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ABSTRACT 1 INTRODUCTION

Forward flux sampling (FFS) is an established scientific method for
sampling rare events in molecular simulations. However, as the
difficulty of the scientific problem increases, the amount of data
and the number of tasks required for FFS is challenging to manage
with traditional scripting tools and languages for high performance
computing. The SAFFIRE software framework has been developed
to address these challenges. SAFFIRE utilizes Hadoop to manage a
large number of tasks and data for large scale FFS simulations. The
framework is shown to be highly scalable and able to support large
scale FFS simulations. This enables studies of rare events in complex
molecular systems on commodity cluster computing systems.
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The kinetics relevant to several processes in condensed matter
physics such as protein folding, transport through membranes, bub-
ble formation, and crystallization are difficult to study through
straightforward molecular dynamics (MD) or Monte Carlo (MC)
simulations. This is because the time between occurrences of these
rare events can be much longer than the practically accessible
timescales of the simulations. At typical MD simulation lengthscales
of a few nanometers, observing rare events such as crystallization
often requires microseconds long simulations. These simulations
can take several months of computational time for molecular sys-
tems like all-atom water models. Given that several hundred rare
events are necessary to obtain statistically relevant rate estimates,
it is computationally prohibitive to study rare event transitions
through straightforward MD (or MC) simulations.

One such process of interest in our research is crystal (e.g., ice)
nucleation. Homogeneous and heterogeneous ice nucleation are
relevant to atmospheric chemistry and have a significant impact
on the climate and weather [19]. The kinetic details such as nucle-
ation rates and mechanisms of ice nucleation, especially in case of
heterogeneous ice nucleation, have remained elusive due to several
difficulties. For example, in experimental studies the nucleation
rates calculated are very sensitive to the technique used [9]. Fur-
ther, the lengthscales (involving few hundreds of water molecules)
and the timescales at which nucleation proceeds are hard to probe
in experiments. On the other hand, molecular simulations are de-
signed for these length- and time-scales, making them ideally suited
for studying ice nucleation. However, since ice nucleation is a rare
event, sampling sufficient nucleation events is challenging.

Several techniques [3, 7, 20, 21] have been developed to sam-
ple rare events in simulations and are collectively referred to as
rare event methods. One such technique is forward flux sampling
(FFS) [2, 3]. In FFS, simulations from initial state A to final state
B are propagated through non-overlapping interfaces between A
and B (see Fig. 1). This approach breaks down the low probability
A-to-B transition into multiple relatively more probable transitions
between intermediate interfaces. Compared with other advanced
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Figure 1: Conceptual overview of FFS [2]. The basin simu-
lation is shown as the blue path. Circles represent config-
urations that are stored at each interface. Trajectories are
shown as arrows: trajectories that cross the next interface
are colored based on the interface from which they origi-
nate; trajectories that return to the basin are shown in gray.
i represents the i‘" interface between the A and B basins.

sampling methods, FFS has several advantages, including applicabil-
ity to equilibrium and non-equilibrium systems and a comparatively
simple and embarrassingly parallel algorithm. The challenge in im-
plementing FFS is that as the difficulty of the problem increases,
that is, the probability of the A-to-B transition decreases, FFS be-
comes extremely computationally demanding. Correspondingly,
the amount of data and the number of tasks become difficult to
handle with traditional scripting tools. We have experienced this
in our studies of heterogeneous ice nucleation.

Motivated by this, we have developed a software framework
called Scalable Automated FFS for Illuminating Rare Events (SAF-
FIRE). Our framework utilizes Cascading [22] and Hadoop [23] to
handle the large number of tasks and amount of data required for
large scale FFS simulations.! In this paper we describe the details
of the framework and its scalability, compare our approach to other
FFS software, and discuss scientific research enabled by SAFFIRE.

2 FFS WORKFLOW

The goal of FFS is to divide the extremely low probability A-to-B
transition into higher probability transitions between interfaces
along the A-to-B pathway (Fig. 1). Interfaces are defined by specific
values of an order parameter (1) that can distinguish between state
A and state B. For example, in ice nucleation the number of ice-like
water molecules can be used as the order parameter - this value
grows as the system transitions from liquid to solid.

FFS starts at the first interface, Ag. Configurations for this inter-
face are obtained from simulations in the initial state A (A<Ap),
also known as the “basin”. For each configuration at A (1;), several
trial simulations are executed using a standard computational code.
These simulations are analyzed to identify the next interface, A1
(Ai+1). Each simulation is then examined to determine whether the
simulation trajectory crossed A1 (4;11) or returned to the basin. If
the simulation crossed A1 (4;+1), the configuration of the system at
the instant when the simulation reaches the next interface is added

LFFS simulation refers to a complete execution of the FFS algorithm, whereas simulation
refers to a molecular simulation (i.e. MD or MC simulation) which is part of the FFS
algorithm.
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to the set of configurations for A1 (A;4+1). This set of configurations
is used to generate trial simulations from A1 (4;+1). This process is
continued until the final interface, Ay, is reached.

The flow diagram for our implementation of FFS is shown in
Figure 2. There are three possible outcomes for any trial simulation:
(i) the simulation crosses the basin (1) before the next interface
(Ai+1), (ii) the simulation crosses 4;41 before the A or (iii) neither
(i) or (ii) outcome is obtained. These are referred to as Fallback,
Complete, and Incomplete, respectively. As the system moves away
from the basin, the simulation time required for simulations to
either cross the A;4+1 or A becomes longer and longer. As a result,
two categories of simulations are used. First, “short simulations”
are performed, which enable the identification of A;,1 and the sta-
tus of the majority of the trajectories. In the case of Incomplete
simulations, the simulation neither crosses A;+1 nor A4 in the allot-
ted simulation time. This indicates that the simulation has not run
long enough. Incomplete simulations are then extended with “long
simulations” until they finish running (become Complete or Fall-
back). All Complete simulations are then analyzed to generate new
configurations for the next interface. The final counts of Fallback
and Complete simulations provides the probability of reaching A;41
from A;, P(A;+1]4;). Once all N interfaces are complete, the product
of these probabilities ]_[fi 61 P(Aj+1|A;) is used to estimate the rate
of occurrence of the rare event — the transition from initial state A
to final state B.

3 USER REQUIREMENTS

Prior to this work, a framework guiding the FFS workflow was
implemented with Bash scripts. It was executed on the campus
supercomputer using standard file system support and no addi-
tional data infrastructure. Due to I/O bottlenecks, this prototype
executed for weeks to complete a small FFS simulation. From this
implementation, we learned that for our scientific problems the ma-
jority of the simulations require very short execution times (e.g, <5
minutes). However, perhaps millions of simulations are required to
successfully complete the FFS simulation. Therefore, it is important
to have an infrastructure that can support high throughput com-
puting. Secondly, each simulation produces a modest sized file. The
result is that the overall application produces a massive amount of
intermediate data from each interface of the FFS simulation. These
files are written to the file system and there can be millions of
files at any given time. On our campus supercomputing cluster
consisting of separate compute and storage nodes, moving, storing,
and analyzing this data is a bottleneck for the FFS simulation. In
addition, the heavy load leads to instability of the parallel file sys-
tem. Therefore, we needed to address both the issues of high task
throughput and a large number of files.

We identified the following user requirements necessary in a
software framework designed to support large scale FFS simula-
tions:

e Tolerance to single node failure: The scope and scale
of the target application demand substantial computing re-
sources, and the execution times are typically measured in
hours or days. Therefore, the framework should be resilient
and fault-tolerant to single node and single task failures.
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Figure 2: Flow diagram for FFS as implemented in SAFFIRE.

e Massive data transfer: FFS requires analysis of aggregated
simulation output to determine the status of each simulation
and to calculate the probability of advancing to the next
interface. The size of the aggregated output requires support
for massive data transfer and management capability.

e Flexible user configuration: The user needs freedom to
choose among different simulation software and analysis
tools, depending on the science problem. The framework
should also offer flexibility in defining parameters for FFS,
such as the number of short simulations, the minimum num-
ber of configurations necessary at each interface, etc.

e Dynamic resource allocation: Given that the application
is being executed in a shared computing environment, it is
beneficial for the framework to take advantage of additional
resources, or fewer resources, at any time during the exe-
cution process in an automated, dynamic, and transparent
manner.

o Usability by a broad community: The necessary steps for
installing, configuring, running, and fine-tuning the frame-
work should be as simple as possible. While not a technical
requirement, it is very important in promoting the adoption
of the framework by a broad community.

4 FFS FRAMEWORK IMPLEMENTATION

SAFFIRE is a comprehensive software framework designed to ad-
dress the high throughput and data intensive computing challenges
presented by FFS. SAFFIRE utilizes the Hadoop infrastructure to
control the massive number of individual simulation instances and
subsequent output, with the Cascading libraries [22] to manage the
overall workflow.

4.1 Hadoop and Cascading

Hadoop is an open source large scale computing infrastructure that
can support the management and processing of a large amount of

data based on the principle of data locality [23]. The core Hadoop
components include the Hadoop Distributed File System (HDFS)
[8] and Hadoop MapReduce (MR) [4]. HDFS is composed of a single
centralized management node called the NameNode, which main-
tains all the metadata for the Hadoop infrastructure, along with
multiple storage nodes called DataNodes, which contain all the data
in large block sizes. The MR computation model includes a single
central management node called the ResourceManager, which is
responsible for delegating the specific map and reduce tasks for
a submitted MR job to a subset of the NodeManagers located on
multiple computation nodes. The DataNodes and NodeManagers
exist on the same physical computing system and are connected
via communication between the NameNode and the ResourceMan-
ager to provide the computation and data locality integration. This
is critical to the performance of large-scale data processing. The
working mechanisms and performance characteristics of HDFS and
MR are well studied [12]. The Hadoop infrastructure comes with
features such as scalability, high fault-tolerance, and automated
eITOr recovery.

Cascading is a platform that supports the development of com-
plex data-driven applications on the Hadoop infrastructure. Cas-
cading accomplishes this goal by abstracting away the interaction
between the developers and the data stored in HDFS. Data depen-
dencies among the different modules or functions of a complex
multi-stage application are viewed as data flows, or “pipes”. These
data pipes can be manipulated through operations such as filter,
merge, split, and redirect. This level of abstraction allows the devel-
oper to focus more on the architectural flow of the applications in
a plug-and-play manner, rather than the minute interactions with
the underlying data.
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Figure 3: Architectural diagram of SAFFIRE.

4.2 Implementation Details and Features of
SAFFIRE

Key components of SAFFIRE are matched to workflow steps in
Figure 3. Streaming MR is shown in three components. The first
streaming MapReduce (MR) job drives an external program to run
the short simulations (box 2). A second streaming MR job drives an
external program to run simulations to complete the Incompletes
(box 5). A third streaming MR job drives conversion software to
generate the set of configurations at the next interface from the
simulation trajectories (box 7). Using streaming MR to control
external executables enables use of a wide range of simulation
engines. We have successfully tested simulation platforms such as
GROMACS [18] and LAMMPS [17]. Other software packages for
any type of simulation and analysis can easily be integrated with
SAFFIRE with no code modifications.

Cascading acts as a flow manager and allows these steps to be
executed as a single logical unit while maintaining workload depen-
dencies among the steps. Cascading’s ability to manipulate both
MR modules and flows of data between these modules enables the
addition of data-centric tools into SAFFIRE for the purpose of ana-
lyzing intermediate data without impacting the main FFS process.
The Cascading workflow implementation is based on previous work
in data flow management [24].

The combination of Hadoop and Cascading provides SAFFIRE a
number of features that address the application and user require-
ments outlined in Section 2. Through Hadoop, SAFFIRE has the
ability to manage the allocated computing resources from user space
via the JobTracker’s customized scheduler. Hadoop Distributed File
System (HDFS) provides large scale data management infrastruc-
ture with data locality and data redundancy. The Hadoop platform

DeFever and Hanger, et al.

has mechanisms to automatically support fault-tolerance and error
recovery through data replication and job/task re-execution. This
renders SAFFIRE a framework that has a high level of fault-tolerance
and error recovery capability. We have additionally incorporated a
simple user interface into SAFFIRE. Users can modify FFS parame-
ters such as the number of interfaces, the number of simulations
per interface, a threshold value used for interface selection, and
more. The availability of dynamic Hadoop clusters similar to [11]
allows SAFFIRE to be run on any traditional HPC environments.
These capabilities improve the usability of SAFFIRE.

The Cascading/Hadoop-based implementation requires only user
privileges. No administrative privileges are required to install and
run SAFFIRE for the default deployment. This capability has been
demonstrated in research and education projects using Hadoop-
based environment at scale on the Clemson Palmetto computing
cluster [15, 16]. This provides SAFFIRE a high degree of interoper-
ability on different institutional and community platforms such as
XSEDE.

5 SCALABILITY EVALUATION

The performance of SAFFIRE is evaluated and discussed in this
section, as follows. First, we focus on the scalability of the applica-
tion with respect to the number of cores and size of the problem
using both strong and weak scaling. Second, the behavior of the
application (e.g., computation and data transfer) is profiled and
characterized under different execution scenarios. Finally, the ef-
fects of phases of application performance are characterized under
different execution scenarios. Our testbed is part of Clemson Uni-
versity’s Palmetto Supercomputer, from which we can provision
isolated dynamic clusters to deploy the Cascading/Hadoop envi-
ronment. Throughout the performance evaluation, the individual
compute nodes provisioned for the different experimental clusters
are consistently configured with 16-core Intel Xeon E5-2665 CPUs,
64GB of memory, 900GB local HDD, and 300GB local SSD. The
system used for the performance analysis was the early stages of
homogeneous ice nucleation in the mW water model [14] at 230 K
and 1 atm. The system comprised of 4096 water molecules and each
simulation was executed for 3 ps (time step = 0.002 ps) of molecular
dynamics in LAMMPS (https://lammps.sandia.gov) [17]. The
order parameter used to quantify the progress of each simulation,
A, was the size of the largest cluster of ice-like water molecules
defined with the procedure from Ref. 13

5.1 Scalability Analysis

Both strong and weak scaling are considered in the scalability
analysis of SAFFIRE. For strong scaling analysis, the problem size
(number of simulations per interface?) is held constant and the
number of cores in the Hadoop cluster used to run SAFFIRE is
increased. For weak scaling analysis, the problem size is increased
in equal proportion to the increase in the number of cores, so that
the amount of work per core remains constant. For both strong and
weak scaling analysis, we consider the performance of SAFFIRE for
four interfaces of FFS with 10,000 simulations per interface on a 128

2For the remainder of the text we use ‘number of simulations’ in place of "number of
simulations per interface’ for brevity (i.e. a 128 core cluster with 10,000 simulations,
has 10,000 simulations per interface).
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Figure 4: Strong and weak scaling of SAFFIRE. Execution
time (red, filled markers) is read from the left axis, and scal-
ing efficiency (blue, open markers) from right axis. Strong
scaling is shown with circles lines, and weak scaling is
shown with squares lines. All values are reported at 95% con-
fidence.

core Hadoop cluster as the baseline performance. Strong scaling
efficiency, Estrong is calculated as:

e o
n

where t128 is the execution time for SAFFIRE on 128 cores (8
nodes), ¢, is the execution time for the application on n cores, and
N is number of cores in the Hadoop cluster divided by the baseline
128 cores (n/128). Weak scaling efficiency, E,, ¢4k is calculated as:

Estrong =

f128
7 @)
where, t123 is the execution time for the application on 128 cores,
and t,, is the execution time for a problem size N times larger than
the baseline problem, executed on n cores, where n = 128 X N.
The scaling performance of SAFFIRE is shown in Figure 4 where
each test consisted of running four FFS interfaces. Since each FFS
interface comprises a similar operation, our results are not expected
to change with a larger number of interfaces. The application dis-
plays excellent strong scaling performance to more than 600 cores
(40 nodes). The execution time drops from nearly 10 hours when
running on a Hadoop cluster with 128 cores to just over 2 hours ona
640 core Hadoop cluster. The strong scaling efficiency remains over
90% for all systems tested, however the strong scaling efficiency
generally decreases as more cores are added. This may be due to
the increased overhead of a larger Hadoop cluster, and increased
data transfer times to copy simulation data from HDFS to local
scratch and simulation results from local scratch to HDFS. These
data transfers are initiated from within the Hadoop Streaming map
tasks, and therefore are unable to take advantage of the built-in
data-locality offered by Hadoop. As such, when the Hadoop cluster
increases in size, the data must be transferred further across the
network. Additionally, since HDFS is spread across an increased
number of nodes, the likelihood of finding the necessary simulation
data already on the node performing the map task decreases. More
discussion of data transfer overhead follows later in this section.
Larger Hadoop clusters also have the possibility of an increased
number of idle nodes if the number of tasks is not divisible by

Eveak =
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Figure 5: Snapshot of application profiling over a 15 minute

interval. Percent of cores in the cluster which are (a) per-

forming a computation (simulation or analysis), (b) per-

forming a data transfer, or (c) either performing a compu-
tation or data transfer at a given time.

the number of cores available to execute the tasks. We term these
“remainder effects” and explore them in detail later in this section.

SAFFIRE weak scaling performance is also shown in Figure 4.
The overall execution time of the application decreases as the prob-
lem size is increased in proportion to the number of cores in the
Hadoop cluster. The weak scaling efficiency increases over the
range of Hadoop cluster sizes studied, resulting in a weak scaling
efficiency that is always greater than or equal to 1. One source for
the increase in efficiency is related to how we chose to scale the size
of the job in the weak scaling analysis. In our implementation, the
head node of the Hadoop cluster does not perform any computation.
Therefore, when the number of total cores in the cluster increases,
only the number of slave node cores increases — meaning the com-
putational resources available for task execution grows faster than
the problem size. While it is possible to take advantage of unused
cores on the head node for computational purposes, the amount
of memory held by the NameNode and the ResourceManager pro-
cesses to maintain metadata for the massive amount of data, file
counts, and map/reduce tasks makes it impractical to do so. It is
also possible to use the number of slave node cores rather than total
cores when calculating efficiency. However, we use total cores in the
calculation because the head node resources are required to manage
the Hadoop cluster, even if they are not being used for scientific
computation. The cluster (and therefore application) management
overhead decreases in terms of the percentage of total cores with in-
creasing cluster size, and this manifests itself by contributing to the
weak scaling performance of the application. Together the strong
and weak scaling results highlight the scalability of SAFFIRE.

5.2 Application Profiling

An analysis of application behavior was performed. The primary
goal of SAFFIRE is to efficiently enable the execution of a large
number of simulations for FFS. A core is performing useful work
when it is running a simulation, analyzing simulation output, or
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performing a necessary file conversion. All other time is consid-
ered application overhead. Realistically speaking, SAFFIRE also
manages the simulation output and automates the FFS algorithm.
Though these tasks save the end-user time and effort, they are
not computation-intensive tasks as compared with the execution
and analysis of the simulations. Therefore, as a starting point to
evaluate application behavior and framework overhead, we focus
on profiling the Hadoop Streaming tasks that are responsible for
running the simulations and analysis.

Each Hadoop Streaming map task is executed on one core. Log-
ging capabilities were added to the Hadoop Streaming tasks using
the gettimeofday() function to record the start and stop times for
each simulation, analysis, file conversion, and data transfer. The
events were aggregated to create a representation of the number of
cores active with each task type across the entire Hadoop cluster at
any given instance in time. Logging the start and stop times did not
significantly change the overall execution time of SAFFIRE within
the 95% confidence interval.

The different types of core activity were grouped into compu-
tation (e.g., simulation, analysis, and file conversion), and data
transfers (e.g., file transfers between local scratch and HDFS, which
are initiated from within the Hadoop Streaming map tasks). Figure
5(a) shows the percentage of all cores performing a computation
activity within the 15 minute snapshot. Initially, no cores are active
with computation until the ~1 minute mark, when the first Hadoop
Streaming tasks begin. Nearly simultaneously, all the cores on slave
nodes are consumed with computation. Note that the percentage
of active cores reaches a maximum of about 85% because we report
the percentage of active cores with reference to the total size of the
Hadoop cluster, not just the number of slave node cores. The 128
core Hadoop cluster shown in Figure 5 has up to 112 active cores at
one time with the remaining non-active 16 cores of the head node.
Evidence of the small time gap between the simulation and analysis
appears as a brief decrease in the percentage of active cores between
the one and two minute marks. Just past two minutes, none of the
cores are involved in computation. In Figure 5(b) the percentage of
cores involved in data transfers is shown. The cores are involved
in a data transfer just before the first computation (Figure 5(a)),
because the Hadoop Streaming task must copy a configuration file
from HDFS to local scratch to initiate the simulation. After the
first batch of computation, another batch of data transfers appears
as the Hadoop Streaming tasks copy simulation output from local
scratch to HDFS. A brief decrease in the data transfer appears (e.g.
2.5 minutes), marking the distinction between the data upload to
HDFS from the first batch of simulations, and the data download to
local scratch for the second batch of simulations. In Figure 5(c), the
computation and data activity are combined to report an overall
percent of active cores over time.

Several interesting features of SAFFIRE behavior are apparent
from Figure 5. The simulations are executed across the entire cluster
in a batch manner, with all slave node cores actively performing
computations and data transfers at nearly the same time. This
job submission pattern holds through several batches of Hadoop
Streaming map tasks. From the small dips in overall core activity in
Figure 5(c) there is limited aggregate core downtime between each
batch of Hadoop Streaming tasks. The data transfers between local
scratch and HDFS also contribute noticeable overhead to SAFFIRE.
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Figure 6: Application profiling: Percent of cores in the 128
core cluster with 10,000 simulations which are (a) perform-
ing a computation (e.g., simulation, analysis and file conver-
sion), and (b) either performing a computation or data trans-
fer at a given time. Percent of cores in the 640 core cluster
with 10,000 simulations which are (c) performing a computa-
tion, and (d) either performing a computation or data trans-
fer at a given time.

If a SAFFIRE user had a system that required large file transfers
to run a short (in wall clock time) simulation, the data transfer
overhead would detrimentally impact the performance of SAFFIRE.

Figure 6(a)-(b) shows application profiling across four complete
interfaces (i.e. A; to A;4+4) of a FFS simulation for the same system
profiled in Figure 5. For comparison, data is also shown for the case
with 640 cores and 10,000 simulations in Figure 6(c)-(d). The com-
putation for each FFS interface can be identified as the groupings
of core activity (the first of which is from 0 to 2.5 hours and 0 to
0.5 hours for Figure 6(a)-(b) and 6(c)-(d), respectively), and they
are separated by the time interval where the cores are perform-
ing neither computation nor data transfers. In these regions, the
Cascading code is parsing though the results of the analysis and
picking the next interface. Some amount of computation is also
performed to generate the new configurations, however it is too
short to appear in the plots. The data transfer required for the file
conversion appears as the short vertical line in advance of the larger
batch of core activity for interfaces 2, 3, and 4 in Figure 6(d). The
same feature exists in Figure 6(b), but is not visible due to the scale
of the figure. In Figure 6(c)-(d), the batch-like Hadoop Streaming
task execution is maintained across each interface. Near the end
of the first and last interfaces, the task execution appears to be
less synchronized as evidenced by the lines in Figure 6(c) not quite
reaching zero activity at that part of the execution.

From Figure 6(a), it can be seen that the Hadoop Streaming job
submission has a “synchronized” nature for the first ~30 minutes
for each interface for the system with 128 cores and 10,000 simula-
tions. After about 30 minutes, the Hadoop Streaming jobs do not
appear to be synchronized. Some cores are performing computa-
tion, while others are performing a data transfer. Neither the white
space that appears below the red lines in Figure 6(a) as each inter-
face progresses nor above the red lines as interface 3 progresses
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indicate that the cores are less active overall - just that the Hadoop
Streaming task execution does not follow a synchronized pattern
after about 30 minutes.

5.3 Remainder Effects

The appearance of synchronization of the Hadoop Streaming task
execution led us to investigate whether making the number of simu-
lations a multiple of the number of slave node cores would decrease
the execution time by eliminating “remainder effects”, where some
cores in the Hadoop cluster are idle while the last partial batch
of Hadoop Streaming tasks are completed. Based on the applica-
tion profiling, we expect that the remainder effects will be most
prominent for the system with 640 cores and 10,000 simulations.
We also tested the system with 128 cores and 10,000 simulations for
comparison. The remainder effects are tested using FFS simulations
in which the number of simulations is a multiple of the number of
slave node cores (9984 simulations for 624 slave cores, 10080 sim-
ulations for 112 slave cores) and then tested using another run in
which one additional simulation is added (9985 simulations for 624
slave cores, 10081 simulations for 112 slave cores). This setup tests
a worst-case scenario. If the Hadoop Streaming jobs display perfect
batch behavior then in the worst case scenario all except one slave
node core will be idle when the last simulation is completing. Each
test was performed in triplicates to calculate the 95% confidence
interval of our results.

Visual inspection of the application profiles (not shown) does
not reveal any clear differences between the perfect match and
worst case scenario application runs. However, as reported in Table
1, there are differences in the execution times. As expected, the
remainder effects are the most prominent for the simulation that has
the most synchronized-like Hadoop Streaming task execution. For
a Hadoop cluster size of 128 cores (112 slave cores), the remainder
effects have no significant effect on the execution time. Based on
the application profiling seen above (Figure 6), this is not surprising
because for this setup the synchronous Hadoop Streaming task
submission pattern is not present at the end of an interface. For a
Hadoop cluster with 640 cores (624 slave cores), the execution time
for the system with no remainder simulations is about 200 seconds
faster than the worst case scenario. Although this demonstrates
that remainder effects can impact the execution time, they represent
a small fraction of the overall execution time.

Table 1: Execution time and percent of time that the cores
were active for systems with possible remainder effects.

Cores 128 128

Simulations 10080 10081
Execution Time (s) 36390 + 68 36453 + 140

Computation (%)  62.0 0.2 61.9+£0.2
Any Activity (%) 81.8 £ 0.2 81.7 £ 0.1
Cores 640 640
Simulations 9984 9985
Execution Time (s) 7570 + 73 7758 + 30
Computation (%) 59.2 + 0.6 57.7 £ 0.3
Any Activity (%) 78.2 £ 0.8 76.3 £ 0.3
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6 RELATED WORK

To our knowledge, there are only two other significant efforts in
implementing FFS-based simulation techniques, the Flexible Rare
Event Sampling Harness System (FRESHS) [10] and Parallel For-
ward Flux Sampling (PFFS) [1]. The FRESHS architecture includes
a FRESHS server and multiple FRESHS clients, all implemented in
Python. The server is responsible for accepting parameters for the
rare-event simulation, asynchronous communications from clients,
and an SQLite database to store data for intermediate interfaces.
The server tracks the progress of FFS, while clients are responsible
for the simulations and analysis (order parameter calculation).

Similar to SAFFIRE, the goal of FRESHS is to provide a paral-
lelized FFS implementation that allows users to insert various sim-
ulation softwares. Beyond the architectural differences, SAFFIRE
and FRESHS also differ in the implementation of the FFS algorithm.
FRESHS uses the exploring scouts technique [10]. This technique
works well when the analysis is run from within the simulation pro-
gram - however this often requires modification of the simulation
software source code. Though FRESHS can be used with separate
simulation and analysis codes, it requires extremely short simula-
tions that incur large startup and shutdown overhead. SAFFIRE is
specifically designed for separate simulation and analysis codes for
maximum user flexibility. The SAFFIRE and FRESHS implementa-
tions both have advantages and disadvantages depending on the
system and simulation software. Unfortunately their differences
make a meaningful performance comparison difficult.

PFFS implements FFS using the C programming language and
MPI to support parallelism [1]. In the original design, PFFS is im-
plemented as a single large-scale FFS simulation program. PFFS
requires researchers to recompile from source to include custom
simulation engines. It also uses individual files on the shared file
system to store simulation results which can become difficult to
scale as the number of simulations in FFS reaches millions or even
billions. The nature of MPI is also a disadvantage of the PFFS imple-
mentation as compared to the Hadoop implementation of SAFFIRE.
MPIT is not typically tolerant to single node or task failures in the
parallel computing environment, whereas Hadoop provides fault-
tolerance in the case of single node failures. PFFS never matures
out of the testing stages, and no software package is available for
testing purposes.

7 SAFFIRE ENABLED SCIENCE

Our research group is actively using SAFFIRE to study several
scientific problems. In addition to the case of heterogeneous ice nu-
cleation described in the introduction, we have also used SAFFIRE
to study the nucleation of clathrate hydrates [5] and Lennard-
Jones particles. Clathrate hydrates are a crystal composed of water
and guest (e.g., methane) molecules. Their formation presents sub-
stantial safety hazards in oil and gas transportation. In addition,
researchers are exploring hydrates for technological applications
in natural gas storage and gas separations. To investigate the mech-
anism of hydrate nucleation, we used molecular dynamics simula-
tions with FFS comprising 10 interfaces and 10,000-40,000 short
simulations per interface. Including the long simulations, SAFFIRE
managed over 500,000 individual simulations. The entire calcula-
tion required 33 days on a 30-node Hadoop cluster with the same
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per-node specifications as listed in the scalability evaluation. From
the ~1000 nucleation pathways generated by SAFFIRE, we per-
formed one of the most comprehensive evaluations of the hydrate
nucleation mechanism to date [5]. We are currently using SAFFIRE
to study the effects of guest solubility on the hydrate nucleation
mechanism.

Our group also actively develops new methods to study rare
events, and recently published a method called contour FFS (cFES)
[6]. cFFS allows FFS to be performed along multiple order parame-
ters simultaneously. This improves the effectiveness FFS in cases
where there are multiple transition tubes and/or the optimal order
parameter is not known a priori. We are planning to implement
cFES in SAFFIRE.

8 CONCLUSION

This paper describes the design, implementation, and performance
evaluation of SAFFIRE, a data-intensive computing platform that
implements the FFS technique for rare events in simulations. The
computational and data intensive demands of FFS are supported
through the Cascading/Hadoop-based implementation with fea-
tures such as implicit parallelism, user-level management of allo-
cated resources, robust infrastructure for large-scale data movement
and management, and ease of user access. Performance characteri-
zation and evaluation demonstrates the robustness and scalability
of SAFFIRE. When the number of simulations is kept constant and
the number of processing cores is increased (strong scaling), SAF-
FIRE scaling efficiency remains over 90%. We also observed scaling
efficiencies greater than 1 when we increased the number of cores
in proportion with the number of simulations (weak scaling). The
availability of SAFFIRE has led to a number of scientific discoveries
and new rare-event simulation techniques.

Our ongoing work with SAFFIRE focuses on reducing the data
transfer overhead. We will investigate a number of approaches
including implementing a map-only simulation server and integrat-
ing a large scale NoSQL database (e.g., HBase) on top of HDFS to
handle the management and storage of simulation outcomes. As
SAFFIRE matures, efforts are being made to release the software to
the research community. Preliminary work has been done to gen-
eralize the configuration settings of the Hadoop infrastructure and
the customization of the scientific workflows on XSEDE’s Bridges.
Additional work will be carried out to further decouple the setup
of Hadoop (for computing sites that do not have a local Hadoop
library) from SAFFIRE’s workflow drivers. Detailed documentation
to help with SAFFIRE’s deployment as well as development of new
scientific workflow is being created. We anticipate a full public
release of the software later this year. In the meantime, access to
SAFFIRE will be provided upon request.
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