ANDERSON LOCALIZATION FOR RADIAL TREE GRAPHS
WITH RANDOM BRANCHING NUMBERS

DAVID DAMANIK AND SELIM SUKHTAIEV

ABSTRACT. We prove Anderson localization for the discrete Laplace operator
on radial tree graphs with random branching numbers. Our method relies on
the representation of the Laplace operator as the direct sum of half-line Jacobi
matrices whose entries are non-degenerate, independent, identically distributed
random variables with singular distributions.

1. INTRODUCTION

The main goal of this paper is to prove Anderson localization for the discrete
Laplace operator on rooted radial tree graphs with random branching numbers.
These are tree graphs with a fixed vertex o, the root, such that every vertex v at
a distance n from the root o is connected with b,, > 2 vertices at a distance n + 1
from o, cf. Figure 1. Assuming that {b,}52, is a sequence of non-degenerate i.i.d.
random variables we show that, almost surely, the Laplace operator A, cf. (2.1), has
pure point spectrum and admits a basis of exponentially decaying eigenfunctions.
More concretely, our main result is the following Theorem.

Theorem 1.1. Suppose that {A(w)}weq is a family of Laplace operators on radial
tree graphs with random branching numbers. Suppose that the branching numbers
are given by non-degenerate independent identically distributed random variables

{bn(w)}ory C{2,...,d} for some fized d > 2.

Then A(w) exhibits Anderson localization at all energies. That is, almost surely,
A(w) has pure point spectrum and possesses a basis of exponentially decaying eigen-
functions.

The spectral theory of Schrodinger operators on tree graphs has attracted a lot
of attention; see, for example, [1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 17, 18, 19, 20, 21] and
references therein. When studying the effects of randomness, one can for example
consider random geometry (and then one typically studies the Laplacian), or one
can consider a random potential (and then one typically fixed regular geometry).
The effects of disorder in the geometry of trees have been studied in [1, 13]. In [1]
the authors consider trees with edge lengths given by £, (w) = fe*“<, where £ > 0 is
fixed, and A € [0, 1] determines the strength of the disorder and {we}ece are i.i.d.
random variables. It is proved in [1] that the absolutely continuous spectrum of the
Laplace operator is continuous (in the sense of [1, Theorem 1.1]) at A = 0 almost
surely. In the same work it is conjectured that such a continuity property fails in
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FIGURE 1. The first three generations of a radial rooted tree graph
I' with branching numbers by = 3, by = 2,by = 3.

the case of radial disorder. This conjecture was settled in [13], where the authors
showed that in the radial case the spectrum is almost surely pure point. In fact,
they proved Anderson localization for the random length and random Kirchhoff
models by essentially the same method. Our work is motivated by that of P. Hislop
and O. Post. The random branching model considered in this paper naturally
complements the two models considered in [13]. However, it is worth noting that
the methods of [13] are not applicable in the present setting since they are based
on spectral averaging and hence rely heavily on the assumption that the random
variables are absolutely continuous. Of course, in the case of random branching
numbers such a hypothesis cannot be made. We therefore turn to a recent work
[7] (which was inspired by [5]) that offers a new proof of Anderson localization
for random Schrodinger operators on Z. Their methods can be adapted to show
localization for the random half-line Jacobi matrices (2.2) that naturally arise in the
context of Laplace operators on radial tree graphs. Namely, we show that almost
surely for every generalized eigenvalue F, cf. (3.21), one has

1
Jim log [ M ()| = L(E),

where MZ(w) is the n-step transfer matrix, cf. (3.3), (3.4), and L(E) is the Lya-
punov exponent which is shown to be positive for E # 0. Once we have established
localization for these Jacobi matrices, we then show that the Laplace operator A
almost surely has a basis of exponentially decaying eigenfunctions. Due to the ex-
ponential growth of the surface area of spheres, exponential decay of eigenfunctions
is not automatically sufficient to ensure their square summability. However, the
decay rate that we establish, cf. (3.62)—(3.64), is sufficient to draw this conclusion.
Interestingly, a similar issue does not arise in the setting of Z¢ since in this case
the cardinality of spheres grows polynomially and exponential decay of any rate is
sufficient for square summability. !

We thank the referee for bringing this to our attention.
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2. THE LAPLACIAN ON RADIAL TREE GRAPHS

In this section we consider the Laplace operator on discrete rooted tree graphs
I'=(V,€&), with the set of vertices V and the set of edges £. A tree graph I' is a
graph without nontrivial closed paths. A tree graph I' together with a fixed vertex
o € V is called a rooted tree graph. The distance d(u,v) between two vertices
u,v € V is defined as the number of edges of the unique (non-repetitive) path
connecting u and v. The generation of a vertex v is defined by gen(v) := d(o,v)
and its branching number is given by b(v) := degv — 1 if v # o, and b(0) = dego.
A rooted tree graph is called radial if the branching number is a function of the
generation only, that is b(v) = b, > 0 whenever gen(v) = n, for some sequence
{bn}22, C N. In other words, cf. [6, Definition 2.1], a rooted graph is radial if any
vertex v in generation n is connected with b,, vertices in generation n + 1.

Assuming that the sequence {b,, }5° ; is bounded, we define the Laplace operator
via the adjacency matrix of the tree. Concretely, we let

AN = > fw), ferW) (2.1)
wu€V :d(u,v)=1

The boundedness of the sequence of branching numbers yields A € B(£2(V)); more-
over, since A is clearly symmetric, one has A = A* in 2(V).

An important step in the proof of Anderson localization is representing A as the
direct sum of half-line Jacobi matrices given by

0 Vb, 0
Vb, 0 Vbn1

Jn = , | nezt (2.2)

0 \Y4 bn+1

and acting in ¢?(Z7T).
We assume that non-trivial branching occurs in every generation.

Hypothesis 2.1. Suppose that for some d € N, b, € {2,...,d}, n € Z".
Theorem 2.2. [6, Theorem 2.4] Assume Hypothesis 2.1. Let us define

(oo - DIT20; k22,

Bk =< by — 1, k=1, (2.3)
1, k=0
Then one has
SSECIN
COV) =B P Hrrr A lry, = In. (2.4)
N=0 k=1

where every subspace Hy i reduces A, for all admissible N, k.
Concretely, there exists an orthonormal basis

{oN kit Nezt, 1<k<py, jez+ i L2(V),
so that
1) supp(¢n,k,j) C {v €V :gen(v) = N + j}, for all admissible N, k, j,
2) {¢nN.k,j}jez+ is an orthonormal basis for Hy y, for all admissible N, k.

3) llonk,jrillee vy = b;1/2H<PN,k,j ¢ (v) for all admissible N, k, j.
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Associated with this basis is a unitary operator ® given by

oo BN
:2V) > P EPEEY): engy e (N k), jELT, (2.5)
N=0 k=1
where §;(N, k) = §; should be viewed as a vector in the N, k—th copy of ¢*(ZT).

Then one has
oo BN

oA = P P In(k), (2.6)

N=0 k=1
where Jy (k) = Jy is the Jacobi matrix acting in the N, k—th copy of £2(Z*) and
given by (2.2).

3. ANDERSON LOCALIZATION FOR HALF-LINE JACOBI MATRICES

In this section we turn to radial trees with branching numbers given by i.i.d.
random variables which take values in the set A = {2,...,d} for some fixed d > 2.
Suppose that (A, 1) is a probability space and that supp i contains at least two
elements, # supp i > 2. Furthermore, let us denote €2 := (supp ﬁ)w, W= ﬁw and
define the left shift

(Tw)y == wpt1, w €N, neZT.
For a given w € Q, A(w) denotes the Laplace operator on the radial tree graph T,
with branching numbers defined by b, (w) := wy,.

As discussed in Theorem 2.2, the operator A(w) gives rise to a sequence of
Jacobi matrices. The n—th matrix of this sequence is given by Jo(T"w), where the
self-adjoint operator Jo(w) is acting in £2(ZT) and given by

Vi) e 4 VEmru(n = 1)+ Bpu(n + 1), neN,
[Jo(w)u](n) : {Mu(l), o, (3.1)

A sequence u = {u, }>2 , satisfies

{\/Wu(n — 1)+ wpu(n+1) = Eu(n), neN, 52)
vwou(l) = Eu(0),
E € R if and only if

Un+1 E (pn—1 u 5 £ _\/L

[\/(‘Tnun:| =M (T W) L/ﬁunj ’ M (w) = [\/071 0 ] ) (33)

n > 1. The map M¥ : Q — SL(2,R) determines an SL(2, R)-cocycle in a canonical
way

(T, MF): Q@ xR* = Q x R?, (T, MF)(w,v) = (Tw, ME (w)v).
The iterates over the skew product are given by (T, ME)" := (T ME), where
ME =I5 and

0
MEP(w) = [ M*(T'w),neN. (3.4)
i=n—1
The Lyapunov exponent of this cocycle is defined by
1
L(E) := lim 7/ log || ME(w)]| du(w). (3.5)
Q

n—oo N
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By Kingman’s Subadditive Ergodic Theorem,
o1 B
L(B) = Tim —log |MP ()] (3.6)

for p—almost every w.
Our proof of positivity of the Lyapunov exponent is based on the following facts.

Theorem 3.1. Let v be a probability measure on SL(2,R) that satisfies
/log | M| dv(M) < oo.

Let G, be the smallest closed subgroup of SL(2,R) that contains supp v.

(i) [10, Theorem 8.6] Assume that G, is not compact and that it is strongly
irreducible (cf. the definition preceding Theorem 2.1 in [7]). Then the Lyapunov
exponent L(v) associated with v is positive.

(#) [11, Theorem B] Assume that the set

Fix(G,) :={V € RP' : MV =V for every M € G,,}

contains at most one element. If v, — v weakly and boundedly (cf. the definitions
preceding Theorem 2.5 in [7]), then L(v;) — L(v) as k — oo.

A subgroup of SL(2,R) is called contracting if there exists a sequence {g,}52,
of its elements such that ||g,|lg, ! converges to a rank-one matrix.

Theorem 3.2. Let v¥ denote the push-forward measure of fi under the map MF,
cf. (3.3). Suppose that G,& is the smallest subgroup of SL(2,R) that contains
suppv?. Then G, = is a non-compact, strongly irreducible, contracting subgroup
for every E € R\ {0}. Moreover, one has

Fix(G,5) :={V € RP' : MV =V for every M € G 5} =0, (3.7
or all E € R. Furthermore, the Lyapunov exponent is a continuous function of the
Il E e R. Furth the L ti 1) 1) th

energy E. In addition, L(E) >0 if E # 0 and L(0) = 0.

Proof. For all E € R, G,z contains at least 2 distinct elements of the form
E 1

M, = | V& — Val, 3.8

s %

Let us pick arbitrary a # 8 and observe that the following sequence of matrices is

unbounded and belongs to G, =

n oon

Ap = (M Mg )" = [OMBQ

0 +

Hence, G, = is not compact.
Let us fix £ # 0. In order to prove that G, = is strongly irreducible, we observe
that for any V' € RP!, one has

lim A,V € {span{e;},span{es}}, (3.10)

n— oo

where e; = (1,0) ", e3 = (0,1)T. Therefore, every finite subset F C RP! which is
invariant under G, = must be equal to one of the following sets:

V1 :=span{ei }, Vi :=span{es}, {Vi,Va}. (3.11)
However, none of these sets is invariant when E # 0. Indeed, in this case one has
MWy & {V1,Va}, M;'Va & {Vi,Va}. (3.12)
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To show (3.7), let us assume that there exists V € Fix(G,#). Then A,V =V
for each n € N, hence, using (3.10) one infers that either V' =V or V = V5. On the
other hand, neither of V7, V5 belongs to Fix(G, =), since M, Vi # Vi for k € 1, 2.

By Theorem 3.1, the Lyapunov exponent is continuous everywhere and positive
at nonzero energies.

Next, we prove that L(0) = 0. To this end we explicitly compute the limit in
(3.6). One has

1
— HMO(TZi—lw)MO(TZi—Qw)

, (3.13)
i=n
)"
= (=" o szyi (Hl o )1/2
=N w1
Denoting
& = %log(wgi,lwil), (3.14)

we notice that {£;}72, is a sequence of i.i.d. random variables satisfying | A& dp? =
0 for all ¢ € N. By the law of large numbers, one has

1
- Zgi — 0, as n — oo, almost surely. (3.15)
n

i=1

n

Combining (3.13), (3.14), and (3.15), one infers
o1 0 _
L(0) = lim - log | M3, ()] =0,

for p—almost every w € .
Finally, G,, is contracting since A,/||Ay| converges to a rank-one matrix as
n — 00. g

Theorem 3.3. Assume Hypothesis 2.1, then there exists a full-measure set Qg such
that

o(Jo(w)) = [—2y/dy, 24/d,], for all w € Qq, (3.16)
where d,, := max(supp f).

Proof. Clearly, for every w € Q one has

o(Jo(w)) C [-2v/du,2/dy)- (3.17)

Next, we prove that the opposite inclusion holds for p—a.e. w € €. To this end, let
us consider the full-measure set (cf., e.g., [15, Proposition 3.8])

N Ulwe:w =d,forall k <j<k+ R} (3.18)
ReZt keZt

Pick an arbitrary E € [-24/d,,,2+/d,] and define § = 6(F) € [0, 7| by

E\FeJrei
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For every w € Qg we can find k; € ZT and R; — oo as | — oo such that
Vi =+/d, forallk; < j <k + R, €N,
The inclusion E € o(Jy(w)) follows from the Weyl Criterion provided
|(To(w) — Bl =0, £ . (3.19)
where, for each [ € N,

JPe0 forall ky < G < k
() = R, "7, for a o< J<k+ Ry, (3.20)
0, otherwise.
To prove (3.19) let us notice that
Ry /207 ili+10, ik —1,
Rl_l/2 wjfei(j“)@ — Ee?), if j = Ky,
0 if k < ki+ R —1
(o) = By =% 0 4 o s as AT
R (w? 0D — Eeli?) if j =k + Ry — 1,
Ry Vw2 =08, if j = ki + Ry,
0, otherwise.
Hence,
1(o(w) = E)yul® a6 By = o(1),
concluding the proof. ]

Next we focus on proving Anderson localization for Jy(w). Our proof closely
follows the main line of arguments from [7]. Let G(Jy(w)) denote the set of energies
for which (3.2) admits non-trivial solutions satisfying

lu(n)| < Cu(1+n), Cy >0,n€Z". (3.21)
A key ingredient of the proof of Anderson localization is the following theorem.

Theorem 3.4. There exists a full-measure set Q1 C Q, such that for all w €
and every E € G(Jo(w)), one has

1
i~ log [ME(w)]| = L(E). (3.22)
In particular, Jo(w) is spectrally localized for all w € Q.

Let
I = [-2Vd, 2Vd] \ (-1/1,1/1), 1 > 1. (3.23)

Then Theorem 3.4 follows from a slightly weaker result, Theorem 3.7, upon taking
the intersection of all [-dependent full measure sets from Theorem 3.7. Hence, we
proceed by discussing the latter theorem. The first item in the program is positivity
and continuity of the Lyapunov exponent. By Theorem 3.2, the subgroup G, = is
noncompact, strongly irreducible, contracting, and L(E) > 0 for all E € I}, | > 1.

Thus, the results of [7] concerning the products of i.i.d. random SL(2, R) matrices
are applicable in the present setting. To record these results let us introduce some
notation. For a given n € N, let

Fulw, B) = log [ ME(W)], (3.24)
Jo' (W) == Jo(w)[1,n)- (3.25)
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For any F & o(J§(w)), we set

GL ., = (J(w)— E)"" and GZ (4, k) == (6;,GL o), j.k€[l,n].  (3.26)
Similarly, given a,b € ZT, a < b, we denote GuEJ,[a,b] = (Jo(w)l[ap) — E)~! for
E & o(Jo(w)Ia,p)-

Theorem 3.5. Fiz arbitrary € € (0,1), ¢ € ZT, and | > 1. Then there emists
a subset Q4 (g) C Q of full p-measure such that for all w € Q4 (g), there ewist
ng = no(w, &,1), n1 = ny(w,e,1l) so that the following statements hold.

(i) [7, Proposition 5.2] For all n > max(ng, (log(|¢|+1))?/3), and E € I; one has

n?—1
L(E)— — > F, (T*""w,E)| <k, (3.27)
s=0

1) |7, Corollary 5. or all n > max(n, log +1)), an € I; one has
7, Corollary 5.3] For all log” 1 dE€el h
1
~| log MZ(TSw)|| < L(E) + 2. (3.28)

(i@) For alln > e~ ' max(ny, 2log?([¢|+1)), E € [} \o(Jo(T¢w)), and 1 < j, k <
n, one has
. — |7 — k|)L(E) + Coen] 1~
E i ’ < exp[(n—|j Z_ 5
GTCw,n(]v ) ~d |det(J6“‘(T<w) —E)l g}wUJ+ y (3 9)

where Cy = Co(z) > 0.

Proof. These results were obtained in [7] for Schrédinger operators on the whole
line. Let us briefly point out a minor change in (3.29). The new term is the last
factor in the right-hand side of (3.29). It appears due to the following relations be-
tween the transfer matrices and the Green’s functions of truncated Jacobi matrices,
cf. [14],

ME@) = oA | ) ) Yot (AT O 5
where
PE(w) i= det([E — Jo@) i), 7> 1, (3.31)
PE(w) =0, PE () = 1
A(n) := diag{1, \/w, },n € Z*.
Moreover, one has
P]E—1(W)P5—k—1(Tk+lw)

E (; _
Gw,n(]ak)_ ’PnE((A))

I Ve (3.32)

k<i<j

where 1 < j < k < n and the vacuous product that occurs for j = k is defined to
be equal to one. Using (3.30), (3.32), and [7, (5.13)] and following the proof of [7,
Corollary 5.3], one infers (3.29). O

A crucial element of the proof of Anderson localization is the elimination of
double resonances. We recall it in the following theorem.
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Theorem 3.6. [7, Proposition 6.1] Let us fiz arbitrary € > 0, N € N, and define
IGE (gl = € and |F,(T"w, B)| < L(E) — ¢,
Dn(g,l) == we Q| for some K> N, 0<n<K° EeclI, (3.33)
K" <r <K= |K"sK|
Then there exist C > 0,1 > 0 that do not depend on N such that

w(Dn(g,1)) < Ce ™V, (3.34)
In particular,
Q_(g) :== Q\ limsup Dy (e, 1), (3.35)
N—o00

s a full-measure set.

Theorem 3.7. For everyl > 1, u—almost every w € Q and every E € G(Jo(w))NI},
one has

lim 1 log [MZ(w)|| = L(E). (3.36)

n—oo 1
Proof. Let us define the full-measure set
Qo= () Qe (m )N (m™), (3.37)
meN

where Qo, Q_(-), Q4 (-) are defined in Theorem 3.3, Theorem 3.5, Theorem 3.6 re-
spectively.

Next, let us fix arbitrary I > 1, w € Q,, and E € G(Jy(w)) N I;. Our objective is
to show

1
limsup — log [|ME (w)|| < L(E), (3.38)
n—oo N
1
lim inf —log ME()| = L(E). (3.39)

The first inequality follows from (3.28). The second one requires a more subtle
analysis. We follow the proof of [7, Theorem 1.2], modifying some model-specific
arguments.

Our goal is to show that for a given € > 0 and w € €2, one has

1
lim inf — log [MZ (w)|| = L(E) —e. (3.40)
n—oo Mn
To this end, let u be the generalized eigenfunction satisfying (3.2), (3.21) and
normalized by u(0) = 1. Let
K = |—5_1 max{no(w75,l),ng(w75,l),N0H ,

where ng(w, ¢,1) is defined in Theorem 3.5, na(w, €, 1) is the smallest natural number

for which
we () (2-(9)\Di(s,1)), (3.41)
i2na(w,e,l)
and Ny > 2 is a sufficiently large number that will be defined later.
Step 1. There exist {a,b} C Z* such that a < K°, a + K* -2 <b< a+ K?
such that
GE 10y )| < @ exp(=1j — KIL(E) + CoeK?), (3.42)

for all j,k € [a,b], and some Cy > 0 dependent only on the measure f.
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Using (3.27) with n = K3, one has

KS—-1
1 1 K3
> o (L(E) - ﬁlogHM%(T K w)|> <e. (3.43)
s=0
Hence, for some 0 < t < K3(K6 — 1), one has

1
L(B) = 27 log IMEs(Tw)|| < e. (3.44)

Combining (3.30)(3.32), (3.44), and the fact that the norm of M%;(T"w) is at
most four times its largest entry and assuming that Ny > (¢~ 'log(4d?))'/?, one

infers

L(E) — — ! log Pizo(Tw) “(Ta ) < 2, (3.45)

K3 Hz 0 VWitt
for some a € {t,t+1} and b € {K3 +a, K3 +a—1, K3 +a—2}. Next, we pick Ny
sufficiently large so that K3 > 2log?(1 4 a) to ensure applicability of (3.29) with ¢
replaced by a and n replaced by b — a. Using this modification of (3.29) and (3.45)
we obtain

exp[(b—a—|j — k|)L(E) 4+ Coe(b — a)]
Py a(T¢

< 2OPUE? —|j — K)L(E) + Coe K]

|G¥aw,bfa(j7 k)| <

H Viira  (3.46)

w)

3.47
exp(K3(L(F) — 2¢)) (347)
= d?exp|[—|j — k|L(E) + (Cy + 2)e K?], (3.48)
forall a < 5,k < b.
Step 2. Let £ := |2t ], then
lu(f)] < d~2e 2K (3.49)

Indeed, utilizing (3.21), (3.42), and the standard representation of w in terms of
Green’s function on [a,b] and the boundary values u(a — 1), u(b + 1), one infers

()] < Viamilula = V] |GE (@, O] + VEslu( + DI [GE 1,y (4,0)]
< d5/20u(K9 + K34 l)ecosKS(ef\lfa\L(E) _'_€7|b7£|L(E))
< 2d°2C, (K® + K3 + 1) K L(E)/3+CosK? . (—2K* (3.50)

bl

where we assumed that Ny is sufficiently large so that (3.50) holds whenever K >
No.
Step 3. Let us recall the normalization u(0) = 1. One therefore has

1= u(0) < Velu(®)] |GE g0 1y(0,£ = 1) (3.51)
Combining (3.49), (3.51) and denoting p := ¢ — 1 we get
E
HGW 0,p]
Using the inclusion (3.41), 0 < p < K? and (3.33), we infer

2

(3.52)

Elog |IMP(T"w)|| > L(E) —&. (3.53)
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for all j € {K,2K}, r € [K'°, K|. This fact together with the Avalanche principle
yield

1

- log Mz ()l > L(E) — e, (3.54)
for all m € [K'' + K19 K] (cf. [7, (6.17)—(6.19)]). Since every sufficiently large
integer belongs to one of these intervals we obtain (3.40). O

A function f € £2(V) is said to have almost exponential decay rate L > 0 if for
all € > 0 there exists C. > 0 such that

|f ()| < Cee™Eme)dO) 4y e T,

Proof of Theorem 1.1. First, we define the full measure set
Q= ﬂ T7F(Q N ), (3.55)

where (1, (; are defined in Theorem 3.3 and Theorem 3.4 respectively. Then for
all we Q and k € Z™, one has

o(Jo(T"w)) = o( [~2/d,,,2\/d,), d, := max(supp ji) (3.56)
oo(Jo(T*w)) = 0. (3.57)

It follows from (3.57) (combined with the general direct sum decomposition given
by Theorem 2.2) that
oc(Aw)) =0, (3.58)
and in particular A(w) possesses a basis of eigenfunctions.
Next, we prove that this basis can be chosen so that each of its elements decays
exponentially. To this end, let

{uFrye, c (Zh), (3.59)

be a basis of exponentially decaying eigenfunctions of Jy (k) (where Jy (k) is the
w-dependent Jacobi matrix associated with Jy(w) as in Section 2).

It is sufficient to show that for arbitrary admissible N, k, r, the function
has almost exponential decay rate L(FE) + % on the tree graph I'. To that end,
let us fix arbitrary vertex v, gen(v) = m and notice that

(b—luN,k,r

N,k,r Nk,
1 Ny ) g0ty Nk (V) = U NN km-N (V) m > N,
(@7 u™ " (v) =
0, m < N,

since ¢k ;(v) = 0 whenever gen(v) # N + j. Furthermore, by the Osceledec
Theorem and Theorem 3.4, for all € > 0 there exists C'(¢) > 0 such that

[} 7] < Cle)em M, ezt (3.60)

Hence, using

lonkilleevy  llonklle )
, o (V) = = < - , 3.61
loN k. j+1lle (V) o 5 (3.61)
we obtain
|[ @ a7 (0)] = [up PN km—n (V)] (3.62)
O(2)e LB —)N o—(L(E)—e)m
<4 v (363)
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< 7(L(E)+l°i276)m
<n C(e)e 2 . (3.64)
U
ACKNOWLEDGMENT

We are grateful to Peter Hislop for raising our interest in the problem studied in

this paper and Jake Fillman for numerous helpful comments on an earlier draft of
this paper.

1
[2

[3

[4

6

7

[
10
[11
[12
[13
(14
[15
16
(17
18
19
20

[21

REFERENCES

] M. Aizenman, R. Sims, S. Warzel, Absolutely continuous spectra of quantum tree graphs with
weak disorder, Commun. Math. Phys. 264 (2006), 371-389.

] M. Aizenman, R. Sims, S. Warzel, Stability of the absolutely continuous spectrum of random
Schrodinger operators on tree graphs, Probab. Theory Related Fields 136 (2006), 363-394.

] M. Aizenman, R. Sims, S. Warzel, Fluctuation based proof of the stability of ac spectra of

random operators on tree graphs, Recent advances in differential equations and mathematical

physics, 1-14, Contemp. Math., 412, Amer. Math. Soc., Providence, RI, 2006.

L. Bartholdi, W. Woess, Spectral computations on lamplighter groups and Diestel-Leader

graphs, J. Fourier Anal. Appl. 11 (2005), 175-202.

| J. Bourgain, W. Schlag, Anderson localization for Schrédinger operators on Z with strongly
mizing potentials, Commun. Math. Phys. 215 (2000), 143-175.

| J. Breuer, Singular continuous spectrum for the Laplacian on certain sparse trees, Commun.
Math. Phys. 219 (2007), 851-857.

] V. Bucaj, D. Damanik, J. Fillman, V. Gerbuz, T. VandenBoom, F. Wang, Z. Zhang, Local-

ization for the one-dimensional Anderson model via positivity and large deviations for the

Lyapunov exponent, preprint, arxiv.org/abs/1706.06135.

R. Froese, D. Hasler, W. Spitzer, Absolutely continuous spectrum for the Anderson model on

a tree: a geometric proof of Klein’s theorem, Comm. Math. Phys. 269 (2007), 239-257.

| R. Froese, D. Lee, C. Sadel, W. Spitzer, G. Stolz, Localization for transversally periodic
random potentials on binary trees, J. Spectr. Theory 6 (2016), 557-600.

| H. Firstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377—
428.

| H. Fiirstenberg, Y. Kifer, Random matriz products and measures on projective spaces, Israel
J. Math. 46 (1983), 12-32.

] R. Grigorchuk, A. Zuk, The lamplighter group as a group generated by a 2-state automaton,
and its spectrum, Geom. Dedicata 87 (2001), 209-244.

| P. Hislop, O. Post, Anderson localization for radial tree-like quantum graphs, Waves Random
Complex Media 19 (2009), 216-261.

| S. Jitomirskaya, D. A. Koslover, M. S. Schulteis, Localization for a family of one-dimensional
quasiperiodic operators of magnetic origin, Ann. Henri Poincaré 6 (2005), 103-124.

] W. Kirsch, An nvitation to random Schréodinger operators, Panor. Syntheses, 25, Random
Schrédinger operators, 1-119, Soc. Math. France, Paris, 2008.

] A. Klein, Absolutely continuous spectrum in the Anderson model on the Bethe lattice, Math.
Res. Lett. 1 (1994), 399-407.

] A. Klein, Spreading of wave packets in the Anderson model on the Bethe lattice, Commun.
Math. Phys. 177 (1996), 755-773.

] A.Klein, Extended states in the Anderson model on the Bethe lattice, Adv. Math. 133 (1998),
163-184.

] M. Schmied, R. Sims, G. Teschl, On the absolutely continuous spectrum of Sturm—Liouville
operators with applications to radial quantum trees, Oper. Matrices 2 (2008), 417-434.

] A. Sobolev, M. Solomyak, Schrodinger operators on homogeneous metric trees: spectrum in
gaps, Rev. Math. Phys., 14 (2002), 421-467.

] M. Solomyak, On the spectrum of the Laplacian on regular metric trees, Waves Random
Media 14 (2004), S155-S171, Special section on quantum graphs.



ANDERSON LOCALIZATION FOR RADIAL TREE GRAPHS
DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TX 77005, USA
E-mail address: damanik@rice.edu

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TX 77005, USA
E-mail address: sukhtaiev@rice.edu

13



