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ABSTRACT
Many rare event transitions involve multiple collective variables (CVs), and the most appropriate combination of CVs is generally
unknown a priori. We thus introduce a new method, contour forward flux sampling (cFFS), to study rare events with multiple CVs
simultaneously. cFFS places nonlinear interfaces on-the-fly from the collective progress of the simulations, without any prior
knowledge of the energy landscape or appropriate combination of CVs. We demonstrate cFFS on analytical potential energy
surfaces and a conformational change in alanine dipeptide.
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I. INTRODUCTION
Rare events remain uniquely challenging to study in

molecular simulations.1 These infrequent transitions between
long-lived (meta)stable states are characterized by large dif-
ferences between the time scales of the relevant physics (e.g.,
molecular vibrations, hydrogen bond lifetimes, etc.) and the
time between events (often µs to s). Exemplars include crystal
nucleation,2–5 ion-pair dissociation in solution,6,7 conforma-
tional changes in biomolecules,8,9 and chemical reactions.10

Due to the prevalence and importance of rare events, sev-
eral advanced sampling methods have been developed11–21 to
estimate transition rate constants and sample unbiased tra-
jectories connecting the stable states. However, even with
increasing computational power some phenomena remain
challenging to study and continued method development is
required.

We present contour forward flux sampling (cFFS), a novel
method to sample rare events with multiple collective vari-
ables22 (CVs) simultaneously. Building on forward flux sam-
pling (FFS), cFFS leverages overall trajectory behavior to on-
the-fly determine nonlinear interface placement in multiple
CVs. FFS is a rare event sampling method that uses a series
of non-overlapping interfaces to drive a system from an ini-
tial state A to final state B.15,16,23,24 Each interface is defined

by some value of an order parameter, λ, which changes mono-
tonically from A to B. Straightforward simulation in A is used
to estimate the flux, ΦA0, from A to the first interface, λ0, and
to collect a large number of first-crossing phase points at λ0.
The designation of a phase point as a first-crossing point indi-
cates that upon following the trajectory backwards in time
from the point, one would reach λA before λ > λ0. Several tra-
jectories are initiated from each phase point collected at λ0
(λi). Stochasticity from the dynamics or velocity perturbation
at the start of each simulation ensures trajectory divergence.
Trajectories returning to A are discarded, while those reach-
ing the next interface, λ1 (λi+1), are stored for the next iteration.
This procedure is repeated for each interface until the bound-
ary of B is reached, or the probability of advancing to the next
interface, P(λi+1|λi), plateaus to 1. The transition rate constant
is calculated as kAB = ΦA0

∏n−1
i=0 P(λi+1 |λi), and transition paths

from A to B are generated by connecting the partial paths
backward from B to A. FFS has emerged as a popular choice
for studying rare events in simulation because it is applicable
to equilibrium and nonequilibrium systems, and implemen-
tation is algorithmically straightforward and embarrassingly
parallel.

Despite its advantages, FFS has shortcomings. Assuming
reasonable definitions for the boundaries of A and B, the rate
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constant and transition path ensemble (TPE) computed with
FFS are, in principle, independent of the order parameter used
for the calculation.16 In practice, a poor choice of the order
parameter is detrimental to the efficiency of FFS25,26 and can
even lead to incorrect results.26,27 This arises when portions of
λi which are important to the transition are sparingly sampled.
More formally, imagine some coordinate (λ⊥) orthogonal to λ.
Challenges arise for FFS when there is poor overlap between
the distribution of first-crossing phase points captured at λi,
ρ(λ⊥|λi), and the probability of reaching λB from some point
on λi, P(λB|λi; λ⊥).26 There are two approaches to overcome
this issue: (1) increase sampling to collect more phase points at
problematic interface(s) or (2) improve the choice of the order
parameter to increase overlap between the two distributions.
The first approach yields more phase points everywhere along
an interface but with sufficient sampling the paths spawned
from phase points with a higher P(λB|λi; λ⊥) will come to dom-
inate the eventual path ensemble, resulting in the correct rate
constant and TPE. Unfortunately, the efficiency of FFS will still
be poor. By contrast, the second approach increases the effi-
ciency of FFS, meaning that FFS will converge to the correct
rate constant and TPE with less sampling. Unfortunately, opti-
mal order parameters are rarely known a priori. More often,
one of the reasons for generating a path ensemble with a
method such as FFS is to identify order parameters which best
describe the transition.

Since sampling of all interfaces i > 0 in FFS depends on
the phase points collected at λ0, methods have been proposed
to optimize placement of and ensure adequate sampling of
λ0.2,28,29 If the situation is not too dire, increasing the length
of the basin simulation and collecting more phase points at λ0
may provide a sufficient remedy. However, if overlap between
ρ(λ⊥|λ0) and P(λB|λ0; λ⊥) is extremely small, this may be insuf-
ficient. Furthermore, the problem is not limited to λ0; in prin-
ciple, the distribution of phase points sampled at any λi could
suffer from this problem. Poor overlap between ρ(λ⊥|λi) and
P(λB|λi; λ⊥) becomes particularly problematic for systems with
multiple transition tubes. There, a poor choice of the order
parameter may result in some transition tubes becoming (arti-
ficially) favored over others. In the extreme, entire transition
tubes can be missed by FFS.

A related situation worth mentioning is when ρ(λ⊥|λ0)
converges extremely slowly.2,29 If this is the problem, extend-
ing the basin simulations until convergence is achieved which
will remedy the situation.2 A greater number of phase points at
λ0 are not required; just phase points correctly sampled from
the converged distribution are required.

The choice of the order parameter strongly affects the
overlap between ρ(λ⊥|λi) and P(λB|λi; λ⊥). If the order parame-
ter is the committor function, P(λB|λi; λ⊥) is constant with λ⊥,
thereby assuring good overlap between ρ(λ⊥|λi) and P(λB|λi;
λ⊥).26 Borrero and Escobedo thus devised a method to opti-
mize the order parameter with a series of FFS simulations.30

Though the approach yields improvements,9 it is challeng-
ing for systems which require extraordinary computational
resources for even a single FFS run.4,5 Furthermore, some

processes are inherently multidimensional,6,31–33 and driving
the transition along a single CV may not be ideal.

cFFS takes a different approach. We extend FFS to use
multiple CVs on-the-fly. This allows researchers to test mul-
tiple CVs simultaneously and improves the chances of captur-
ing important orthogonal coordinates within the set of CVs
used to drive the transition. At each interface, cFFS identi-
fies the next interface as a nonlinear combination of specified
CVs on-the-fly from the behavior of simulations initiated from
the previous interface. In doing so, cFFS also reveals the role
of each CV through the entire transition. Only the combina-
tion of CVs must separate A and B, and so each CV need not
monotonically change from A to B. If some CV is unimportant,
this will be reflected by but not impede cFFS. These features
offer substantial flexibility in CVs that can be used with cFFS.
cFFS generates an estimate of the transition rate constant and
a collection of A → B trajectories belonging to the TPE. We
demonstrate cFFS with two CVs, but in principle it can be
extended to three or more CVs.

In Sec. II, we explain cFFS. We proceed to demonstrate
cFFS on several two-dimensional potential energy surfaces
(PES) in Sec. III. In Sec. IV, we demonstrate cFFS with one
position coordinate and one momentum coordinate, and in
Sec. V, we test cFFS on a standard higher dimensional test
case, a conformational transition in alanine dipeptide. Dis-
cussion and closing remarks are provided in Secs. VI and VII,
respectively.

II. CONTOUR FORWARD FLUX SAMPLING
The central idea of cFFS is to allow the system to naturally

evolve along multiple CVs to reveal how different CVs partic-
ipate in the transition. This is achieved by placing the subse-
quent interface based on sampling initiated from the current
interface. The FFS formalism can still be used to calculate the
rate constant and TPE. Interface placement is designed such
that the distribution of first-crossing points is uniform along
the interface, ensuring that each interface is well-sampled
everywhere within the chosen CVs.

The first step of cFFS is to run straightforward basin sim-
ulations in A to identify the bounds of A (λA) and the first
interface (λ0) and to collect phase points at λ0. The value of
each CV in time, λ(t), is calculated, where λ ≡ {λI, λII, . . ., λN} is
the set of CVs. CV space is discretized to create an N-D grid.
The discretization size is selected such that the system rarely
travels more than a single grid site in one time step. The dis-
crete probability distribution, P(λ), is calculated from the basin
simulations. Grid sites exceeding a threshold probability are
added to the set of sites describing A, sA. Regions of CV space
which are not in sA but completely surrounded by sA are added
to sA. λA is defined as the boundary between sites in sA and
those that are not. Trajectories exit A when they cross from a
grid site in sA to a grid site not in sA.

Several criteria are used to identify s0, the set defining λ0.
s0 should (a) completely contain sA so that λ0 does not overlap
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with or cross λA, (b) not create regions of CV space completely
surrounded by s0, but not included in it, (c) not include sites in
sB, the set of sites describing B, (d) be selected such that some
desired number of phase points can be collected at λ0, and
(e) be selected such that there is an equal flux of trajectories
exiting s0 along the entire λ0 interface. Criteria (e) is crucial
as it ensures that cFFS does not bias the system to sample any
one direction more readily than another. Further discussion is
provided later. Once λA and λ0 are defined the basin simula-
tions are re-analyzed to calculate ΦA0 and collect phase points
at λ0.

The remainder of cFFS proceeds as follows. Several tra-
jectories are initiated from each phase point at λi (λi = λ0
for the first iteration). Trajectories are terminated when they
return to λA or reach a maximum number of steps. The set
of sites defining λi+1, si+1, is determined from the behavior of
trajectories initiated at λi using analogous criteria to those
described for determining λ0. Note that si+1 must completely
contain si to satisfy the effective positive flux (EPF) formal-
ism.14,34 Once si+1 is identified, trajectories are re-analyzed
to determine if they cross λi+1 (i.e., exit si+1) before returning
to A. For each trajectory that crosses λi+1, the phase point at
the time step which the trajectory crosses λi+1 is saved. Tra-
jectories which fail to reach λi+1 or return to A before the
maximum number of steps are extended until they reach λi+1
or return to A. The probability, P(λi+1|λi), is calculated from the
number of trajectories that reach λi+1 before returning to A.

Eventually, sites in si+1 will be adjacent to sites in sB.
Trajectories initiated from λi can then reach λi+1, return
to A, or proceed directly to B. This indicates the kinetic
barrier has been surmounted, and thus cFFS is nearly

complete. Two probabilities are now calculated, P(λi+1|λi) and
P(λB|λi). Our approach is to continue cFFS until si+1 surrounds
sB. At this point, i becomes the final interface, n. Trajectories
initiated from λn are continued until they reach λB or return
to λA to close the probabilities for the rate calculation. As with
multi-state FFS,35 the transition rate constant is calculated
as

kAB = ΦA0

n∑
j=0

P(λB |λj)
j−1∏
i=0

P(λi+1 |λi). (1)

The collection of trajectories comprising the TPE is con-
structed by connecting the partial paths backwards from B to
A. Note that all trajectories do not have equal weight in the
TPE. The relative weight of each trajectory is w = 1/

∏j
i=0 ki,

where j is the final interface crossed by a trajectory before
reaching B and ki is the number of trajectories initiated from
each configuration at interface i.

III. DEMONSTRATION ON 2D POTENTIAL
ENERGY SURFACES

We demonstrate cFFS with Langevin dynamics of a sin-
gle particle on four 2D potential energy surfaces (PESs) with
different topographical features [see Figs. 1(a)–1(d)]. PES-1
has a single transition tube which follows two monotonically
increasing CVs. PES-2 has a single transition tube with hys-
teresis in the x coordinate. PES-3 and PES-4 both contain two
transition tubes; the potential energy barriers are the same
for the two tubes on PES-3 and different for the two tubes
on PES-4. For each PES, we study A → B transitions with
straightforward Langevin dynamics (SLD), FFSopt, FFSx, and
cFFS. FFSopt denotes FFS performed with the optimal linear

FIG. 1. (Top panels) PESs used to test cFFS: (a) PES-1, (b) PES-2, (c) PES-3, and (d) PES-4. Colors represent the potential energy. Contour lines are separated by
0.5 units. The region between the dashed lines was used to quantitatively compare ρ(q|TP) between different methods. (Bottom panels) TPE sampling from SLD at β = 2.5
on (e) PES-1, (f) PES-2, (g) PES-3, and (h) PES-4.
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combination of x and y (i.e., the order parameter orthogonal
to the dividing surface of the PES), and FFSx indicates FFS per-
formed with x as the (suboptimal) order parameter. We stress
that optimal order parameters are not known a priori for most
realistic systems, and therefore FFS is generally performed
with suboptimal order parameters. Further details of the PESs,
Langevin dynamics, and FFS/cFFS parameters are provided in
the supplementary material.

A. Rate constants
A → B transition rate constants are reported in Table I.

Transitions were studied at β = 2.5 and β = 5.0 (β = 1/kBT).
The higher temperature (β = 2.5) enables rigorous compari-
son of TPE sampling with SLD, whereas the lower temperature
(β = 5.0) provides a test at more challenging conditions. SLD
rate constants are unbiased estimates. FFSx provides accurate
estimates of the rate constants at β = 2.5 but at β = 5.0 FFSx
underestimates the rate constants. This suggests that subop-
timal order parameters perform worse as the barrier becomes
larger relative to kBT. We explain the breakdown of FFSx by
examining the TPE sampling below. FFSopt and cFFS perform
better. Rate constants from FFSopt and cFFS both agree well
with SLD at β = 2.5. At β = 5.0, FFSopt underestimates rate con-
stants for PES-2 and PES-3. By contrast, cFFS provides correct
estimates of the rate constants for all four PESs at β = 5.0.

TABLE I. A→ B transition rate constants for four 2D PESs. One standard deviation
of the mean is reported in parentheses.

kAB × 105 at β = 2.5

PES SLD FFSopt FFSx cFFS

PES-1 2.9 (0.2) 2.8 (0.3) 3.1 (0.9) 2.8 (0.2)
PES-2 9.1 (0.1) 7.9 (0.9) 10.2 (2.5) 8.8 (0.7)
PES-3 2.6 (0.3) 2.4 (0.4) 2.3 (0.6) 2.4 (0.1)
PES-4 1.1 (0.1) 1.0 (0.1) 1.1 (0.1) 1.0 (0.1)

kAB × 109 at β = 5.0

PES-1 5.4 (1.2) 4.4 (0.2) 3.1 (0.2) 4.5 (0.6)
PES-2 23.2 (2.0) 18.0 (3.5) 18.3 (1.0) 21.9 (2.3)
PES-3 6.4 (1.3) 2.9 (0.2) 2.5 (0.2) 5.4 (0.5)
PES-4 2.8 (0.9) 1.9 (0.4) 0.42 (0.02) 2.6 (0.1)

B. Transition path ensemble sampling
Though attaining the correct A→ B rate constant is a cru-

cial test of cFFS, it is also important that cFFS correctly sam-
ples the TPE. TPE sampling is calculated as 〈ρ〉TP = 〈nvisits/l2〉TP,
where 〈. . .〉TP indicates an ensemble average over all transition
paths and nvisits is the number of times a transition path vis-
ited each l × l region of space. For reference, TPE sampling
from SLD at β = 2.5 is shown in the bottom panels of Fig. 1.

FIG. 2. Comparison of interface placement and TPE sampling generated with FFSopt, FFSx, and cFFS on PES-1–PES-4 at β = 5.0. PES contours are shown as gray lines.
Configurations collected at each interface are shown with black points. TPE sampling represented by the heat map.
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Figure 2 summarizes the behavior of FFSopt, FFSx, and
cFFS on PES-1–PES-4 at β = 5.0. All methods result in quali-
tatively similar sampling for PES-1. The other surfaces proved
more challenging for FFSx and FFSopt. By contrast, cFFS results
in the qualitatively correct sampling for all four PESs. On
PES-2, the hysteresis provides a challenge for FFSx. Unlike
FFSopt and cFFS, FFSx undersamples the x < 0 portion of the
transition tube. On PES-3 and PES-4, the failure of FFSx is even
more stark; FFSx only samples one of the two transition tubes.
Even FFSopt fails to sample both transition tubes equally on
PES-3. PES-3 and PES-4 have two distinct transition tubes,
and the minimum energy paths change direction from A to
B. On PES-3, both transition tubes have the same potential
energy barrier. However, one transition tube approaches the
transition state from A with a gentler slope. Results from SLD
at β = 2.5 in Fig. 1(c) indicate that both transitions should
be equally traveled. cFFS reproduces this behavior at both
β = 2.5 (Fig. S1 of the supplementary material) and the more
challenging β = 5.0 [Fig. 2(i)]. At β = 5.0, FFSx only samples
a single transition tube [Fig. 2(h)]. Even FFSopt struggles to
sample both transition tubes equally on PES-3 [Fig. 2(g)]. The
behavior of FFSopt and FFSx on PES-3 can be explained by the
framework put forth in the introduction. In both cases, it is
apparent that ρ(λ⊥|λ0) sampled during the basin simulations
only has good overlap with P(λB|λ0; λ⊥) for one of the two
transition tubes. The result is that FFS oversamples the tube
with greater overlap, at the expense of the other transition
tube. FFS sensitivity to the choice of the order parameter on
PES-3 is further demonstrated in Fig. S2 of the supplementary
material. Though FFS will converge to the correct TPE in the
limit of infinite sampling, as a practical matter FFS can lead
to incorrect results. cFFS again performs well on PES-4, illus-
trating that cFFS is able to navigate a tortuous transition land-
scape with two transition tubes and unequal potential energy
barriers.

Near the dividing surface (see Fig. 1), we quantitatively
compare the TPE density of states, ρ(q|TP), from SLD with that
from FFSopt, FFSx, and cFFS using the Jensen-Shannon diver-
gence.36 We restrict our comparison to β = 2.5, where a large
number of transitions can be generated with SLD, hence pro-
viding a robust reference. The results shown in Fig. 3 confirm
qualitative conclusions from Fig. 2 (β = 5.0) and Fig. S1 of the
supplementary material (β = 2.5). At β = 2.5, FFSopt and cFFS
perform similarly. For the simplest case (PES-1), FFSx performs
nearly as well as FFSopt and cFFS. However, for the more com-
plex surfaces, including the surface with hysteresis (PES-2)
and surfaces with two transition tubes (PES-3, PES-4), FFSx
performs notably worse.

C. cFFS interface placement
Figure 2 also demonstrates cFFS interface placement.

Interfaces are spaced further apart in directions that trajec-
tories more readily advance and closer together in directions
that trajectories struggle to advance. For these low-
dimensional systems, interface locations adhere closely to
the contours of the PESs. We strongly emphasize that no

FIG. 3. Jensen-Shannon divergence between ρ(q|TP) calculated with SLD and
FFSopt, FFSx, and cFFS at β = 2.5. A value of zero indicates identical prob-
ability distributions, while a value of 1.0 indicates completely non-overlapping
distributions. Error bars represent one standard deviation on the mean of three
independent trials.

knowledge of the PES is employed; cFFS places the inter-
face λi+1 from the progress of trajectories initiated from λi
alone.

If not done properly, performing FFS with multiple CVs
simultaneously can bias the system to over-sample or under-
sample regions of CV space. The amount of work performed
by FFS is related to interface spacing (i.e., λi+1 − λi), slope of
the free energy landscape between λi and λi+1, and the num-
ber of trajectories initiated from λi. If the slope of the free
energy landscape between two interfaces becomes steeper,
λi+1 is moved closer to λi or the number of trajectories initiated
from λi is increased. Multiple CVs introduces a new prospect
that unequal amounts of work are inserted along different CVs,
biasing the system to over-sample in the direction that more
work is inserted.

We introduced a condition of constant flux along an inter-
face in cFFS interface placement to address this problem. The
force exerted by the underlying free energy surface is pro-
portional to −dncross/dλ, where ncross is the number of tra-
jectories crossing an interface placed at some value of λ. If
ncross changes more quickly with changing λ, then the under-
lying surface must have a steeper slope. Applying the differen-
tial definition of work, dW = Fdλ, and thus dW ∝ dncross and
W ∝ ncross. Constant flux along the interface requires that
all small sections of λi+1 have approximately the same num-
ber of trajectories crossing them. This condition ensures that
equal work is inserted everywhere along the interface (i.e.,
in all directions) and results in λi+1 closer to λi in directions
trajectories struggle to advance and farther from λi in direc-
tions trajectories readily advance. The fact that cFFS is able
to reproduce the correct TPE symmetry for PES-3 and PES-4
provides strong evidence that the constant flux along the
interface condition is correct.

In complex systems, the optimal order parameter is often
expected to be a combination (linear or nonlinear) of multiple
(suboptimal) order parameters. This combination is generally
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nonintuitive and difficult to predict. As such, most applica-
tions of FFS use a suboptimal order parameter (e.g., FFSx).
On the four PESs, cFFS successfully produces correct TPE
sampling without knowing how x and y should be combined.
Though x and y are part of the optimal order parameter, inde-
pendently, x and y are suboptimal order parameters. This
suggests that cFFS can outperform FFS when multiple sub-
optimal order parameters are known, but the optimal order
parameter remains unknown. In addition, nonlinear combi-
nations of CVs have increased degeneracy compared with
linear combinations of CVs in creating reaction coordinates
(i.e., optimal order parameters).37 Since cFFS interfaces are
arbitrarily complex combinations of the specified CVs, there
may be substantial flexibility in selecting good CVs for cFFS.
A variety of approaches have been proposed for identifying
important CVs for rare event transitions.30,38–44 For exam-
ple, recent work suggests that important CVs can be iden-
tified from local fluctuations in the (meta)stable basins.45

We envision using such approaches to identify key CVs for
cFFS.

IV. cFFS WITH A MOMENTUM COORDINATE
FFS is most often applied in the diffusive limit, and the

CVs used as FFS order parameters are generally only functions
of the atomic positions. In this section, we demonstrate cFFS
on a simple analytical potential where momentum plays a key
role during the transition. A previous study shows that FFS fails
and under-predicts the transition rate constant when using a
position-based order parameter alone.26

Reference 26 tested several path sampling methods for
a transition on a simple 1D analytical potential described by
V (r) = r4 − 2r2. Of the tested methods, replica exchange tran-
sition interface sampling (RETIS) and partial path transition
interface sampling (PPTIS) provided the best estimates to the
reference effective positive flux (EPF) rate (kEPF

AB = 2.4 ± 0.1
× 10−7, kRETIS

AB = 2.8 ± 0.7 × 10−7, and kPPTIS
AB = 2.7 ± 0.6 × 10−7).

FFS performed worst, underestimating the rate constant by
1–2 orders of magnitude depending on the length of the basin
simulation. With a basin simulation of 4 × 106 steps, FFS pro-
duced a rate constant of kFFS-short

AB = 2.2 ± 0.2 × 10−9. When

the basin simulation was extended to 10 × 106 steps, kFFS-long
AB

= 1.2 ± 0.1 × 10−8. As explained in Ref. 26, the source of the
systematic error in the rate constant was the lack of over-
lap between ρ(λ⊥|λ0) and P(λB|λ0; λ⊥). Successful transitions
require large momentum when exiting the initial basin, and
few to none of the trajectories captured at λ0 had the req-
uisite momentum. Even successful transition paths from FFS
exited the initial state with lower momenta compared with
other methods, resulting in a low estimate of the rate constant.
This also resulted in the unphysical result that the momenta
of transition paths from FFS were not symmetric about the
barrier.

We perform cFFS with the above potential at identi-
cal conditions as in Ref. 26. The two variables for cFFS are
the position (r) and momenta (p). The basin simulation is

FIG. 4. cFFS on 1D potential with one position coordinate (r) and one momentum
coordinate (p). Initial basin A is r < 0 minima, and final basin B is r > 0 minima.
Configurations collected at each interface are shown as black points. Color map
shows the TPE sampling.

performed with 4 × 106 steps. We place interfaces adaptively,
collecting ∼2000 configurations per interface. As in Ref. 26, we
initiate 20 000 trajectories from each interface. cFFS resulted
in shooting from 8 interfaces, compared with the 7 interfaces
used in Ref. 26. The average rate constant from three cFFS
trials was kcFFS

AB = 2.0 ± 0.1 × 10−7, slightly underestimating
the EPF rate constant from Ref. 26. The TPE and configu-
rations collected at each interface from cFFS are shown in
Fig. 4. Paths exit the initial state orbiting the basin and acquir-
ing more kinetic energy until they are able to escape. Their
momenta then approaches zero as they cross through the
transition state, before accelerating towards and orbiting into
the final state. Consistent with theoretical expectations, the
TPE generated by cFFS is symmetric about the barrier. We
also tested cFFS with less sampling. Even with a twenty-fold
reduction in sampling (1000 trajectories and 100 configura-
tions per interface), the rate constant calculated with cFFS is
kcFFS
AB = 2.6 ± 0.7 × 10−7 and the TPE remains symmetric about

the barrier.

These results demonstrate the potential for using cFFS
to study transitions with important momentum variables.
Though the above test case represents an extremely simple
analytical model, it demonstrates the advantages of cFFS in
such scenarios. If an important momentum variable is known
for a transition, cFFS allows the basins to be separated with a
position coordinate while the momentum coordinate can be
used to help drive the transition.

V. DEMONSTRATION ON ALANINE DIPEPTIDE
In keeping with tradition, we close by demonstrating

cFFS on the C7ax-to-C7eq conformational change in alanine
dipeptide in vacuum. Details of the simulations and cFFS are
reported in the supplementary material. φ and ψ backbone
dihedral angles were used as CVs for cFFS. The progression
of cFFS is shown in Fig. 5(a). Starting from the C7ax basin cen-
tered near φ = 60◦ and ψ = −30◦, cFFS drives the system to
the C7eq basin defined by −94◦ < φ < −60◦ and 12◦ < ψ < 90◦.
The shape of the interfaces shows that φ plays the larger role

J. Chem. Phys. 150, 024103 (2019); doi: 10.1063/1.5063358 150, 024103-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-029902


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. cFFS for alanine dipeptide in vacuum. (a) Initial and final states are shown
as red and black regions, respectively. Configurations collected at λ0, λ1, λ2, λ3,
and λ4 are reported as red, pink, salmon, gold, and green points, respectively. The
color map represents the TPE sampling. φ and ψ angles are reported in degrees.
(b) Correlation between φ and θ in the TPE. The color map represents the TPE
density of states.

in the transition and reveals the location of the primary tran-
sition tube. The transition rate constant predicted by cFFS
(kcFFS

AB = 5.0 × 106 s−1) compares favorably with straightforward
simulation (kSLD

AB = 4.8 × 106 s−1). In Fig. 5(b), we show the rela-
tionship between φ and another dihedral angle, θ, in the TPE.
It has been shown that θ is part of the reaction coordinate.17,46

cFFS captures the proper relationship between φ and θ even
though θ is not one of the CVs used during cFFS.17,19

VI. DISCUSSION
cFFS helps overcome a few challenges posed by FFS. cFFS

allows one to try multiple CVs simultaneously. This is benefi-
cial for systems where investigators have some a priori insight
into the CVs that are expected to play a role in the transition,
but a detailed analysis of the mechanism is missing and the
best order parameter remains unknown. By using multiple CVs
simultaneously and enforcing constant flux along an interface,
the method can alleviate issues associated with poor overlap
between ρ(λ⊥|λi) and P(λB|λi; λ⊥). Of course, it is possible that
there are additional important orthogonal coordinates beyond
the chosen CVs. This situation could pose sampling challenges
for cFFS. Finally, we demonstrated cFFS with a combination

of momenta and position based coordinates. This may extend
the practical applicability of FFS to more ballistic systems. FFS
depends on stochasticity for trajectory divergence between
subsequent interfaces, so it will still not be applicable in the
limit of fully deterministic dynamics.

cFFS can in principle be extended to a large number of
CVs. However, we surmise the method will not scale well to
more than three or four CVs. In high dimensional space, the
area through which trajectories can cross an interface will
become exceedingly large. From a practical standpoint, this
will make it difficult to maintain the constant flux condition.
From an efficiency standpoint, most of each interface will
drive the system towards regions of phase space which are
irrelevant to the transition of interest. Even if successful tran-
sitions are generated, they will probably originate from a tiny
subset of the phase points collected at λ0 and thus be highly
correlated. Challenges associated with scaling to large num-
bers of CVs are hardly limited to cFFS. A variety of advanced
sampling methods, including nonequilibrium umbrella sam-
pling47,48 and metadynamics49 have come across similar prob-
lems. One solution is to collapse the reaction coordinate to
a single dimension using a string-type approach.17,42,48 The
string-type approach will prove difficult to implement in FFS
without resorting to an iterative scheme requiring multi-
ple FFS runs because each path ensemble in FFS is gener-
ated sequentially and there is no opportunity to relax the
string. Moreover, the string-type approach could defeat one
of the benefits of cFFS, which is that it enables exploration of
transitions with multiple tubes.

Extending cFFS to large numbers of CVs will thus require
alternative approaches. Dimensionality reduction techniques
such as isomaps50,51 or diffusion maps52,53 could be employed
to reduce a large number of CVs to two or three reduced
coordinates which capture the largest spread in the data.
In this manner, multiple transition tubes would hopefully
be preserved33,51 within the reduced coordinates. Further-
more, several groups are actively working to combine machine
learning and advanced sampling methods to identify impor-
tant CVs on-the-fly.54–58 We are exploring if such methods
or variations thereof can be incorporated with cFFS. One
challenge to incorporate on-the-fly identification of reduced
coordinates with FFS-type methods is again related to the
sequential generation of ensembles. Sampling from the ini-
tial basin alone is unlikely to reveal reduced coordinates
ideal for studying the transition. As FFS progresses, sampling
from each interface ensemble will result in reduced coor-
dinates which increasingly describe the transition. However,
FFS requires that each ensemble be visited sequentially, and
changing the definition of the reduced coordinates after each
ensemble may cause substantial difficulty in maintaining this
condition.

Studying rare events in simulations is an important and
challenging problem that has spawned the development of
many methods in the past decades. Here we restrict our com-
parison to two methods which use multiple CVs to sample
and calculate rate constants for rare transitions with unbiased
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dynamics in equilibrium or nonequilibrium systems. Vanden-
Eijnden and Venturoli developed a method59 that calculates
the transition rate constants and transition paths from the
steady state distribution under the boundary conditions that
state A is a source and state B is a sink. The space between
the stable states is tiled into enclosed Voronoi cells, and par-
allel simulations are performed in each cell. The steady state
flux and probability distribution can be estimated from the
time spent in each cell and exchange between cells. Like cFFS,
the method is applicable to equilibrium as well as nonequilib-
rium systems and does not require that A and B be well sepa-
rated in both variables. Since each parallel path is restricted
to a single cell, the method may prove advantageous com-
pared with cFFS for systems with metastable intermediates.
The method does not provide direct access to dynamical
transition paths, although, in principle, transition paths could
probably be reconstructed with an extensive bookkeeping
scheme. It is not immediately apparent which method would
be better for systems with slowly decorrelating transition
paths.

As mentioned in the introduction, Borrero and Escobedo30

developed a method to optimize the FFS order parameter
through a series of FFS runs. The approach uses commit-
tor information obtained from the prior FFS run to identify
the best order parameter from a set of specified CVs. The
procedure can be repeated until TPE sampling or the opti-
mal order parameter converges. Like cFFS, the procedure in
Ref. 30 allows FFS to be used in situations where there are
a number of possible CVs. Since the FFS runs themselves
are performed along a single order parameter (which may
be a linear or nonlinear combination of multiple CVs), there
is no limitation to the number of CVs which can be tested.
For certain systems, this may represent a substantial advan-
tage over cFFS, which in current form is practically limited
to three or four CVs. Unfortunately, the method presented
in Ref. 30 requires multiple (often expensive) FFS runs. Addi-
tionally, given the sensitivity of FFS sampling to the choice
of the order parameter in the presence of multiple tran-
sition tubes, we suspect cFFS will perform better for such
systems.

Finally , we would like to comment on the possibility of
combining a cFFS-type approach with other path sampling
methods. At the most basic level, cFFS divides CV space into
a fine grid to help define regions of phase space and interfaces
between those regions with arbitrary shape. In cFFS, criteria
for boundary identification were selected to meet the needs of
FFS – a minimum number of total first crossings and constant
average flux along the interface to avoid biasing the system to
proceed in one direction over another. It is easy to imagine
modifying the boundary identification criteria for other appli-
cations. Within the family of FFS approaches, it may prove
fruitful to combine the approach of Borrero and Escobedo30

with a cFFS-type approach for interface definitions. This could
allow interfaces with any arbitrary shape which could better
reproduce the committor function. Transition interface sam-
pling is less sensitive to the definition of the order parame-
ter.25,26 However, a procedure has been proposed to optimize

interface placement given the order parameter.60 This crite-
rion for optimal interface placement could be combined with
a cFFS-type approach for dividing the CV space for transition
interface sampling.

VII. CONCLUDING REMARKS
We described cFFS, a method to sample rare event transi-

tions along multiple CVs simultaneously. cFFS uses automated
nonlinear interface placement and reveals on-the-fly the evo-
lution of CVs during a transition. cFFS was tested with two
CVs, but in principle, it can be extended to three or more.
In practice, extending cFFS in current form to more than
three or four CVs may prove challenging. The stable states
only need to be separated in a combination of CVs, which
may change nonmonotonically between the stable states. We
introduced a criterion of constant flux along each interface
to prevent biasing TPE. cFFS results in correct estimates of
the transition rate constants and TPE sampling on several 2D
PESs and the C7ax-to-C7eq transition in alanine dipeptide in
vacuum. We additionally demonstrated cFFS on a 1D analyti-
cal potential using one position coordinate and one momenta
coordinate. cFFS substantially improved upon FFS results on
the same potential, where only the position coordinate was
used as the order parameter. On the 2D PESs, cFFS performed
particularly well for systems with hysteresis or multiple tran-
sition tubes. cFFS with multiple suboptimal order parameters
consistently outperformed FFS with a single suboptimal order
parameter. Since optimal order parameters are not known in
most applications of FFS, cFFS with two or more suboptimal
order parameters will be beneficial for studies of complex sys-
tems such as macromolecular conformational transitions and
crystal nucleation.

SUPPLEMENTARY MATERIAL

See supplementary material for details of Langevin
dynamics, PESs, TPE sampling at β = 2.5, FFS/cFFS sampling
on PES-3 at β = 5.0, and alanine dipeptide simulations.
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