy is now independent of the current

age of an individual user ∆i(tk). MWAR policy is also the

maximum-age-first (MAF) policy in [10] if the job arrivals are

synchronized among users.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness and the

fairness of the proposed maximum weighted age reduction

(MWAR) policy by considering the average age over users

1/n
∑n

i=1
αi∆i as the penalty function. Here we let all the

users to be equally weighted, αi = 1 for all i. We compare the

MWAR policy with four other policies with dynamic system

setup. The four reference policies are: (1) first-come-first-served

(FCFS): the scheduler selects the job with earliest arrival time

in the buffer; (2) last-come-first-served (LCFS): the scheduler

selects the most recent arrived job in the buffer; (3) max age

first (MAF): the scheduler compares the age of all users and

selects the job corresponding to the user with maximum age;

(4) random: the scheduler select on of the jobs in the buffer

uniformly at random.

Fig. 3 compares the average age for each policy by fixing

the processing rate µ = 1 and varying the job arrival rate λi.

The number of users is set to n = 5 and each user submits jobs

according to Poisson process with average inter-update time

1/λ. The service time is exponentially distributed and thus

the average job processing time is 1/µ = 1. As the average

job submission time 1/λ increases, all the curves increase

and the gap between any two policies becomes smaller. This

is mainly because the age becomes dominated by the idle

time between updates instead of the processing delay, and the

scheduling doesn’t provide much performance gain. Among

all five policies, MWAR policy gives the lowest average age.

And the MAF policy, which is shown to be optimal when the

job arrival times are synchronized in [10], provides slightly

larger average age. On the other hand, the other three policies

(FCFS, LCFS and random) lead to almost the same much

larger average age regardless of the job arrival rate.
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Fig. 5. Average age of each user in MWAR policy.
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Fig. 6. The fraction of service corresponding to each user in MWAR policy.

Fig. 4 depicts the comparison with server processing rate

µ = 1 and user job submission rate λi = 1/2 by varying the

total number of users n. As n increases, the processor becomes

busier and thus MWAR provides larger performance gain. We

also notice the average age grows almost linear as n increases.

While all the experiments in Fig. 3 sets all the user update

rates λi identical for all i. In Fig. 5 and 6, we choose different

job submission rate λi for each user i and evaluate how the

scheduling policy treats users with different λi. Fig. 5 depicts

the average age of each user ∆i by varying the processing

rate µ. The job submission rates for the n = 5 users are

λ1 = 2, λ2 = 1, λ3 = 2/3, λ4 = 1/2, λ5 = 2/5. As the

average processing time 1/µ increases, the individual average

age increases almost linearly and the gap between any pair of

users stays almost the same, which implies the MWAR policy

keeps the difference between users regardless of the available

resource of the service facility. Fig. 6 demonstrates the fraction

of served job at the processor corresponding to each user. For

example, when the average service processing time is 1/µ = 1,

around 30% of jobs served by the processor are from user 1.

When the processor is operating very fast, it can handle most

of the jobs and thus the fraction of jobs is almost proportional

to the rate of each user λi. As the processing time gets larger,

we observe the scheduler starts to treat all users fairly and

service in an equal way. Since every user experience long

waiting time when the traffic load is high, the age for each

user is almost equally large. As a result, the scheduler is busy

serving every user one by one as soon as it finishes an old

job.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a greedy traffic scheduling

policy that chooses the next processing request with maximum

immediate penalty reduction, aiming to minimize the overall

age penalty of multiple end users. The main contribution of

our the proposed scheduling policy stems from its capability

to provide minimal average age among multiple end users in

multiple dynamic traffic environments, e.g., different server

processing rates and incoming request frequencies. Importantly,

this policy efficiently supports asynchronous job arrivals.

Moving forward, we will continue to investigate how to perform

traffic scheduling in a multi-server environment and with multi-

stage jobs. We are also aware of other application scenarios

where the transmission time of each job is not negligible

because of the limited radio resources at the edge cloud. It’s of

our interest to study how to integrate scheduling policy with

realistic distributed computing platforms, e.g., Apache Storm

or Apache Spark.
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APPENDIX A

PROOF OF THEOREM 1.

We denote P as the MIPR policy and Psum,π(t) as the

penalty function of policy π at time t. We will compare P and

any other work-conserving policy π ∈ Π on a sample path of

Psum(t).
For any sample path in policy P and π, we set the initial

ages ∆i,P (t = 0) = ∆i,π(t = 0) for users i = 1, 2, . . . , n.

The initial penalties are Psum,P (t = 0) = Psum,π(t = 0). The

system evolution is described by the following cases:
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1) If no update completes in [t′, t′ + s] , the age process of

every user ∆i(t) = ∆i(t
′) + (t− t′) for t ∈ [t′, t′ + s] .

2) If there is an update completion at time t, the age of the

served user ∆i(t) is reduced.

Now we define the following class of penalty functions.

Definition 4. Function f is a Present-Determines-Future

(PDF) function if f satisfies the following conditions:

1) If a pair of n-tuple sequences {x1i}, {x2i} and non-

negative n-tuple constants {αi} satisfy
∑n

i=1
αif(x1i) ≤

∑n

i=1
αif(x2i), then for any s ≥ 0,

n
∑

i=1

αif(x1i + s) ≤

n
∑

i=1

αif(x2i + s). (11)

2) If x1, x2 and non-negative constants β ≥ 0, d1 ≥ 0, d2 ≥
0 satisfy

f(x1)− f(x1 − d1) ≥ β
(

f(x2)− f(x2 − d2)
)

,

then for any s ≥ 0,

f(x1 + s)− f(x1 − d1 + s)

≥ β
(

f(x2 + s)− f(x2 − d2 + s)
)

.

Lemma 1. If a penalty function f is BIG, then f is PDF.

Proof. We need to show BIG f satisfies both conditions of

PDF. For condition 1),

n
∑

i=1

αif(x1i + s) = g1(s)

n
∑

i=1

αif(x1i) +

n
∑

i=1

αig2(s)

≤ g1(s)

n
∑

i=1

αif(x2i) +

n
∑

i=1

αig2(s)

=

n
∑

i=1

αif(x2i + s). (12)

Similarly, condition 2) is met as follows

f(x1 + s)− f(x1 − d1 + s)

=
(

f(x1)g1(s) + g2(s)
)

−
(

f(x1 − d1)g1(s) + g2(s)
)

=
(

f(x1)− f(x1 − d1)
)

g1(s)

≥β
(

f(x2)− f(x2 − d2)
)

g1(s) (13)

=β
(

f(x2 + s)− f(x2 − d2 + s)
)

. (14)

Now we can start the proof of Theorem 1 by the following

lemma about the first case with no update completion.

Lemma 2. For PDF f , if Psum,P (t) ≤ Psum,π(t) and there

is no update completion between t and t+ s, then

Psum,P (t+ s) ≤ Psum,π(t+ s). (15)

The proof follows directly from the condition 1) in the

definition of PDF by setting x1i = ∆iP (t) and x2i = ∆iπ(t)
for i = 1, 2, . . . , n. Note that Lemma 2 guarantees that given

the sum age penalty in policy P is smaller than that in policy

π at some time t, the same ordering holds for any time beyond

t if there is no update completion.

Now we move to the second case with an update completion

at time tk+sk. Whether under policy P or policy π, an update

is serviced from time tk to tk+ sk. The penalty of policy P is

Psum,P before the completion and becomes P ′

sum,P after the

completion. Similarly, the penalty of policy π is Psum,π before

the completion and becomes P ′

sum,π after the completion. All

policies have the same update arrival process and service

process. We first prove the following lemma about inductive

comparison between two sample paths.

Lemma 3. For PDF function f , if Psum,P ≤ Psum,π, then

P ′

sum,P ≤ P ′

sum,π .

Proof. When job k is to go into service at time tk, the MIPR

policy P chooses the user φk = argmaxi Ri(tk). At the

service completion time tk + sk,

P ′

sum,P (tk + sk) = Psum,P (tk + sk)−max
i

Ri(tk). (16)

By the MIPR policy, choosing user i yields larger immediate

penalty reduction than choosing user j, Ri(tk) ≥ Rj(tk) and

f(∆i(tk))− f(∆i(tk)−Di(tk))

≥
αj

αi

[

f(∆j(tk))− f(∆j(tk)−Dj(tk))
]

(17)

Since the age reductions Di and Dj are independent of the

service time sk, by the definition of a PDF function we have

f(∆i(tk + sk))− f(∆i(tk + sk)−Di(tk + sk))

= f(∆i(tk + sk))− f(∆i(tk + sk)−Di(tk))

≥
αj

αi

[

f(∆j(tk+sk))−f(∆j(tk+sk)−Dj(tk))
]

=
αj

αi

[

f(∆j(tk+sk))−f(∆j(tk+sk)−Dj(tk+sk))
]

.

(18)

Hence, the penalty reduction at time tk + sk is Ri(tk + sk) ≥
Rj(tk + sk). Thus,

argmax
i

Ri(tk) = argmax
i

Ri(tk + sk). (19)

The penalty of any policy π after the service completion is

P ′

sum,π(tk + sk) = Psum,π(tk + sk)−Ri(tk + sk)

≥ Psum,π(tk + sk)−max
i

Ri(tk + sk)

≥ Psum,P (tk + sk)−max
i

Ri(tk + sk)

= P ′

sum,P (tk + sk). (20)

Now given that the penalty function evolves under the

condition of either Lemma 2 and 3, by induction over time,

we have Psum,P (t) ≤ Psum,π(t), for all t ≥ 0. And thus

E[Psum,P (t)] ≤ E[Psum,π(t)]. (21)

for any casual work-conserving policy π.
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