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Abstract
Montgomery’s Lemma on the torus T

d states that a sum of N Dirac masses cannot
be orthogonal to many low-frequency trigonometric functions in a quantified way. We
provide an extension to general manifolds that also allows for positive weights: let
(M, g) be a smooth compact d-dimensional manifold without boundary, let (φk)

∞
k=0

denote the Laplacian eigenfunctions, let {x1, . . . , xN } ⊂ M be a set of points and
{a1, . . . , aN } ⊂ R≥0 be a sequence of nonnegative weights. Then, for all X ≥ 0,

X∑

k=0

∣∣∣∣∣

N∑

n=1

anφk(xn)

∣∣∣∣∣

2

�(M,g)

(
N∑

i=1

a2i

)
X

(log X)
d
2

.

This result is sharp up to the logarithmic factor. Furthermore, we prove a refined
spherical version of Montgomery’s Lemma, and provide applications to estimates of
discrepancy and discrete energies of N points on the sphere S

d .
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1 Introduction

1.1 Montgomery’s Lemma

The lemma, which constitutes the main subject of our investigation, has its origins in
the theory of irregularities of distribution.

Let {x1, . . . , xN } ⊂ T
2 ∼= [0, 1)2 be a set of N points. Montgomery’s theorem [16]

(see also Beck [4,6]) guarantees the existence of a disk D ⊂ T
2 with radius 1/4 or

1/2 such that the proportion of points in the disk is either much larger or much smaller
than what is predicted by the area

∣∣∣∣
1

N
· # {1 ≤ i ≤ N : xi ∈ D} − |D|

∣∣∣∣ � N−3/4. (1.1)

A higher-dimensional version of this statement for sets inT
d holds with the right-hand

side of the order N− 1
2− 1

2d . The proof of Montgomery’s argument proceeds as follows:
we first bound the L∞-norm of the ‘discrepancy function’ trivially from below by
the L2-norm and then use Parseval’s identity to multiplicatively separate the Fourier
transform of the characteristic function of the geometric shape (in the example above: a
disk) and the Fourier coefficients of the Dirac measures located at {x1, . . . , xN } ⊂ T

2

̂(
N∑

n=1

δxn

)
(k) =

N∑

n=1

e−2π i〈k,xn〉 for k ∈ Z
2.

A fundamental ingredient of the method is the fact that the Fourier transform of finite
set of Dirac measures cannot be too small on low frequencies.

Lemma (Montgomery [16]) For any {x1, . . . , xN } ⊂ T
2 and X ≥ 0

∑

|k1|≤X

∑

|k2|≤X

∣∣∣∣∣

N∑

n=1

e2π i〈k,xn〉
∣∣∣∣∣

2

≥ N X2. (1.2)

This inequality is a two-dimensional analogue of an earlier result of Cassels [10]
and related to a result of Siegel [19]. Montgomery’s Lemma is essentially sharp.
Generalizations of the statement to T

d are straightforward. This discussion suggests
that expression akin to the left-hand side of (1.2) can be used asmeasures of uniformity
of discrete sets of points, much like the discrepancy (1.1), see [14].

1.2 Related recent results

A slight sharpening of Montgomery’s Lemma has recently been given by the third
author in [20] (we only describe the result on T

2, but higher-dimensional versions
also hold): for all {x1, . . . , xN } ⊂ T

2 and X ≥ 0
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General and refined 1285

∑

‖k‖≤X

∣∣∣∣∣

N∑

n=1

e2π i〈k,xn〉
∣∣∣∣∣

2

�
N∑

i, j=1

X2

1 + X4‖xi − x j‖4 . (1.3)

This quantifies the natural notion that any type of clustering of the points is going
to decrease the orthogonality to trigonometric functions. Montgomery’s Lemma has
usually been regarded as an inequality on the torus as opposed to a more general
principle. However, in the study of irregularities of distribution on the sphere S

d , the
natural analogue of Fourier series is given by harmonic polynomials which are also
well understood and allow for fairly explicit analysis. In [7] the first and second author
proved a generalization of (1.1) on S

d , which essentially boiled down to a spherical
analogue of (1.2). Namely, denoting the eigenfunctions of the spherical Laplacian (i.e.
spherical harmonics) by φ0, . . . , φk, . . . , this inequality states

X∑

k=0

∣∣∣∣∣

N∑

n=1

φk(xn)

∣∣∣∣∣

2

�d N X . (1.4)

We observe that φ0 is constant and thus the first term is already of size ∼ N 2. Exactly
like on T

d , for k = 0 the inner sum is of size N 2 and the inequality is only interesting
when the number of eigenfunction X starts to outnumber the number of points X � N .
This is also necessary because there are point sets that are orthogonal to the first ∼ N
eigenfunctions (this is classical on T

d and a substantial result on S
d , see [2,3]; it is

likely to hold at a much greater level of generality).

2 Main results

In the present paper we further extend Montgomery’s Lemma in two different direc-
tions. First, we extend and generalize the statement of Montogomery’s lemma (1.2)
to general manifolds (with a logarithmic loss). Second, in the case of the sphere S

d ,
we combine the ideas of (1.3)–(1.4) and prove a spherical analogue of (1.3), which
refines (1.4). We also provide several applications of this result to irregularities of
distribution and energy minimization on the sphere: a notable example is a refinement
of Beck’s lower bound on the L2-spherical cap discrepancy.

2.1 Montgomery Lemma on general manifolds.

We now phrase a general version of Montgomery’s Lemma on compact manifolds. It
relates to various natural questions and we believe that a sharper form would be quite
desirable.

Theorem 1 Let (M, g) be a smooth compact d-dimensional manifold, let (φk)
∞
k=0

denote the L2-normalized Laplacian eigenfunctions of −�g with the corresponding
eigenvalues arranged in increasing order. Let {x1, . . . , xN } ⊂ M, and let (ai )Ni=1 be
a set of nonnegative weights. Then, for all X ≥ 0,
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1286 D. Bilyk et al.

X∑

k=0

∣∣∣∣∣

N∑

n=1

anφk(xn)

∣∣∣∣∣

2

�(M,g)

(
N∑

i=1

a2i

)
X

(log X)
d
2

.

It seems likely that the logarithm is an artifact of the method; the result is more general
(but logarithmically worse) than the classical Montgomery Lemma on T

d and the
version on the sphere [7] since it allows for nonnegative weights: the classical proofs
of Montgomery’s Lemma, both on T

d and S
d , fails in this more general setting. The

last author has shown [21] that in the setting of compact manifolds, for N sufficiently
large, there exists k ≤ cd N + o(N ) such that

∣∣∣∣∣

N∑

n=1

anφk(xn)

∣∣∣∣∣ > 0,

where cd is a constant that only depends on the dimension of the manifold but not the
manifold itself (on the sphere S

d this has implications for the existence of spherical
designs, see [21]).

Theorem 1 has various implications: one would naturally assume that as soon as
X � N , the eigenfunctions should be fairly decoupled from the set of points and
each single summand should be roughly of order ∼ N : the theorem shows this basic
intuition to be true up to logarithmic factors. Another application concerns the limits of
numerical integration: the Laplacian eigenfunctions φk have mean value 0 as soon as
k ≥ 1 and are oscillating rather slowly.Onewould, of course, expect it to be possible for
N points to integrate∼ N functions exactly but, simultaneously, one would not expect
such a rule to be able to do well on a larger set of (mutually orthogonal) functions. If
the logarithmic factor in Theorem 1 could be improved, this would amount to a precise
quantitative form of this basic intuitive principle.

2.2 Spherical extensions of Montgomery’s Lemma

We now restrict our attention to the case when M = S
d is the unit sphere in R

d+1

equippedwith the normalizedHaarmeasure σ . Denote byHn the space of all spherical
harmonics of degree n on S

d , and let {Yn,k : k = 1, 2, · · · , dn} be a real orthonormal
basis of Hn (recall dim Hn ∼ nd−1). We have the following spherical analogue of
(1.3).

Theorem 2 For {x1, · · · , xN } ⊂ S
d , we have for all L ∈ N

L∑

n=0

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

≥ cd L
d

N∑

i, j=1

log
(
2 + L

∥∥xi − x j
∥∥)

(
1 + L

∥∥xi − x j
∥∥)d+1 . (2.1)

We observe that the left-hand side runs over ∼ Ld terms. Leaving just the diagonal
terms (i = j) on the right-hand side one finds that the right-hand side is at least of the
order∼ NLd , i.e. (2.1) is stronger than (1.4). Similar to the case of the torus, this result
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General and refined 1287

has immediate applications irregularities of distribution on the sphere. We provide
refinements of both classical [5] and recent [7] discrepancy bounds. Moreover, with
the help of the Stolarsky principle and its generalizations [7,22], see (5.4)–(5.5), we
obtain estimates on the the difference between discrete energies and energy integrals.
These corollaries are gathered and proved in Sect. 5.

2.3 L2-spherical cap discrepancy

We wish to highlight a particular implication that refines of a famous result of Beck
[5]. The L2-spherical cap discrepancy is defined as the L2-norm of the spherical cap
discrepancy (i.e. the difference between the empirical distribution of N points and the
uniform distribution) integrated over all radii (we refer to Sect. 5 for a more formal
definition). The result of Beck states that for any set Z of N points on S

d

DL2,cap(Z) �d N− 1
2− 1

2d ,

and this is sharp up to a logarithmic factor. Our approach yields a slight refinement.

Theorem 3 For any set of N points Z = {z1, . . . , zN } ⊂ S
d

DL2,cap(Z) �d N− 1
2− 1

2d

⎛

⎝ 1

N

N∑

i, j=1

log (2 + N 1/d‖zi − z j‖)
(1 + N 1/d‖zi − z j‖)d+1

⎞

⎠
1/2

.

We remark that summing over the diagonal i = j shows that the additional factor is
� 1 implying Beck’s original result. However, as soon as there is subtle clustering of
points, the off-diagonal terms may actually contribute a nontrivial quantity.

3 Montgomery Lemma on general manifolds: proof of Theorem 1.

Proof We first observe that the eigenfunction φ0 ≡ 1/
√|M | is constant and thus

X∑

k=0

∣∣∣∣∣

N∑

i=1

aiφk(xi )

∣∣∣∣∣

2

�(M,g)

(
N∑

i=1

ai

)2

=
(∑N

i=1 ai
)2

∑N
i=1 a

2
i

N∑

i=1

a2i

and it thus suffices to prove the statement for

X �

(∑N
i=1 ai

)2

∑N
i=1 a

2
i

.

123



1288 D. Bilyk et al.

The proof starts by bounding the desired quantity from below; here, we let t > 0 be
an arbitrary number that will be fixed later.

X∑

k=0

∣∣∣∣∣

N∑

i=1

aiφk(xi )

∣∣∣∣∣

2

≥
X∑

k=0

e−λk t

∣∣∣∣∣

N∑

i=1

aiφk(xi )

∣∣∣∣∣

2

=
X∑

k=0

e−λk t
N∑

i, j=1

aiφk(xi )a jφk(x j )

=
N∑

i, j=1

aia j

X∑

k=0

e−λk tφk(xi )φk(x j ).

Here and throughout the proof, the λk denote the eigenvalues of −�g such that
−�gφk = λkφk and 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · . The inner sum is now close to a
classical expansion for the heat kernel

pt (x, y) =
∞∑

k=0

e−λk tφk(x)φk(y).

This means that we can replace the inner sum by the heat kernel while incurring an
error that only depends on the size of X . We will now make this precise: the main
ingredients are Weyl’s law λk ∼ cMk2/d , where cM only depends on the volume of
the manifold M and Hörmander’s estimate [12]

‖φk‖L∞ �(M,g) λ
d−1
4

k .

Combining these two inequalities, we can now estimate the tail:

∣∣∣∣∣

∞∑

k=X+1

e−λk tφk(xi )φk(x j )

∣∣∣∣∣ �(M,g)

∞∑

k=X+1

∣∣∣∣e
−ck

2
d tφk(xi )φk(x j )

∣∣∣∣

≤
∞∑

k=X+1

e−ck
2
d t‖φk‖2L∞

�(M,g)

∞∑

k=X+1

e−ck
2
d tλ

d−1
2

k

�(M,g)

∞∑

k=X+1

e−ck
2
d t k1−

1
d .
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General and refined 1289

This quantity can be bounded from above by an integral which, after substitution,
reduces to the incomplete Gamma function:

∞∑

k=X+1

e−ck2/d t k1−
1
d ≤

∫ ∞

X
e
−

(
y

t−d/2

) 2
d

y1−
1
d dy

= 1

td− 1
2

∫ ∞

cXtd/2
e−z

2
d z1−

1
d dz

= d

2

1

td− 1
2

�

(
d − 1

2
, cX

2
d t

)
.

We will end up working in the regime X
2
d t 
 1. In this regime, there is a classical

asymptotic (see e.g. Abramowitz and Stegun [[1], Sect. 6.5]), valid for a 
 1,

�

(
d − 1

2
, a

)
�d ad− 3

2 e−a .

Altogether, this implies, since we may assume that

X �

(∑N
i=1 ai

)2

∑N
i=1 a

2
i

,

the bound

X∑

k=0

∣∣∣∣∣∣

N∑

i=1

aiφk(xi )

∣∣∣∣∣∣

2

�
N∑

i, j=1

ai a j pt (xi , x j ) − C
N∑

i, j=1

ai a j

td− 1
2

(
X

2
d t

)d− 3
2
exp

(
−cX

2
d t

)

=
⎛

⎝
N∑

i, j=1

ai a j pt (xi , x j )

⎞

⎠ − C

(∑N
i=1 ai

)2

td− 1
2

(
X

2
d t

)d− 3
2
exp

(
−cX

2
d t

)

�
N∑

i, j=1

ai a j pt (xi , x j ) − C
X

∑N
i=1 a

2
i

td− 1
2

(
X

2
d t

)d− 3
2
exp

(
−cX

2
d t

)
.

We will end up working at time t ∼ X− 2
d log X � 1 which, for X sufficiently large,

enables us to make use of Varadhan’s short-time asymptotics

pt (x, y) ∼ 1

(4π t)d/2 exp

(
−‖x − y‖2

4t

)

to argue that

N∑

i, j=1

aia j pt (xi , x j ) ≥
N∑

i=1

a2i pt (xi , xi ) � t−
d
2

N∑

i=1

a2i .
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Summarizing, we have

X∑

k=0

∣∣∣∣∣

N∑

i=1

aiφk(xi )

∣∣∣∣∣

2

�(M,g)

N∑

i=1

a2i

[
t−

d
2 − CX

td− 1
2

(
X

2
d t

)d− 3
2
exp

(
−cX

2
d t

)]
.

Setting t = AX− 2
d log X with A = 1

c (1 − 1
d ) + 1 now implies the result. ��

4 An improvedMontgomery Lemma on the sphere:proof of Theorem
2

Let Cλ
n denote the Gegenbauer (ultraspherical) polynomials of degree n, which are

orthogonal on [−1, 1] with respect to the weight wλ(t) = (1 − t2)λ−1/2 (see [11] for
the backgound information). Since we are working on S

d , we set λ = d−1
2 . Denote

also Eλ
n (t) = n+λ

λ
Cλ
n (t). For δ > 0, we define the Cesàro-type kernel

K δ
L(t) :=

L∑

k=0

Aδ
L−k

Aδ
L

Eλ
k (t), with Aδ

j = �( j + δ + 1)

�( j + 1)�(δ + 1)
.

It is a classical result of Kogbetliantz [13] (see also [18]) that K δ
L(t) ≥ 0 on [−1, 1],

whenever δ ≥ d.

Lemma 1 For {x1, · · · , xN } ⊂ S
d and any δ > 0, we have

dn∑

k=1

|
N∑

j=1

Yn,k(x j )|2 =
N∑

i, j=1

Eλ
n (xi · x j ) ≥ 0, n = 0, 1, · · · ,

and
L∑

n=0

dn∑

k=1

|
N∑

j=1

Yn,k(x j )|2 ≥
N∑

i, j=1

K δ
L(xi · x j ). (4.1)

This lemma follows directly from the addition formula for spherical harmonics. We
include the proof here for the sake of completeness.

Proof By the addition formula for spherical harmonics, we have

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

=
dn∑

k=1

N∑

i=1

N∑

j=1

Yn,k(xi )Yn,k(x j ) =
N∑

i, j=1

dn∑

k=1

Yn,k(xi )Yn,k(x j )

=
N∑

i, j=1

Eλ
n (xi · x j ).
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This also implies that, using Aδ
L−n ≤ Aδ

L for all 0 ≤ n ≤ L ,

L∑

n=0

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

=
L∑

n=0

N∑

i, j=1

Eλ
n (xi · x j ) ≥

L∑

n=0

Aδ
L−n

Aδ
L

N∑

i, j=1

Eλ
n (xi · x j )

=
N∑

i, j=1

L∑

n=0

Aδ
L−n

Aδ
L

Eλ
n (xi · x j ) =

N∑

i, j=1

K δ
L(xi · x j ).

��

Numerical experiments suggest that Kd
n is not just non-negative, but is actually

strictly positive and should satisfy favorable lower bounds. However, we could not
prove it, hence, as in [20], we shall make use of additional rounds of averaging.
Define

Gd+1
n (t) = 1

n + 1

n∑

j=0

Kd
j (t) and Gd+2

n (t) = 1

n + 1

n∑

j=0

Gd+1
j (t).

Lemma 2 For n ∈ N and θ ∈ (0, π),

Gd+2
n (cos θ) ≥ Cnd(1 + nθ)−d−1 log(2 + nθ). (4.2)

Remark It seems that (4.2) with Gd+1
n in place of Gd+2

n remains true, but the proof
would be more involved [we prove a slightly weaker bound (4.4)].

Proof First, we recall that Kd
n (cos θ) ≥ 0 for θ ∈ [0, π ], and ‖Kd

n ‖∞ = Kd
n (1) ∼

(n + 1)d . It follows that for δ = d + 1 or d + 2,

‖Gδ
n‖∞ = Gδ

n(1) ∼ (n + 1)d .

By Bernstein’s inequality for trigonometric polynomials, this also implies that for
Fn(t) := Kd

n (t) or Gd+1
n (t) or Gd+2

n (t), we have

Fn(cos θ) ≥ 1

2
‖Fn‖∞ ∼ (n + 1)d , 0 ≤ θ ≤ 1

2n
. (4.3)

Next, we show that

Gd+1
n (cos θ) ≥ cnd(1 + nθ)−d−1, n ≥ 1, θ ∈ [0, π ]. (4.4)
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1292 D. Bilyk et al.

If 0 ≤ θ ≤ 1
2n , then (4.4) follows directly from (4.3). For 1

2n ≤ θ ≤ π , we have

Gd+1
n (cos θ) = 1

n + 1

n∑

j=0

Kd
j (cos θ) ≥ 1

n + 1

∑

0≤ j≤ 1
2θ

Kd
j (cos θ)

≥ c
1

n + 1

∑

0≤ j≤ 1
2θ

( j + 1)d ∼ n−1θ−d−1 ∼ nd(1 + nθ)−d−1.

Finally,we prove estimate (4.2). Note that (4.4)withGd+2
n in place ofGd+1

n remains
true. Thus, without loss of generality, we may assume that 2

n ≤ θ ≤ π and n ≥ 10.
We then have

Gd+2
n (cos θ) = 1

n + 1

n∑

j=0

Gd+1
j (cos θ) ≥ cn−1

n∑

j=0

jd(1 + jθ)−d−1

≥ cn−1
∑

θ−1≤ j≤n

j−1θ−d−1 ≥ cn−1θ−d−1
∫ n

θ−1+1

dt

t

= cn−1θ−d−1
∫ nθ

1+θ

dt

t
∼ nd(1 + nθ)−d−1 log(nθ + 2).

��

Proof of Theorem 2 Using Lemma 1, we have

L∑

n=0

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

≥ 1

L

L∑

m=0

m∑

n=0

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

≥ 1

L

L∑

m=0

N∑

i, j=1

Kd
m(xi · x j ) =

N∑

i, j=1

Gd+1
L (xi · x j ). (4.5)

Using (4.5) and averaging once again, we have

L∑

n=0

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

≥ 1

L

L∑

m=0

m∑

n=0

dn∑

k=1

∣∣∣∣∣∣

N∑

j=1

Yn,k(x j )

∣∣∣∣∣∣

2

≥ 1

L

L∑

m=0

N∑

i, j=1

Gd+1
m (xi · x j ) =

N∑

i, j=1

Gd+2
L (xi · x j ),

which, using (4.2), implies the desired estimate (2.1). ��
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5 Some corollaries for discrepancy and discrete energy of point
distributions on the sphere

For a finite set of points Z = {z1, · · · , zN } ⊂ S
d , its L2-discrepancy with respect to

a function f : [−1, 1] → R is defined as

DL2, f (Z) =
⎛

⎜⎝
∫

Sd

∣∣∣∣∣∣∣

1

N

N∑

j=1

f (x · z j ) −
∫

Sd

f (x · y) dσ(y)

∣∣∣∣∣∣∣

2

dσ(x)

⎞

⎟⎠

1
2

. (5.1)

In particular, when f (t) = fτ (t) = 1[τ,1](t), one obtains the discrepancy with respect
to spherical caps C(x, τ ) = {y ∈ S

d : x · y ≥ τ } of aperture arccos τ , i.e.

D2
L2, fτ

(Z) =
∫

Sd

∣∣∣∣∣∣
1

N

N∑

j=1

1C(x,τ )(z j ) − σ
(
C(x, τ )

)
∣∣∣∣∣∣

2

dσ(x), (5.2)

Its L2−average over the parameter τ yields the classical L2−spherical cap discrep-
ancy

D2
L2,cap(Z) =

1∫

−1

D2
L2, fτ

(Z) dτ, (5.3)

which has been extensively studied [4,5]. In particular, this quantity satisfies the fol-
lowing identity known as the Stolarsky principle [22], which relates it to a certain
discrete energy.

cd D2
L2,cap(Z) =

∫

Sd

∫

Sd

‖x − y‖ dσ(x) dσ(y) − 1

N 2

N∑

i, j=1

‖zi − z j‖, (5.4)

where cd is a dimensional constant. It has been established in [7,8] that Stolarsky
principle can be generalized in the following way: for f ∈ L2

([−1, 1], wλ

)

D2
L2, f (Z) = 1

N 2

N∑

i=1

N∑

j=1

F(zi · z j ) −
∫

Sd

∫

Sd

F(x · y) dσ(x)dσ(y), (5.5)

where the function F : [−1, 1] → R is defined through the identity

F̂(n, λ) = (
f̂ (n, λ)

)2
. (5.6)
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Here and throughout the proof,

f̂ (n, λ) := (n + λ)�(λ)√
π�(λ + 1

2 )

∫ 1

−1
f (t)Cλ

n (t)(1 − t2)λ− 1
2 dt,

where the notation used is reminiscent of that of Fourier transform because spherical
harmonics diagonalize the Laplacian on the sphere. It is now easy to see that the
refined spherical Montgomery Lemma, Theorem 2, provides new estimates both for
the discrepancy and discrete energies. Setting

G(x) = 1

N

N∑

j=1

f (x · z j ), we see that DL2, f (Z) = ‖G − Ĝ(0, λ)‖L2(Sd ,dσ),

and, according to the Funk–Hecke formula, for any spherical harmonic Yn ∈ Hn

〈G, Yn〉 = 1

N

N∑

j=1

∫

Sd

f (x · z j )Yn(x)dσ(x) = 1

N
f̂ (n, λ)

N∑

j=1

Yn(z j ). (5.7)

Thus we find that

D2
L2, f (Z) = ‖G − Ĝ(0, λ)‖22 =

∞∑

n=1

dn∑

k=1

|〈G, Yn,k〉|2

= 1

N 2

∞∑

n=1

∣∣ f̂ (n, λ)
∣∣2

dn∑

k=1

∣∣∣∣
N∑

j=1

Yn,k(z j )

∣∣∣∣
2

≥ 1

N 2 · min
1≤n≤L

∣∣ f̂ (n, λ)
∣∣2 ·

L∑

n=1

dn∑

k=1

∣∣∣∣
N∑

j=1

Yn,k(z j )

∣∣∣∣
2

= 1

N 2 · min
1≤n≤L

∣∣ f̂ (n, λ)
∣∣2 ·

⎛

⎝
L∑

n=0

dn∑

k=1

∣∣∣∣
N∑

j=1

Yn,k(z j )

∣∣∣∣
2

− N 2

⎞

⎠ , (5.8)

where we used the fact that the term, corresponding to n = 0, is N 2. If we set

L = C ′N 1
d with C ′ being a large dimensional constant, and leave just the diagonal

terms in (2.1), we see that

L∑

n=1

dn∑

k=1

∣∣∣∣
N∑

j=1

Yn,k(z j )

∣∣∣∣
2

≥ c′′N 2.

Therefore, again applying (2.1) of Theorem 2, we arrive at the following corollary:
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Corollary 1 Let f ∈ L2
([−1, 1], (1 − t2)λ− 1

2
)
. For Z = {z1, . . . , zN } ⊂ S

d we have

D2
L2, f (Z) � 1

N
· min
1≤n≤C ′N

1
d

∣∣ f̂ (n, λ)
∣∣2 ·

N∑

i, j=1

log(2 + N 1/d‖zi − z j‖)
(1 + N 1/d‖zi − z j‖)d+1 , (5.9)

where C ′ is a large constant depending only on the dimension.

Such lower bounds, which show that finite point sets cannot be distributed too
uniformly, are a common theme in the subject of irregularities of distribution. Using
the generalized Stolarsky principle (5.5) and relation (5.6) we can also obtain a similar
corollary for the discrete energy:

Corollary 2 Assume that F ∈ C[−1, 1] and F̂(n, λ) ≥ 0 for all n ≥ 1 (i.e., up to the
constant term, F is a positive definite function on the sphere S

d). Then for any point
distribution Z = {z1, . . . , zN } ⊂ S

d

1

N 2

N∑

i, j=1

F(zi ·z j )−IF (σ ) � 1

N
· min
1≤n≤C ′N1/d

F̂(n, λ)·
N∑

i, j=1

log(2 + N 1/d‖zi − z j‖)
(1 + N 1/d‖zi − z j‖)d+1 ,

(5.10)
where C ′ is a large constant depending only on the dimension, and IF (σ ) = ∫

Sd

∫

Sd

F(x ·
y) dσ(x)dσ(y) denotes the energy integral with potential given by F.

Remark The fact that every continuous positive definite function on the sphere can be
represented by (5.6), i.e. has appropriate decay of F̂(n, λ), has been discussed in ([7],
Lemma 2.3).

It is known (see e.g. [7,8]) that for positive definite functions F , the uniform surface
measure σ minimizes the energy with potential F over all Borel probability measures
on S

d . Thus Corollary 2 states, in a quantitative way, that the energy of finite atomic
measures with equal weights cannot be too close to the minimum.

We observe that leaving just the N diagonal terms (i = j) in the right-hand sides
of (5.9) and (5.10) we recover the bounds obtained in ([7],Theorem 4.2):

DL2, f (Z) � min
1≤n≤C ′N

1
d

∣∣ f̂ (n, λ)
∣∣,

1

N 2

N∑

i, j=1

F(zi · z j ) − IF (σ ) � min
1≤n≤C ′N

1
d

F̂(n, λ). (5.11)

Corollaries 1 and 2 add more subtle information to these lower bounds.
Returning to the classical case of the spherical cap discrepancy (5.3), recall that

Beck’s famous result [6], which states that

DL2,cap(Z) � N− 1
2− 1

2d , (5.12)
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for any N -point set in the sphere S
d (and this is optimal up to a logarithmic factor).

Using the fact that (see e.g. [23] or [7])

∫ 1

−1

∣∣ f̂τ (n, λ)
∣∣2 dτ ≈ n−d−1, (5.13)

and repeating the arguments above almost verbatim, but with an additional averaging
in τ , one obtains a refinement of Beck’s original estimate (this refinement has been
stated in §2 as Theorem 3).

Corollary 3 For any point distribution Z = {z1, . . . , zN } ⊂ S
d

D2
L2,cap(Z) �d N−2− 1

d ·
N∑

i, j=1

log (2 + N 1/d‖zi − z j‖)
(1 + N 1/d‖zi − z j‖)d+1 . (5.14)

As before, by considering only the diagonal terms one recovers Beck’s result (5.12),
and the bound (5.15) providesmore information: in particular, if the order ofmagnitude
of the energy on the right-hand side is significantly greater than N , then the spherical
cap discrepancy of Z is necessarily too big. The original Stolarsky principle (5.4) then
leads to the following corollary concerning the sum of Euclidean distances between
N points on the sphere:

Corollary 4 For any point distribution Z = {z1, . . . , zN } ⊂ S
d

Jd − 1

N 2

N∑

i, j=1

‖zi − z j‖ �d N−2− 1
d ·

N∑

i, j=1

log (2 + N
1
d ‖zi − z j‖)

(1 + N
1
d ‖zi − z j‖)d+1

, (5.15)

where

Jd =
∫

Sd

∫

Sd

‖x − y‖ dσ(x) dσ(y) = 2d
[
�

( d+1
2

)]2
√

π�
(
d + 1

2

) .
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