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Abstract. We study the spectrum and the density of states measure of

the square Fibonacci Hamiltonian. We describe where the transitions from
positive-measure to zero-measure spectrum and from absolutely continuous to

singular density of states measure occur. This shows in particular that for

almost every parameter from some open set, a positive-measure spectrum and
a singular density of states measure coexist. This provides the first physically

relevant example exhibiting this phenomenon.

1. Introduction

The square Fibonacci Hamiltonian is the bounded self-adjoint operator

[H
(2)
λ1,λ2,ω1,ω2

ψ](m,n) = ψ(m+ 1, n) + ψ(m− 1, n) + ψ(m,n+ 1) + ψ(m,n− 1)

+
(
λ1χ[1−α,1)(mα+ ω1mod 1) + λ2χ[1−α,1)(nα+ ω2mod 1)

)
ψ(m,n)

in `2(Z2), with α =
√

5−1
2 , coupling constants λ1, λ2 > 0 and phases ω1, ω2 ∈ T =

R/Z.
The square Fibonacci Hamiltonian is the natural two-dimensional analog of the

standard Fibonacci Hamiltonian, which is the bounded self-adjoint operator

[H
(1)
λ,ωψ](n) = ψ(n+ 1) + ψ(n− 1) + λχ[1−α,1)(nα+ ω mod 1)ψ(n)

in `2(Z), again with the coupling constant λ > 0 and the phase ω ∈ T.
The origin of these operators is twofold. On the one hand, the Fibonacci Hami-

tonian was proposed in 1983 as a model whose self-similarity leads to an exact
renormalization group approach [26, 41], connecting its spectral properties to dy-
namical properties of the associated renormalization map. On the other hand, since
the discovery of quasicrystals in 1982 (published in 1984; see [48]), the Fibonacci
Hamiltonian has served as the most prominent model for the study of electronic
transport properties in one-dimensional quasi-crystalline environments. There is
obvious interest in removing the restriction to one dimension, and a natural analo-
gous model in two dimensions is given by the square Fibonacci Hamiltonian. It is
then straightforward to generalize this construction to higher dimensions. For the
sake of simplicity we will limit our discussion to the case of two dimensions in this
paper. For a recent survey of the spectral theory of the Fibonacci Hamiltonian and
the square Fibonacci Hamiltonian, see [8].
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Using the minimality of an irrational rotation and strong operator convergence,
one can readily see that the spectra of these operators are phase-independent. That
is, there are compact subsets Σλ and Σλ1,λ2 of R such that

σ(H
(1)
λ,ω) = Σλ for every ω ∈ T,

σ(H
(2)
λ1,λ2,ω1,ω2

) = Σλ1,λ2
for every ω1, ω2 ∈ T.

The density of states measures associated with these operator families are defined
as follows,∫

R
g(E) dνλ1,λ2

(E) =

∫
T

∫
T
〈δ0, g(H

(2)
λ1,λ2,ω1,ω2

)δ0〉`2(Z2) dω1 dω2.

and ∫
R
g(E) dνλ(E) =

∫
T
〈δ0, g(H

(1)
λ,ω)δ0〉`2(Z) dω.

It is a standard result from the theory of ergodic Schrödinger operators that Σλ =
supp νλ and Σλ1,λ2

= supp νλ1,λ2
, where supp ν denotes the topological support of

the measure ν.
The theory of separable operators (see, e.g., [13, Appendix] and [46, Sections II.4

and VIII.10]) quickly implies that

(1) Σλ1,λ2
= Σλ1

+ Σλ2

and

(2) νλ1,λ2
= νλ1

∗ νλ2
,

where the convolution of measures is defined by∫
R
g(E) d(µ ∗ ν)(E) =

∫
R

∫
R
g(E1 + E2) dµ(E1) dν(E2).

The rigorous spectral analysis of the Fibonacci Hamiltonian was begun in the
1986 paper [6] by Casdagli and the 1987 paper [53] by Sütő and, in a certain sense,
it was recently completed in [14]. The latter paper proved many of the (then)
remaining conjectures about this operator and in particular gave rise to a global
picture in that it proved results for all values of the coupling constant, while most
of the previous results were restricted to either sufficiently small or sufficiently large
values of the coupling constant. The fact that these results are now known globally
is crucial to what we do in this paper. For example, it was shown in [14] that for
every λ > 0, the spectrum Σλ is a dynamically defined Cantor set. In particular,
its box counting dimension exists, coincides with its Hausdorff dimension, and the
common value belongs to (0, 1). Moreover, it was also shown in [14] that for every
λ > 0, the density of states measure νλ is exact-dimensional, and the respective
dimensions obey

(3) 0 < dimH νλ < dimH Σλ < 1.

The spectral analysis of the square Fibonacci Hamiltonian, on the other hand, is
still in its early stages. The first rigorous result was obtained in 2011 in [11], where it
was shown that for λ sufficiently small, Σλ,λ has no gaps at all; compare Figure 1.
While not stated in [11] explicitly, the results there (in particular, Theorem 1.2
and Lemma 6.2) also imply that for λ1, λ2 sufficiently small, the set Σλ1,λ2

is
an interval. Moreover, it is not hard to show that for any given λ1 and then
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Figure 1. The spectrum Σλ,λ of the square Fibonacci Hamilton-
ian; image courtesy of Mark Embree.

λ2 sufficiently small, the set Σλ1,λ2 has at most one gap. That is, while Cantor
spectrum is persistent in one dimension, the spectrum fails to be a Cantor set in
two dimensions if the coupling constants are sufficiently small. On the other hand,
even in two dimensions, the spectrum is a Cantor set of zero Lebesgue measure
if both λ1, λ2 are sufficiently large. This follows quickly from the fact, shown
in [9], that the dimension of Σλ goes to zero as λ → ∞. In particular, Σλ1,λ2

undergoes two interesting transitions as the coupling constants are increased: from
non-Cantor to Cantor, and from positive measure to zero measure. This shows that
the two-dimensional case is richer and more interesting than the one-dimensional
case, where no such transitions occur. In this paper we will study the transition
from positive-measure spectrum to zero-measure spectrum and describe precisely
where it occurs.

Let us now turn to the density of states measure νλ1,λ2
. Given the fact that

the spectrum Σλ1,λ2
is the topological support of νλ1,λ2

and in the regime of small
λ1, λ2 this set is a non-degenerate interval as discussed above, folk wisdom should
lead one to expect that νλ1,λ2 is absolutely continuous. On the other hand, since
both measures νλ1

, νλ2
are singular and it is notoriously difficult to establish the

absolute continuity of a convolution of two singular measures, it is initially far from
obvious how to establish this property. Nevertheless, by developing new tools in the
study of convolutions of singular measures, it was shown in [13] that for Lebesgue
almost all pairs (λ1, λ2) in the small coupling regime, the density of states measure
νλ1,λ2 is absolutely continuous.

However, and this fact will be a central theme of this paper, a nice structure
of the spectrum, while often indicative of the absolute continuity of the density of
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states measure, is in fact in general not sufficient to ensure the absolute continuity
of this measure.

In the regime of large λ1, λ2, the density of states measure νλ1,λ2 is clearly
singular since its topological support Σλ1,λ2

has zero Lebesgue measure as discussed
above. This gives again rise to an interesting transition as the coupling constants
are increased: from an absolutely continuous density of states measure to a singular
one, and this transition is again a phenomenon that was not present in the one-
dimensional case.

We are now ready to formulate our main result. Note that it follows from (3)
that the sets

{(λ1, λ2) ∈ R2
+ : dimH νλ1

+ dimH νλ2
= 1}

and
{(λ1, λ2) ∈ R2

+ : dimH Σλ1
+ dimH Σλ2

= 1}
are disjoint. The complement of the union of these sets consists of three regions,
in which we have three different kinds of spectral behavior:

Theorem 1.1. Consider the following three regions in R2
+:

Uacds = {(λ1, λ2) ∈ R2
+ : dimH νλ1 + dimH νλ2 > 1},

Upmsd = {(λ1, λ2) ∈ R2
+ : dimH Σλ1

+ dimH Σλ2
> 1 and dimH νλ1

+ dimH νλ2
< 1},

Uzmsp = {(λ1, λ2) ∈ R2
+ : dimH Σλ1

+ dimH Σλ2
< 1}.

Then, the following statements hold:

(a) The regions Uacds, Upmsd, Uzmsp are disjoint and the union of their closures
covers the parameter space R2

+.
(b) Each of the regions Uacds, Upmsd, Uzmsp is open and non-empty.
(c) For Lebesgue almost every (λ1, λ2) ∈ Uacds, νλ1,λ2 is absolutely continuous,

and hence Σλ1,λ2 has positive Lebesgue measure.
(d) For every (λ1, λ2) ∈ Upmsd, νλ1,λ2

is singular, but for Lebesgue almost every
(λ1, λ2) ∈ Upmsd, Σλ1,λ2

has positive Lebesgue measure.
(e) For every (λ1, λ2) ∈ Uzmsp, Σλ1,λ2

has zero Lebesgue measure, and hence
νλ1,λ2 is singular.

Remark 1.2. (a) The coexistence of positive measure spectrum and singular den-
sity of states measure is a rather unusual phenomenon. Until very recently it
was an open problem whether this can even occur in the context of Schrödinger
operators. The existence of Schrödinger operators with quasi-periodic potentials
exhibiting this phenomenon was shown in [2]. However, the examples given in that
paper are somewhat artificial, and “typical” quasi-periodic Schrödinger operators
are not expected to have these two properties. The examples provided by the
square Fibonacci Hamiltonian with parameters in Upmsd, on the other hand, are
not artificial at all, but rather correspond to operators that are arguably physically
relevant. Moreover the phenomenon is made possible by and is closely connected
to the strict inequality between dimH νλ and dimH Σλ, as stated in (3), which was
originally conjectured by Barry Simon and finally proved in [14] (see [12] for an
earlier partial result for sufficiently small values of λ).

(b) The potential of the Fibonacci Hamiltonian may be generated by the Fibonacci
substitution a 7→ ab, b 7→ a. This substitution is the most prominent example of an
invertible two-letter substitution. We believe that, using [22, 32], the results above
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may be generalized to the case where the Fibonacci substitution is replaced by a
general primitive invertible two-letter substitution.

(c) We expect that similar phenomena can appear also in other models, such as for
example the labyrinth model, or the square off-diagonal (or tridiagonal) Fibonacci
Hamiltonian, see [54, 55] for the description of the models and some partial results.

(d) For other work on the square Fibonacci Hamiltonian and related models, see
[16, 17, 18, 21, 50, 51, 56, 57, 59].

(e) Results analogous to Theorem 1.1 also hold for the cubic Fibonacci Hamiltonian
(and even higher dimensional versions of operators with separable Fibonacci poten-
tial). Indeed, due to [24], the sum of two dynamically defined Cantor sets C1 and
C2 with dimH C1 + dimH C2 < 1 generically must be a dynamically defined Cantor
set with dimH(C1 +C2) = dimH C1 + dimH C2. Similarly, the Hausdorff dimension
of the convolution of two singular measures of maximal entropy (that correspond
to the density of states measures) is typically equal to the sum of dimensions of the
initial measures. This reduces the consideration of the cubic Fibonacci Hamiltonian
to the results of the current paper.

(f) It would be interesting to understand the topological structure of the spectrum
of the Square Fibonacci Hamiltonian in the “intermediate coupling” regime. We
conjecture that there exists an open set in the space of parameters (λ1, λ2) ∈ R2

+

for which the spectrum of the corresponding Square Fibonacci Hamiltonian is a
Cantorval1. The conjecture is supported by the results from [35]. They claim that
there is an open set U in the space of dynamically defined Cantor sets such that
for generic C1, C2 ∈ U , the sum C1 + C2 is a Cantorval. Unfortunately, this result
does not provide any specific and verifiable genericity conditions that would allow
one to check that the sum of two given specific Cantor sets is indeed a Cantorval.

The structure of the paper is as follows. In Section 2 we discuss sums of dy-
namically defined Cantor sets, and in particular the question of when such a sum
has positive Lebesgue measure. The main result, Theorem 2.1, provides sufficient
conditions and may be of independent interest since this question arises in a variety
of settings, not only in the study of the spectrum of the square Fibonacci Hamil-
tonian. Then, in Section 3, we return to our discussion of the square Fibonacci
Hamiltonian and show that Theorem 2.3, which is a generalization of Theorem 2.1,
is applicable in this context and yields the key input in our study of the transi-
tion from positive-measure spectrum to zero-measure spectrum. We also discuss
the transition of the type of the density of states measure and then conclude the
section with a proof of Theorem 1.1.

2. Sums of Dynamically Defined Cantor sets

In this section we work in a general setting and prove a result that provides
criteria for certain sum sets to have positive Lebesgue measure. We will eventually
apply this to the spectrum of the square Fibonacci Hamiltonian which, as pointed
out in the previous section, is given by the sum of two spectra of one-dimensional
operators, but as this result may be of independent interest, we present it in the

1A compact set C ⊂ R1 is a Cantorval if it has a dense interior, i.e., int(C) = C, has a
continuum of connected components, and none of them are isolated.
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appropriate general setting, where it becomes clear what precisely is needed in the
proof.

The study of the structure and the properties of sums of Cantor sets is motivated
by applications in dynamical systems [38, 39, 40, 42], number theory [7, 27, 33],
harmonic analysis [3, 4], and spectral theory [16, 17, 18, 21, 59]. In many cases
dynamically defined Cantor sets are of special interest.

Definition 1. A dynamically defined (or regular) Cantor set of class Cr is a Can-
tor subset C ⊂ R of the real line such that there are disjoint compact intervals
I1, . . . , Il ⊂ R and an expanding Ck function Φ : I1 ∪ · · · ∪ Il → I from the disjoint
union I1 ∪ · · · ∪ Il to its convex hull I with

C =
⋂
n∈N

Φ−n(I).

In the case when the restriction of the map Φ to each of the intervals Ij , j =
1, . . . , l, is affine, the corresponding Cantor set is also called affine. If all these affine
maps have the same expansion rate (i.e., |Φ′(x)| = const for all x ∈ I1 ∪ · · · ∪ Il),
the Cantor set is called homogeneous. A specific example of a homogeneous Cantor
set, a middle-α Cantor set2 Ca, is defined by Φ : [0, a] ∪ [1 − a, 1] → [0, 1], where
Φ(x) = x

a for x ∈ [0, a], and Φ(x) = x
a −

1
a + 1 for x ∈ [1− a, 1]. For example, C1/3

is the standard middle-third Cantor set.
Considering the sum C + C ′ of two Cantor sets C,C ′, defined by

C + C ′ = {c+ c′ : c ∈ C, c′ ∈ C ′},
it is not hard to show (see, e.g., Chapter 4 in [42]) that if the Cantor sets C and C ′

are dynamically defined, one has dimH(C+C ′) ≤ min(dimH C+dimH C
′, 1). Hence

in the case dimH C + dimH C
′ < 1, the sum C + C ′ must be a Cantor set, and an

interesting question here is whether the identity dimH(C+C ′) = dimH C+dimH C
′

holds. This question was addressed for homogeneous Cantor sets in [44] (see also
[37]), and some explicit criteria were provided in [24].

In the case when dimH C+dimH C
′ > 1, a major result was obtained by Moreira

and Yoccoz in [36]. They showed that for a generic pair of Cantor sets (C,C ′) in
this regime, the sum C+C ′ contains an interval. The genericity assumptions there
are quite non-explicit, and cannot be verified in a specific case. This does not allow
one to apply this result when a specific pair or a specific family of Cantor sets is
given (which is often the case in applications), which therefore motivates further
investigations in this direction. For example, while [36] solves one part of the Palis
conjecture on sums of Cantor sets (“generically the sum of two dynamically defined
Cantor sets either has zero measure or contains an interval”), the second part of the
conjecture (“generically the sum of two affine Cantor sets either has zero measure
or contains an interval”) is still open.

An important characteristic of a Cantor set related to questions about inter-
sections and sum sets is the thickness, usually denoted by τ(C). This notion was
introduced by Newhouse in [38]; for a detailed discussion, see [42]. The famous
Newhouse Gap Lemma asserts that if τ(C) · τ(C ′) > 1, then C + C ′ contains an
interval. This allowed for essential progress in dynamics [39, 40, 15], and found
an application in number theory [1]. Nevertheless, in some cases τ(C) · τ(C ′) < 1,
while dimH C + dimH C

′ > 1, and other arguments are needed.

2It is standard to denote the middle-α Cantor set by Ca, where a = 1
2

(1 − α).
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In [52] Solomyak studied the sums Ca + Cb of middle-α type Cantor sets. He
showed that in the regime when dimH Ca + dimH Cb > 1, for almost every pair of
parameters (a, b), one has Leb(Ca + Cb) > 0. Similar results for sums of homoge-
neous Cantor sets (parameterized by the expansion rate) with a fixed compact set
were obtained in [44].

In this paper we are able to work in far greater generality and prove the following:

Theorem 2.1. Let {Cλ} be a family of dynamically defined Cantor sets of class
C2 (i.e., Cλ = C(Φλ), where Φλ is an expansion of class C2 both in x ∈ R and in
λ ∈ J = (λ0, λ1)) such that d

dλ dimH Cλ 6= 0 for λ ∈ J . Let K ⊂ R be a compact
set such that

dimH Cλ + dimHK > 1 for all λ ∈ J.
Then Leb(Cλ +K) > 0 for a.e. λ ∈ J .

Remark 2.2. It would be interesting to relax the assumptions in Theorem 2.1 and
to show that the same statement holds for C1+α Cantor sets. We conjecture that
this is indeed the case (possibly under some extra conditions on the dependence of
Φ and ∂

∂xΦ on λ).

In the case when the dynamically defined Cantor sets {Cλ} are affine (or non-
linear, but C2-close to affine), a statement analogous to Theorem 2.1 was obtained
in [23]. The case of a sum of homogeneous (affine with the same contraction rate
for each of the generators) Cantor sets with a dynamically defined Cantor set was
considered in Theorem 1.4 in [49]; in this case the set of exceptional parameters
has zero Hausdorff dimension.

In many applications a dynamically defined Cantor sets appears as the inter-
section of the stable lamination of some hyperbolic horseshoe with a transversal.
More specifically, suppose that f : M2 → M2 is a Cr-diffeomorphism, r ≥ 2, and
Λ ⊂ M2 is a hyperbolic horseshoe (i.e., a totally disconnected locally maximal in-
variant compact set such that there exists an invariant splitting TΛ = Es ⊕ Eu so
that along the stable subbundle {Es}, the differential Df contracts uniformly, and
along {Eu}, the differential of the inverse Df−1 contracts uniformly). Then

W s(Λ) = {x ∈M2 : dist (fn(x),Λ)→ 0 as n→ +∞}

consists of stable manifolds W s(Λ) =
⋃
x∈ΛW

s(x) and locally looks like a prod-
uct of a Cantor set with an interval. If f = fλ∗ ∈ {fλ}λ∈J=(λ0,λ1) is an element
of a smooth family of diffeomorphisms, then there exists a family of horseshoes
{Λλ}, fλ(Λλ) = Λλ, for parameters λ sufficiently close to the initial λ∗ ∈ J . Sup-
pose that L ⊂M2 is a line transversal to every leaf in W s(Λλ), λ ∈ J , with compact
intersection L ∩W s(Λλ). The intersection Cλ = L ∩W s(Λλ) is a λ-dependent dy-
namically defined Cantor set. The lamination {W s(x)} consists of Cr leaves, but in
general one cannot include it in a foliation of smoothness better than C1+α (even for
C∞ or real analytic f). That justifies the traditional assumption on C1+α smooth-
ness of generators of a dynamically defined Cantor set3. This prevents us from
using Theorem 2.1 in the context above. Nevertheless, the analog of Theorem 2.1
holds for families of Cantor sets {Cλ} obtained via the described construction:

3Notice that C1-smoothness is usually too weak since it does not allow one to use distortion
property arguments; see [34, 58] for some results on sums of C1 Cantor sets.
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Theorem 2.3. Suppose that {fλ}λ∈J=(λ0,λ1), fλ : M2 →M2, is a C2-family of C2-

diffeomorphisms with uniformly (in λ) bounded C2 norms. Let {Λλ}λ∈J be a family
of hyperbolic horseshoes, and {Lλ}λ∈J be a smooth family of curves parameterized
by γλ : R → M2, transversal to W s(Λλ), with compact Cλ = γ−1

λ (Lλ ∩W s(Λλ)).
Assume that

(4)
d

dλ
dimH Cλ 6= 0 for all λ ∈ J.

If K ⊂ R is a compact set such that

(5) dimH Cλ + dimHK > 1 for all λ ∈ J,
then Leb(Cλ +K) > 0 for Lebesgue almost every λ ∈ J .

Notice that Theorem 2.3 implies Theorem 2.1. Indeed, under the assumptions of
Theorem 2.1, one can construct a family of horseshoes and curves as in Theorem 2.3
that produce the same family of Cantor sets {Cλ}. Namely, if C is a dynamically
defined Cantor set as in Definition 1, one can consider l disjoint closed intervals
J1, J2, . . . , Jl ⊂ R, with convex hull J , and l contacting mappings fi : J → Ji,
i = 1, . . . , l. The map Ψ : ∪s=1,...,l, k=1,...,lIs × Jk → I × J , defined by Ψ(x, y) =
(Φ(x), fs(y)) if x ∈ Is, has an invariant hyperbolic set Λ such that its unstable set
intersects the line R × {0} by the set C × {0}. For a more detailed discussion of
the relation between dynamically defined Cantor sets and hyperbolic invariant sets
of diffeomorphisms, see, for example, [42, Chapter 4].

The proof of Theorem 2.3 is based on Theorem 3.7 from [13]. The setting there
is the following.

Suppose J ⊂ R is a compact interval, and fλ : M2 → M2, λ ∈ J , is a smooth
family of smooth surface diffeomorphisms. Specifically, we require fλ(p) to be C2-
smooth with respect to both λ and p, with a finite C2-norm. Also, we assume
that fλ : M2 → M2, λ ∈ J , has a locally maximal transitive totally disconnected
hyperbolic set Λλ that depends continuously on the parameter.

Let γλ : R→M2 be a family of smooth curves, smoothly depending on the pa-
rameter, and Lλ = γλ(R). Suppose that the stable manifolds of Λλ are transversal
to Lλ.

Lemma 2.4 (Lemma 3.1 from [13]). There is a Markov partition of Λλ and a
continuous family of projections πλ : Λλ → Lλ along stable manifolds of Λλ such
that for any two distinct elements of the Markov partition, their images under πλ
are disjoint.

Suppose σA : Σ`A → Σ`A is a topological Markov chain, which for every λ ∈ J is
conjugated to fλ : Λλ → Λλ via the conjugacy Hλ : Σ`A → Λλ. Let µ be an ergodic
probability measure for σA : Σ`A → Σ`A such that hµ(σA) > 0. Set µλ = Hλ(µ),
then µλ is an ergodic invariant measure for fλ : Λλ → Λλ.

Let πλ : Λλ → Lλ be the continuous family of continuous projections along
the stable manifolds of Λλ provided by Lemma 2.4. Set νλ = γ−1

λ ◦ πλ(µλ) =

γ−1
λ ◦ πλ ◦Hλ(µ).

In this setting the following theorem holds.

Theorem 2.5 (Theorem 3.7 from [13]). Suppose that J is a compact interval so
that

∣∣ d
dλLyapu(µλ)

∣∣ ≥ δ > 0 for some δ > 0 and all λ ∈ J . Then for any compactly
supported exact-dimensional measure η on R with

dimH η + dimH νλ > 1
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for all λ ∈ J , the convolution η∗νλ is absolutely continuous with respect to Lebesgue
measure for Lebesgue almost every λ ∈ J .

Remark 2.6. In fact, in Theorem 2.5 the assumptions on the measure η can be
replaced by the following weaker ones:

• There are C > 0 and d > 0 such that for every x ∈ R and r > 0, we have
η(Br(x)) ≤ Crd (this is the only consequence of exact dimensionality of η
that was used in the proof of Theorem 2.5 in [13]),
• d+ dimH νλ > 1.

Proof of Theorem 2.3. The condition dimH Cλ + dimHK > 1 trivially implies that
dimHK > 0. By Frostman’s Lemma (see, e.g., [30, Theorem 8.8]), for every d <
dimHK, there exist a Borel measure η on R with η(K) = 1 and a constant C such
that

(6) η(Br(x)) ≤ Crd for every x ∈ R and r > 0.

We will show that for every λ0 ∈ J , there exists ε = ε(λ0) > 0 such that
Leb(Cλ + K) > 0 for Lebesgue almost every λ ∈ (λ0 − ε, λ0 + ε) ∩ J . This will
imply Theorem 2.3.

Fix λ0 ∈ J . Let µλ0
be the equilibrium measure on Λλ0

that corresponds to the
potential − dimH Cλ0

log |Dfλ0
|Eu |. Then (see [31]), the measure µλ0

is a measure
of maximal (unstable) dimension, that is, dimH πλ0(µλ0) = dimH Cλ0 . Denote by
νλ0 the projection πλ0(µλ0). In order to mimic the setting of Theorem 2.5, set µ =
H−1
λ0

(µλ0). Then µ is an invariant probability measure for the shift σA : ΣlA → ΣlA.

Let us denote µλ = Hλ(µ) and νλ = πλ(µλ). There exists a canonical family of
conjugaciesHλ1,λ2 : Λλ1 → Λλ2 , (λ1, λ2) ∈ J×J , so thatHλ1,λ2 ◦fλ1 = fλ2 ◦Hλ1,λ2 .
It is well known (see, for example, Theorem 19.1.2 from [25]) that each of the
maps Hλ1,λ2

is Hölder continuous. Moreover, the Hölder exponent tends to one as
|λ1 − λ2| → 0; see [43]. As a result, we conclude that for any λ sufficiently close to
λ0, we have

dimH νλ + d > 1

for a suitable d that is chosen sufficiently close to dimHK and for which we have
(6) with suitable η and C.

In order to apply Theorem 2.5 we need to show that
∣∣ d
dλLyapu(µλ)

∣∣ ≥ δ > 0.
But due to [29] we know that

Lyapuµλ =
hµλ

dimH νλ
,

where hµλ0 = hµ is the entropy of the invariant measure µλ (which is by construc-

tion independent of λ). Notice also that Lyapuµλ is a C1 smooth function of λ.
Indeed, the center-stable and center-unstable manifolds of the partially hyperbolic
invariant set of the map (λ, p) 7→ (λ, fλ(p)) are C2-smooth, hence

Lyapuµλ =

∫
Λλ

log |Dfλ|Eu | dµλ =

∫
ΣlA

log |Dfλ(Hλ(ω))|Eu | dµ(ω)

is a C1-smooth function of λ ∈ J .
Finally, consider dimH Cλ and dimH νλ as functions of λ; see Fig. 2. Due to [28]

we know that dimH Cλ is a C1-function of λ. Without loss of generality we can
assume that d

dλ dimH Cλ ≥ δ > 0 for some δ > 0. Since supp νλ ⊆ Cλ, we have
dimH νλ ≤ dimH Cλ. By construction we have dimH νλ0

= dimH Cλ0
. This implies
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λ0 λ

dimH νλ

dimH Cλ

Figure 2. Graphs of dimH Cλ and dimH νλ as functions of λ

that d
dλ |λ=λ0 dimH νλ = d

dλ |λ=λ0 dimH Cλ ≥ δ > 0, and hence for some ε > 0,
d
dλ dimH νλ ≥ δ

2 > 0 for λ ∈ (λ0− ε, λ0 + ε). Now we can apply Theorem 2.5 to the
measures η and νλ, and get that for Lebesgue almost every λ ∈ (λ0− ε, λ0 + ε), the
convolution η ∗ νλ is absolutely continuous with respect to Lebesgue measure, and
hence Leb(Cλ +K) > 0. �

3. The Square Fibonacci Hamiltonian

The ultimate goal of this section is to prove Theorem 1.1. We will first recall the
dynamical description of the spectrum of the Fibonacci Hamiltonian via the trace
map.

3.1. The Dynamical Description of the Spectrum. There is a fundamental
connection between the spectral properties of the Fibonacci Hamiltonian and the
dynamics of the trace map

(7) T : R3 → R3, T (x, y, z) = (2xy − z, x, y).

The function G(x, y, z) = x2 + y2 + z2 − 2xyz − 1 is invariant4 under the action of
T , and hence T preserves the family of cubic surfaces5

(8) Sλ =

{
(x, y, z) ∈ R3 : x2 + y2 + z2 − 2xyz = 1 +

λ2

4

}
.

It is therefore natural to consider the restriction Tλ of the trace map T to the
invariant surface Sλ. That is, Tλ : Sλ → Sλ, Tλ = T |Sλ . We denote by Λλ the set
of points in Sλ whose full orbits under Tλ are bounded (it follows from [5, 47] that
Λλ is equal to the non-wandering set of Tλ; compare the discussion in [12]).

4G is usually called the Fricke-Vogt invariant.
5The surface S0 is known as Cayley cubic.
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Denote by `λ the line

(9) `λ =

{(
E − λ

2
,
E

2
, 1

)
: E ∈ R

}
.

It is easy to check that `λ ⊂ Sλ. The key to the fundamental connection between
the spectral properties of the Fibonacci Hamiltonian and the dynamics of the trace
map is the following result of Sütő [53]. An energy E ∈ R belongs to the spectrum
Σλ of the Fibonacci Hamiltonian if and only if the positive semiorbit of the point
(E−λ2 , E2 , 1) under iterates of the trace map T is bounded.

It turns out that for every λ > 0, Λλ is a locally maximal compact transitive
hyperbolic set of Tλ : Sλ → Sλ; see [5, 6, 10]. Moreover, it was shown in [14] that
for every λ > 0, the line of initial conditions `λ intersects W s(Λλ) transversally.
Thus, we are essentially in the setting in which Theorem 2.3 applies. The only
minor difference is that in the present setting, the surface Sλ depends formally on
λ, while it is λ-independent in the setting of Theorem 2.3. After partitioning the
parameter space into smaller intervals if necessary, we can then consider a small
λ-interval, choose a λ0 in it, and then conjugate with smooth projections of Sλ to
Sλ0

.

3.2. The Measure of the Spectrum. As was pointed out above, it was shown
in [14] that the box counting dimension of Σλ exists and is equal to the Hausdorff
dimension of Σλ. A particular consequence of this is the following:

Proposition 3.1. If (λ1, λ2) ∈ R2
+ is such that dimH Σλ1

+ dimH Σλ2
< 1, then

Σλ1,λ2
has zero Lebesgue measure.

Here we are able to prove the following companion result:

Proposition 3.2. Suppose that for all pairs (λ1, λ2) in some open set U ⊂ R2
+, we

have dimH Σλ1
+ dimH Σλ2

> 1. Then, for Lebesgue almost all pairs (λ1, λ2) ∈ U ,
Σλ1,λ2

has positive Lebesgue measure.

Proof. It clearly suffices to work locally in U (compare with the first steps in the
proof of Theorem 2.3). That is, we consider a rectangular box B = {(λ1, λ2) :
a < λ1 < b, c < λ2 < d} inside U and prove that for Lebesgue almost every
(λ1, λ2) ∈ B, Σλ1,λ2 has positive Lebesgue measure. To accomplish this, it suffices
to show that for every fixed λ2 ∈ (c, d), Σλ1,λ2

has positive Lebesgue measure for
Lebesgue almost every λ1 ∈ (a, b).

The set Σλ2
will play the role of the set K in Theorem 2.3. By the analyticity

of λ1 7→ dimH Σλ1
, we can subdivide (a, b) into intervals, on the interiors of which

we have the condition
d

dλ1
dimH Σλ1

6= 0.

This ensures that condition (4) in Theorem 2.3 holds. Condition (5) in Theorem 2.3
holds since we work inside U . All the other assumptions in Theorem 2.3 hold by
the discussion in the previous subsection. Thus we may apply Theorem 2.3 and
obtain the desired statement. �

3.3. The Density of States Measure. Combining results from [13] and [14], we
obtain the following statement:

Proposition 3.3. For Lebesgue almost all pairs (λ1, λ2) ∈ R2
+ in the region where

dimH νλ1
+ dimH νλ2

> 1, the measure νλ1,λ2
is absolutely continuous.
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Let us prove the following companion result:

Proposition 3.4. Suppose that dimH νλ1
+dimH νλ2

< 1. Then, νλ1,λ2
is singular,

that is, it is supported by a set of zero Lebesgue measure.

We begin by recalling some basic concepts from measure theory and fractal
geometry; the standard texts [19, 30] can be consulted for background information.
Suppose µ is a finite Borel measure on Rd. The lower Hausdorff dimension, resp.
the upper Hausdorff dimension, of µ are given by

dim−H(µ) = inf{dimH(S) : µ(S) > 0},(10)

dim+
H(µ) = inf{dimH(S) : µ(Rd \ S) = 0}.(11)

Thus, the measure µ gives zero weight to every set S with dimH(S) < dim−H(µ)

and, for every ε > 0, there is a set S with dimH(S) < dim+
H(µ) + ε that supports µ

(i.e., µ(R \ S) = 0).
For x ∈ Rd and ε > 0, we denote the open ball with radius ε and center x by

B(x, ε). The lower scaling exponent of µ at x is given by

α−µ (x) = lim inf
ε→0

log µ(B(x, ε))

log ε
.

For µ-almost every x, α−(x) ∈ [0, d]. Moreover, we have

dim−H(µ) = µ− essinf α−µ ≡ sup{α : α−µ (x) ≥ α for µ-almost every x},(12)

dim+
H(µ) = µ− esssupα−µ ≡ inf{α : α−µ (x) ≤ α for µ-almost every x},(13)

compare [20, Propositions 10.2 and 10.3].
One can also consider the upper scaling exponent of µ at x,

α+
µ (x) = lim sup

ε→0

log µ(B(x, ε))

log ε
,

which also belongs to [0, d] for µ-almost every x. The measure µ is called exact-
dimensional if there is a number dim µ ∈ [0, d] such that α+

µ (x) = α−µ (x) = dimµ

for µ-almost every x ∈ Rd. In this case, it of course follows that dim+
H(µ) =

dim−H(µ) = dimµ, and tangentially we note that the common value also coincides
with the upper and lower packing dimension of µ, which are defined analogously by
replacing the Hausdorff dimension of a set in the above definitions by the packing
dimension; see [19, 20, 30] for further details.

We are now ready to prove Proposition 3.4. In fact, the statement will follow
quickly from known results once we have established the following simple lemma.

Lemma 3.5. Suppose ν1 and ν2 are compactly supported exact-dimensional mea-
sures on R of dimension d1 and d2, respectively. If d1+d2 < 1, then the convolution
ν1 ∗ ν2 is singular.

Proof. Note first that the product measure ν1 × ν2 is exact-dimensional with di-
mension d1 + d2. Moreover, the convolution ν1 ∗ ν2 can be obtained from ν1 × ν2

by projection, that is,

ν1 ∗ ν2(B) = ν1 × ν2{(x, y) ∈ R2 : x+ y ∈ B}.
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It follows that for ν1 ∗ ν2-almost every x ∈ R, the lower scaling exponent

α−ν1∗ν2(x) = lim inf
ε↓0

log (ν1 ∗ ν2 ((x− ε, x+ ε)))

log ε

is bounded from above by d1 +d2. This implies that the upper Hausdorff dimension
of ν1 ∗ ν2,

dim+
H(ν1 ∗ ν2) = inf{dimH(S) : ν1 ∗ ν2(R \ S) = 0}

= ν1 ∗ ν2 − esssupα−ν1∗ν2

≡ inf{d : α−ν1∗ν2(x) ≤ d for ν1 ∗ ν2-almost every x},

is bounded from above by d1 + d2 (here we used (11) and (13)). Since d1 + d2 < 1
by assumption, ν1 ∗ ν2 has a support of Hausdorff dimension strictly less than one
and hence of Lebesgue measure zero. This shows that ν1 ∗ ν2 is singular. �

Proof of Proposition 3.4. It was shown in [14] that for every λ > 0, the density
of states measure νλ is exact-dimensional. Thus, Proposition 3.4 is an immediate
consequence of Lemma 3.5. �

3.4. Putting It All Together. We are now in a position to prove our main result,
Theorem 1.1.

Proof of Theorem 1.1. (a) The regions Uacds, Upmsd, Uzmsp are clearly disjoint due
to their definition. Moreover, the union of their closures covers the parameter space
R2

+ due to the analyticity of both dimH νλ and dimH Σλ; compare [45].

(b) It was shown in [14] that dimH νλ and dimH Σλ obey the inequalities (3). This,
together with the continuity of these functions, implies that each of the regions
Uacds, Upmsd, Uzmsp is open and non-empty.

(c) Proposition 3.3 shows that for Lebesgue almost every (λ1, λ2) ∈ Uacds, νλ1,λ2 is
absolutely continuous, and hence Σλ1,λ2

has positive Lebesgue measure.

(d) On the other hand, for every (λ1, λ2) ∈ Upmsd, νλ1,λ2 is singular by Propo-
sition 3.4, while for Lebesgue almost every (λ1, λ2) ∈ Upmsd, Σλ1,λ2

has positive
Lebesgue measure due to Proposition 3.2.

(e) Finally, it follows from Proposition 3.1 that for every (λ1, λ2) ∈ Uzmsp, Σλ1,λ2

has zero Lebesgue measure, and hence νλ1,λ2
is singular. �
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[53] A. Sütő, The spectrum of a quasiperiodic Schrödinger operator, Commun. Math. Phys. 111

(1987), 409–415.
[54] Y. Takahashi, Products of two Cantor sets, preprint (arXiv:1601.01370).

[55] Y. Takahashi, Quantum and spectral properties of the labyrinth model, J. Math. Phys., to
appear, (arXiv:1601.01284).

[56] S. Thiem, M. Schreiber, Renormalization group approach for the wave packet dynamics in

golden-mean and silver-mean labyrinth tilings, Phys. Rev. B 85 (2012) 224205 (15pp).
[57] S. Thiem, M. Schreiber, Wavefunctions, quantum diffusion, and scaling exponents in golden-

mean quasiperiodic tilings, J. Phys.: Condens. Matter 25 (2013) 075503 (15pp).
[58] R. Ures, Abundance of hyperbolicity in the C1 topology, Ann. Sci. Ecole Norm. Sup. 28

(1995), 747–760.

[59] W. Yessen, Hausdorff dimension of the spectrum of the square Fibonacci Hamiltonian,

preprint (arXiv:1410.3102).

Department of Mathematics, Rice University, Houston, TX 77005, USA
E-mail address: damanik@rice.edu

Department of Mathematics, University of California, Irvine, CA 92697, USA
E-mail address: asgor@math.uci.edu


