GEODESIC DISTANCE RIESZ ENERGY ON THE SPHERE

DMITRIY BILYK AND FENG DAI

ABSTRACT. We study energy integrals and discrete energies on the sphere,
in particular, analogs of the Riesz energy with the geodesic distance in place
of Euclidean, and determine that the range of exponents for which uniform
distribution optimizes such energies is different from the classical case. We also
obtain a very general form of the Stolarsky principle, which relates discrete
energies to certain L? discrepancies, and prove optimal asymptotic estimates
for both objects. This leads to sharp asymptotics of the difference between
optimal discrete and continuous energies in the geodesic case, as well as new
proofs of discrepancy estimates.

1. INTRODUCTION

In the present paper we study optimization properties of some energy integrals
and discrete energies on the unit sphere S ¢ R¥*! particularly those related to
the geodesic distance on the sphere.

Let B denote the collection of all Borel probability measures on S¢. Given a
measure p € B, define the energy integral Ir(u) of a measurable (non-negative or
bounded) function F : [-1,1] = R by

(1.1) o) i= [ [ FGo-u) dute) duty).
Sd sd

We are interested in finding the optimal (maximal or minimal, depending on F)
values of Ir(u) over u € B, as well as extremal measures u for which these values
are achieved, i.e. equilibrium distributions with respect to F. In particular, it
is natural to investigate whether the Lebesgue surface measure o, normalized by
o(S?) = 1, is a minimizer (maximizer), and if so, whether it is unique; in other
words, whether optimizing the energy with potential F' induces uniform distribu-
tion.

For a finite set of N points Z = {z,...,zn} in S¢, its discrete energy with
respect to F' is defined as

(1.2) Ep(Z)= Y Fl(z-z).

1<i<j<N

Note that in the case when F(1) = 0, we have

1

N
. 1
Er(Z) = §N21F(,u) with g = N Z(szm

i=1
1
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where d, is the Dirac mass at « € S?. Appropriate modifications accounting for the
diagonal terms should be made in the general case. One is interested in optimiz-
ing the discrete energy for a given N, analyzing extremal N-point configurations,
comparing optimal values of the discrete energy to the optimal energy integral, and
finding the asymptotic behavior of this difference.

Such problems arise naturally in various fields, e.g., in electrostatics, in the study
of equilibrium distributions of charges which repel according to the law given by
F. One of the most natural choices of the potential is the so-called Riesz potential
F(z -y) = |z — y|™%, where |z — y| is the Euclidean distance between z and y
in R¥*1. In particular, for d = 2 and s = 1, minimization of the energy (1.2) is
known as Thomson’s problem and amounts to finding the equilibrium (according
to Coulomb’s Law) distributions of N electrons on the sphere. This situation has
been studied extensively and numerous questions posed above are well understood
in this case [8, 10, 12, 19, 24, 34, 35], although precise optimal discrete distributions
are still elusive for most values of N (the problem for N = 5 has only been solved
recently [25]).

While our present work establishes many general facts and relations, we primarily
concentrate on the case, seemingly similar to the classical Riesz energy, that uses
geodesic, rather than Euclidean, distance in the definition of energy. This object
naturally arose in the companion paper of the authors [5] in relation to discrepancy
theory and Stolarsky principle. It has also been considered previously [12, 15, 20, 29]
in various contexts. To make things precise, let p(x,y) denote the geodesic distance
between = and y on S% i.e.

p(x,y) = arccos(x - y).

We shall consider energies defined by the function

Fs(z-y) = (,o(x,y))[s, i.e. Fs(t) = (arccost)’,

for an arbitrary § € R\ {0}; for § = 0, the standard modification is the logarithmic
potential Fy(t) = —log (% arccos t). We would like to characterize extremizers of
the energy integral

(1.3) Lus(w) = Iy (1) = / / (p(e.v))° dux)du(y).
Sd sd

which we shall refer to as the geodesic distance (Riesz) energy. Naturally one is
interested in minimizers when ¢ < 0 and maximizers for 6 > 0.

One may expect that the behavior of the geodesic distance energy should be sim-
ilar to its Euclidean counterpart, i.e. the standard Riesz energy. Perhaps surpris-
ingly, this is not quite the case. In dimension d = 1 (on the circle) this phenomenon
has been previously observed in [13]: in the geodesic case the uniform distribution
o ceases to be the unique extremizer of I35 when § > 1, while in the case of Riesz
energy the analogous critical value is § = 2.

In the present work together with our companion paper [5] we prove this fact in
all dimensions d > 1. More precisely, we prove the following theorem:

Theorem 1.1. Let I 5(u) be the geodesic distance energy integral on S¢, with
0 € R, as defined in (1.3). The extremizers of this energy integral over u € B can
be characterized as follows:
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(i) —d < 6 < 0: the unique minimizer of 14s5(u) is pp = o (the normalized surface
measure).
(i) 0 < & < 1: the unique mazimizer of Igs(p) is p=o.
(i11) § = 1: I5(p) is mazimized if and only if v is centrally symmetric.
(iv) 6 > 1: Igs(p) is mazimized if and only if = (6, 4+ 6_p) for some p € S%,
i.e. the mass is equally concentrated at two antipodal poles.

We shall present the proof of the first two parts, (i) and (ii), in which optimal
energy leads to uniform distribution (see Theorem 3.1). The last two parts of
Theorem 1.1 can also be obtained by our methods (see Lemma 2.4), besides, they
have been proved by the authors and R. Matzke in [5] via a different approach:
the critical case (iii) is obtained as a consequence of the geodesic distance Stolarsky
principle, relating the hemisphere discrepancy and the geodesic distance energy (see
also §4 in the present paper), while the degenerate case (iv) easily follows from the
critical case.

In the one-dimensional case parts (i) and (ii) of Theorem 1.1 have been previously
established by Brauchart, Hardin, and Saff [13], along with the precise asymptotic
energy of the discrete geodesic energy of N equally spaced points. Immediately
after our result, Tan [33] gave an alternative proof of parts (ii)-(iv) of Theorem 1.1.
See the remark at the very end of §3.

We note that in the case of Riesz energy, i.e. for F(z -y) = |z — y|%, part (i)
also holds, see e.g. [19], while for § > 0 the phase transition is different, as was
established by Bjorck [8]. Here o is the unique maximizer when ¢ € (0,2), while
for § > 2 the maximizers collapse to symmetric two-point measures as in (iv). At
the critical value 6 = 2 the maximizers are precisely those measures whose center
of mass is at the origin. Intuitively, for small values of §, in particular, when
0 < 0, small scale interactions contribute the most to the energy, therefore (since
p(x,y) = |z — y| when x and y are close) both energies exhibit similar behavior,
while for larger values of § mid-range and long-range interactions come into play
and the difference between geodesic and Euclidean distances manifests itself in the
energy integrals. The restriction that § > —d is natural for the classical Riesz
energy, since on a d-dimensional manifold, the corresponding energy integral with
0 < —d would be infinite for any pu € B.

Our proofs rely on spherical harmonic expansions. We briefly review the basic
notions in §2, but for a detailed and extensive exposition the reader is directed to,
e.g., [14]. In §2 we discuss connections between the extremizers of energy integrals
and properties of the potential F' (signs of the Gegenbauer coefficients, positive
definiteness). Some of these connections are well known in the theory and go back
to Schoenberg [24], while some formulations are new. We would like to point out
that some of these properties are also discussed in our parallel paper [5] without
resorting to (or with minimal use of) spherical harmonics.

In §3 we apply the general results presented in §2 to the specific case of the
geodesic distance energy integral (1.3) and prove parts (i) and (ii) of Theorem 1.1:
these results are contained in Theorem 3.1. Up to some technical details, the proofs
boil down to demonstrating that the Gegenbauer coefficients of the potential are
all positive (negative). Essential computations are carried out in Lemma 3.2.
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In §4 we connect two different objects, which quantify equidistribution: energy
and discrepancy. We show that for all positive definite functions F' the difference
between the discrete and continuous energies may be represented as the L2 norm
of a certain discrepancy function (part (i) of Theorem 4.2, see also §5 in [5] for
a more detailed discussion): this is a generalization of the Stolarsky principle in
discrepancy theory [31]. Furthermore, this discrepancy may be estimated using the
function F'. In particular, lower bounds involve Gegenbauer coefficients of F' (see
part (ii) of Theorem 4.2). We apply these results to give an alternative proof of
a classical bound on the spherical cap discrepancy due to Beck [2], see Theorem 4.3.

Results of Theorem 4.2 can also be used in the opposite direction. In §5 we turn
to the problem of estimating the asymptotic difference between the geodesic dis-
tance energy of the uniform distribution Iy s(c) and the corresponding optimal en-
ergy of discrete N-point distributions, as N — co. Setting E45(N) = #iZn_fN Er, (2),

where as before Fj(t) = (arccost)’, and using the results of §4, in Theorem 5.2 we
establish that the asymptotic estimate

2 s
Li.5(0) = 75 €as(N) ~ N7171

holds for —d < § < 1 (with a logarithmic correction for § = 0). Note that here
and throughout the paper the symbol ~ stands for “is of the same order as”; in
other words, f(N) ~ g(N) means that for some A, B > 0 the inequality Af(N) <
g(N) < Bf(N) holds for all N € N. The implicit constants may depend on the
dimension and some other paramteres, but are independent of the number of points
N.

This result closely mirrors the case of the classical Riesz energy, but for the
Euclidean distance this estimate is valid for —d < § < 2 (this has been established
in a series of papers: [34, 35], [19], and [10]).

In order to prove Theorem 5.2, one needs sharp asymptotic estimates of the
Gegenbauer coefficients of Fs (while to establish the optimality of I; (o) in §3, it
suffices to show just that these coefficients are positive). These bounds, which in
the geodesic case are much more complicated than for the Euclidean distance, are
stated in Lemma 5.4 and their rather technical proof is presented in §6.
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collaboration has started while both of them participated in the research program
on “Constructive Approximation and Harmonic Analysis” in 2016. The stay of the
first author at CRM has been sponsored by NSF grant DMS 1613790. This work
is partially supported by NSERC Canada under grant RGPIN 04702 (Dai) and by
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2. PRELIMINARIES

Let wy(t) = (1 —t2)* 2 with A > 0. Given 1 < p < oo, we denote by
LP [-1,1] the space of all real integrable functions F' on [—1,1] with [|F||,x :=

1 1/p . 1
(f_l |F(t)[Pwa(t) dt) < oo. Every function F € L, [-1,1] has a Gegenbauer
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(ultraspherical) polynomial expansion:

A, tel-11],

(2.1) F(t)~ > F(n;\)
n=0
where C)) are Gegenbauer polynomials (see [14] for an extensive discussion) and

- T(A+1)

F(n; M) = F(M_M/F(t)}%ﬁ(t)(l — 22" 2dt, n=0,1,---,

A
where R)(t) = C;L((;)) From now on in this text we shall set the value of X to

CTL
a1
2

In the special case A = 0 (which corresponds to the circle S') one obtains Chebyshev
polynomials of the first kind T, (¢), which satisfy

1., n+X
3 )1\111%) 3 C(t) = T, (t) = cos (narccost).
Denote by o the Lebesgue surface measure on S¢ normalized by ¢(S?) = 1, and
let ., be the space of all spherical harmonics of degree n on S%. Let {Y, 1, , Yi,aa }

denote a real orthonormal basis of the space H,,. The addition formula for spherical
harmonics states that (see, for instance, [14, 1.2.8])

d
i A
(2.2) Z Yo (@)Y i(y) = ni\_ CMx-y) forall z,y€S?
j=1
where \ d_1
al = n—)i\— C) (1) = dim H,, ~n?1, A= %

As before we denote the collection of all Borel probability measures on S¢ by B,
and 6, is the Dirac Borel probability measure supported at xo € S?. Given u € B,
define the energy integral Ir(u) of a (bounded or nonnegative) measurable function

F:[-1,1] = Rasin (1.1) by Ir(p) = /Sd /Sd F(z-y)du(z) du(y). We have the

following proposition on extremizers of Ip(u) over B:

Proposition 2.1. Let A = % and let F' be a continuous function on [—1,1]. The

following conditions are equivalent:

(a) F(n;\) >0 for alln > 1;

(b) the surface Lebesgque measure = o on S is a minimizer of the energy integral
IF(/‘);

If the above conditions hold, then every Dirac mass p = 6., e € S¢ is a mazimizer

of the energy integral Ir ().

The case when some coefficient F (n; A) = 0 corresponds to o not being the only
minimizer. This is made precise in the following statement concerning uniqueness
of extremizers:

Proposition 2.2. Let A = <=L and let F € C[—1,1]. The following conditions are
equivalent:
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(a) ﬁ(n, A) >0 foralln >1;
(b) the normalized surface measure o is the unique minimizer of Ir(u);

In this case, every maximizer of Ir(u) is a Dirac mass.

Obviously changing the inequality signs in the above propositions reverts the
roles of maximizers and minimizers. In addition, since adding constants to F' does
not change the extremizers of Ir(p), it is natural that F/(0; \) does not play a role
in these statements. In order to prove these statements we shall need the following
technical lemma:

Lemma 2.3. Let F € C[—1,1] and assume that F(n;\) > 0 for alln > 1. Then
(2.3) Z AF(n; \)

which, in particular, will imply that the series on the right hand side of (2.1) con-
verges uniformly and absolutely to the function F on [—1,1].

Proof. Let 0’ F denote the Cesaro (C,d)-means of the Gegenbauer polynomial ex-
pansion of F' (see [14, Section 2.4] for details), i.e

"t AY ikt A

(2.4) O F(t) = 5

n
k=0

D +0+1)
FENCO. 4 = 5 Dre 1)

It is known (e.g. Theorem 2.4.3 in [14]) that for § > A,

lim |05 F — F||pee(-11 =0, YF € C[-1,1].

o0
n=j
as n — oo, it follows by Levi’s monotone convergence theorem that

On the other hand, since for each fixed j, the sequence { L increases to 1

k + A SN k + A
. g _
F(1) = nhﬁrr;()o (FH(1) = HILII;O E A5 CR(1) = ,;_0 F(k; \)—=C2(1).
This yields (2.3) since (k + A\)Cp (1) ~ k** as k — oo. O

Remark: The self-improving property (2.3) (positivity of coefficients implies their
decay) has various manifestations in harmonic analysis: e.g., if a function f € L*(T)
has Fourier series Zicne%im with ¢, = —c_,, > 0 (i.e. sine series with non-
negative coefficients), then necessarily 3, _, “* < oo (see e.g. [18, page 24]), which
is a direct analog of (2.3).

We now prove Proposition 2.1:

Proof of Proposition 2.1. We first prove that, when (a) holds, ¢ is a minimizer and
J. is a maximizer of Ir(u) for any e € S¢. Indeed, by (2.3), (2.2) and the dominated
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convergence theorem, it follows that

Sl n+ A
=3 Fm /S [, 520 ) duta) duty)

= >~ Bl Z [ [ ¥as@¥as0) dutaranty)

(2.5) = F(0; ) + i F(n; Ny,

where, by the addition formula (2.2),

(2.6) bn,M=”+A//chy)du()du :Z</Y,j ) du(x )zo.

Sd §d Jj=1

Using the Cauchy—Schwarz inequality and (2.2) with = y, we obtain

2.7) <oy < / zw » (2) = al.

sd Jj=1
Thus, if F(n; A) > 0 for all n > 1, then by (2.5) and (2.7), one has
Ip(p) > F(0; ) = Ip(o) and

Ip(u) < F(0;A) + Y F(n; Nag = F(1) = Ir(6.),
n=1

i.e. 0 and 0, are a minimizer and a maximizer of the integral Ir(u), respectively.

Conversely, if ﬁ(n, A) < 0 for some n > 1, then define p by setting du(x) =
(1+ €Yy 1(x))do(z), where e > 0 is chosen small enough so that 1+ €Y, 1(z) > 0
on S%. The Funk-Hecke formula (see, e.g., Theorem 1.2.9 in [14]) states that for
any spherical harmonic Y € H,,

[ Fla -y @ota) = Fus Y ).
Sd
Thus, using the fact that [y, Yy 1(z)do(z) = 0, we find that u € B and

28) 10 = [ [ Flaw) (14 V(@) (14 Vi1 () doo) dory)
Sd gd
— In(o) + & F(ui ) [ Y2, ()doty) < I (o),
Sd
i.e. o is not a minimizer of Ip. U
Remark: We observe that the fact that §. maximizes Ir is not equivalent to

conditions (a)-(b) of Proposition 2.1. Indeed, a sufficient condition for this is that
maxye(_y1,1) F'(t) = F(1), since then for each u € B, we have Ir(u) < ||F|o =

F(1) = Ip(d.). For example, for F(t) = —(arccos t)z, the maximizer is obviously
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¢, while the minimizer is not o: according to part (iv) of Theorem 1.1, minimizers
are measures of the form 3(J, +d_).
We now prove Proposition 2.2 about the uniqueness of minimizers.

Proof of Proposition 2.2. Suppose that (a) holds, i.e. ﬁ(n, A) > 0 for all n > 1.
In this case, by (2.5), the equality Irp(u) = F(0;\) = Ip(o) holds if and only if
bny = 0 for all n > 1, ie. if and only if [, g(x)du(z) = 0 for all g € H,, and
n > 1. This last condition implies that for each spherical polynomial P on S,

/P )du(x /P Ydo(x

By the density of spherical polynomials in the space C(S?), we then conclude that
dp = do.

Next, we show that if py € B is a maximizer of Ir(u), then py = J. for some
e € S?. To see this, we first note that according to (2.5), (2.6) and (2.7), in order
that

Ir(po) = max I (i) = Ir (3c) Z:
it is necessary that
(f Yosta) diofa /|Y,J ) duo(a), Wn=1, V1<) < al,
Sd

or equivalently,

Y, j(x) = constant pog-a.e. on St Wn>1, V1<j< aﬁ,

which in turn implies that each spherical polynomial is constant pg-a.e. on S%.
Since the space of spherical polynomials is dense in C(S?), we further conclude
that every continuous function on S? is constant pg-a.e. on S<.

Assume that the support of pg contains at least two distinct points eg # e3.
(Recall that supp o is the complement of the union of all open sets U with po(U) =
0.) Choose open neighborhoods U; of e; such that po(U;) > 0 and UyNU; = 0, and
construct a function f € C(S?) with f|y, = i. Then f is not constant ug-a.e. on
S¢. Thus supp g contains only one point, and hence i is a Dirac mass.

If we assume that (a) fails, i.e. ﬁ(n, A) = 0 for some n > 1 (if ﬁ(n, A) < 0, then
o is not a minimizer by Proposition 2.1), then the argument of (2.8) shows that
for du(z) = (14 eYy1(x))do(z) we have Ip(u) = Ip(0), i.e. o is not a unique
minimizer. U

We would like to note that functions with F (n;A) > 0 for all n > 1 are, up to
constant terms, positive definite functions on the sphere. This class was introduced
by Schoenberg [24] also in the context of energy optimization. See the discussion
in the beginning of §4.

In the end of this section we state some additional results about the extremizers
of Ir in terms of the signs of the Gegenbauer coefficients F'(n; \), which may be
proved by identical arguments. These statements could be used to prove parts (iii)
and (iv) of Theorem 1.1, which were proved in [5] by other means.

Lemma 2.4. Let F € C[-1,1] and A = L.
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(i) If (=1)"F(n; A) > 0 for all n > 1, then

- < F(1)+ F(-1) de +0_c
. . d _“\J T2\ 7/ = _—
I;lélé([p( w)=F(0;\) + g F(2n; N)as,, = 3 Ip 5 .

n=1
Moreover, if (71)"ﬁ(n;)\) > 0 for allmn > 1, then any maximizer of Ir is of
the form p = (6. +6_.) for some e € S°.
(i) Ifﬁ(Qn; A) =0 and F(2n —1;)) <0 for all n € N, then

I = F(0; )
max F(p) (0;0),

and, in addition, any symmetric measure p (i.e. such that u(E) = u(—FE) for
all measurable E C S?%) is a mazimizer of Ip.

If ﬁ(Qn; A) =0 and ﬁ(2n —1;)) <0 for alln € N, then u is a maximizer of
Ir if and only if p is symmetric.

3. GEODESIC DISTANCE RIESZ ENERGY INTEGRALS

We now apply the results of the previous section to the specific case of the
geodesic distance energy integral (1.3). In order to avoid singularities, we introduce
standard modifications of the potentials. For t € [-1,1] and 0 < € < 1, we define
as in (1.3)

(e +arccost)?,  if § #0;
Fse(t) = { e o
lOg(m) 1f 6 = 0

We write Fs(t) = F50(t). For u € B, define

Tus)i= 15, () = [ [ Fo(o ) duta)auty).
Sd Sd,
The main goal in this section is to show the following theorem, which constitutes
parts (i) and (ii) of Theorem 1.1.

Theorem 3.1. The normalized Lebesque measure o on S? is the unique mazimizer
for the integral Iy s(p), when 6 € (0,1), and is the unique minimizer of Iy s(p),
when —d < § < 0.

The following lemma plays a crucial role in the proof of Theorem 3.1.

Lemma 3.2. Lete € [0,1) and A > 0. For § > —(2\+ 1), define

: /FM B0 — 2P dt, n=01,--- .

Then the following statements hold:
(i) If 6 € (0,1), then I3 . <O for alln =1,2,---.
(ii) If —(2A+1) <6 <0, then I} . > 0 for n =0,1,2,- -

Proof. (i) By Rodrigues’ formula for ultraspherical polynomials (see, for instance,
[32, 4.1.72]),

(=1)"2" T'(n+ AN)I(n+ 2X)

Catt) = n D(AT(2n +2)) (1=#%)” OT)(%)H(l—tQ)”“‘i
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and the fact that C)(—t) = (—1)"Cx(t) for all t € [—1,1], it is easily seen from
integration by parts that for k,n =0,1,---,

1 ) _

>0, ifk>nandk—

(3.1) / tkC%(t)(l — t2)>‘*% dt ) sz .TL an n is even,
-1 =0, otherwise.

Thus, for the proof of assertion (i), it is sufficient to show that for § € (0, 1),

(32)  Fsc(t) =ao(e) + > ar(e)th, [t <1 with ax(e) <0 for k=1,2,---.
k=1

Indeed, once (3.2) is proved, we obtain from (3.1) that for n > 1,
o0 1
.=y ae) [ FO00-#)a
k=0 -1
0o 1 ' X
==Y lann @ [ HCO0- P e <o
=0 -t

To show (3.2), we use the Maclaurin series of the function arccos ¢ on the interval
[-1,1]:

o] 2n

(n) 2n+1
) =—— E —n/ = = — <1.
(3 3) arccos t 9 ‘ n( n 1)t 5 A(t), |t| 1

The main point in (3.3) lies in the fact that

o ()
3.4 A(t) .= —n/ 42n+l
(34) ®) nZ:O 4" (2n+ 1)
is an odd power series with positive coefficients. Clearly,
(3.5) |A(t)] = ‘g - arccost’ < g te(-1,1).

Thus, using (3.3) and (3.5), we obtain that for ¢t € (—1,1) and € € [0, 1),

Rt = (T4e) (1- 220 (T (;g)‘ggbﬁ@f; V.

where

p = (_1)j5(5—1)-~-(5—j+1) :_5(1_5)...(j_1_5)
j I i .

Clearly, each b? (j > 1) is negative for 6 € (0,1). Then (3.2) follows from (3.4).

(ii) As in the proof of assertion (i) , it suffices to show that Fs .(¢) has a Maclaurin
series representation with positive coeflicients on the interval [—1,1]. For 6 = 0, we
use the Maclaurin series of the function log(1 — ¢) on the interval (—1,1):

oo n

log(1 — ) = —Z %, |z| < 1.

n=1
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We then obtain from (3.5) that for ¢t € (—1,1),

_ 2A(1)
Foc(t) =log T+2 log(l B 7r—|—2s)
B 21 01 2A(t) \»
(36) _10g7r+26+nz_:1n<77+25) ’
For § = —s < 0, we have
Fie(t) = (5 +e—A®)
B 2 N\ S=s(sH1)---(s4+5—1) 7 24(t) \7
(3.7) - <7T+2€) jz::() 7! (7r+2£> '

Combining (3.6), (3.7) with (3.4), we conclude that if § € (—2A—1,0] and € € [0, 1),
then all the coefficients of the Maclaurin series of the function Fs.(t) are positive.
Assertion (ii) then follows by (3.1). O

We are now in a position to show Theorem 3.1.

Proof of Theorem 3.1. For § € (0,1), the function Fs(t) is continuous on [—1,1],
and hence the stated assertion follows directly from Proposition 2.2 and part (i) of
Lemma 3.2.

For —d < 6 < 0, the function Fj is not continuous at ¢ = 1 and, therefore, we
need a slight modification of the proof. For the moment, we assume that § # 0 and
write § = —s with 0 < s < d. Recall that for each ¢ € (0,1),

Fs.e(t) = (arccost + 6)7 . tel-1,1],

and by part (ii) of Lemma 3.2,
1
Foo(ni)) = cn/ Fro()CMNO(1 = 2P dt >0, n=0,1,---
—1

Using Proposition 2.1, we conclude that I,,(Fs ) has a unique minimizer do. Hence,
for any p € B and any € > 0,

// pla,y)) " dp(x) duly //6+pmy *dp(x) du(y)

Sd Sd sd sd
2//(s+p(x,y))75 do(z) do(y).
Sd sd

Letting € — 0, and using the monotone convergence theorem, we get

// p(z,y)) T dp(z) du(y // p(z,y)) “do(x)do(y), Yu € B.

Sd sd Sd sd

This shows that ¢ is a minimizer of I, (p) for 0 < s = —§ < d.
Next, we show the minimizer is unique. Let py € B. If dug # do, then there
must exist a spherical harmonic P of degree ng > 1 with ||P|l2 = 1 such that
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Jsa P(x) dpo(z) # 0. By (2.6), this implies that

ng + A

b =5 [ [ €l ) diole) da(v)

Sd §d

(/P(x) d/l,()(x))2 >c>0.

Sd

v

However, according to (2.5), we have that for any € € (0,1),

Iy (o) > Iry . (110) > Fs2(0; \) + Fs 2(120; N)bng o -

Letting € — 0, we obtain from part (ii) of Lemma 3.2 (ii) that

Iy (110) = Ipy () + F5(n0; Nbng g > Iy (0).

Since fg is an arbitrary Borel probability measure on S?, this shows the unique-
ness of the minimizer. Finally, we point out that the above proof with a slight
modification works equally well for the case 6 = 0. (]

The methods employed here are quite standard in the context of energy optimiza-
tion on the sphere (see, e.g., [19] for the classical Riesz energy). While Theorem
3.1 covers parts (i) and (ii) of Theorem 1.1, the remaining two cases (proved in
[5]) could be proved in the same way, using the above computations and results of
Lemma 2.4.

Notice that we have, in fact, used Taylor expansions of the underlying function
F in order to obtain information about the signs of the ultraspherical coefficients.
Recently, after the first author’s presentation of the results of this paper and [5],
Y.S. Tan [33] found a beautiful alternative proof of parts (ii)-(iv) of Theorem 1.1,
which involves only Taylor series and uses an interesting “tensorization trick”. It
does not resort to the use of spherical harmonics. This method is somewhat less
general than the one presented in §2, since it requires F' to be analytic.

4. DISCREPANCY AND THE STOLARSKY PRINCIPLE

Let us denote by ®4 the set of all continuous functions F' on [—1,1] for which
F(n;\) > 0 for all n € NU {0}, where, as before, A = 4=1. Functions in the class
®, are known as positive definite functions on the sphere and, up to constants,
are precisely the functions discussed in §2 (Proposition 2.1). Their connection to
energy optimization is well known [24]. There is a variety of characterizations of
the class @4, but we shall particularly use the following.

Lemma 4.1. A function F € ®4 if and only if there exists a function f €
L2 [-1,1] such that

(4.1) Fo )= [ fe )i p)do(a), ayes’
Sd

Proof. The sufficiency part is obvious. Indeed, if (4.1) holds for some f € L2, [-1,1],
then F' is continuous and ﬁ(n, A) = |f(n, A)[2 >0 for all n = NU {0}.
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It remains to show the neccesity. Let F be a continuous function on [—1, 1] such
that F(n; \) > 0 for all n > 0. Define

F6) =Y VRN 2w, tel-L)
n=0

[ is a well defined function in L} [—1,1] since, by Plancherel’s formula and (2.3),

! 1 >~ n+ A
cd/ FORA - 2P Fd =3 P ) 22202 (1) < oo,
. Z )
Furthermore, (4.1) holds since F(n;\) = |f(n, \)|? for all n > 0. O

Observe that the relation f(n, A) =14/ F (n; \) implies that there are infinitely
many choices of the function f.

For the rest of this section, we will assume that F' € &4, and f € szk [—1,1] is
chosen so that (4.1) is satisfied.

Given a finite set of points Z = {21,---,2x} C S%, we define its L? discrepancy
with respect to a function f:[—1,1] = R by

@2 Do) =([|[ o) - }Vﬁf(x )| do@) .

§d sd
We define the optimal L? discrepancy by setting
DL2,f,N = I%f DL27f(Z),

where the infimum is taken over all Z C S? with #Z = N. The discrepancy
Dy (Z) measures the uniformity of the finite distribution of points Z with respect
to the function f. Choosing, for example, f;(7) = 11— 1)(7) and averaging over
t € [-1, 1], one obtains the well-studied spherical cap discrepancy, see (4.12).

The link between discrepancy and energy on the sphere has been first estab-
lished by Stolarsky [31] who established an identity relating the spherical cap L?
discrepancy and the sum of pairwise Euclidean distances between the points of Z.
Identities of this type came to be known as instances of the Stolarsky invariance
principle. There has been an increase of activity on this subject in the recent years
[7,9, 11, 22, 26, 27, 28]. In our companion paper [5] we explore a number of vari-
ations of this principle and its applications to energy optimization, in particular,
part (iii) of Theorem 1.1.

Here we present a general form of the Stolarsky principle, which relates the
discrepancy Dp2 ¢(Z), the discrete energy Er(Z), and the energy integral I (o).
We also apply this principle to estimating the optimal discrepancy Dr= ¢ n.

Theorem 4.2. Let A = %. Assume that F € ®q and f € L2, [-1,1] satisfy
relation (4.1).

(i) (Stolarsky principle) Given a set of N-points Z = {zy,--- ,zy} C S%,

N N
(4.3) N’zzZF(zrzj):D%zyf(Z)Jr//F(xoy)dJ(:z:)da(y).

=1 j=1 sd sd
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(ii) There exist constants cq, Cq > 0, such that for any N € N,

(4.4) Cq4 1§k151}21dr}v1/d F(k,\) < D%27f7N < N! OgthjJ%{*l/d(F(l) — F(cost)).

We make a few remarks before proceeding to the proof of this theorem. First of
all, notice that (4.3) implies that minimizing the discrete energy Fr(Z) is equivalent
to minimizing the discrepancy Dy ¢(Z). Moreover, the square of this discrepancy
yields the difference between the discrete energy and the optimal energy integral, a
quantity which will be investigated more deeply in the following section, §5. We also
observe that, while this approach is rather general, it is somewhat indirect, since it
is not easy to explicitly find the function f for a given F' (and vice versa). However,
since Fl(n; \) = |f(n, A)|?, the lower bound in (4.4) may be used to estimate both
discrepancy and energy.

We also would like to point out that the lower bound in (4.4) is very similar in
spirit to Montgomery’s lower bound on the L? discrepancy with respect to disks in
T¢, where an analogous lower bound is obtained in terms of the Fourier coefficients
(see [21]). This idea has been further explored in [6, 30].

Finally, the lower estimate in (4.4) is in certain sense sharp. In particular,
the minimum cannot be replaced by some averages. For example, let F(t) = t>™,
m € N. According to (3.1), F' € ®,. The lower bound trivially yields zero, since the
odd coefficients F (2k+1, ) vanish. And there indeed exist finite point distributions
for which this estimate is exact: these are the so-called spherical 2k-designs, i.e.
cubature formulas which integrate polynomials of degree up to 2k exactly (for recent
sharp results on the existence of spherical designs of optimal order see [4]). Since
in this case F(x - y) is a polynomial of degree 2m in both x and y, it follows that
the discrete sum in (4.3) is equal to the continuous energy integral, i.e. the L?
discrepancy is zero.

Proof. (i) This identity can be verified by a direct computation involving definition
(4.2) and relation (4.1). Indeed, we have

Dies2) = [ [ [ 1 )it vdowioty)do(a)
Sd §d Sd

_i]i//f(w-y)f(x'zi)da(y)da(x)

i=1 sd §d

1 N N
tar o2 [ fa ) 5)do ()
i=1j=1g,
1 N
—1r(0) =2 [ Fly- 2)do(w) + 55 3 Fla - 5)

S ij=1

1 N
=— > Fl(z-z)—Irp(0),
N

i,j=1

where we have used the fact that, due to rotational invariance, for any p € S¢
we have [o, F(y-p)do(y) = Ir(do). An even more general form of the Stolarsky
principle is proved in Theorem 5.10 of our parallel paper [5], which, in particular,
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gives an alternative proof of the fact that o minimizes Ir for F' € ®4.

(ii) We start with the proof of the upper estimate:

(4.5) Di.;ny <N' max (F(1)— F(cost)).
0<t<cgN—d

The proof follows along the same lines as that of Theorem 1 of [19]. Let {R;,--- , Ry}
be a partition of S? such that (see, for instance, [14, Sec. 6.4, p. 140])

1
O'(Rj)zﬁ and diam(Rj)Sch_%, j=12-- N.

Denote by o7 the restriction of the measure No to R;, and let QN =Ry x---x Ry
denote the product measure space with probability measure dof x - - - x doj;. Then

<7 [ [[S g5 [ ste-paoia]

gd N J=1

x dot(z1) - doy(2n) do(z)

~N- /SdZ/j fla-2)2dot (= /fmzda ))2}da(x)
(4.6) =N7'F(1 Z/ /fx z)do(z do(sc).

Note, however, that for each 1 < j < N,

[([ @ 2d0)) dotw) = [ [ [ 1211w dotz) doty) dota)
st R

S¢ R; R;

(4.7) = //F(y -2)do(y) do(z) > N2 milrjlV | F(cost).
0<t<caN~d

Combining (4.6) with (4.7), we deduce estimate (4.5).
Next, we prove the lower estimate:
2 . n
(4.8) Di2tn = Ca 1§kr§ncldr}vl/d F(k,\).
Let a > 1 be a large parameter depending only on d such that n := aN'/? is

an integer. Let K, (t) denote the Cesaro kernel of order d + 1 for the spherical
harmonic expansions on S%; that is,

iAd+kk+/\

Kn(t) = Ad+T Ck( ) te [_1’ 1]7

k=0

where the coefficients A7 are defined in (2.4). It is known that (see, for instance,
[3] and [1, Theorem 7.6.1, p. 389])

0 < K,(cos) < Cn(1+n0)~%"1 voelo,n].
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We claim that for each Zy = {z1,--- ,2n} C S,
N 2
(4.9) /‘I—N%ZK"(:pzj)’ do(z) > ¢q > 0.
Sd Jj=1

To see this, we first note that Bernstein’s inequality for trigonometric polynomials
implies that

1 1
(4.10) min K, (cos8) > =K, (1) = = || Kp|ls > can®.
0<9< 5L 2 2
Next, let {Ry,---, Ry, } be an area-regular partition of S such that Ny = Cy,N

U(Rj):N%and diam(R;) < 5= for 1 < j < Ny. Set
A::{j: 1<j<N, RjﬂZN7é®}.

Using (4.10) and positivity of the kernel K,,, we have that for each © € R; with
JEA,

N 1 nd

Z (- %) ZN Z Kn(x-z)zcdﬁ-#{RjﬂZN}

z€EZNNR;
=cqa® #{R; N Zn} > 24#{R; N Zn},

provided that the parameter a is large enough. It then follows that

N 2 1 2
/‘1—N‘12Kn(x~zi) da(m)zz /‘1—N2Kn(xzz) do(x)
ga i=1 JEA B i=1

, N 1
>—Z|#R NZy)| >—Z#R NZn) = N1>Cd > 0.

JeA jEA

This proves the claim (4.9). We are now ready to show the lower estimate (4.8).
Recall that

— kA
f(x.e):Zf(k;; A)—— 3 CR(z-e), VeeS?,

k=0

where the series converges in the norm of L?(S%), and f (0;0) = Jeu flz - 2) do(2)
for any x € S%. Thus, by orthogonality of spherical harmonics, we obtain

/’/fa:zdo Ifozj’da)

/’kaA Nlichzj’da(x)

ga F=1

Zﬁ (k, A H’““ 1icg(<zj,->)Hz.



GEODESIC DISTANCE RIESZ ENERGY ON THE SPHERE 17

AL
Since ﬁ <1 for all 0 < j < n, it follows that

/‘/fxzda IZfa:z]’dJ)

)
2

k -+ )\ _ 2
(4.11) F(k, ) Ad+1’ |~~~ 120@(@,»)\
=1
which, by (4.9), is bounded below by

( min F(kj )\))

1<k<n

1ZK x- z]‘ do(z)

> Cdlgfg F(k, \).

This yields the desired lower estimate (4.8). O

Using Theorem 4.2, one can give a new simpler proof of a well-known result of
Beck [2] regarding the lower estimate of the spherical cap discrepancy:

(z B t 2
(4.12) Dy cap(Zn)? //’ #UNOB@Y) g )| dow) dt,
g
where Zy :={z1,--- ,2n} is a set of N-distinct points on S¢ and

B(z,t):={yeS’: z-y>t}, z€8% te[-1,1].

Corollary 4.3. [2, J. Beck, 1984] Given an arbitrary set Zn of N-distinct points
on the sphere S%,

1

DLQ,cap(ZN) > CdN_%_ﬁ-

Proof. Let fi(s) = xp,1)(s) for t,s € [~1,1]. Using the formula,

d (a1 Coapagd) o n(n+20) o2\t
(O @ -a) = —EEEER O @)1 -2,
we have
= n+1 _1 1
Ry = e L [ G et de = et - 2 R )

This implies that

/ ‘ft(n A |2 dt ~ / ’Rk—i-l ( t2)2)\+1 dt ~ n—2)\—2 _ ,n—d—l7

where the second step uses the known estimates on integrals of Jacobi polynomials
(see, for instance, [32, Ex. 91, p. 391]).
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On the other hand, using (4.11) and (4.9), with n ~ N'/¢ we have

D2 cap(A)® = /1 Dy2 g, (Zy)?dt
>Z/ k] k| A ‘1i_vjc,?<<zj7->>Hj
IZK ~zj)‘2

1
> Ca min / ik, VP dt > cqnt" ~ N4

1<k<n J_4

> ( min / \fu(k, /\)|2dt) do ()

1<k<n

5. DISCRETE RIESZ ENERGY

Now that we understand that the energy I, (o) is optimal for —d < § < 1, it
is natural to investigate how well it can be approximated by discrete distributions.
We define the appropriate discrete energy in accordance with (1.2).

Definition 5.1. For § > —d and § # 0, define the discrete §-energy of a finite

subset Zy = {z1, -+ ,2n} of N distinct points on S by
Eqs5(Zn) == Z p(zi %)’
1<i<j<N

where p(x,y) = arccos(z - y) is the geodesic distance between x and y on S?. The
discrete N-point §-energy of ST is defined by

€a,5(N) = inf Eg5(Zn),
ZN

where the infimum is taken over all N-point subsets of S¢ (and infimum is replaced
by supremum for § > 0).

Notice that, when d > 0, we have

]dg 12{:5 Ehé(ZN)

while this energy integral is mﬁmte for 0 < 0 because of diagonal terms.
Our main result in this section can be stated as follows:

Theorem 5.2. Letd > 2. If —d < § <1 and § #0, then

2
135(0) = 33€as(N) ~ N7 74

In the logarithmic case, 6 = 0, we have the estimate

2
Lio(o) — ﬁed,o(N) ~ N7'logN.

Remark 5.3. For the discrete §-Riesz energy defined with respect to the Euclidean
distance on S?, similar results were previously established for —d < § < 2 in a series
of papers (see [12, Proposition 2] and also [10, 19, 23, 34, 35]).
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Recall that for 6 > —d and § # 0,

lasto) = [ [ o) doteyints) =

Sd sd

The following lemma is needed in the proof of the lower estimates in Theorem 5.2:

Lemma 5.4. If A >0 and 0 < <1, then

—/ 0°R) (cos ) (sin0)*  dh ~ n~ 170 p =12,
0

where R)(t) = gg((?)

We postpone the proof of Lemma 5.4 to the next section. For the moment, we

take it for granted, and proceed with the proof of Theorem 5.2.

5.1. Proof of Theorem 5.2 for 0 < § < 1. By part (i) of Lemma 3.2, the function

F(t) = (3

Lemma 5.4, we have that

5
— (arccost)? belongs to the class ®, for § € (0,1). Furthermore, by

(5.1) F(k;\) = fc)\/ 0° R} (cos0)(sin0)* df ~ k~97° k=1,2---.
0

Hence, applying the Stolarsky principle (part (i) of Theorem 4.2), we find that
for Zy = {z1,---,2n} C §9,

N N
2 1
N2 Eas(Zn) = > plzi )" = Las(o) — Dia y(Zn)?,
i=1 j=1

and hence

2
Id,é(U) - ﬁEd,é(ZN) = D%Z,f(ZN)'

By part (ii) of Theorem 4.2, we have

. _ _1_8
1nfDL27f(ZN)2 <egN7' max ) 00 < cyN~17d,
N 0<9<cN~d

whereas by (5.1) and part (ii) of Theorem 4.2, for any Zy,

D2 (Zn)?>c¢ min  F(k;A) > cgN~' 74
1<k<cgNH

This completes the proof of the theorem for 0 < § < 1.

5.2. Proof of Theorem 5.2 for —d < ¢ < 0. For convenience, we set § = —s
with 0 < s < d. We start with the proof of the upper estimate:

2 _1_3
(5.2) ~afa-s(N) £ 1as(0) = caN 1-§

Let € € (0,1), and set
F_c(t) = (arccost +¢)7°, te[—1,1].
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Then according to Lemma 3.2, F_, . € ®4. Thus, by the Stolarsky principle (part
(i) of Theorem 4.2),

(5.3) N2 > (plziz) +e) T+ N e
1<i<j<N

= Diay 20+ [ [ olan) +2)7 do(o) do).
We then use (5.3) and part (ii) of Theorem 4.2 to obtain

1
: —s __ 2 2 —s
it Y (i) +) 7 = GNP DRy - 5N
1<i<j<N

< 5( _se(1) —  min ) F_s75(0069))
|8|<cgN~d
N, N?
e

1 . N?
=—5N min (t+¢e)"+ —-1as(0)
0<t<cqgN~d 2

1 N?2
= —§N(CdN7% + 6)78 + 7&175(0’).

Letting £ — 0 yields the upper estimate (5.2).

Next, we show the lower estimate. Let Zn = {z1,---,2zn} be an arbitrary set
of N-distinct points on S?. We need to prove that

N s
Eq,—s(Zn) = Z p(zi, 25) 7" > T3 d,-s(0) = caN' .
1<i<j<N

To this end, let k be the smallest positive integer such that s +k+1 > d. For a
fixed 0 € (0, 7], define gg : [0, 7] — R by

S(S; D N L TP ey

go(t) = (0+t) " +st(0+t)°" 1+ 7

where t > 0. A straightforward calculation shows that

go(t) = —(S)k#tk(ﬂ +t)7 k<0, vt >o0.

In particular, this implies that for all 6,¢ € (0, 7],

co—s, if0<d<t,

5.4 0< 0) — t)=0"°— t) <
(5.4) < 90(0) — go(?) go(t) < {Otkﬂeskl’ 0>t
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It follows that for any ¢ > 0,

. (s)e* st
Z p(Zl',Zj) Z i Z (p(Z“Z])+€)
1<i<j<N =0 T 1<Ki<j<N
N2 gt sy —s
2— plz,y) +e¢) do(x)do(y) — CNe™*,
2 sd Sd

where we have used the fact that F_ (.1 . € ®4 (by part (ii) of Lemma 3.2) and
therefore the energy integral is smaller than the discrete energy: this can be deduced
either from Proposition 2.1 (o minimizes Ir Z%E) or from the Stolarsky principle

(4.3) (since D?, e oro. (Zn) 20).

On the other hand, a direct computation involving (5.4) shows that

plx,y) + )" do(z)do(y // p(x,y)~° do(x) do(y)
sd Jgd

O Sd Sd

—c / (90(0) — go(e)) sin 0 b

1> T
< c/ g5t =1 gh 4 ceht! / 5" Fgind1 9 do < ce5.
0

€

Thus, putting the above together, we obtain

. N? . ,
Z p(2i,25)7° > TId,,S(o) — CNe™® —cN%e95,
1<i<j<N
Now setting e = N _5, we get the desired lower estimate:

]. S
Ey_(Zy) > 5J\ﬂfd,(;(a) —¢gN'fa,

5.3. Proof of Theorem 5.2 in the logarithmic case § = 0. The proof is very
similar to the previous case. We shall begin with the upper bound:

2
(5.5) m5d,0(N) < Igo(0) —cgN~'logN.

Recall that for ¢ € [0,1), by Lemma 3.2, Fy.(t) = log (m) € ®&,. Hence,
invoking Theorem 4.2),

2 T T
inf — I B — N~ 1log =
N2 Z 08 (p(zz,zj) —|—<€) * 8

Doy, 2+ [ [ ou (ST ) dota) doto)

<N (F075(1)— min 1F075(cost9)) + Iy0(0)

16|<caN~1

—Nllog:Jerlog( + Ig0(0),

T
e+ CdN_l/d
which yields (5.5) as € — 0.
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To prove the lower bound, we first observe that | log 5 —log 7| < %60*1 for ¢,

6 > 0. This easily implies that

/Sd /Sd ( = +,0 e+ p(z,y) ~log p(g:y)>d‘7($)d0(y)‘ < Ce.

Therefore, using the fact that o minimizes Ir, .,

> gz X ()

1<i<j<N 1<i<j<N

N? 1

— / / log S do(z)do(y) — =N log T
2 JsaJsa T e+p(z,y) 2 €

N2
R
2 JsaJsa 7 p(

and the proof is concluded by choosing € = ¢cN~!log N.

Y]

1
do(z)do(y) — C'N?%e — §N10g g,

6. PROOF OF LEMMA 5.4

Recall that R)(cost) = CC(ACOM for A > 0, and R)(cost) = cosnt for A = 0. We

will use the following formula ([52 p. 80-81]):

(6.1) (B0 = "2 ) = e, R )

For the rest of this section, we let n € C°°[0,00) be such that n(t) = 1 for
0<t< T andn(t)=0fort>7.

6.1. Upper estimate. The upper estimate is a direct consequence of the following
lemma:

Lemma 6.1. Let g € C®[0,7] and A > 0. If —2A —1 <6 <1 and 6 # 0, then
’/077 0°g(0) R) (cos 0) (sin 0)** d&‘ < COn~27179,

Proof. We first claim that it suffices to show that

(6.2) ‘/ 0°n(0)g(0) R} (cos A) (sin )% dH' < COn~27179,

Indeed, a slight modification of the proof of (6.2) below shows that for any ¢; €
=0, 7],

(6.3) ‘ / 91(8) R (cos 0) (sin )2 d@‘ < On~2-2,

Since 6% (1 —n(0))g(f) € C>®[0, 7], the desired upper estimates follow directly from
(6.2) and (6.3).
Next, we show (6.2) in the case when X is a positive integer. Let &, € C*°(R) be
such that &(t) =1 for [¢| < & and &(t) =0 for [¢| > . Let & =1 — &. Clearly,
1

] / 0°&0(0n)n(0)g(0) R)) (cos 0)(sin 9)** da( <C / 02 gg < O (ML)
0
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Thus, it remains to show that

’/ 0°61(On)n(0)g(0) R} (cos A)(sin §)%* df| < Cn=2A =172,

To show (6.4), set
d 1 1 d cos 6
T dfsinf  sinfdf  sin’6
Using (6.1) and integration by parts A + 2 times, we then obtain

(6.5)

I, < Cn_Q’\’ / : D*(&1(6n)0°1(0)g(0) sin®* 0) cos((n + A)6) d&’

"
n—2A- 2‘/ A& (0n) 0°n(60)g() sin** 0)) cos((n + \)0) dG‘.
Since 7’ is supported in [, T], it is easily seen that

(DO Enn(@)g(60) sin 0)) | < €| max _w e (n0)]6> 2.

Since &/ (nf) is supported in [&-, /-], it follows that for 1 < j < A\ +2,

8n> 4n

™

nfz,\ﬂfz/E 1€E1(0n) (72 df < O~ =2y =0=+1 — Op=2A=1-5.
0

On the other hand, since & (n#) is supported in [ -, 00], we have

/2 /2
n=? / [61(0n)|6°2 df < O / 0°72dg < Cn=>071,
0 e
Putting these together, we deduce (6.4) and hence prove (6.2) for integer A.
Finally, we show (6.2) for all A > 0. We will use the following formula on

ultraspherical polynomials ([32, (4.10.29), p. 99])

(6.6) (sin 0)* R} (cos 0) = i a?:ﬁRﬁHk (cos ) (sin )%
k=0
where 0 < A < pu < 2A+ 1 and
i LN ()220 N (n+ 2k + )T (n + k + )Tk +p— A)
e.m Fw)(p—NTNET(n+k+A+1)
(6.7) ~ (n4+E)P M k4 1)R AL
For any A > 0, we can find an integer p such that A < p < 2\ + 1. Then

-1 < —=§ <22\+1 < 2u+ 1. Using (6.6), (6.7) and the already proven case
of (6.2), we obtain

0

] / © 99(0)9(0) R (cos ) (sin )2 d&’ - ‘Zag;;; / " 090 (0) R, . (cos ) (sin 0) d
k=0 0

oo
<O (nA+ k) Ak + )P (04 2k) 70 < O mPATI
k=0
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6.2. Lower estimate. In this subsection, we shall prove the lower estimates: for
0<d<1,

(6.8) ’ / 6° R (cos ) (sin ) d@‘ > O~ 178,
0
According to Lemma 3.2, it suffices to prove (6.8) as n — oo. Next, we assert that

if (6.8) holds for some A = g > 0, then it holds for all max{“gl,O} <A< p.
Indeed, this follows directly from (6.7) and Lemma 3.2: for n > 1,

‘/ 6° R (cos 0) (sin §) % dﬂ’ = Z O‘QZ
k=0

; /0 05Rn+2k(cos 6)(sin 6)** df

> (n+ k) A+ )P (n 2k) T > en AT
k=0

Thus, according to this last assertion, it suffices to prove (6.8) in the case when
A > 2 is an integer. Third, recall that n € C*°[0,00) is such that n(t) = 1 for
0<t< 7 andn(t) =0 fort > T, hence, according to (6.3),

‘/0 96(1 - n(e))Rf{(COS ) (sin )% de‘ < On~2-2,

Putting the above together, we are reduced to showing that if A > 2 is an integer
and 0 < 0 < 1, then

‘/ 0°n(0) R} (cos 0)(sin #)>* d9’ >COn 22179 asn — .
0

For the rest of the proof, we use the notation ¢, to denote a positive constant
depending on n such that ¢, ~ 1 as n — oo.
First, we observe from (6.2) for any 8 > 1, g € C*°[0, 7] and p € N,

(6.9) ‘/ 0)0” R (cos ) (sin §)** d@‘ <Oy gn 2

Thus, using (6.1), (6.5), (6.9) and integration by parts, we obtain

™

I = / 0°n(0) R} (cos 0)(sin 0)>* df = cnn_Q/2 D(H‘sn(G) sin?? 9) Rn+1(COS 0) do
0 0

—en? / ’ 96(51119)%—277(9)[5 Slene + (27— 1) cos ] R H(cos ) dO + O(n =)
0

= coan 22N —1406) /O : 0° (sin 0)** () Ry 1 (cos 0) df + O(n~2*72),
where we recall that ¢, > 0 and ¢, ~ 1. Continuing in this way A times, we obtain
2 =c¢,n /03 0°n(6) cos((n + \)0)df + O(n=2*2),
where ¢/, ~ 1. Now using integration by parts once again, we deduce

Ig = —cIn72 1 / 0°~1n(0) sin((n + \)0)db + O(n=*~2).
0
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Since n(gg_1 = "(9);77(0) € C™[0, 7], it follows that

n*%l\ / 051 (1(0) — 1) sin((n + \)9)d| < Cn=2*=2,
0

This implies that

—I° =it / 6°~Lsin((n + \)0)df + O(n=2*2)
0

(n+X)m
— CN/TI,_2)\_1_5/ 05—1 sin9d0+0(n_2)‘_2)
0

27
> cn_Q’\_l_‘S/ 0°~1sin® do + O(n_Q’\_Q) > en~2A-1-9,
0

This shows the desired lower estimate.
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