Chinese Physics C Vol. 43, No. 7 (2019) 074106

A close look at the competition of isovector and isoscalar pairing in A=18 and
20 even-even N=Z nuclei”

Feng Pan(¥%14%)"?  Dan Zhou(J#/})’

Siyu Yang(#% B F)’
Kristina D. Launey2

Grigor Sargsyan”  Yingwen He(## )"

Jerry P. Draayer2

]Department of Physics, Liaoning Normal University, Dalian 116029, China
2Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

Abstract: The competition of isovector and isoscalar pairing in /=18 and 20 even-even N=Z nuclei is analyzed in the

framework of the mean-field plus the dynamic quadurpole-quadurpole, pairing and particle-hole interactions, whose
Hamiltonian is diagonalized in the basis U(24) > (U(6) > SU(B)>S03))®(U4)>SUs2)®SUr(2)) inthe L =0
configuration subspace. Besides the pairing interaction, it is observed that the quadurpole-quadurpole and particle-

hole interactions also play a significant role in determining the relative positions of low-lying excited 0" and 1" levels

and their energy gaps, which can result in the ground state first-order quantum phase transition from J=0to J = 1.

The strengths of the isovector and isoscalar pairing interactions in these even-even nuclei are estimated with respect

to the energy gap and the total contribution to the binding energy. Most importantly, it is shown that although the

mechanism of the particle-hole contribution to the binding energy is different, it is indirectly related to the Wigner

term in the binding energy.
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1 Introduction

It is generally recognized that, like the well studied
isovector (7 =1, J=0) pairing, the isoscalar (7 =0,
J = 1) pairing should also be of importance for the ground
state of N ~Z nuclei. There are a number of investiga-
tions of this problem with the Bardeen-Cooper-Schrieffer
and Hartree-Fock-Bogolyubov approximations [1]. Shell
model calculations with effective interactions focusing on
the neutron-proton pairing correlations have also been
carried out [2]. For example, the pair correlation was in-
vestigated by means of the Shell Model Monte Carlo
(SMMC) method performed with the modified Kuo-
Brown interaction (KB3) and the pairing plus quadru-
pole-quadrupole (PQQ) interaction in the fp-shell [3-6].
Direct diagonalization of the KB3 interaction in the fp-
shell showed that the strength of the isovector pairing in-
teraction seems 2-3 times stronger than the isoscalar
strength when the total isospin is small [7,8]. Shell mod-
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el calculations based on effective interactions with re-
spect to the isovector and isoscalar pairing were also per-
formed in fp, sdfp, and fspgo subspaces [9-11]. Systemat-
ic analysis of N ~ Z nuclei in various model spaces with
the extended pairing plus the quadrupole-quadrupole
(EPQQ) Hamiltonian has been carried out extensively
[12-29]. Very recently, a distinct quartet structure has
also been proposed and applied to the isovector (7 =1,
J=0) and isoscalar (T =0, J=1) pairing correlations
[30-32], which showed that the J = 0 quartet plays a lead-
ing role in the structure of the ground state of ds-shell
nuclei. The isovector and isoscalar pairing in N = Z nuc-
lei was also systematically studied by analyzing the shell
model wave functions with effective interactions [33,34].
Although the agreement of the shell model results with
the experiments suggests that the isovector and isoscalar
pairing interactions are realistic, the actual interaction
strengths are subject to considerable uncertainty due to
the fact that the competition of isovector and isoscalar
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pairing, deformation, and other correlations leads to a
very complex picture.

In this work, inspired by the afore mentioned invest-
igations, we examine the competition of isovector and
isoscalar pairing in 4=18 and 20 even-even N ~ Z nuclei
described by the mean-field plus quadrupole-quadrupole
(QQ), pairing and particle-hole interactions, which is di-
agonalized in the basis U(24) > (U(6)D>SU(3)>S0(3))®
(U4)>SUs(2)®SUr(2)) in the L =0 configuration sub-
space. Due to its simplicity and explicitness, we are able
to take a close look at the competition of isovector and
isoscalar pairing in the presence of deformation and
particle-hole interactions, the latter of which has not been
considered directly in the estimates of the pairing interac-
tions.

2 The model Hamitonian and its diagonaliza-
tion

The Hamiltonian of the spherical mean-field plus dy-
namic QQ, pairing, and particle-hole model is given by

ﬁ=26/ﬁ,j—XQ'Q+I:IP+I:Iph, ()
J

where 71 =3, ,, a oy is the number operator of
valence nucleons in the j-orbit, m; is the quantum num-
ber of the projection of the total angular momentum of
valence nucleons in the orbit, ¢; is the corresponding
single-particle energy given by the spherical shell model,
t=1/2 and m, are the quantum numbers of the isospin
and of its projection, respectively, y >0 is the dynamic
QQ interaction strength, 0, is the Elliott dynamic quad-
rupole operator [35,36], with which the quadrupole-quad-
rupole interaction, —y Q- 0, is spin and isospin independ-
ent. The pairing interaction term Hp in (1) is given as

Ap=-GyApy -GsHps = -Gy ) ViV, =Gs > S:S,,

u

(2)

where Gy and Gs are the strengths of the isovector and
isoscalar pairing interactions,

1 ' o1 t
V=3 2 N2 D (af xal ), Vi =V G)
1

with the orbital angular momentum L = 0, spin § =0, and
isospin 7 = 1, and

1 + + 1010 _
Si=3 > N2 Dl xal ). ST =51 @)
l

with L=0, § =1, and T = 0. The particle-hole interaction
Hyy in (1) is given by

. 1
th = gph (TOII .T(Jll + _ﬁZ)’ (5)

N

where /1= 3 ;n; is the total number operator of valence
nucleons, 77, are the particle-hole (Gamow-Teller) op-
erators, which are generators of the U(4) group with L =0
and S =T =1, and y and v stand for the quantum num-
bers of the spin and isospin projections, respectively. The
Hamiltonian (1) with only the pairing part was studied in
the O(8) basis previously [37-40]. The first term in the
particle-hole interaction (5) was introduced in [41,42] and
also adopted in [43]. Here, the second term of (5) is intro-
duced to ensure that the matrix elements of (5) are only
related to the second order invariant (Casimir operator) of
U(4), spin and isospin in the U(24) > U(6)® U(4) basis,
the expression for which will be shown later. Moreover,
the shell model Hamiltonian with the QQ interaction and
the spin and isospin independent L =0 pairing interac-
tion in the ds-shell was studied in [44,45].

For simplicity, the analysis is restricted to the ds-
shell, and the spin-orbit splitting in the shell model mean-
field is neglected. Hence, the first term in (1) becomes a
constant for a given nucleus. It is obvious that the
Hamiltonian (1), neglecting the spin-orbit splitting in the
shell model mean-field, commutes with the total particle
number, spin, isospin, and the total angular momentum
operators. For this case, it is convenient to use the val-
ance nucleon creation operators in the LST-coupling
scheme with {ale,;sm\.; i} where /=0,2, s=1/2 and
t=1/2 are the orbital angular momentum, spin, and
isospin of the valence nucleon, respectively. It is well
known that the particle-number preserving bilinear oper-
ators {a;rm[; s, 1, A s, m} generate the unitary group
U(N4), where N =3,2l+1). Thus, N =6 for the ds-
shell, and N =10 for the fp-shell, and so on. Since a k-
particle state must be totally anti-symmetric with respect
to any permutation among the k particles, only totally
anti-symmetric irreducible representation (irrep) [1*] of
U(N4) is allowed, where [1¥] may be represented by the
corresponding Young diagram with k& boxes. For our pur-
pose, we adopt a complete set of basis vectors for irrep
[1¥] of U(24) in the U(24)> (U®6)>SUB)>SO03)®
(U@ >SUs(2)®SU7(2)), which is denoted as |ka(LS)
IMy; TMr) = AL 1B(AuL;p S T My JM ), where k is
the total number of particles, a stands for the set of
quantum numbers [f], (Au), B, p, and « involved, fi, f, f3,
fa in the four-rowed irrep [f] of U(4) satisfy Y, fi=k, p
and B are the branching multiplicity labels needed in the
reductions U(24) | U(6)®Usr(4) and U(6) | SU(3), re-
spectively, (Au) is an allowed irrep of SU(3), L, S, J, M,
and 7, My are quantum numbers of the orbital angular
momentum, spin, total angular momentum, its projection,
and of the isospin and its projection, respectively. The
branching rule of [1¥] in the reduction U(N4)|
UN)® U(4) is branching multiplicity-free and given by
[40, 44-46]
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UN4) | UN)®U@4) k ktl
) 6 9w | o [ ]
[lk] l@f,,fz,f%ﬁ [f] ® [f], ( < [O_I] [V’] [1][1] | [O_] [V] > = h[o.] 6[0’][‘7]6[0"][1"]’ (7)

where [ f] is the irrep of U(6), which is the cor}Jugated where [o] or [o] labels the irrep of UGN), [v] or [v'] la-
Young diagram of [fi, />, f3,f4]. In the calculation, the N .

. . . bels that of U(M), [¥] stands for the conjugated Young
elementary isoscalar factors (Wigner coefficients), also di ¢ dh I s the di - fthe i
called one-particle coefficients of fractional parentage 1agrafno [v], and hyg-y O Ay 15 the dimension of the 1r-
(CFPs) of U(N4)D> UN)®U(4) , are needed. As shown [P [o”] or [o] of the Symmet_ﬂc_ group Sy or Sg4y. It is ob-
in [46], the UNM)>UN)®U(M) Isoscalar Factors vious that ISF shown in (7) is independent of N and M,
(ISFs) are related to the relevant CG coefficients of the ~ and only d.epends on the 1rreps of UN) or UM) in-
Symmetric groups. For a totally antisymmetric lrrep of volved. USlIlg the Robinson dimension formula of the

~

U(N M), the elementary ISF can be expressed as [46] symmetric groups [47], we have
P (it o+t i+ 1=+ DIfi—B+DNfi—fa+)(fa—f+ D= fa+ D)5 fa+ 1)! )
Uileb BN 3 = )i = 5+ DI = fa + DU+ D fa = (o= fa+ DI + DI — f)lfa!

with which the elementary ISFs of UN4) > UN)® U(4)
are  explicitty ~known. The elementary ISFs  scribed in [49,50]. Finally, ISFs of U(4)>SUs(2)®
71 | A /1 01 | 01

Lo f U6)DSUB3 ded fi

</3u,u) 0) ﬁu,u>>° (©)25UG) needed for - sUr ) <pST s | ST

the ds-shell were given by Akiyama [48]. In the calcula-

. . . dopted.

tion, the D -Ak de for the W adop . .

1on, We use (e/w)r(z;a(l)};er ( ﬂ,g,?ma code fot He Wignet Thus, the matrix elements of Hpy and those of Hpg in

<L 1 L > of SUB)DS0(3) de-  the U(24) basis are given by

(K'a'(L'S")' M 1; T’ M'7|Hp y|ka(LS YIMy; T Mr) =614 17 60M,m, 011555077 Opt, m,,
X Z K LST|VHK o' LST" WkaLST||V¥ K" ' LST")

kra'T”
(K o' (L'S")J MYy T' M| Hp slk (LS ) M3 TMr) =643 817 6u,m, 011555571 Sty

X Z K LSTIIS*IIK” "’ LS” TXkaLS T||S*|IK”’ &’ LS T),  (9)
K ars”

> given in [46,51] are

coefficients <

in which
<kl a/LS T”VJr”kN aNLS TU> = Z (_)I+Z7L(_).Y+S_fs (_)T+1+T"{ 7; 31 Tl }
kaLST
1/2
(K LS Tla] JIkaLS T)kaLS Tlla], Ik o’ LST")

3L+ 128 + DQRT +1)
42L+D(2S +1)

K o LST|SHK” o’ LS"' T = Z (_)I+Z—L(_)z+T—T(_)S+1+S”{ f f ,S'l }
kaLST
3QL+ DS + DT +1)
[ 42L+ 12T +1)

12
(K o' LSTla] IIkaLS TYkaLS Tlla] IIk” ’LS"T),  (10)

where the curly braces denote the related 6j-symbol. In SUB)DSO0B)(U)st2SUs2Q)®@SUr(2)) are the
these matrix elements, the one-particle reduced matrix most important, which can be expressed, according to the
elements(k’ a’LS T||a;rst||kaLS T)inthebasisU(24) o (U(6) D Racah factorization lemma, as

k k' i 7
<k'a’L’S’T’IlaZ,IIkaLsn=<[1k’]||aT||[1k]>< (11 ’ 1] >< A T 7] >

[AATIN | P\ B (20) | B(XW)
() (20) | (') [f1 11 | 11
X< kL 1 KL >< pST st | p'S'T’ >’ an
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where ([1¥7]la"|I[1¥]) = Vk+ 16141 is the U(24) reduced
matrix element. Moreover, the QQ and particle-hole in-
teraction terms in (1) only contribute to the diagonal mat-
rix elements of the Hamiltonian (1) in the U(24) basis
with
(K o'(L'S"YIMy;T' MO - Qlka(LS )IMy; T Mr)
= O Oaa OLL 015 055 OM, M, 0M, M,

2 1
x(g(/lz+yz+/lu+3/l+3,u)—5L(L+1)) (12)

for the corresponding SU(3) irrep (Au) and
(K o/ (L'S")IM ;' My | Hpnlk (LS )My, T M)
= Ok Oaar OLL 075 055 001, MO0, M1,
4
xgph(Zf,-(f,-+5—2i)—S(S+1)—T(T+l)] (13)
i=1
for the corresponding U(4) irrep [fi, f>. /3, f4], where the
first term in the parentheses on the right-hand-side of (13)
is the eigenvalue of the second order Casimir operator of

U(4). Once the matrix elements of (1) are thus obtained,
the eigenstates of (1) can be expressed as

3k (LS)IMy; TMr) = 3 CO (LS ) IMy; TMyr),  (14)

where €9 is the a-component of the £-th eigenvector of
(1) after diagonalization in the U(24) basis.

3 Isovector and isoscalar pairing competition

In order to analyze the competition of isovector and
isoscalar pairing in the presence of other interactions, we
take k =2 and k =4 cases corresponding to 4 = 18 and 4
= 20 even-even systems. In the analysis, only the L=0
basis vectors are taken in the diagonalization, which
should be a good approximation to a few lowest J =0,
J=1 and T <2 levels with the number of U(24) basis

vectors greatly reduced. We set y =1-y, Gy =y(1 +x),
and Gs=y(l-x) in (1) with 0<y<1 MeV and
—1 < x <1, where the units of y and y are MeV, which is
reasonable for the 4 = 18 and 20 systems.

For the k=2 case, only (T=0, S=1) or (T=1,
S =0) states in [2,0]®[1,1] irrep of U(6)®@U(4) are al-
lowed with L =0, which is consistent with the fact that
these are indeed the only possible states in the low en-
ergy region in 4 = 18 even-even nuclei, especially in 13F.
In this case, the particle-hole interaction term becomes a
constant with no influence on the competition of isov-
ector and isoscalar pairing. Since there are only two
SU(3) irreps with (Au) = (02) and (40) involved, there are
four (T =0, S =1) and (7 = 1, S =0) states in total. Fig-
ure 1 shows the (T =0, S =1) levels (solid line) and the
(T =1, S =0) levels (dashed line) with y=0.3 and y=0.9
MeV, respectively. It can be seen that there is a crossing
of the (T =0, S =1) level with (7 =1, S =0) . The cross-
ing point with x =0 corresponds to the U(4) symmetry
point. Therefore, whether the ground state is (7 =0,
S=1)or(r=1, S =0),it is driven mainly by the com-
petition of isovector and isoscalar pairing. Since the
ground state of 18F is in this case 7=0 and S =1, the
isoscalar pairing strength Gs should always be a little lar-
ger Gy. On the other hand, the system deformation rep-
resented by the QQ interaction greatly alters the energy
gaps between (T =0, S=1) and (7 =1, S =0) and the
other excited levels. Comparing panels (a) and (b) in Fig.
1, it is clearly seen that for stronger QQ interaction, the
energy gap between the lowest (T=0, S =1) and (T =1,
S =0) levels becomes smaller, while the energy gaps
between the lowest two levels and the other two excited
levels become larger.

For the k=4 case, the low-lying spectrum, even for
the S =0 and S =1 levels, becomes complicated. In par-
ticular, the particle-hole interaction is now effective in the

O r 5p .
(a) (b)
Y | PR S of ]
-5
10}
-15t
_20 M 2 2 M M _20 . N 2 M i
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

Fig. 1.

(T =0, S =1) level (solid lines) and (7 =1, S =0) level (dashed lines) as function of x for two different QQ strengths in the

k =2 system, where the excitation energy E is in MeV The contribution of the constant mean-field and the particle-hole interaction to
the total energy of the system is not included. The particle-hole interaction is in this case irrelevant for the excitation energy. Panel

(a) is for y = 0.7 MeV, and panel (b) is for y = 0.1 MeV.
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spectrum. In this case, the low-lying § =0 or § =1 levels
are associated with 7 =0, 1, 2, which is only possible for
20Ne. Since T > 1 should be satisfied in 2°F and *’Na,
T =0 levels, shown in Fig. 2 , are removed for these two
cases. Similarly, there are only 7 =2 levels in 2°0 and
20Mg, for which the isoscalar pairing interaction is inef-
fective for the (7 =2, S =0) levels with L=0. The iso-
scalar pairing interaction is effective only for § =1 levels
when 7 =2, which have L#0 , and is not considered
here. Specifically, when only the L =0 configuration is
considered, the (T =0, S =0) states are in [4]®[1,1,1,1]
and [2,2]®[2,2] irreps, (T =1, S=0) or (T=0, S =1)
states are in [2,0]®[1,1] and [3,1]®[2,1,1] irreps, and
(T=2, §=0) states are in [2,2]®[2,2] irrep of
U(6)oU(4), respectively.

As shown in Fig. 2, if the QQ interaction strength is
strong enough, as shown in panel (a), the ground state al-
ways has T =0 and S =0, and there is a large energy gap
between the lowest (T =0, S =0) and the other excited
levels. If the QQ interaction strength is weak, as shown in
panel (b) of Fig. 2, the ground state is still the lowest
(T =0, S =0) state among the relatively high density of
levels, where the U(4) point with x = 0 corresponds to the
highest density. Furthermore, when the particle-hole in-

teraction is switched on, the energy gap between the
ground state and the excited levels becomes larger if the
particle-hole interaction is repulsive, while the gap be-
comes smaller if the particle-hole interaction is attractive.

Since the matrix elements of the particle-hole interac-
tion shown in (13) are linear in T(T + 1), it may be re-
lated to the Wigner term in the binding energy [52].
However, whether the particle-hole interaction contrib-
utes to the binding energy is mainly determined by the
sign of gon. When g, > 0, the particle-hole interaction is
always repulsive, which reduces the binding energy, but
the contribution decreases with increasing 7. When
gph <0, the particle-hole interaction increases the binding
energy, but again the contribution decreases with increas-
ing 7. Nevertheless, it is observed that a larger value of
gph 1 needed to fit the excitation energies of a nucleus if
its ground state isospin 7 is small. With increasing
ground state isospin 7 of the neighboring nucleus, the
value of gyn of the neighboring nucleus decreases, where
gph <0 for the ground state of a nucleus with the largest
T, as is indeed shown for the A = 18 and 20 nuclei.
Therefore, although the mechanism of the particle-hole
contribution to the binding energy is different, and not al-
ways proportional to T(T + 1) like in the Wigner energy

10

of

=10}

E -20t

=30t

-40F

(a) y=0.3, gpn=0

10~
(b) y=0.9, gpn=0

0.5 0.5

X

(d) y=0.9, gon=—1

-0.5 0.0

X

0.5

Fig. 2.

0.0 0.5 1.0

X

-0.5

(color online) (7 =0, S =0) levels (solid lines), (T = 1, S = 1) levels (red dot-dashed lines), the lowest (7 = 1, S = 0) levels (line-

connected open circles), (7 =0, S = 1) levels (dotted lines), and (7 =2, S =0) levels (dashed lines) as function of x for two different
QQ and particle-hole interaction strengths in the k = 4 sysem. The excitation energy E and the parameters y and g, are in MeV. The

contribution of the constant mean-field energy to the total energy of the system is not included.
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term in the binding energy formula [52], it is indeed in-
directly related to the Wigner term.

To estimate the strengths of the the isovector and iso-
scalar pairing interactions in A = 18 and 20 even-even
N=aZ nuclei, not only the excited levels but also the total
contribution to the binding energy should be properly
considered in order to reduce the arbitrariness in choos-
ing the model parameters. Since the valence particles are
confined to the ds-shell, '°0 is taken as the inert core.
Thus, the binding energy of a nucleus is defined as

B8+ N,,8+N,)=B(8,8)+Es(8,8)—Es(8+N,, 8
+N,)+Ec(8,8)— Ec(8+ Ny, 8+N,)

— Egym(28 + Ny, 28+ N,) +E0k_E(1),

(15)
where
Es(Z, N) =28.2359A*° MeV,
Ec(Z,N)=0.7173 Z(AZ];I)(l 72 MeV
(16)

with [ =|N-Z|/A, are the surface, Coulomb, and sym-
metry energy [53], respectively, N, and N, are the num-
ber of valence protons and neutrons, respectively, Ey is
the average binding energy per valence nucleon in the ds-
shell, which is almost a constant contribution of the shell
model mean-field, and E{" with k=N, +N, is the k-
particle ground state energy determined by the model
Hamiltonian (1). The / correction term, introduced in the
symmetry energy in (16), approximately describes the
Wigner effect [53], which is checked against the sym-
metry energy with the Wigner effect given in [52]. There-
fore, if the parameters of the model Hamiltonian are
properly adjusted, the k-particle ground state energy with
fixed k = N; + N, for N; > 0 and N, > 0 should satisfy

E\" = AB(N;,N,) + Eok, (17)

where AB(N,,N,) is determined by (15). This provides a
reasonable constraint for fitting the k-particle ground
state energy E,(Cl) of the model Hamiltonian (1), and is
used in the fit. However, if gy is used as a free paramet-
er, which is required for fitting the low-lying levels of 4
= 20 nuclei, there is still arbitrariness in choosing gpn for
the 4 = 18 nuclei, because the excited energy levels con-
cerned are independent of gyn. Therefore, the isovector
and isoscalar pairing strengths for A = 18 nuclei are es-
timated from the related excited levels only, so that the
parameter gp, for each nucleus is estimated according to
(17). For A = 20 nuclei, both the excited levels and the
total contribution to the binding energy are considered in
the estimate of the isovector and isoscalar pairing
strengths.

Since the model is restricted to the L =0 configura-
tion subspace, only a few lowest /=0 and J=1 levels
can be roughly fitted by using (1) to estimate the isov-
ector and isoscalar pairing strengths in each nucleus. We
only focus on a best fit to the experimental data for each
nucleus, for which the systematics of the model paramet-
ers is not applied. The total ground state energy of a nuc-
leus (17) may be expressed as E,(f) =Eqq+Ep+Epm,
where Eqq, Ep, and Ej;, are the mean values of the ground
state energy contribution from the QQ interaction, pair-
ing interaction, and particle-hole interaction, respectively.
The QQ interaction strength may be estimated by
Xrot ~ (E2: — Eq:)/6 related to the moment of inertia of the
ground band, where E>: and Ey; = E,(cl) are the excitation
energy of the first 2+ state and the ground state energy of
a nucleus, respectively, for which the energy levels in the
ground band are assumed to be rotational. Since the level
spectra of these nuclei are not typically rotational, it is
found that the actual QQ interaction strength y should be
taken smaller than that determined from the moment of
inertia of the ground band with y < yor. Otherwise, due to
the fact that E]({l) is a constant, the pairing contribution Ep
would be too small to generate appropriate energy gaps of
the low-lying levels if y is too large when the total contri-
bution to the binding with the constraint (17) is applied.
In the fits, y = 0.245 MeV for '30 and !®Ne, and y = 0.066
MeV for 18, which are 70% of the values determined by
the moment of inertia of the ground band. Similarly,
x =0.095 MeV for 2°0 and *Ne, y = 0.070 MeV for 20F,
and y = 0.02 MeV for 2°Na, which are about 25%-35% of
the values determined by the moment of inertia of the
ground band. Table 1 gives the fit results for the ground
and a few /=0 and J = 1 low-lying levels in 4 = 18 and
A =20 N ~Z nuclei, where the fit parameters, Gy, Gs,
and gpn for each nucleus are also shown. As the (T =1,
S =1) states of 80 and '®Ne, and (T =2, S = 1) states of
200 are outside the L = 0 subspace, only the (7 = 1, J = 0)
levels in 80 and '®Ne, and the (7 = 2, J = 0) levels in 0
are shown in Table 1 . For these levels the isoscalar pair-
ing is ineffective, so only the value of Gy is shown for
these nuclei. For 2°F and *°Na, the strengths of Gy and G
are determined based on the lowest 17 level, with the en-
ergy of the level fixed by the fit. Although the L =0 com-
ponents are dominant in the ground state and a few low-
lying levels, the L+ 0 components, the spin-orbit split-
ting of the mean-field, which results in L and S coupling,
and the multi-particle-hole configuration mixing are inev-
itable. Therefore, for a given 7, at most two consecutive
levels with the same J are considered in the fit. The cor-
responding results of the shell model obtained by using
the KSHELL code [56] with the USD (W) interaction
[57] are also provided for comparison. As can be seen
from Table 1, the ratio Gs/Gvy = 1.82 for I8F, indicating
that the isoscalar pairing prevails over the isovector pair-
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Table 1.

Energy (in MeV) of a few of the lowest /=0 and J =1 levels in A = 18 and 20 N~Z nuclei fitted by (1) in the L = 0 configuration subspace

(Th.). The experimental data (Exp.) for 4 = 18 nuclei are taken from [54] and for 4 = 20 from [55]. A “~” sign means that the corresponding level is
not observed experimentally. The shell model results (SM) are obtained by using the KSHELL code [56] with the USD (W) interaction [57]

180 Exp. Th. SM 18p Exp. Th. SM 18Ne Exp. Th. SM
07 (T=1) 0 0 0 0 (T=1) 1.04 1.06 1.19 0;(T=1) 0 0 0
0%(T=1) 3.63 3.64 432 0%(T=1) 4.75 2.99 5.51 0% (T=1) 3.58 3.64 4.32
15(T=0) 0 0 0
1;(]":0) 1.70 2.98 4.11
Gy =0.160MeV Gy = 0.220MeV Gy =0.160MeV
Gs = 0.40MeV
gph = 0.447MeV gph = 1.153MeV gph = 0.400MeV
200 Exp. Th. SM 20p Exp. Th. SM 20Ne Exp. Th. SM 20N Exp. Th. SM
03(T=2) 0 0 0 0F(T=1) 353 384 349 03(T=0) 0 0 0 0F(T=1) 309 280 349
OQ(T:Z) 4.46 4.70 5.04 ();(Tzz) 6.52 3.95 6.52 O;(T:O) 6.73 5.64 6.76 (); (T=2) 6.53 3.66 6.52
0;(1":2) 5.39 5.33 9.13 0;(1":1) - 11.83 745 0;(1":1) 13.64 1427 13.64 ();(T:U - 10.11 745
1H(T=1) 1.06 1.06 1.05 05,(T=2) 16.73 14.26 16.66 1H(T=1) 098  0.98 1.05
13(T=1) 349 473 3.35 1H(T=1) 11.26  9.629 11.20 13(T=1) 3.00 3.65 3.35
17(T=0) 994 1547 1223
13(T=1) 13.17 16.18 13.50
Gy =0.421MeV Gy =0.638MeV Gy =0.800MeV Gy =0.602MeV
Ggs =0.522MeV Gs =0.700MeV Gs =0.578MeV

gph = —1.470MeV gph = 0.446MeV

gph = 1.350MeV gph = 0.274MeV

ing in this case, while Gs/Gy = 0.82—-0.96 for 2OF, 20Ne,
and “’Na, indicating that the isovector and isoscalar pair-
ing are comparable in 4 =20 N ~ Z nuclei. The fit results
for A = 20 nuclei are restricted by the condition (17) with
Ep ~ 11.75 MeV, which is the same as that used for 4 =
18 nuclei. The parameter g,, for each 4 = 18 nuclus is
thus determined as shown in Table 1. There is no theoret-
ical result for 2°Mg because the experimental level ener-
gies for 2’Mg are unavailable.

Most importantly, it is shown that the strength of the
particle-hole interactiong,, for 18F or 2°Ne with gpn >0 ,
is the largest when compared with the neighboring 4 = 18
or 4 = 20 nuclei with 7 > 0. With increasing 7, gon drops
from 1.153 MeV for 18F to 0.447 MeV and 0.400 MeV for
80 and '®Ne, respectively, while gy, drops from 1.35
MeV for Ne to 0.446 MeV for 20F and 0.274 MeV for
20Na, and to —1.470 MeV for 2°0, indicating that the con-
tribution of the particle-hole interaction to the binding en-
ergy increases with 7. Fig. 3 shows the contribution of
the particle-hole interaction relative to that in 18F or 2°Ne,
Epn, calculated as the expectation value of Hy, for the
lowest J=0 and J =1 states in these nuclei. It clearly
shows that the relative contribution of the particle-hole
interaction indeed increases approximately linearly with
T, similarly to the smooth part of the Wigner energy term
[58]. The odd-odd term contribution to the binding en-

ergy of 18F in the Wigner energy, with d(A) = 0.56 x47/A
MeV taken from [59], is subtracted from the particle-hole
contribution to !3F shown in panel (a) of Fig. 3. It should
be stressed that the second term in the particle-hole inter-
action (5), with I-AII()]? = gph #?/4 , seems indispensable to
reproduce the Wigner effect in the binding energy.
R= (I:I[()f]))/<ﬁph), where (O) stands for the mean value of
O in the ground state, is the ratio of the second term of (5)
and the total contribution of the particle-hole interaction
to the ground state energy. If the odd-odd term contribu-
tion in the Wigner energy is not included, R = 0.25 for all
A = 18 nuclei considered, while R=0.99 for 2°Ne,
R = 0.49 for both 20F and *’Na, and R = 0.67 for 2°0. It is
obvious that there would be large deviations from the
smooth part of the Wigner energy term Ey if the particle-
hole interaction is used without the second term.

4 Conclusions

In this work, the competition of isovector and isoscal-
ar pairing in A = 18 and 20 even-even N ~ Z nuclei was
analyzed using the mean-field plus dynamic QQ, pairing
and particle-hole interaction model, whose Hamiltonian is
diagonalized in the basis U(24) > (U(6) > SU(3) > SO®3))
®U@4) > SUs(2)®S Ur(2)) restricted to the L =0 config-
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Fig. 3.

(color online) The contribution of the particle-hole interaction in MeV (dots) in the binding energy relative to that of 18 [pan-

el (a)] and 2°Ne [panel (b)] versus the ground state isospin 7 in 4 = 18 and 20 nuclei. The straight line represents the smooth part of
the Wigner energy term in the binding energy [58] with Ew = 47|N - Z|/A MeV = 94T /A MeV.

uration subspace. This may be an approximation for a
few lowest J=0 and J=1 levels, where multi-particle
and multi-hole excitations are not considered. It was
shown that the QQ and particle-hole interactions also
play a significant role in determining the relative posi-
tions of low-lying excited 0% and 1+ levels and their en-
ergy gaps, which can result in the ground state first-order
quantum phase transition from J=0 to J=1. The
strengths of the isovector and isoscalar pairing interac-
tions in these even-even nuclei were estimated with re-
spect to the energy gap and the total contribution to the
binding energy. It was shown that the ratio of the
strengths of the isoscalar and the isovector pairing inter-
actions is about 1.8 in 13F, and about 0.82—0.96 in 4 = 20
N ~ Z nuclei. Most importantly, it was shown that al-

though the mechanism of particle-hole contribution to the
binding energy is different, it is indirectly related to the
Wigner term in the binding energy. This was clearly
shown by the contribution of the particle-hole interaction
to the binding energy relative to that of 18F and *°Ne in
the 4 = 18 and 4 = 20 N ~Z nuclei compared to the
Wigner energy term. Since the analysis was restricted to
the L =0 configuration subspace, only a rough estimate
of the isovector and isoscalar pairing could be made.
Similar calculations using the same model in a larger sub-
space, for example in the entire ds and pf'shells, and with
multiple particle-hole excitations, could be carried out,
from which more accurate information about the isov-
ector and isoscalar pairing would be available. This ap-
proach will be considered in our future work.
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