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Abstract. We study energy integrals and discrete energies on the sphere,

in particular, analogs of the Riesz energy with the geodesic distance in place

of Euclidean, and determine that the range of exponents for which uniform
distribution optimizes such energies is different from the classical case. We also

obtain a very general form of the Stolarsky principle, which relates discrete

energies to certain L2 discrepancies, and prove optimal asymptotic estimates
for both objects. This leads to sharp asymptotics of the difference between

optimal discrete and continuous energies in the geodesic case, as well as new

proofs of discrepancy estimates.

1. Introduction

In the present paper we study optimization properties of some energy integrals
and discrete energies on the unit sphere Sd ⊂ Rd+1, particularly those related to
the geodesic distance on the sphere.

Let B denote the collection of all Borel probability measures on Sd. Given a
measure µ ∈ B, define the energy integral IF (µ) of a measurable (non-negative or
bounded) function F : [−1, 1]→ R by

(1.1) IF (µ) :=

∫
Sd

∫
Sd

F (x · y) dµ(x) dµ(y).

We are interested in finding the optimal (maximal or minimal, depending on F )
values of IF (µ) over µ ∈ B, as well as extremal measures µ for which these values
are achieved, i.e. equilibrium distributions with respect to F . In particular, it
is natural to investigate whether the Lebesgue surface measure σ, normalized by
σ(Sd) = 1, is a minimizer (maximizer), and if so, whether it is unique; in other
words, whether optimizing the energy with potential F induces uniform distribu-
tion.

For a finite set of N points Z = {z1, . . . , zN} in Sd, its discrete energy with
respect to F is defined as

(1.2) EF (Z) =
∑

1≤i<j≤N

F (zi · zj).

Note that in the case when F (1) = 0, we have

EF (Z) =
1

2
N2IF (µ) with µ =

1

N

N∑
i=1

δzi ,

1
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where δx is the Dirac mass at x ∈ Sd. Appropriate modifications accounting for the
diagonal terms should be made in the general case. One is interested in optimiz-
ing the discrete energy for a given N , analyzing extremal N -point configurations,
comparing optimal values of the discrete energy to the optimal energy integral, and
finding the asymptotic behavior of this difference.

Such problems arise naturally in various fields, e.g., in electrostatics, in the study
of equilibrium distributions of charges which repel according to the law given by
F . One of the most natural choices of the potential is the so-called Riesz potential
F (x · y) = |x − y|−s, where |x − y| is the Euclidean distance between x and y
in Rd+1. In particular, for d = 2 and s = 1, minimization of the energy (1.2) is
known as Thomson’s problem and amounts to finding the equilibrium (according
to Coulomb’s Law) distributions of N electrons on the sphere. This situation has
been studied extensively and numerous questions posed above are well understood
in this case [8, 10, 12, 19, 24, 34, 35], although precise optimal discrete distributions
are still elusive for most values of N (the problem for N = 5 has only been solved
recently [25]).

While our present work establishes many general facts and relations, we primarily
concentrate on the case, seemingly similar to the classical Riesz energy, that uses
geodesic, rather than Euclidean, distance in the definition of energy. This object
naturally arose in the companion paper of the authors [5] in relation to discrepancy
theory and Stolarsky principle. It has also been considered previously [12, 15, 20, 29]
in various contexts. To make things precise, let ρ(x, y) denote the geodesic distance
between x and y on Sd, i.e.

ρ(x, y) = arccos(x · y).

We shall consider energies defined by the function

Fδ(x · y) =
(
ρ(x, y)

)δ
, i.e. Fδ(t) = (arccos t)δ,

for an arbitrary δ ∈ R \ {0}; for δ = 0, the standard modification is the logarithmic
potential F0(t) = − log

(
1
π arccos t

)
. We would like to characterize extremizers of

the energy integral

(1.3) Id,δ(µ) = IFδ(µ) =

∫
Sd

∫
Sd

(
ρ(x, y)

)δ
dµ(x)dµ(y),

which we shall refer to as the geodesic distance (Riesz) energy . Naturally one is
interested in minimizers when δ ≤ 0 and maximizers for δ > 0.

One may expect that the behavior of the geodesic distance energy should be sim-
ilar to its Euclidean counterpart, i.e. the standard Riesz energy. Perhaps surpris-
ingly, this is not quite the case. In dimension d = 1 (on the circle) this phenomenon
has been previously observed in [13]: in the geodesic case the uniform distribution
σ ceases to be the unique extremizer of Id,δ when δ ≥ 1, while in the case of Riesz
energy the analogous critical value is δ = 2.

In the present work together with our companion paper [5] we prove this fact in
all dimensions d ≥ 1. More precisely, we prove the following theorem:

Theorem 1.1. Let Id,δ(µ) be the geodesic distance energy integral on Sd, with
δ ∈ R, as defined in (1.3). The extremizers of this energy integral over µ ∈ B can
be characterized as follows:
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(i) −d < δ ≤ 0: the unique minimizer of Id,δ(µ) is µ = σ (the normalized surface
measure).

(ii) 0 < δ < 1: the unique maximizer of Id,δ(µ) is µ = σ.
(iii) δ = 1: Id,δ(µ) is maximized if and only if µ is centrally symmetric.
(iv) δ > 1: Id,δ(µ) is maximized if and only if µ = 1

2 (δp + δ−p) for some p ∈ Sd,
i.e. the mass is equally concentrated at two antipodal poles.

We shall present the proof of the first two parts, (i) and (ii), in which optimal
energy leads to uniform distribution (see Theorem 3.1). The last two parts of
Theorem 1.1 can also be obtained by our methods (see Lemma 2.4), besides, they
have been proved by the authors and R. Matzke in [5] via a different approach:
the critical case (iii) is obtained as a consequence of the geodesic distance Stolarsky
principle, relating the hemisphere discrepancy and the geodesic distance energy (see
also §4 in the present paper), while the degenerate case (iv) easily follows from the
critical case.

In the one-dimensional case parts (i) and (ii) of Theorem 1.1 have been previously
established by Brauchart, Hardin, and Saff [13], along with the precise asymptotic
energy of the discrete geodesic energy of N equally spaced points. Immediately
after our result, Tan [33] gave an alternative proof of parts (ii)-(iv) of Theorem 1.1.
See the remark at the very end of §3.

We note that in the case of Riesz energy, i.e. for F (x · y) = |x − y|δ, part (i)
also holds, see e.g. [19], while for δ > 0 the phase transition is different, as was
established by Björck [8]. Here σ is the unique maximizer when δ ∈ (0, 2), while
for δ > 2 the maximizers collapse to symmetric two-point measures as in (iv). At
the critical value δ = 2 the maximizers are precisely those measures whose center
of mass is at the origin. Intuitively, for small values of δ, in particular, when
δ < 0, small scale interactions contribute the most to the energy, therefore (since
ρ(x, y) ≈ |x − y| when x and y are close) both energies exhibit similar behavior,
while for larger values of δ mid-range and long-range interactions come into play
and the difference between geodesic and Euclidean distances manifests itself in the
energy integrals. The restriction that δ > −d is natural for the classical Riesz
energy, since on a d-dimensional manifold, the corresponding energy integral with
δ ≤ −d would be infinite for any µ ∈ B.

Our proofs rely on spherical harmonic expansions. We briefly review the basic
notions in §2, but for a detailed and extensive exposition the reader is directed to,
e.g., [14]. In §2 we discuss connections between the extremizers of energy integrals
and properties of the potential F (signs of the Gegenbauer coefficients, positive
definiteness). Some of these connections are well known in the theory and go back
to Schoenberg [24], while some formulations are new. We would like to point out
that some of these properties are also discussed in our parallel paper [5] without
resorting to (or with minimal use of) spherical harmonics.

In §3 we apply the general results presented in §2 to the specific case of the
geodesic distance energy integral (1.3) and prove parts (i) and (ii) of Theorem 1.1:
these results are contained in Theorem 3.1. Up to some technical details, the proofs
boil down to demonstrating that the Gegenbauer coefficients of the potential are
all positive (negative). Essential computations are carried out in Lemma 3.2.
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In §4 we connect two different objects, which quantify equidistribution: energy
and discrepancy. We show that for all positive definite functions F the difference
between the discrete and continuous energies may be represented as the L2 norm
of a certain discrepancy function (part (i) of Theorem 4.2, see also §5 in [5] for
a more detailed discussion): this is a generalization of the Stolarsky principle in
discrepancy theory [31]. Furthermore, this discrepancy may be estimated using the
function F . In particular, lower bounds involve Gegenbauer coefficients of F (see
part (ii) of Theorem 4.2). We apply these results to give an alternative proof of
a classical bound on the spherical cap discrepancy due to Beck [2], see Theorem 4.3.

Results of Theorem 4.2 can also be used in the opposite direction. In §5 we turn
to the problem of estimating the asymptotic difference between the geodesic dis-
tance energy of the uniform distribution Id,δ(σ) and the corresponding optimal en-
ergy of discrete N -point distributions, as N →∞. Setting Ed,δ(N) = inf

#Z=N
EFδ(Z),

where as before Fδ(t) = (arccos t)δ, and using the results of §4, in Theorem 5.2 we
establish that the asymptotic estimate

Id,δ(σ)− 2

N2
Ed,δ(N) ∼ N−1− δd

holds for −d < δ < 1 (with a logarithmic correction for δ = 0). Note that here
and throughout the paper the symbol ∼ stands for “is of the same order as”; in
other words, f(N) ∼ g(N) means that for some A,B > 0 the inequality Af(N) ≤
g(N) ≤ Bf(N) holds for all N ∈ N. The implicit constants may depend on the
dimension and some other paramteres, but are independent of the number of points
N .

This result closely mirrors the case of the classical Riesz energy, but for the
Euclidean distance this estimate is valid for −d < δ < 2 (this has been established
in a series of papers: [34, 35], [19], and [10]).

In order to prove Theorem 5.2, one needs sharp asymptotic estimates of the
Gegenbauer coefficients of Fδ (while to establish the optimality of Id,δ(σ) in §3, it
suffices to show just that these coefficients are positive). These bounds, which in
the geodesic case are much more complicated than for the Euclidean distance, are
stated in Lemma 5.4 and their rather technical proof is presented in §6.

Acknowledgment. The authors are extremely grateful to CRM (Barcelona): their
collaboration has started while both of them participated in the research program
on “Constructive Approximation and Harmonic Analysis” in 2016. The stay of the
first author at CRM has been sponsored by NSF grant DMS 1613790. This work
is partially supported by NSERC Canada under grant RGPIN 04702 (Dai) and by
the Simons foundation collaboration grant and NSF grant DMS 1665007 (Bilyk).

2. Preliminaries

Let wλ(t) = (1 − t2)λ−
1
2 with λ > 0. Given 1 ≤ p < ∞, we denote by

Lpwλ [−1, 1] the space of all real integrable functions F on [−1, 1] with ‖F‖p,λ :=(∫ 1

−1
|F (t)|pwλ(t) dt

)1/p

< ∞. Every function F ∈ L1
wλ

[−1, 1] has a Gegenbauer
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(ultraspherical) polynomial expansion:

(2.1) F (t) ∼
∞∑
n=0

F̂ (n;λ)
n+ λ

λ
Cλn(t), t ∈ [−1, 1],

where Cλn are Gegenbauer polynomials (see [14] for an extensive discussion) and

F̂ (n;λ) =
Γ(λ+ 1)

Γ(λ+ 1
2 )Γ( 1

2 )

1∫
−1

F (t)Rλn(t)(1− t2)λ−
1
2 dt, n = 0, 1, · · · ,

where Rλn(t) =
Cλn(t)
Cλn(1)

. From now on in this text we shall set the value of λ to

λ =
d− 1

2
.

In the special case λ = 0 (which corresponds to the circle S1) one obtains Chebyshev
polynomials of the first kind Tn(t), which satisfy

1

2
lim
λ→0

n+ λ

λ
Cλn(t) = Tn(t) = cos

(
n arccos t

)
.

Denote by σ the Lebesgue surface measure on Sd normalized by σ(Sd) = 1, and
letHn be the space of all spherical harmonics of degree n on Sd. Let {Yn,1, · · · , Yn,adn}
denote a real orthonormal basis of the space Hn. The addition formula for spherical
harmonics states that (see, for instance, [14, 1.2.8])

(2.2)

adn∑
j=1

Yn,j(x)Yn,j(y) =
n+ λ

λ
Cλn(x · y) for all x, y ∈ Sd,

where

adn =
n+ λ

λ
Cλn(1) = dim Hn ∼ nd−1, λ =

d− 1

2
.

As before we denote the collection of all Borel probability measures on Sd by B,
and δx0

is the Dirac Borel probability measure supported at x0 ∈ Sd. Given µ ∈ B,
define the energy integral IF (µ) of a (bounded or nonnegative) measurable function

F : [−1, 1] → R as in (1.1) by IF (µ) =

∫
Sd

∫
Sd
F (x · y) dµ(x) dµ(y). We have the

following proposition on extremizers of IF (µ) over B:

Proposition 2.1. Let λ = d−1
2 and let F be a continuous function on [−1, 1]. The

following conditions are equivalent:

(a) F̂ (n;λ) ≥ 0 for all n ≥ 1;
(b) the surface Lebesgue measure µ = σ on Sd is a minimizer of the energy integral

IF (µ);

If the above conditions hold, then every Dirac mass µ = δe, e ∈ Sd is a maximizer
of the energy integral IF (µ).

The case when some coefficient F̂ (n;λ) = 0 corresponds to σ not being the only
minimizer. This is made precise in the following statement concerning uniqueness
of extremizers:

Proposition 2.2. Let λ = d−1
2 and let F ∈ C[−1, 1]. The following conditions are

equivalent:
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(a) F̂ (n;λ) > 0 for all n ≥ 1;
(b) the normalized surface measure σ is the unique minimizer of IF (µ);

In this case, every maximizer of IF (µ) is a Dirac mass.

Obviously changing the inequality signs in the above propositions reverts the
roles of maximizers and minimizers. In addition, since adding constants to F does

not change the extremizers of IF (µ), it is natural that F̂ (0;λ) does not play a role
in these statements. In order to prove these statements we shall need the following
technical lemma:

Lemma 2.3. Let F ∈ C[−1, 1] and assume that F̂ (n;λ) ≥ 0 for all n ≥ 1. Then

(2.3)
∞∑
n=1

n2λ F̂ (n;λ) <∞,

which, in particular, will imply that the series on the right hand side of (2.1) con-
verges uniformly and absolutely to the function F on [−1, 1].

Proof. Let σδnF denote the Cesàro (C, δ)-means of the Gegenbauer polynomial ex-
pansion of F (see [14, Section 2.4] for details), i.e.

(2.4) σδnF (t) =
n∑
k=0

Aδn−k
Aδn

k + λ

λ
F̂ (k;λ)Cλk (t), Aδj =

Γ(j + δ + 1)

Γ(j + 1)Γ(δ + 1)
.

It is known (e.g. Theorem 2.4.3 in [14]) that for δ > λ,

lim
n→∞

‖σδnF − F‖L∞[−1,1] = 0, ∀F ∈ C[−1, 1].

On the other hand, since for each fixed j, the sequence {A
δ
n−j
Aδn
}∞n=j increases to 1

as n→∞, it follows by Levi’s monotone convergence theorem that

F (1) = lim
n→∞

σδn(F )(1) = lim
n→∞

n∑
k=0

Aδn−k
Aδn

F̂ (k;λ)
k + λ

λ
Cλk (1) =

∞∑
k=0

F̂ (k;λ)
k + λ

λ
Cλk (1).

This yields (2.3) since (k + λ)Cλk (1) ∼ k2λ as k →∞. �

Remark: The self-improving property (2.3) (positivity of coefficients implies their
decay) has various manifestations in harmonic analysis: e.g., if a function f ∈ L1(T)
has Fourier series

∑
icne

2πinx with cn = −c−n ≥ 0 (i.e. sine series with non-
negative coefficients), then necessarily

∑
n>0

cn
n <∞ (see e.g. [18, page 24]), which

is a direct analog of (2.3).
We now prove Proposition 2.1:

Proof of Proposition 2.1. We first prove that, when (a) holds, σ is a minimizer and
δe is a maximizer of IF (µ) for any e ∈ Sd. Indeed, by (2.3), (2.2) and the dominated
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convergence theorem, it follows that

IF (µ) =
∞∑
n=0

F̂ (n;λ)

∫
Sd

∫
Sd

n+ λ

λ
Cλn(x · y) dµ(x) dµ(y)

=
∞∑
n=0

F̂ (n;λ)

adn∑
j=1

∫
Sd

∫
Sd
Yn,j(x)Yn,j(y) dµ(x)dµ(y)

= F̂ (0;λ) +
∞∑
n=1

F̂ (n;λ)bn,µ,(2.5)

where, by the addition formula (2.2),

(2.6) bn,µ =
n+ λ

λ

∫
Sd

∫
Sd

Cλn(x · y) dµ(x) dµ(y) =

adn∑
j=1

(∫
Sd

Yn,j(x) dµ(x)

)2

≥ 0.

Using the Cauchy–Schwarz inequality and (2.2) with x = y, we obtain

0 ≤ bn,µ ≤
∫
Sd

adn∑
j=1

|Yn,j(x)|2 dµ(x) = adn.(2.7)

Thus, if F̂ (n;λ) ≥ 0 for all n ≥ 1, then by (2.5) and (2.7), one has

IF (µ) ≥ F̂ (0;λ) = IF (σ) and

IF (µ) ≤ F̂ (0;λ) +
∞∑
n=1

F̂ (n;λ)adn = F (1) = IF (δe),

i.e. σ and δe are a minimizer and a maximizer of the integral IF (µ), respectively.

Conversely, if F̂ (n;λ) < 0 for some n ≥ 1, then define µ by setting dµ(x) =(
1 + εYn,1(x)

)
dσ(x), where ε > 0 is chosen small enough so that 1 + εYn,1(x) ≥ 0

on Sd. The Funk–Hecke formula (see, e.g., Theorem 1.2.9 in [14]) states that for
any spherical harmonic Y ∈ Hn∫

Sd

F (x · y)Y (x)dσ(x) = F̂ (n;λ)Y (y).

Thus, using the fact that
∫
Sd Yn,1(x)dσ(x) = 0, we find that µ ∈ B and

IF (µ) =

∫
Sd

∫
Sd

F (x · y)
(
1 + εYn,1(x)

)(
1 + εYn,1(y)

)
dσ(x) dσ(y)(2.8)

= IF (σ) + ε2 F̂ (n;λ)

∫
Sd

Y 2
n,1(y)dσ(y) < IF (σ),

i.e. σ is not a minimizer of IF . �

Remark: We observe that the fact that δe maximizes IF is not equivalent to
conditions (a)-(b) of Proposition 2.1. Indeed, a sufficient condition for this is that
maxt∈[−1,1] F (t) = F (1), since then for each µ ∈ B, we have IF (µ) ≤ ‖F‖∞ =

F (1) = IF (δe). For example, for F (t) = −
(

arccos t
)2

, the maximizer is obviously
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δe, while the minimizer is not σ: according to part (iv) of Theorem 1.1, minimizers
are measures of the form 1

2 (δe + δ−e).
We now prove Proposition 2.2 about the uniqueness of minimizers.

Proof of Proposition 2.2. Suppose that (a) holds, i.e. F̂ (n;λ) > 0 for all n ≥ 1.

In this case, by (2.5), the equality IF (µ) = F̂ (0;λ) = IF (σ) holds if and only if
bn,µ = 0 for all n ≥ 1, i.e. if and only if

∫
Sd g(x) dµ(x) = 0 for all g ∈ Hn and

n ≥ 1. This last condition implies that for each spherical polynomial P on Sd,∫
Sd

P (x) dµ(x) =

∫
Sd

P (x) dσ(x).

By the density of spherical polynomials in the space C(Sd), we then conclude that
dµ = dσ.

Next, we show that if µ0 ∈ B is a maximizer of IF (µ), then µ0 = δe for some
e ∈ Sd. To see this, we first note that according to (2.5), (2.6) and (2.7), in order
that

IF (µ0) = max
µ∈B

IF (µ) = IF (δe) = F̂ (0;λ) +

∞∑
n=1

F̂ (n;λ)adn,

it is necessary that(∫
Sd

Yn,j(x) dµ0(x)
)2

=

∫
Sd

|Yn,j(x)|2 dµ0(x), ∀n ≥ 1, ∀1 ≤ j ≤ adn,

or equivalently,

Yn,j(x) ≡ constant µ0-a.e. on Sd, ∀n ≥ 1, ∀1 ≤ j ≤ adn,

which in turn implies that each spherical polynomial is constant µ0-a.e. on Sd.
Since the space of spherical polynomials is dense in C(Sd), we further conclude
that every continuous function on Sd is constant µ0-a.e. on Sd.

Assume that the support of µ0 contains at least two distinct points e0 6= e1.
(Recall that suppµ0 is the complement of the union of all open sets U with µ0(U) =
0.) Choose open neighborhoods Ui of ei such that µ0(Ui) > 0 and U0∩U1 = ∅, and
construct a function f ∈ C(Sd) with f |Ui = i. Then f is not constant µ0-a.e. on
Sd. Thus suppµ0 contains only one point, and hence µ0 is a Dirac mass.

If we assume that (a) fails, i.e. F̂ (n;λ) = 0 for some n ≥ 1 (if F̂ (n;λ) < 0, then
σ is not a minimizer by Proposition 2.1), then the argument of (2.8) shows that
for dµ(x) =

(
1 + εYn,1(x)

)
dσ(x) we have IF (µ) = IF (σ), i.e. σ is not a unique

minimizer. �

We would like to note that functions with F̂ (n;λ) ≥ 0 for all n ≥ 1 are, up to
constant terms, positive definite functions on the sphere . This class was introduced
by Schoenberg [24] also in the context of energy optimization. See the discussion
in the beginning of §4.

In the end of this section we state some additional results about the extremizers
of IF in terms of the signs of the Gegenbauer coefficients F̂ (n;λ), which may be
proved by identical arguments. These statements could be used to prove parts (iii)
and (iv) of Theorem 1.1, which were proved in [5] by other means.

Lemma 2.4. Let F ∈ C[−1, 1] and λ = d−1
2 .
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(i) If (−1)nF̂ (n;λ) ≥ 0 for all n ≥ 1, then

max
µ∈B

IF (µ) = F̂ (0;λ) +
∞∑
n=1

F̂ (2n;λ)ad2n =
F (1) + F (−1)

2
= IF

(
δe + δ−e

2

)
.

Moreover, if (−1)nF̂ (n;λ) > 0 for all n ≥ 1, then any maximizer of IF is of
the form µ = 1

2 (δe + δ−e) for some e ∈ Sd.

(ii) If F̂ (2n;λ) = 0 and F̂ (2n− 1;λ) ≤ 0 for all n ∈ N, then

max
µ∈B

IF (µ) = F̂ (0;λ),

and, in addition, any symmetric measure µ (i.e. such that µ(E) = µ(−E) for
all measurable E ⊂ Sd) is a maximizer of IF .

If F̂ (2n;λ) = 0 and F̂ (2n− 1;λ) < 0 for all n ∈ N, then µ is a maximizer of
IF if and only if µ is symmetric.

3. Geodesic distance Riesz energy integrals

We now apply the results of the previous section to the specific case of the
geodesic distance energy integral (1.3). In order to avoid singularities, we introduce
standard modifications of the potentials. For t ∈ [−1, 1] and 0 ≤ ε < 1, we define
as in (1.3)

Fδ,ε(t) =

{
(ε+ arccos t)δ, if δ 6= 0;

log
(

π
ε+arccos t

)
, if δ = 0.

We write Fδ(t) = Fδ,0(t). For µ ∈ B, define

Id,δ(µ) := IFδ(µ) =

∫
Sd

∫
Sd

Fδ(x · y) dµ(x)dµ(y).

The main goal in this section is to show the following theorem, which constitutes
parts (i) and (ii) of Theorem 1.1.

Theorem 3.1. The normalized Lebesgue measure σ on Sd is the unique maximizer
for the integral Id,δ(µ), when δ ∈ (0, 1), and is the unique minimizer of Id,δ(µ),
when −d < δ ≤ 0.

The following lemma plays a crucial role in the proof of Theorem 3.1.

Lemma 3.2. Let ε ∈ [0, 1) and λ > 0. For δ > −(2λ+ 1), define

Iδn,ε :=

∫ 1

−1

Fδ,ε(t)C
λ
n(t)(1− t2)λ−

1
2 dt, n = 0, 1, · · · .

Then the following statements hold:

(i) If δ ∈ (0, 1), then Iδn,ε < 0 for all n = 1, 2, · · · .
(ii) If −(2λ+ 1) < δ ≤ 0, then Iδn,ε > 0 for n = 0, 1, 2, · · · .

Proof. (i) By Rodrigues’ formula for ultraspherical polynomials (see, for instance,
[32, 4.1.72]),

Cλn(t) =
(−1)n2n

n!

Γ(n+ λ)Γ(n+ 2λ)

Γ(λ)Γ(2n+ 2λ)
(1− t2)−(λ− 1

2 )
( d
dt

)n
(1− t2)n+λ− 1

2 ,
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and the fact that Cλn(−t) = (−1)nCλn(t) for all t ∈ [−1, 1], it is easily seen from
integration by parts that for k, n = 0, 1, · · · ,∫ 1

−1

tkCλn(t)(1− t2)λ−
1
2 dt

{
> 0, if k ≥ n and k − n is even,

= 0, otherwise.
(3.1)

Thus, for the proof of assertion (i), it is sufficient to show that for δ ∈ (0, 1),

(3.2) Fδ,ε(t) = a0(ε) +
∞∑
k=1

ak(ε)tk, |t| < 1 with ak(ε) < 0 for k = 1, 2, · · · .

Indeed, once (3.2) is proved, we obtain from (3.1) that for n ≥ 1,

Iδn,ε =
∞∑
k=0

ak(ε)

∫ 1

−1

tkCλn(t)(1− t2)λ−
1
2 dt

= −
∞∑
j=0

|an+2j(ε)|
∫ 1

−1

tn+2jCλn(t)(1− t2)λ−
1
2 dt < 0.

To show (3.2), we use the Maclaurin series of the function arccos t on the interval
[−1, 1]:

(3.3) arccos t =
π

2
−
∞∑
n=0

(
2n
n

)
4n(2n+ 1)

t2n+1 =:
π

2
−A(t), |t| ≤ 1.

The main point in (3.3) lies in the fact that

(3.4) A(t) :=

∞∑
n=0

(
2n
n

)
4n(2n+ 1)

t2n+1

is an odd power series with positive coefficients. Clearly,

|A(t)| =
∣∣∣π
2
− arccos t

∣∣∣ < π

2
, t ∈ (−1, 1).(3.5)

Thus, using (3.3) and (3.5), we obtain that for t ∈ (−1, 1) and ε ∈ [0, 1),

Fδ,ε(t) =
(π

2
+ ε
)δ(

1− 2A(t)

π + 2ε

)δ
=
(π

2
+ ε
)δ

+
( π

2 + ε

)δ ∞∑
j=1

bδj

( 2A(t)

π + 2ε

)j
,

where

bδj =
(−1)jδ(δ − 1) · · · (δ − j + 1)

j!
= −δ(1− δ) · · · (j − 1− δ)

j!
.

Clearly, each bδj (j ≥ 1) is negative for δ ∈ (0, 1). Then (3.2) follows from (3.4).

(ii) As in the proof of assertion (i) , it suffices to show that Fδ,ε(t) has a Maclaurin
series representation with positive coefficients on the interval [−1, 1]. For δ = 0, we
use the Maclaurin series of the function log(1 − t) on the interval (−1, 1):

log(1− x) = −
∞∑
n=1

xn

n
, |x| < 1.
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We then obtain from (3.5) that for t ∈ (−1, 1),

F0,ε(t) = log
2π

π + 2ε
− log

(
1− 2A(t)

π + 2ε

)
= log

2π

π + 2ε
+
∞∑
n=1

1

n

( 2A(t)

π + 2ε

)n
.(3.6)

For δ = −s < 0, we have

Fδ,ε(t) =
(π

2
+ ε−A(t)

)−s
=
( 2

π + 2ε

)−s ∞∑
j=0

s(s+ 1) · · · (s+ j − 1)

j!

( 2A(t)

π + 2ε

)j
.(3.7)

Combining (3.6), (3.7) with (3.4), we conclude that if δ ∈ (−2λ−1, 0] and ε ∈ [0, 1),
then all the coefficients of the Maclaurin series of the function Fδ,ε(t) are positive.
Assertion (ii) then follows by (3.1). �

We are now in a position to show Theorem 3.1.

Proof of Theorem 3.1. For δ ∈ (0, 1), the function Fδ(t) is continuous on [−1, 1],
and hence the stated assertion follows directly from Proposition 2.2 and part (i) of
Lemma 3.2.

For −d < δ ≤ 0, the function Fδ is not continuous at t = 1 and, therefore, we
need a slight modification of the proof. For the moment, we assume that δ 6= 0 and
write δ = −s with 0 < s < d. Recall that for each ε ∈ (0, 1),

Fδ,ε(t) =
(

arccos t+ ε
)−s

, t ∈ [−1, 1],

and by part (ii) of Lemma 3.2,

F̂δ,ε(n;λ) = cn

∫ 1

−1

Fδ,ε(t)C
λ
n(t)(1− t2)λ−

1
2 dt > 0, n = 0, 1, · · · .

Using Proposition 2.1, we conclude that Iµ(Fδ,ε) has a unique minimizer dσ. Hence,
for any µ ∈ B and any ε > 0,∫

Sd

∫
Sd

(
ρ(x, y)

)−s
dµ(x) dµ(y) ≥

∫
Sd

∫
Sd

(
ε+ ρ(x, y)

)−s
dµ(x) dµ(y)

≥
∫
Sd

∫
Sd

(
ε+ ρ(x, y)

)−s
dσ(x) dσ(y).

Letting ε→ 0, and using the monotone convergence theorem, we get∫
Sd

∫
Sd

(
ρ(x, y)

)−s
dµ(x) dµ(y) ≥

∫
Sd

∫
Sd

(
ρ(x, y)

)−s
dσ(x) dσ(y), ∀µ ∈ B.

This shows that σ is a minimizer of IFδ(µ) for 0 < s = −δ < d.
Next, we show the minimizer is unique. Let µ0 ∈ B. If dµ0 6= dσ, then there

must exist a spherical harmonic P of degree n0 ≥ 1 with ‖P‖2 = 1 such that
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Sd P (x) dµ0(x) 6= 0. By (2.6), this implies that

bn0,µ0 =
n0 + λ

λ

∫
Sd

∫
Sd

Cλn0
(x · y) dµ0(x) dµ0(y)

≥
(∫
Sd

P (x) dµ0(x)
)2

≥ c > 0.

However, according to (2.5), we have that for any ε ∈ (0, 1),

IFδ(µ0) ≥ IFδ,ε(µ0) ≥ F̂δ,ε(0;λ) + F̂δ,ε(n0;λ)bn0,µ0 .

Letting ε→ 0, we obtain from part (ii) of Lemma 3.2 (ii) that

IFδ(µ0) ≥ IFδ(σ) + F̂δ(n0;λ)bn0,µ0 > IFδ(σ).

Since µ0 is an arbitrary Borel probability measure on Sd, this shows the unique-
ness of the minimizer. Finally, we point out that the above proof with a slight
modification works equally well for the case δ = 0. �

The methods employed here are quite standard in the context of energy optimiza-
tion on the sphere (see, e.g., [19] for the classical Riesz energy). While Theorem
3.1 covers parts (i) and (ii) of Theorem 1.1, the remaining two cases (proved in
[5]) could be proved in the same way, using the above computations and results of
Lemma 2.4.

Notice that we have, in fact, used Taylor expansions of the underlying function
F in order to obtain information about the signs of the ultraspherical coefficients.
Recently, after the first author’s presentation of the results of this paper and [5],
Y.S. Tan [33] found a beautiful alternative proof of parts (ii)-(iv) of Theorem 1.1,
which involves only Taylor series and uses an interesting “tensorization trick”. It
does not resort to the use of spherical harmonics. This method is somewhat less
general than the one presented in §2, since it requires F to be analytic.

4. Discrepancy and the Stolarsky principle

Let us denote by Φd the set of all continuous functions F on [−1, 1] for which

F̂ (n;λ) ≥ 0 for all n ∈ N ∪ {0}, where, as before, λ = d−1
2 . Functions in the class

Φd are known as positive definite functions on the sphere and, up to constants,
are precisely the functions discussed in §2 (Proposition 2.1). Their connection to
energy optimization is well known [24]. There is a variety of characterizations of
the class Φd, but we shall particularly use the following.

Lemma 4.1. A function F ∈ Φd if and only if there exists a function f ∈
L2
wλ

[−1, 1] such that

(4.1) F (x · y) =

∫
Sd

f(x · z)f(z · y) dσ(z), x, y ∈ Sd.

Proof. The sufficiency part is obvious. Indeed, if (4.1) holds for some f ∈ L2
wλ

[−1, 1],

then F is continuous and F̂ (n;λ) = |f̂(n, λ)|2 ≥ 0 for all n = N ∪ {0}.
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It remains to show the neccesity. Let F be a continuous function on [−1, 1] such

that F̂ (n;λ) ≥ 0 for all n ≥ 0. Define

f(t) =
∞∑
n=0

√
F̂ (n;λ)

n+ λ

λ
Cλn(t), t ∈ [−1, 1].

f is a well defined function in L2
wλ

[−1, 1] since, by Plancherel’s formula and (2.3),

cd

∫ 1

−1

|f(t)|2(1− t2)λ−
1
2 dt =

∞∑
n=0

F̂ (n;λ)
n+ λ

λ
Cλn(1) <∞.

Furthermore, (4.1) holds since F̂ (n;λ) = |f̂(n, λ)|2 for all n ≥ 0. �

Observe that the relation f̂(n, λ) = ±
√
F̂ (n;λ) implies that there are infinitely

many choices of the function f .
For the rest of this section, we will assume that F ∈ Φd, and f ∈ L2

wλ
[−1, 1] is

chosen so that (4.1) is satisfied.
Given a finite set of points Z = {z1, · · · , zN} ⊂ Sd, we define its L2 discrepancy

with respect to a function f : [−1, 1]→ R by

DL2,f (Z) =
(∫
Sd

∣∣∣∫
Sd

f(x · y) dσ(y)− 1

N

N∑
j=1

f(x · zj)
∣∣∣2 dσ(x)

) 1
2

.(4.2)

We define the optimal L2 discrepancy by setting

DL2,f,N = inf
Z
DL2,f (Z),

where the infimum is taken over all Z ⊂ Sd with #Z = N . The discrepancy
DL2,f (Z) measures the uniformity of the finite distribution of points Z with respect
to the function f . Choosing, for example, ft(τ) = 1[1−t,1](τ) and averaging over
t ∈ [−1, 1], one obtains the well-studied spherical cap discrepancy, see (4.12).

The link between discrepancy and energy on the sphere has been first estab-
lished by Stolarsky [31] who established an identity relating the spherical cap L2

discrepancy and the sum of pairwise Euclidean distances between the points of Z.
Identities of this type came to be known as instances of the Stolarsky invariance
principle. There has been an increase of activity on this subject in the recent years
[7, 9, 11, 22, 26, 27, 28]. In our companion paper [5] we explore a number of vari-
ations of this principle and its applications to energy optimization, in particular,
part (iii) of Theorem 1.1.

Here we present a general form of the Stolarsky principle, which relates the
discrepancy DL2,f (Z), the discrete energy EF (Z), and the energy integral IF (σ).
We also apply this principle to estimating the optimal discrepancy DL2,f,N .

Theorem 4.2. Let λ = d−1
2 . Assume that F ∈ Φd and f ∈ L2

wλ
[−1, 1] satisfy

relation (4.1).

(i) (Stolarsky principle) Given a set of N -points Z = {z1, · · · , zN} ⊂ Sd,

N−2
N∑
i=1

N∑
j=1

F (zi · zj) = D2
L2,f (Z) +

∫
Sd

∫
Sd

F (x · y) dσ(x)dσ(y).(4.3)
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(ii) There exist constants cd, Cd > 0, such that for any N ∈ N,

Cd min
1≤k≤cdN1/d

F̂ (k, λ) ≤ D2
L2,f,N ≤ N−1 max

0≤t≤cdN−1/d

(
F (1)− F (cos t)

)
.(4.4)

We make a few remarks before proceeding to the proof of this theorem. First of
all, notice that (4.3) implies that minimizing the discrete energy EF (Z) is equivalent
to minimizing the discrepancy DL2,f (Z). Moreover, the square of this discrepancy
yields the difference between the discrete energy and the optimal energy integral, a
quantity which will be investigated more deeply in the following section, §5. We also
observe that, while this approach is rather general, it is somewhat indirect, since it
is not easy to explicitly find the function f for a given F (and vice versa). However,

since F̂ (n;λ) = |f̂(n, λ)|2, the lower bound in (4.4) may be used to estimate both
discrepancy and energy.

We also would like to point out that the lower bound in (4.4) is very similar in
spirit to Montgomery’s lower bound on the L2 discrepancy with respect to disks in
Td, where an analogous lower bound is obtained in terms of the Fourier coefficients
(see [21]). This idea has been further explored in [6, 30].

Finally, the lower estimate in (4.4) is in certain sense sharp. In particular,
the minimum cannot be replaced by some averages. For example, let F (t) = t2m,
m ∈ N. According to (3.1), F ∈ Φd. The lower bound trivially yields zero, since the

odd coefficients F̂ (2k+1, λ) vanish. And there indeed exist finite point distributions
for which this estimate is exact: these are the so-called spherical 2k-designs, i.e.
cubature formulas which integrate polynomials of degree up to 2k exactly (for recent
sharp results on the existence of spherical designs of optimal order see [4]). Since
in this case F (x · y) is a polynomial of degree 2m in both x and y, it follows that
the discrete sum in (4.3) is equal to the continuous energy integral, i.e. the L2

discrepancy is zero.

Proof. (i) This identity can be verified by a direct computation involving definition
(4.2) and relation (4.1). Indeed, we have

D2
L2,f (Z) =

∫
Sd

∫
Sd

∫
Sd

f(x · y)f(x · y′)dσ(y)dσ(y′)dσ(x)

− 2

N

N∑
i=1

∫
Sd

∫
Sd

f(x · y)f(x · zi)dσ(y)dσ(x)

+
1

N2

N∑
i=1

N∑
j=1

∫
Sd

f(x · zi)f(x · zj)dσ(x)

= IF (σ)− 2

∫
Sd

F (y · z1)dσ(y) +
1

N2

N∑
i,j=1

F (zi · zj)

=
1

N2

N∑
i,j=1

F (zi · zj)− IF (σ),

where we have used the fact that, due to rotational invariance, for any p ∈ Sd
we have

∫
Sd F (y · p)dσ(y) = IF (dσ). An even more general form of the Stolarsky

principle is proved in Theorem 5.10 of our parallel paper [5], which, in particular,
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gives an alternative proof of the fact that σ minimizes IF for F ∈ Φd.

(ii) We start with the proof of the upper estimate:

(4.5) D2
L2,f,N ≤ N−1 max

0≤t≤cdN−
1
d

(
F (1)− F (cos t)

)
.

The proof follows along the same lines as that of Theorem 1 of [19]. Let {R1, · · · , RN}
be a partition of Sd such that (see, for instance, [14, Sec. 6.4, p. 140])

σ(Rj) =
1

N
and diam(Rj) ≤ cdN−

1
d , j = 1, 2, · · · , N.

Denote by σ∗j the restriction of the measure Nσ to Rj , and let ΩN = R1×· · ·×RN
denote the product measure space with probability measure dσ∗1 ×· · ·×dσ∗N . Then

D2
L2,f,N ≤ N−2

∫
Sd

∫
ΩN

∣∣∣ N∑
j=1

[
f(x · zj)−

∫
Rj

f(x · z) dσ∗j (z)
]∣∣∣2×

× dσ∗1(z1) · · · dσ∗N (zN ) dσ(x)

= N−2

∫
Sd

N∑
j=1

[∫
Rj

|f(x · z)|2 dσ∗j (z)−
(∫

Rj

f(x · z) dσ∗j (z)
)2]

dσ(x)

= N−1F (1)−
N∑
j=1

∫
Sd

(∫
Rj

f(x · z) dσ(z)
)2

dσ(x).(4.6)

Note, however, that for each 1 ≤ j ≤ N ,∫
Sd

(∫
Rj

f(x · z) dσ(z)
)2

dσ(x) =

∫
Sd

∫
Rj

∫
Rj

f(x · z)f(x · y) dσ(z) dσ(y) dσ(x)

=

∫
Rj

∫
Rj

F (y · z) dσ(y) dσ(z) ≥ N−2 min
0≤t≤cdN−

1
d

F (cos t).(4.7)

Combining (4.6) with (4.7), we deduce estimate (4.5).
Next, we prove the lower estimate:

(4.8) D2
L2,f,N ≥ Cd min

1≤k≤cdN1/d
F̂ (k, λ).

Let a > 1 be a large parameter depending only on d such that n := aN1/d is
an integer. Let Kn(t) denote the Cesàro kernel of order d + 1 for the spherical
harmonic expansions on Sd; that is,

Kn(t) =
n∑
k=0

Ad+1
n−k

Ad+1
n

k + λ

λ
Cλk (t), t ∈ [−1, 1],

where the coefficients Ajn are defined in (2.4). It is known that (see, for instance,
[3] and [1, Theorem 7.6.1, p. 389])

0 ≤ Kn(cos θ) ≤ Cnd(1 + nθ)−d−1, ∀θ ∈ [0, π].
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We claim that for each ZN = {z1, · · · , zN} ⊂ Sd,

(4.9)

∫
Sd

∣∣∣1−N−1
N∑
j=1

Kn(x · zj)
∣∣∣2 dσ(x) ≥ cd > 0.

To see this, we first note that Bernstein’s inequality for trigonometric polynomials
implies that

(4.10) min
0≤θ≤ 1

2n

Kn(cos θ) ≥ 1

2
Kn(1) =

1

2
‖Kn‖∞ ≥ cdnd.

Next, let {R1, · · · , RN1
} be an area-regular partition of Sd such that N1 = Cd,aN ,

σ(Rj) = 1
N1

and diam(Rj) ≤ 1
2n for 1 ≤ j ≤ N1. Set

Λ :=
{
j : 1 ≤ j ≤ N1, Rj ∩ ZN 6= ∅

}
.

Using (4.10) and positivity of the kernel Kn, we have that for each x ∈ Rj with
j ∈ Λ,

1

N

N∑
i=1

Kn(x · zi) ≥
1

N

∑
z∈ZN∩Rj

Kn(x · z) ≥ cd
nd

N
·#{Rj ∩ ZN}

= cda
d ·#{Rj ∩ ZN} > 2#{Rj ∩ ZN},

provided that the parameter a is large enough. It then follows that∫
Sd

∣∣∣1−N−1
N∑
i=1

Kn(x · zi)
∣∣∣2 dσ(x) ≥

∑
j∈Λ

∫
Rj

∣∣∣1− 1

N

N∑
i=1

Kn(x · zi)
∣∣∣2 dσ(x)

≥ 1

N1

∑
j∈Λ

|#(Rj ∩ ZN )|2 ≥ 1

N1

∑
j∈Λ

#(Rj ∩ ZN ) =
N

N1
≥ 1

Cd,a
> 0.

This proves the claim (4.9). We are now ready to show the lower estimate (4.8).
Recall that

f(x · e) =
∞∑
k=0

f̂(k;λ)
k + λ

λ
Cλk (x · e), ∀e ∈ Sd,

where the series converges in the norm of L2(Sd), and f̂(0;λ) =
∫
Sd f(x · z) dσ(z)

for any x ∈ Sd. Thus, by orthogonality of spherical harmonics, we obtain∫
Sd

∣∣∣∫
Sd

f(x · z) dσ(z)−N−1
N∑
j=1

f(x · zj)
∣∣∣2 dσ(x)

=

∫
Sd

∣∣∣ ∞∑
k=1

f̂(k, λ)
k + λ

λ
N−1

N∑
j=1

Cλk (x · zj)
∣∣∣2 dσ(x)

=
∞∑
k=1

F̂ (k, λ)
∥∥∥k + λ

λ
N−1

N∑
j=1

Cλk (〈zj , ·〉)
∥∥∥2

2
.
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Since
Ad+1
n−j

Ad+1
n
≤ 1 for all 0 ≤ j ≤ n, it follows that

∫
Sd

∣∣∣∫
Sd

f(x · z) dσ(z)−N−1
N∑
j=1

f(x · zj)
∣∣∣2 dσ(x)

≥
n∑
k=1

F̂ (k, λ)
∣∣∣Ad+1

n−k

Ad+1
n

∣∣∣2∥∥∥k + λ

λ
N−1

N∑
j=1

Cλk (〈zj , ·〉)
∥∥∥2

2
,(4.11)

which, by (4.9), is bounded below by

(
min

1≤k≤n
F̂ (k, λ)

)∫
Sd

∣∣∣1−N−1
N∑
j=1

Kn(x · zj)
∣∣∣2 dσ(x)

≥ Cd min
1≤k≤n

F̂ (k, λ).

This yields the desired lower estimate (4.8). �

Using Theorem 4.2, one can give a new simpler proof of a well-known result of
Beck [2] regarding the lower estimate of the spherical cap discrepancy:

(4.12) DL2,cap(ZN )2 :=

1∫
−1

∫
Sd

∣∣∣#(ZN ∩B(x, t))

N
− σ(B(x, t))

∣∣∣2 dσ(x) dt,

where ZN := {z1, · · · , zN} is a set of N -distinct points on Sd and

B(x, t) := {y ∈ Sd : x · y ≥ t}, x ∈ Sd, t ∈ [−1, 1].

Corollary 4.3. [2, J. Beck, 1984] Given an arbitrary set ZN of N -distinct points
on the sphere Sd,

DL2,cap(ZN ) ≥ CdN−
1
2−

1
2d .

Proof. Let ft(s) = χ[t,1](s) for t, s ∈ [−1, 1]. Using the formula,

d

dx

(
Cλ+1
n−1(x)(1− x2)λ+ 1

2

)
= −n(n+ 2λ)

2λ
Cλn(x)(1− x2)λ−

1
2 ,

we have

f̂t(n;λ) = cλ
Γ(n+ 1)

Γ(n+ 2λ)

∫ 1

t

Cλn(x)(1− x2)λ−
1
2 dx = cd(1− t2)λ+ 1

2Rλ+1
n−1(t).

This implies that∫ 1

−1

|f̂t(n;λ)|2 dt ∼
∫ 1

−1

∣∣Rλ+1
n−1(t)

∣∣2(1− t2)2λ+1 dt ∼ n−2λ−2 = n−d−1,

where the second step uses the known estimates on integrals of Jacobi polynomials
(see, for instance, [32, Ex. 91, p. 391]).
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On the other hand, using (4.11) and (4.9), with n ∼ N1/d, we have

DL2,cap(A)2 =

∫ 1

−1

DL2,ft(ZN )2 dt

≥
n∑
k=1

∫ 1

−1

|f̂t(k, λ)|2 dt
∣∣∣Ad+1

n−k

Ad+1
n

∣∣∣2∥∥∥k + λ

λ
N−1

N∑
j=1

Cλk (〈zj , ·〉)
∥∥∥2

2

≥
(

min
1≤k≤n

∫ 1

−1

|f̂t(k, λ)|2 dt
)∫

Sd

∣∣∣1−N−1
N∑
j=1

Kn(x · zj)
∣∣∣2 dσ(x)

≥ Cd min
1≤k≤n

∫ 1

−1

|f̂t(k, λ)|2 dt ≥ cdn−d−1 ∼ N−1− 1
d .

�

5. Discrete Riesz energy

Now that we understand that the energy Id,δ(σ) is optimal for −d < δ < 1, it
is natural to investigate how well it can be approximated by discrete distributions.
We define the appropriate discrete energy in accordance with (1.2).

Definition 5.1. For δ > −d and δ 6= 0, define the discrete δ-energy of a finite
subset ZN = {z1, · · · , zN} of N distinct points on Sd by

Ed,δ(ZN ) :=
∑

1≤i<j≤N

ρ(zi, zj)
δ,

where ρ(x, y) = arccos(x · y) is the geodesic distance between x and y on Sd. The
discrete N -point δ-energy of Sd is defined by

Ed,δ(N) := inf
ZN

Ed,δ(ZN ),

where the infimum is taken over all N -point subsets of Sd (and infimum is replaced
by supremum for δ > 0).

Notice that, when δ > 0, we have

Id,δ
(
N−1

N∑
i=1

δzi
)

=
2

N2
Ed,δ(ZN ),

while this energy integral is infinite for δ ≤ 0 because of diagonal terms.
Our main result in this section can be stated as follows:

Theorem 5.2. Let d ≥ 2. If −d < δ < 1 and δ 6= 0, then

Id,δ(σ)− 2

N2
Ed,δ(N) ∼ N−1− δd .

In the logarithmic case, δ = 0, we have the estimate

Id,0(σ)− 2

N2
Ed,0(N) ∼ N−1 logN.

Remark 5.3. For the discrete δ-Riesz energy defined with respect to the Euclidean
distance on Sd, similar results were previously established for −d < δ < 2 in a series
of papers (see [12, Proposition 2] and also [10, 19, 23, 34, 35]).
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Recall that for δ > −d and δ 6= 0,

Id,δ(σ) =

∫
Sd

∫
Sd

ρ(x, y)δ dσ(x)dσ(y) =
Γ(d+1

2 )

Γ(d2 )Γ( 1
2 )

∫ π

0

θδ sind−1 θ dθ.

The following lemma is needed in the proof of the lower estimates in Theorem 5.2:

Lemma 5.4. If λ > 0 and 0 < δ < 1, then

−
∫ π

0

θδRλn(cos θ)(sin θ)2λ dθ ∼ n−2λ−1−δ, n = 1, 2, · · · ,

where Rλn(t) =
Cλn(t)
Cλn(1)

.

We postpone the proof of Lemma 5.4 to the next section. For the moment, we
take it for granted, and proceed with the proof of Theorem 5.2.

5.1. Proof of Theorem 5.2 for 0 < δ < 1. By part (i) of Lemma 3.2, the function

F (t) =
(
π
2

)δ
− (arccos t)δ belongs to the class Φd for δ ∈ (0, 1). Furthermore, by

Lemma 5.4, we have that

(5.1) F̂ (k;λ) = −cλ
∫ π

0

θδRλk(cos θ)(sin θ)2λ dθ ∼ k−d−δ, k = 1, 2 · · · .

Hence, applying the Stolarsky principle (part (i) of Theorem 4.2), we find that
for ZN = {z1, · · · , zN} ⊂ Sd,

2

N2
Ed,δ(ZN ) =

1

N2

N∑
i=1

N∑
j=1

ρ(zi, zj)
δ = Id,δ(σ)−DL2,f (ZN )2,

and hence

Id,δ(σ)− 2

N2
Ed,δ(ZN ) = D2

L2,f (ZN ).

By part (ii) of Theorem 4.2, we have

inf
ZN

DL2,f (ZN )2 ≤ cdN−1 max
0≤θ≤cN−

1
d

θδ ≤ cdN−1− δd ,

whereas by (5.1) and part (ii) of Theorem 4.2, for any ZN ,

DL2,f (ZN )2 ≥ c min
1≤k≤cdN

1
d

F̂ (k;λ) ≥ cdN−1− δd .

This completes the proof of the theorem for 0 < δ < 1.

5.2. Proof of Theorem 5.2 for −d < δ < 0. For convenience, we set δ = −s
with 0 < s < d. We start with the proof of the upper estimate:

(5.2)
2

N2
Ed,−s(N) ≤ Id,δ(σ)− cdN−1− δd .

Let ε ∈ (0, 1), and set

F−s,ε(t) = (arccos t+ ε)−s, t ∈ [−1, 1].
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Then according to Lemma 3.2, F−s,ε ∈ Φd. Thus, by the Stolarsky principle (part
(i) of Theorem 4.2),

2N−2
∑

1≤i<j≤N

(ρ(zi, zj) + ε)−s +N−1ε−s(5.3)

= D2
L2,f−s,ε

(ZN ) +

∫
Sd

∫
Sd

(ρ(x, y) + ε)−s dσ(x) dσ(y).

We then use (5.3) and part (ii) of Theorem 4.2 to obtain

inf
ZN

∑
1≤i<j≤N

(ρ(zi, zj) + ε)−s =
1

2
N2D2

L2,f−s,ε,N
− 1

2
Nε−s

+
1

2
N2

∫
Sd

∫
Sd

(ρ(x, y) + ε)−s dσ(x)dσ(y)

≤ N

2

(
F−s,ε(1)− min

|θ|≤cdN−
1
d

F−s,ε(cos θ)
)

− N

2
ε−s +

N2

2
Id,δ(σ)

= −1

2
N min

0≤t≤cdN−
1
d

(t+ ε)−s +
N2

2
Id,δ(σ)

= −1

2
N(cdN

− 1
d + ε)−s +

N2

2
Id,δ(σ).

Letting ε→ 0 yields the upper estimate (5.2).

Next, we show the lower estimate. Let ZN = {z1, · · · , zN} be an arbitrary set
of N -distinct points on Sd. We need to prove that

Ed,−s(ZN ) =
∑

1≤i<j≤N

ρ(zi, zj)
−s ≥ N2

2
Id,−s(σ)− cdN1+ s

d .

To this end, let k be the smallest positive integer such that s+ k+ 1 > d. For a
fixed θ ∈ (0, π], define gθ : [0, π]→ R by

gθ(t) = (θ+ t)−s + st(θ+ t)−s−1 +
s(s+ 1)

2
t2(θ+ t)−s−2 + · · ·+ (s)k

k!
tk(θ+ t)−s−k,

where t ≥ 0. A straightforward calculation shows that

g′θ(t) = − (s)k+1

k!
tk(θ + t)−s−k−1 ≤ 0, ∀t ≥ 0.

In particular, this implies that for all θ, t ∈ (0, π],

(5.4) 0 ≤ gθ(0)− gθ(t) = θ−s − gθ(t) ≤

{
Cθ−s, if 0 < θ ≤ t;
Ctk+1θ−s−k−1, if θ > t.
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It follows that for any ε > 0,∑
1≤i<j≤N

ρ(zi, zj)
−s ≥

k∑
`=0

(s)`ε
`

`!

∑
1≤i<j≤N

(ρ(zi, zj) + ε)−s−`

≥ N2

2

k∑
`=0

(s)`ε
`

`!

∫
Sd

∫
Sd

(ρ(x, y) + ε)−s−` dσ(x) dσ(y)− CNε−s,

where we have used the fact that F−(s+`),ε ∈ Φd (by part (ii) of Lemma 3.2) and
therefore the energy integral is smaller than the discrete energy: this can be deduced
either from Proposition 2.1 (σ minimizes IF−(s+`),ε

) or from the Stolarsky principle

(4.3) (since D2
L2,f−(s+`),ε

(ZN ) ≥ 0).

On the other hand, a direct computation involving (5.4) shows that∣∣∣ k∑
`=0

(s)`ε
`

`!

∫
Sd

∫
Sd

(ρ(x, y) + ε)−s−` dσ(x) dσ(y)−
∫
Sd

∫
Sd
ρ(x, y)−s dσ(x) dσ(y)

∣∣∣
= c

∫ π

0

(gθ(0)− gθ(ε)) sind−1 θ dθ

≤ c
∫ ε

0

θ−s+d−1 dθ + cεk+1

∫ π

ε

θ−s−1−k sind−1 θ dθ ≤ cεd−s.

Thus, putting the above together, we obtain∑
1≤i<j≤N

ρ(zi, zj)
−s ≥ N2

2
Id,−s(σ)− CNε−s − cN2εd−s.

Now setting ε = N−
1
d , we get the desired lower estimate:

Ed,−s(ZN ) ≥ 1

2
N2Id,δ(σ)− cdN1+ s

d .

5.3. Proof of Theorem 5.2 in the logarithmic case δ = 0. The proof is very
similar to the previous case. We shall begin with the upper bound:

(5.5)
2

N2
Ed,0(N) ≤ Id,0(σ)− cdN−1 logN.

Recall that for ε ∈ [0, 1), by Lemma 3.2, F0,ε(t) = log
(

π
arccos t+ε

)
∈ Φd. Hence,

invoking Theorem 4.2),

inf
ZN

2

N2

∑
1≤i<j≤N

log

(
π

ρ(zi, zj) + ε

)
+N−1 log

π

ε

= D2
L2,f−s,ε

(Z) +

∫
Sd

∫
Sd

log

(
π

ρ(x, y) + ε

)
dσ(x) dσ(y)

≤ N−1
(
F0,ε(1)− min

|θ|≤cdN−
1
d

F0,ε(cos θ)
)

+ Id,0(σ)

= N−1 log
π

ε
+N−1 log

(
π

ε+ cdN−1/d

)
+ Id,0(σ),

which yields (5.5) as ε→ 0.
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To prove the lower bound, we first observe that

∣∣∣∣ log π
ε+θ − log π

θ

∣∣∣∣ ≤ 1
2εθ
−1 for ε,

θ > 0. This easily implies that∣∣∣∣ ∫
Sd

∫
Sd

(
log

π

ε+ ρ(x, y)
− log

π

ρ(x, y)

)
dσ(x)dσ(y)

∣∣∣∣ ≤ Cε.
Therefore, using the fact that σ minimizes IF0,ε ,∑

1≤i<j≤N

log
π

ρ(zi, zj)
≥

∑
1≤i<j≤N

log

(
π

ρ(zi, zj) + ε

)

≥ N2

2

∫
Sd

∫
Sd

log
π

ε+ ρ(x, y)
dσ(x)dσ(y)− 1

2
N log

π

ε

≥ N2

2

∫
Sd

∫
Sd

log
π

ρ(x, y)
dσ(x)dσ(y)− C ′N2ε− 1

2
N log

π

ε
,

and the proof is concluded by choosing ε = cN−1 logN .

6. Proof of Lemma 5.4

Recall that Rλn(cos t) =
Cλn(cos t)
Cλn(1)

for λ > 0, and Rλn(cos t) = cosnt for λ = 0. We

will use the following formula ([32, p. 80-81]):

(Rλn(t))′ =
n(n+ 2λ)

2λ+ 1
Rλ+1
n−1(t) = c(n, λ)Rλ+1

n−1(t).(6.1)

For the rest of this section, we let η ∈ C∞[0,∞) be such that η(t) = 1 for
0 ≤ t ≤ π

4 and η(t) = 0 for t ≥ π
2 .

6.1. Upper estimate. The upper estimate is a direct consequence of the following
lemma:

Lemma 6.1. Let g ∈ C∞[0, π] and λ > 0. If −2λ− 1 < δ ≤ 1 and δ 6= 0, then∣∣∣∫ π

0

θδg(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≤ Cn−2λ−1−δ.

Proof. We first claim that it suffices to show that

(6.2)
∣∣∣∫ π

2

0

θδη(θ)g(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≤ Cn−2λ−1−δ.

Indeed, a slight modification of the proof of (6.2) below shows that for any g1 ∈
C∞[0, π], ∣∣∣∫ π

0

g1(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≤ Cn−2λ−2.(6.3)

Since θδ(1− η(θ))g(θ) ∈ C∞[0, π], the desired upper estimates follow directly from
(6.2) and (6.3).

Next, we show (6.2) in the case when λ is a positive integer. Let ξ0 ∈ C∞(R) be
such that ξ0(t) = 1 for |t| ≤ 1

8 and ξ0(t) = 0 for |t| ≥ 1
4 . Let ξ1 = 1− ξ0. Clearly,∣∣∣∫ π/2

0

θδξ0(θn)η(θ)g(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≤ C ∫ 1

4n

0

θ2λ+δ dθ ≤ Cn−(2λ+1+δ).
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Thus, it remains to show that

In :=
∣∣∣∫ π/2

0

θδξ1(θn)η(θ)g(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≤ Cn−2λ−1−δ.(6.4)

To show (6.4), set

(6.5) D :=
d

dθ

1

sin θ
=

1

sin θ

d

dθ
− cos θ

sin2 θ
.

Using (6.1) and integration by parts λ+ 2 times, we then obtain

In ≤ Cn−2λ
∣∣∣∫ π

2

0

Dλ
(
ξ1(θn)θδη(θ)g(θ) sin2λ θ

)
cos((n+ λ)θ) dθ

∣∣∣
≤ Cn−2λ−2

∣∣∣∫ π
2

0

(
Dλ
(
ξ1(θn)θδη(θ)g(θ) sin2λ θ

))′′
cos((n+ λ)θ) dθ

∣∣∣.
Since η′ is supported in [π4 ,

π
2 ], it is easily seen that∣∣∣(Dλ

(
θδξ1(θn)η(θ)g(θ) sin2λ θ

))′′∣∣∣ ≤ C max
0≤j≤λ+2

nj |ξ(j)
1 (nθ)|θδ+j−2.

Since ξ′1(nθ) is supported in [ 1
8n ,

1
4n ], it follows that for 1 ≤ j ≤ λ+ 2,

n−2λ+j−2

∫ π
2

0

|ξ′1(θn)|θδ+j−2 dθ ≤ Cn−2λ+j−2n−δ−j+1 = Cn−2λ−1−δ.

On the other hand, since ξ1(nθ) is supported in [ 1
8n ,∞], we have

n−2λ−2

∫ π/2

0

|ξ1(θn)|θδ−2 dθ ≤ Cn−2−2λ

∫ π/2

1
8n

θδ−2 dθ ≤ Cn−2λ−δ−1.

Putting these together, we deduce (6.4) and hence prove (6.2) for integer λ.
Finally, we show (6.2) for all λ > 0. We will use the following formula on

ultraspherical polynomials ([32, (4.10.29), p. 99])

(sin θ)2λRλn(cos θ) =

∞∑
k=0

αλ,µk,nR
µ
n+2k(cos θ)(sin θ)2µ,(6.6)

where 0 < λ < µ < 2λ+ 1 and

αλ,µk,n =
Γ(2λ)Γ(µ)22(µ−λ)(n+ 2k + µ)Γ(n+ k + µ)Γ(k + µ− λ)

Γ(2µ)Γ(µ− λ)Γ(λ)k!Γ(n+ k + λ+ 1)

∼ (n+ k)µ−λ(k + 1)µ−λ−1.(6.7)

For any λ > 0, we can find an integer µ such that λ < µ < 2λ + 1. Then
−1 < −δ < 2λ + 1 < 2µ + 1. Using (6.6), (6.7) and the already proven case
of (6.2), we obtain∣∣∣∫ π

2

0

θδη(θ)g(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ =

∣∣∣ ∞∑
k=0

αλ,µk,n

∫ π
2

0

θδη(θ)Rµn+2k(cos θ)(sin θ)2µ dθ
∣∣∣

≤ C
∞∑
k=0

(n+ k)µ−λ(k + 1)µ−λ−1(n+ 2k)−2µ−1−δ ≤ Cn−2λ−1−δ.

�
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6.2. Lower estimate. In this subsection, we shall prove the lower estimates: for
0 < δ < 1,

(6.8)
∣∣∣∫ π

0

θδRλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≥ Cn−2λ−1−δ.

According to Lemma 3.2, it suffices to prove (6.8) as n→∞. Next, we assert that
if (6.8) holds for some λ = µ > 0, then it holds for all max{µ−1

2 , 0} < λ < µ.
Indeed, this follows directly from (6.7) and Lemma 3.2: for n ≥ 1,∣∣∣∫ π

0

θδRλn(cos θ)(sin θ)2λ dθ
∣∣∣ =

∞∑
k=0

αλ,µk,n

∣∣∣∫ π

0

θδRµn+2k(cos θ)(sin θ)2µ dθ
∣∣∣

≥ c
n∑
k=0

(n+ k)µ−λ(k + 1)µ−λ−1(n+ 2k)−2µ−1−δ ≥ cn−2λ−1−δ.

Thus, according to this last assertion, it suffices to prove (6.8) in the case when
λ ≥ 2 is an integer. Third, recall that η ∈ C∞[0,∞) is such that η(t) = 1 for
0 ≤ t ≤ π

4 and η(t) = 0 for t ≥ π
2 , hence, according to (6.3),∣∣∣∫ π

0

θδ(1− η(θ))Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≤ Cn−2λ−2.

Putting the above together, we are reduced to showing that if λ ≥ 2 is an integer
and 0 < δ < 1, then∣∣∣∫ π

0

θδη(θ)Rλn(cos θ)(sin θ)2λ dθ
∣∣∣ ≥ Cn−2λ−1−δ, as n→∞.

For the rest of the proof, we use the notation cn to denote a positive constant
depending on n such that cn ∼ 1 as n→∞.

First, we observe from (6.2) for any β ≥ 1, g ∈ C∞[0, π] and µ ∈ N,

(6.9)
∣∣∣∫ π

0

g(θ)θβRµn(cos θ)(sin θ)2µ dθ
∣∣∣ ≤ Cµ,gn−2µ−2.

Thus, using (6.1), (6.5), (6.9) and integration by parts, we obtain

Iδn :=

∫ π

0

θδη(θ)Rλn(cos θ)(sin θ)2λ dθ = cnn
−2

∫ π
2

0

D
(
θδη(θ) sin2λ θ

)
Rλ−1
n+1(cos θ) dθ

= cnn
−2

∫ π
2

0

θδ(sin θ)2λ−2η(θ)
[δ sin θ

θ
+ (2λ− 1) cos θ

]
Rλ−1
n+1(cos θ) dθ +O(n−2λ−2)

= cnn
−2(2λ− 1 + δ)

∫ π
2

0

θδ(sin θ)2λ−2η(θ)Rλ−1
n+1(cos θ) dθ +O(n−2λ−2),

where we recall that cn > 0 and cn ∼ 1. Continuing in this way λ times, we obtain

Iδn = cnn
−2λ

∫ π
2

0

θδη(θ) cos((n+ λ)θ)dθ +O(n−2λ−2),

where c′n ∼ 1. Now using integration by parts once again, we deduce

Iδn = −c′′nn−2λ−1

∫ π

0

θδ−1η(θ) sin((n+ λ)θ)dθ +O(n−2λ−2).
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Since η(θ)−1
θ = η(θ)−η(0)

θ ∈ C∞[0, π], it follows that

n−2λ−1
∣∣∣∫ π

0

θδ−1(η(θ)− 1) sin((n+ λ)θ)dθ
∣∣∣ ≤ Cn−2λ−2.

This implies that

−Iδn = c′′nn
−2λ−1

∫ π

0

θδ−1 sin((n+ λ)θ)dθ +O(n−2λ−2)

= c′′′n n
−2λ−1−δ

∫ (n+λ)π

0

θδ−1 sin θdθ +O(n−2λ−2)

≥ cn−2λ−1−δ
∫ 2π

0

θδ−1 sin θ dθ +O(n−2λ−2) ≥ cn−2λ−1−δ.

This shows the desired lower estimate.

References

[1] R. Askey, G. Andrews and R. Roy, Special Functions. Encyclopedia of Mathematics and
its Applications 71, Cambridge University Press, Cambridge, 1999.

[2] J. Beck, Sums of distances between points on a sphere–an application of the theory of

irregularities of distribution to discrete geometry. Mathematika 31(1), 33–41, 1984.
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