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An efficient algorithm for enumerating representations ofU (3) that occur in a representation of the unitary groupU (N ) is introduced.
The algorithm is applicable to U (N ) representations associated with a system of identical fermions (protons, neutrons, electrons, etc.)
distributed among the N = (η + 1)(η + 2)/2 degenerate eigenstates of the ηth level of the three-dimensional harmonic oscillator. A
C++ implementation of the algorithm is provided and its performance evaluated. The implementation can employ OpenMP threading
for use in parallel applications.
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1 INTRODUCTION

We present an algorithm for a fast reduction of irreducible representations (irreps) of the unitary groupU (N ) into a
complete set of irreps of U (3), the symmetry group of the three-dimensional harmonic oscillator (HO). We start with a
brief description of the underpinning mathematical procedure [Draayer et al. 1989]. Let N = (η + 1)(η + 2)/2 denotes
the number of degenerate eigenstates of the ηth HO level, η = 0, 1, 2 . . . . TheU (N ) irreps associated with a distribution
of fermions among these eigenstates is labeled by a Young tableaux

[f ] = [f1, . . . , fN ], fi ∈ {0, 1, 2}, fi ≥ fi+1,

where
∑
i fi = A is equal to the number of fermions. The condition

fi ∈ {0, 1, 2} (1)

Authors’ addresses: Daniel Langr, Czech Technical University in Prague, Department of Computer Systems, Faculty of Information Technology, Thákurova
9, Praha, 16000, Czech Republic, daniel.langr@fit.cvut.cz; Tomáš Dytrych, Czech Academy of Sciences, Nuclear Physics Institute, Czech Republic, Louisiana
State University, Department of Physics and Astronomy, USA; Jerry P. Draayer, Louisiana State University, Department of Physics and Astronomy,
USA; Kristina D. Launey, Louisiana State University, Department of Physics and Astronomy, USA; Pavel Tvrdík, Czech Technical University in Prague,
Department of Computer Systems, Faculty of Information Technology, Czech Republic.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2010 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/0000001.0000001


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 D. Langr et al.

follows from the Pauli exclusion principle, which allows each eigenstate to be occupied by either no particles, a single
particle, or two particles with different spin projections.

The reduction of aU (N ) irrep intoU (3) irreps is based on a generation of Gelfand patterns

д1,N д2,N д3,N д4,N . . . дN ,N

д1,N−1 д2,N−1 д3,N−1 . . . дN−1,N−1
д1,N−2 д2,N−2 . . . дN−2,N−2

. . . . . . . . . . . . . . . . . .

д1,2 д2,2
д1,1

where дi ,N = fi and дi , j ∈ {0, 1, 2} satisfies betweenness condition [Gelfand and Tsetlin 1950]

дi , j ≥ дi , j−1 ≥ дi+1, j . (2)

Each Gelfand pattern labels a unique basis state of theU (N ) irrep [f ]. The number of such patterns is therefore equal
to the dimension of [f ],

dim[f ] =
N∏
l=2

l−1∏
k=1

fk − fl + l − k

l − k
. (3)

Each Gelfand pattern determines a weight vector ®w = [w1, . . . ,wN ] of a basis state, where

wi =
∑
j
дj ,i −

∑
j
дj ,i−1 for 1 ≤ i ≤ N , (4)

and
∑
j дj ,0 = 0 by definition. We assign the N levels of U (N ) to degenerate HO eigenstates expressed in Cartesian

coordinates, where the ith eigenstate is labeled by non-negative integers (ηz,i ,ηx ,i ,ηy,i ) that satisfy η = ηz,i +ηx ,i +ηy,i .
We arrange the eigenstates in standard speedometer order:

i ← 1
for k ← 0, 1, . . . , n do

for l ← k , k − 1, . . . , 0 do
ηz ,i ← n − k
ηx ,i ← l
ηy ,i ← k − l
i ← i + 1

end
end

For each direction, we can form a vector of HO quanta as follows:

®ηz = [ηz,1, . . . ,ηz,N ], ®ηx = [ηx ,1, . . . ,ηx ,N ], and ®ηy = [ηy,1, . . . ,ηy,N ]. (5)

The ith element of the weight vector ®w specifies the number of fermions occupying the ith eigenstate. As a result, the
inner products

e1 = ®w · ®ηz , e2 = ®w · ®ηx , e3 = ®w · ®ηy (6)

yield aU (3) weight [e1, e2, e3], which corresponds to the total number of HO quanta along z, x , and y directions. Let
M[e1, e2, e3] denotes the multiplicity of the U (3) weight [e1, e2, e3], i.e., how many times this weight is generated across
all basis states of [f ]. If aU (3) weight satisfies e1 ≥ e2 ≥ e3, then it forms the U (3) irrep [e] = [e1, e2, e3] in theU (N )
irrep [f ]. The dimensionality of [e] in [f ], i.e., the number of times a givenU (3) irrep [e] occurs in [f ], can be obtained
Manuscript submitted to ACM
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Algorithm XXX: Efficient Algorithm for Representations of U(3) in U(N) 3

via a simple difference relation:

D[e] = M[e1, e2, e3] +M[e1 + 1, e2 + 1, e3 − 2] +M[e1 + 2, e2 − 1, e3 − 1]

−M[e1 + 2, e2, e3 − 2] −M[e1 + 1, e2 − 1, e3] −M[e1, e2 + 1, e3 − 1]. (7)

The purpose of our algorithm is to enable a fast and efficient, on-the-fly generation of a complete set of U (3) irreps in a
U (N ) irrep [f ] together with their dimensionalities.

2 MOTIVATION AND RELATEDWORK

The three-dimensional harmonic oscillator potential is a good starting approximation to the potential that binds nucleons
together, and hence the U (N ) → U (3) group chain plays a central role in nuclear physics [Elliott 1958]. A detailed
description of the mathematical procedure forU (N ) → U (3) reduction was originally presented by Draayer et al. [1989],
who also provided a relatively simple FORTRAN code called UNTOU3 for its implementation. Unfortunately, while
technically correct, the UNTOU3 implementation cannot be applied efficiently to U (N ) irreps of very large dimensions,
nor is it suitable for on-the-fly applications, especially when the latter is further enabled by parallel processing. The
solution presented below circumvents all of these issues, and therefore is a major enabling feature for modern so-called
algebraic no-core nuclear structure calculations [Launey 2017].

Specifically, a more recent U (N ) → U (3) code was developed in C++ as a part of LSU3shell—a high performance
computing enabled implementation of the symmetry-adapted no-core shell model (SA-NCSM) [Dytrych et al. 2013, 2016;
Langr et al. 2018]. LSU3shell has been up to now applied to study structure of light nuclei, where only relatively small
U (N ) irreps arise. For example, in one of the largest nuclear structure calculation ever performed with LSU3shell

(on the Blue Waters supercomputer), the most demanding U (N ) → U (3) problem involved the following U (21) irrep
(η = 5,A = 3):

[f ] = [2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

which is spanned by 3080 Gelfand patterns (3). The solution took 0.0145 seconds on our testbed system.
The recent advances in algorithms and many-body techniques underpinning LSU3shell allows us to extend its reach

towards heavier nuclei, where much larger irreps are needed and theU (N ) → U (3) reduction becomes one of the main
program bottlenecks. An illustrative example is the followingU (21) irrep (η = 5,A = 13):

[f ] = [2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (8)

which is spanned by 2 168 999 910 Gelfand patterns. The correspondingU (N ) → U (3) reduction took 986.9 seconds on
our testbed system. This huge growth in compute time motivated us to develop and implement a newU (N ) → U (3)
algorithm, which is introduced in Section 4.

3 ORIGINAL ALGORITHM

The original algorithm generates Gelfand patterns recursively as illustrated in ALGORITHM 1. The input are the labels
of a U (m) irrep [д1,m, . . . ,дm,m ], from which it generates all possible U (m − 1) irrep labels [д1,m−1, . . . ,дm−1,m−1]
that satisfy betweenness condition (2). Before each recursive call, themth element of the weight vector ®w is updated
according to (4). At the end of recursion, the construction of ®w is finalized, a correspondingU (3) weight is evaluated (6),
and its multiplicity M[e1, e2, e3] increased accordingly. In LSU3shell code, M is represented by a data structure
of C++ type std::map, which is an associative container typically build up using some form of a binary search

Manuscript submitted to ACM
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4 D. Langr et al.

ALGORITHM 1: ProcessGelfandPatternRow([д1,m , . . . , дm,m ], ®w )
Input: [д1,m , . . . , дm,m ]:mth row of a Gelfand pattern
Input: ®w : constructed weight vector
Output: M : table of multiplicities of resulting U (3) weights; initially, M [e1, e2, e3] = 0 for any [e1, e2, e3]
Data: ®ηz , ®ηx , ®ηy : HO quanta vectors (5)
if m = 1 then

w1 ← д1,1
[e1, e2, e3] ← [ ®w · ®ηz , ®w · ®ηx , ®w · ®ηy ]
M [e1, e2, e3] ← M [e1, e2, e3] + 1

else
for i ← 1, . . . ,m − 1 do

Gi ←
{
дi ,m−1 ∈ N0 : дi ,m ≥ дi ,m−1 ≥ дi+1,m

}
end
for all possible combinations [д1,m−1, . . . , дm−1,m−1] ∈ G1 × · · · ×Gm−1 do

wm ←
∑
j дj ,m −

∑
j дj ,m−1

ProcessGelfandPatternRow([д1,m−1, . . . , дm−1,m−1], ®w )
end

end

tree. And further, to reduce a U (N ) irrep [f ] into U (3) irreps, one first needs to run ALGORITHM 1 by calling
ProcessGelfandPatternRow([f ], ®0), i.e., with [f ] and an empty vector as arguments. The output of the algorithm is a
table of multiplicitiesM , which enables one to obtain resultingU (3) irreps and their dimensionalities (7).

ALGORITHM 1 is generic. It can be applied for U (N ) irreps with unconstrained labels fi ∈ N0, thereby enabling
classification of particles with additional quantum properties such as, e.g., isospin. Amajor disadvantage of this procedure
is low performance due to frequent dynamic memory allocations. These are required primarily for construction of lower
Gelfand pattern rows, which are represented by dynamic arrays (C++ std::vector containers) whose sizes are not
known until runtime. Note that additional dynamic memory allocations are required when newU (3) weights are added
intoM . However, this only happens occasionally in practice since, generally,

��{[e1, e2, e3] : M[e1, e2, e3] > 0
}�� ≪ dim[f ].

For instance, in theU (21) irrep (8), there are only 1365 distinctU (3) weights with nonzero multiplicities. Consequently,
on average, only every 1.6 millionth access toM requires adding a new entry. A second cause of low performance of
ALGORITHM 1 is that its implementation in LSU3shell is not parallelized.

4 NEW ACCELERATED ALGORITHM

Taking condition (1) into account, we can represent each row in a Gelfand pattern by three integers n2, n1, and n0,
corresponding to the number of labels that are equal to 2, 1, and 0, respectively. For instance, n2 = 6, n1 = 1, and n0 = 14
specify theU (21) irrep (8). Such an approach allows us to avoid using dynamic arrays and therefore renders the vast
majority of dynamic memory allocations unnecessary. However, we also need to find rules for the construction of all
possible (m − 1)th pattern rows from anmth pattern row represented by [n2,n1,n0] (i.e.,m = n2 + n1 + n0). Such rules
can be derived from the betweenness condition (2) as follows:

(1) If n2 + n1 + n0 = 1, the recursion can be ended withw1 = 2n2 + n1. Otherwise:
(2) If n2 > 1, n1 = 0, and n0 = 0, the only possible (m − 1)the row is represented by [n2 − 1, 0, 0] (wm = 2).
(3) If n2 = 0, n1 > 1, and n0 = 0, the only possible (m − 1)the row is represented by [0,n1 − 1, 0] (wm = 1).
(4) If n2 = 0, n1 = 0, and n0 > 1, the only possible (m − 1)the row is represented by [0, 0,n0 − 1] (wm = 0).
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ALGORITHM 2: AcceleratedProcessGelfandPatternRow([n2, n1, n0], [δ1, δ2, δ3])
Input: [n2, n1, n0]: representation ofmth row of a Gelfand pattern, wherem =

∑
i ni

Input: [δ1, δ2, δ3]: partial contributions to resulting U (3) weights [e1, e2, e3]
Output: M : table of multiplicities of resulting U (3) weights; initially, M [e1, e2, e3] = 0 for any [e1, e2, e3]
Data: ®ηz , ®ηx , ®ηy : HO quanta vectors (5)
m = n2 + n1 + n0
if m > 1 then

if n2 > 0 then
AcceleratedProcessGelfandPatternRow([n2 − 1, n1, n0], [δ1 + 2ηz ,m , δ2 + 2ηx ,m , δ3 + 2ηy ,m ])
if n0 > 0 then

AcceleratedProcessGelfandPatternRow([n2 − 1, n1 + 1, n0 − 1], [δ1 + ηz ,m , δ2 + ηx ,m , δ3 + ηy ,m ])
end

end
if n1 > 0 then

AcceleratedProcessGelfandPatternRow([n2, n1 − 1, n0], [δ1 + ηz ,m , δ2 + ηx ,m , δ3 + ηy ,m ])
end
if n0 > 0 then

AcceleratedProcessGelfandPatternRow([n2, n1, n0 − 1], [δ1, δ2, δ3])
end

else
tmp← 2n2 + n1
[e1, e2, e3] ← [δ1 + tmp · ηz ,1, δ2 + tmp · ηx ,1, δ3 + tmp · ηy ,1]
M [e1, e2, e3] ← M [e1, e2, e3] + 1

end

(5) If n2 > 0, n1 > 0, and n0 = 0, there are 2 possible (m − 1)th rows represented by [n2,n1 − 1, 0] (wm = 1) and
[n2 − 1,n1, 0] (wm = 2).

(6) If n2 = 0, n1 > 0, and n0 > 0, there are 2 possible (m − 1)th rows represented by [0,n1,n0 − 1] (wm = 0) and
[0,n1 − 1,n0] (wm = 1).

(7) If n2 > 0, n1 = 0, and n0 > 0, there are 3 possible (m − 1)th rows represented by [n2, 0,n0 − 1] (wm = 0),
[n2 − 1, 1,n0 − 1] (wm = 1), and [n2 − 1, 0,n0] (wm = 2).

(8) If n2 > 0, n1 > 0, and n0 > 0, there are 4 possible (m − 1)the rows represented by [n2,n1,n0 − 1] (wm = 0),
[n2,n1 − 1,n0] (wm = 1), [n2 − 1,n1,n0] (wm = 2), and [n2 − 1,n1 + 1,n0 − 1] (wm = 1).

These rules can be further simplified into a form used in our new proposed algorithm for the recursive Gelfand
pattern generation presented as ALGORITHM 2. In contrast to ALGORITHM 1, partial inner products

[δ1, δ2, δ3] =

[ N∑
i=m+1

wiηz,i ,
N∑

i=m+1
wiηx ,i ,

N∑
i=m+1

wiηy,i

]
represent the second parameter thereby avoiding the use of dynamic arrays for storing weight vectors ®w . The resulting
inner products (6) are therefore calculated stepwise during the recursive process.

ALGORITHM 2 takes the same first argument as ALGORITHM 1 except that U (N ) irrep [f ] is now specified in
terms of [n2,n1,n0], and hence it is called as AcceleratedProcessGelfandPatternRow([n2,n1,n0], [0, 0, 0]). The basic
implementation of ALGORITHM 2—without additional optimizations and parallelization (see Section 5 for details)—
achieved on our testbed system for the irrep (8) a factor of 6 speedup with respect to ALGORITHM 1; namely, it reduced
the runtime from 986.9 to 158.4 seconds.
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6 D. Langr et al.

5 IMPLEMENTATION

We have implemented ALGORITHM 2 in a form of a standalone C++ header file UNtoU3.h that comprises the sup-
plemental part of this article. The usage of UNtoU3.h requires a C++ compiler compliant with the C++11 Standard
(supported nowadays by all mainstream compiler vendors). Within UNtoU3.h, we define a class template UNtoU3<T,U>
that has the following application programming interface (API):

• T template parameter—type of the computer representation ofU (3) weight labels e1, e2, and e3; by default, it is
32 bit unsigned integer.
• U template parameter—type used for storing multiplicitiesM[e1, e2, e3]; by default, it is 32 bit unsigned integer.
• U3Weight public member type—an array of 3 integers of type T that represents aU (3) weight [e1, e2, e3].
• U3MultMap public member type—type of the computer representation of the resulting tableM . If optimizations
are disabled, it is a type alias for std::map<U3Labels,U> (see Section 5.1 for explanation).
• generateXYZ(n) public member function—generates vectors ®ηz , ®ηx , and ®ηz (5) for a given η and stores them inter-
nally. These vectors can be used repeatedly for solutions ofmultipleU (N ) → U (3) problems (generateU3Weights
calls) as long as η is maintained.
• generateU3Weights(n2,n1,n0) public member function—implements ALGORITHM 2 itself. The function pa-
rameters define an inputU (N ) irrep [f ] represented by [n2,n1,n0].
• multMap() constant public member function—returns a constant reference toM of type U3MultMap generated
by the generateU3Weights function.M contains onlyU (3) weights [e1, e2, e3] with nonzero multiplicities.
• getDimensionality([e1, e2, e3]) constant public member function—if [e1, e2, e3] (parameter of type U3Weight)
is aU (3) irrep (e1 ≥ e2 ≥ e3), returns its dimensionality D[e]; otherwise returns 0.

An exemplary usage of the UNtoU3 class for generatingU (3) irreps in theU (6) irrep

[f ] = [2, 1, 1, 1, 1, 0] (9)

can be performed by a C++ program shown in Figure 1. The program output reads

[5,4,3] : 1

[6,4,2] : 1

since the U(6) irrep (9) contains only twoU (3) irreps, [5, 4, 3] and [6, 4, 2], both with dimensionality equal to one (for
detailed elaboration of this case, see [Draayer et al. 1989]).

5.1 Optimizations

Additionally, we implemented the following performance optimization techniques:

Opt. I. The first optimization reduces the number of recursive calls by applying the tail call elimination (TCE).
Namely, within ALGORITHM 2, the outermost if statement is replaced by a while loop that preserves the evalu-
ated condition. In the loop, the last (tail) recursive call is eliminated and the corresponding (m−1)th row is resolved
in the next iteration instead. The outermost else statement is removed and the underlying commands are per-
formed unconditionally after the loop ends. Consequently, within each call of AcceleratedProcessGelfandPatternRow,
one recursive call is eliminated.

Opt. II. The second optimization is to store multiplicities ofU (3) weights in a hash table instead of a binary search
tree. This is accomplished by redefinition of U3UNMultMap from std::map into std::unordered_map. A suitable
hash function needs to be provided for map keys of type U3Weight, i.e., for an array of 3 integers. Based on
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#include <iostream>

#include "UNtoU3.h"

int main() {

UNtoU3<> gen;

gen.generateXYZ(2);

gen.generateU3Weights(1,4,1);

for (const auto & pair : gen.multMap()) {

const auto & irrep = pair.first;

if (auto D = gen.getDimensionality(irrep))

std::cout << "[" << irrep[0] << "," << irrep[1] << "," << irrep[2] << "] : " << D << "\n";

}

}

Fig. 1. Sample usage of UNtoU3 class for the U (6) irrep (9).

microbenchmarking, we ended up with a hash function that places the least significant bytes of e1, e2, and e3
next to each other as a single 64 bit value.

Opt. III. The third optimization precalculates contributions of all possiblemth Gelfand pattern rows toU (3)weights
form ≤ 3. It also reduces the number of recursive calls, since the recursion can be ended whenm ≤ 3 instead
of whenm ≤ 1. The precalculation can be done as soon as ®ηz , ®ηx , and ®ηy vectors are known, therefore, it is
performed automatically within the generateXYZ function.

All the above described optimizations are applied by default, however, they can be optionally disabled by defining
UNTOU3_DISABLE_TCE, UNTOU3_DISABLE_UNORDERED, and/or UNTOU3_DISABLE_PRECALC preprocessor symbols before
inclusion of the UNtoU3.h header file. Enabling/disabling particular optimizations does not change the usage of the
UNtoU3 class from the programmer’s perspective.

5.2 Parallelization

To leverage modern multi-core hardware architectures, we also provide a parallelized implementation of ALGORITHM 2
based on OpenMP threading. Above a certain threshold for m, separate OpenMP tasks are created for subsequent
recursive calls. To reduce the synchronization overhead, all threads maintain their local tablesM and these are finally
reduced inside a critical section.

Since OpenMP is a non-standard extension of the C++ programming language, the parallelization of our implementa-
tion is disabled by default. Optionally, it can be enabled by defining the UNTOU3_ENABLE_OPENMP preprocessor symbol
before the inclusion of the UNtoU3.h header file. An OpenMP enabled C++ compiler with the support of OpenMP tasks
has to be used then; otherwise, no change is required in the source code that uses the UNtoU3 class. A number of threads
can be controlled in a standard way, e.g., by defining the OMP_NUM_THREADS environment variable before running a
program.

A sample usage of the UNtoU3 class with all the optimizations and the parallelization enabled is shown in Figure 2.
This program prints out 2168999910, which is equal to the dimension of the irrep (8). The function dim calculates
dim[e] for resultingU (3) irreps according to (3).

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 D. Langr et al.

#include <iostream>

// #define UNTOU3_DISABLE_TCE

// #define UNTOU3_DISABLE_UNORDERED

// #define UNTOU3_DISABLE_PRECALC

#define UNTOU3_ENABLE_OPENMP

#include "UNtoU3.h"

unsigned long dim(const UNtoU3<>::U3Weight & irrep) {

return (irrep[0] - irrep[1] + 1) * (irrep[0] - irrep[2] + 2) * (irrep[1] - irrep[2] + 1) / 2;

}

int main() {

UNtoU3<> gen;

gen.generateXYZ(5);

gen.generateU3Weights(6,1,14);

unsigned long sum = 0;

for (const auto & pair : gen.multMap())

if (auto D = gen.getDimensionality(pair.first))

sum += D * dim(pair.first);

std::cout << sum << std::endl;

}

Fig. 2. Sample usage of UNtoU3 class for the U (21) irrep (8) with optimizations and OpenMP parallelization enabled.

6 PERFORMANCE

To evaluate the performance of the above introduced implementations of ALGORITHM 1 and ALGORITHM 2, we
conducted experiments on our dual-socket testbed system with two 10-core Intel Xeon E5-2630 v4 Broadwell CPUs.
For compilation, we used the GCC C++ compiler (g++) version 5.4.0 wiht -O2, -std=c++11, and -DNDEBUG compilation
flags. For experiments with enabled parallelization, we further appended -fopenmp.

Within the experiments with ALGORITHM 2, we built programs from the source code shown in Figure 2. We therefore
measured the run time ofU (N ) → U (3) reduction for the U (21) irrep (8) followed by the evaluation of resulting U (3)
irreps dimensionalities. Commenting out / uncommenting the UNTOU3_XXX preprocessor symbol definitions allowed us
to focus on particular combinations of enabled/disabled optimizations/parallelization introduced in the text above. In
case of ALGORITHM 1, we updated the source code accordingly such that the implementation from LSU3shell has
been used.

As has been mentioned previously, the measured run times for ALGORITHM 1 and ALGORITHM 2 with both the
optimizations and the parallelization disabled were 986.9 and 158.4 seconds, respectively. Next, we measured the impact
of particular optimizations as well as their combinations; the results are shown in Table 1. Note that the optimizations
alone reduced the run time by a relatively small factors. However, their combinations had in some cases a cumulative
effect. For instance, TCE alone reduced the run time from 158.4 to 151.2 seconds, therefore by 4.55 percents only.
However, if hash table (Opt. II.) was additionally enabled, then TCE reduced the run time much more significantly from
110.0 to 70.2 seconds, therefore by 36.2 percents. All the 3 optimizations together reduced the run time more than by a
factor of 3.
Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Algorithm XXX: Efficient Algorithm for Representations of U(3) in U(N) 9

Table 1. Running times of ALGORITHM 2 in seconds for the input U (21) irrep (8) in dependence on enabled (Y) or disabled (N)
optimizations measured on the testbed computer system.

Opt. I. Opt. II. Opt. III. Run
(TCE) (hash table) (precalc.) time [s]
N N N 158.4
Y N N 151.2
N Y N 110.0
N N Y 134.4
Y Y N 70.2
Y N Y 129.3
N Y Y 60.2
Y Y Y 50.1

As for the parallelization, the run time with all the optimizations enabled was 4.8 seconds with 20 OpenMP threads.
The corresponding speedup was therefore 10.4, which did not imply linear scalability. We attribute this behavior
primarily to the overhead of the OpenMP tasking mechanism. To support this conclusion, we also measured the case
with parallelization enabled but using only a single OpenMP thread; it lasted 65.5 seconds in contrary to 50.1 seconds
when parallelization was disabled.

The final highest speedup of ALGORITHM 2 achieved with all the optimizations without the parallelization was 3.16
with respect to the same algorithm without optimizations and 16.7 with respect to ALGORITHM 1. Additionally, the
same speedups with enabled parallelization were 33.0 and 205.6, respectively, on our 20-core testbed machine.

Moreover, we did not focus on a single input irrep only. We also performed measurements for different U (N )
irreps—they produced similar speedups as those mentioned above.

7 CONCLUSIONS

The contribution of this article is a new fast algorithm for the calculation ofU (3) irreps in anU (N ) irrep and its C++
implementation that can run in parallel on multi-core hardware systems. Due to our focus on many-fermion problems
(1), we were able to design the algorithm in a highly-efficient way that would not otherwise be possible. We showed that
within experiments conducted on 20-core computer system, the new algorithm accelerated the solution ofU (N ) → U (3)
problem 16.7 times when run sequentially and more than 200 times when run in parallel in comparison with the original
algorithm implemented in the LSU3shell software. The new algorithm therefore enables much larger U (N ) → U (3)
problems in applications such as nuclear structure modelling.
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