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Abstract: The competition of isovector and isoscalar pairing in A=18 and 20 even-even N≈Z nuclei is analyzed in the
framework of the mean-field plus the dynamic quadurpole-quadurpole, pairing and particle-hole interactions, whose
Hamiltonian is diagonalized in the basis   in the L = 0
configuration  subspace.  Besides  the  pairing  interaction,  it  is  observed  that  the  quadurpole-quadurpole  and  particle-
hole interactions also play a significant role in determining the relative positions of low-lying excited 0+ and 1+ levels
and their energy gaps, which can result in the ground state first-order quantum phase transition from J = 0 to J = 1.
The strengths of the isovector and isoscalar pairing interactions in these even-even nuclei are estimated with respect
to  the  energy gap and the  total  contribution to  the  binding energy.  Most  importantly,  it  is  shown that  although the
mechanism of the particle-hole contribution to the binding energy is  different,  it  is  indirectly related to the Wigner
term in the binding energy.
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1    Introduction

T = 1 J = 0 T = 0
J = 1

N ≈ Z

It  is  generally  recognized  that,  like  the  well  studied
isovector  ( ,  )  pairing,  the  isoscalar  ( ,

) pairing should also be of importance for the ground
state  of    nuclei. There  are  a  number  of   investiga-
tions of this problem with the Bardeen-Cooper-Schrieffer
and  Hartree-Fock-Bogolyubov  approximations  [1].  Shell
model calculations with effective interactions focusing on
the  neutron-proton  pairing  correlations  have  also  been
carried out [2]. For example, the pair correlation was in-
vestigated  by  means  of  the  Shell  Model  Monte  Carlo
(SMMC)  method  performed  with  the  modified  Kuo-
Brown interaction  (KB3)  and  the  pairing  plus   quadru-
pole-quadrupole  (PQQ)  interaction  in  the  fp-shell  [3-6].
Direct  diagonalization  of  the  KB3  interaction  in  the  fp-
shell showed that the strength of the isovector pairing in-
teraction  seems  2-3  times  stronger  than  the  isoscalar
strength when the total isospin is small [7,8]. Shell mod-
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T = 1
J = 0 T = 0 J = 1

J = 0
ds

N = Z

el calculations  based  on  effective  interactions  with   re-
spect to the isovector and isoscalar pairing were also per-
formed in fp, sdfp, and   subspaces [9-11]. Systemat-
ic analysis of   nuclei in various model spaces with
the  extended  pairing  plus  the  quadrupole-quadrupole
(EPQQ)  Hamiltonian  has  been  carried  out  extensively
[12-29].  Very  recently,  a  distinct  quartet  structure  has
also  been  proposed  and  applied  to  the  isovector  ( ,

)  and  isoscalar  ( ,  )  pairing  correlations
[30-32], which showed that the   quartet plays a lead-
ing  role  in  the  structure  of  the  ground  state  of  -shell
nuclei. The isovector and isoscalar pairing in   nuc-
lei was also systematically studied by analyzing the shell
model wave functions with effective interactions [33,34].
Although  the  agreement  of  the  shell  model  results  with
the experiments  suggests  that  the isovector  and isoscalar
pairing  interactions  are  realistic,  the  actual  interaction
strengths  are  subject  to  considerable  uncertainty  due  to
the  fact  that  the  competition  of  isovector  and  isoscalar
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pairing,  deformation,  and  other  correlations  leads  to  a
very complex picture.

N ≈ Z

U(24) ⊃ (U(6) ⊃ S U(3) ⊃ S O(3))⊗
(U(4) ⊃ S US (2)⊗S UT (2)) L = 0

In this work, inspired by the afore mentioned invest-
igations,  we  examine  the  competition  of  isovector  and
isoscalar pairing in A=18 and 20 even-even   nuclei
described  by  the  mean-field  plus  quadrupole-quadrupole
(QQ), pairing and particle-hole interactions,  which is  di-
agonalized  in  the  basis 

 in the   configuration sub-
space. Due to its simplicity and explicitness, we are able
to  take  a  close  look  at  the  competition  of  isovector  and
isoscalar  pairing  in  the  presence  of  deformation  and
particle-hole interactions, the latter of which has not been
considered directly in the estimates of the pairing interac-
tions.

2    The model Hamitonian and its diagonaliza-
tion

The Hamiltonian of the spherical mean-field plus dy-
namic QQ, pairing, and particle-hole model is given by

Ĥ =
∑

j

ϵ j n̂ j−χ Q̂ · Q̂+ ĤP+ Ĥph, (1)

n̂ j =
∑

m j mt
a jm j;tmt

a jm j;tmt

j m j

ϵ j

t = 1/2 mt

χ > 0
Q̂µ

−χ Q̂ · Q̂
ĤP

where    is  the  number  operator  of
valence nucleons in  the  -orbit,    is the quantum num-
ber  of  the  projection  of  the  total  angular  momentum  of
valence  nucleons  in  the  orbit,    is  the  corresponding
single-particle energy given by the spherical shell model,

  and    are  the  quantum  numbers  of  the  isospin
and  of  its  projection,  respectively,    is  the  dynamic
QQ interaction strength,    is the  Elliott  dynamic quad-
rupole operator [35,36], with which the quadrupole-quad-
rupole interaction,  , is spin and isospin independ-
ent. The pairing interaction term   in (1) is given as

ĤP = −GVĤP,V−GSĤP,S = −GV

∑
ν

V+ν V−ν −GS

∑
µ

S +µS −µ ,

(2)
GV GSwhere    and    are  the  strengths  of  the  isovector  and

isoscalar pairing interactions,

V+ν =
1
2

∑
l

√
2(2l+1)

(
a†

lst ×a†
lst

)001

00ν
, V−ν =

(
V+ν

)† (3)

L = 0 S = 0
T = 1

with the orbital angular momentum  , spin  , and
isospin  , and

S +µ =
1
2

∑
l

√
2(2l+1)

(
a†

lst ×a†
lst

)010

0µ0
, S −ν =

(
S +ν

)† (4)

L = 0 S = 1 T = 0
Ĥph

with  ,  , and  . The particle-hole interaction
 in (1) is given by

Ĥph = gph

(
F 011 · F 011+

1
4

n̂2
)
, (5)

n̂ =
∑

j n̂ j

F 011
0µν

L = 0
S = T = 1 µ ν

U(24) ⊃ U(6)⊗U(4)

L = 0
ds

where    is  the  total  number  operator  of  valence
nucleons,    are the  particle-hole  (Gamow-Teller)   op-
erators, which are generators of the U(4) group with 
and  ,  and    and    stand for  the  quantum  num-
bers of the spin and isospin projections, respectively. The
Hamiltonian (1) with only the pairing part was studied in
the O(8)  basis  previously  [37-40].  The  first  term  in  the
particle-hole interaction (5) was introduced in [41,42] and
also adopted in [43]. Here, the second term of (5) is intro-
duced  to  ensure  that  the  matrix  elements  of  (5)  are  only
related to the second order invariant (Casimir operator) of
U(4),  spin  and  isospin  in  the    basis,
the  expression for  which will  be  shown later.  Moreover,
the shell model Hamiltonian with the QQ interaction and
the  spin  and  isospin  independent    pairing  interac-
tion in the  -shell was studied in [44,45].

ds

{a†
lml; sms; tmt

} l = 0, 2 s = 1/2
t = 1/2

{a†
lml; sms tmt

al′m′l ; sm′s tm′t }
N N =∑

l(2l+1) N = 6 ds
N = 10 k

k
[1k]

N [1k]
k

[1k] ⊃ (U(6) ⊃ S U(3) ⊃ S O(3))⊗
(U(4) ⊃ S US (2)⊗S UT (2)) |kα(LS )
JMJ ; T MT ⟩ ≡ |[1k][ f̃ ][ f ]β(λµ)κL;ρS T MT JMJ⟩ k

α

[ f ] (λµ) β ρ κ f1 f2 f3
f4 [ f ]

∑
i fi = k ρ

β

↓ ⊗ S T ↓
(λµ) L S J MJ

MT

[1k] U(N4) ↓
U(N)⊗U(4)

For  simplicity,  the  analysis  is  restricted  to  the  -
shell, and the spin-orbit splitting in the shell model mean-
field is neglected. Hence, the first term in (1) becomes a
constant  for  a  given  nucleus.  It  is  obvious  that  the
Hamiltonian (1), neglecting the spin-orbit splitting in the
shell  model mean-field,  commutes with the total  particle
number,  spin,  isospin,  and  the  total  angular  momentum
operators. For  this  case,  it  is  convenient  to  use  the   val-
ance  nucleon  creation  operators  in  the  LST-coupling
scheme  with  ,  where  ,    and

  are  the  orbital  angular  momentum,  spin,  and
isospin  of  the  valence  nucleon,  respectively.  It  is  well
known that the particle-number preserving bilinear oper-
ators    generate  the  unitary  group
U( 4),  where  .  Thus,    for  the  -
shell,  and    for  the  fp-shell,  and  so  on.  Since  a  -
particle state must be totally anti-symmetric with respect
to  any  permutation  among  the    particles,  only  totally
anti-symmetric  irreducible  representation  (irrep)    of
U( 4) is allowed, where   may be represented by the
corresponding Young diagram with   boxes. For our pur-
pose,  we  adopt  a  complete  set  of  basis  vectors  for  irrep

  of  U(24)  in  the  U(24)
,  which  is  denoted  as 

, where   is
the  total  number  of  particles,    stands  for  the  set  of
quantum numbers  ,  ,  ,  , and   involved,  ,  ,  ,
  in  the  four-rowed  irrep   of U(4)  satisfy  , 

and   are the branching multiplicity labels needed in the
reductions U(24)   U(6) U (4)  and  U(6)    SU(3),  re-
spectively,   is an allowed irrep of SU(3),  ,  ,  ,  ,
and  T,    are  quantum  numbers  of  the  orbital  angular
momentum, spin, total angular momentum, its projection,
and  of  the  isospin  and  its  projection,  respectively.  The
branching  rule  of    in  the  reduction 

  is  branching  multiplicity-free  and  given  by
[40, 44-46]

Chinese Physics C    Vol. 43, No. 7 (2019) 074106

074106-2



U(N4) ↓ U(N)⊗U(4)
[1k] ↓ ⊕ f1, f2, f3, f4

[ f̃ ] ⊗ [ f ],
(6)

[ f̃ ]
[ f1, f2, f3, f4]

U(N4) ⊃ U(N)⊗U(4)
U(NM) ⊃ U(N)⊗U(M)

U(NM)

where    is  the  irrep  of U(6),  which  is  the  conjugated
Young  diagram  of  .  In  the  calculation,  the
elementary  isoscalar  factors  (Wigner  coefficients),  also
called  one-particle  coefficients  of  fractional  parentage
(CFPs)  of    ,  are  needed.  As  shown
in  [46],  the    Isoscalar  Factors
(ISFs)  are  related  to  the  relevant  CG  coefficients  of  the
symmetric  groups.  For  a  totally  antisymmetric  irrep  of

, the elementary ISF can be expressed as [46]

⟨
[1k]

[σ′] [ν′]
[1]

[1][1]

∣∣∣∣∣∣ [1k+1]
[σ] [ν]

⟩
=

√
h[σ′]

h[σ]
δ[σ][ν̃]δ[σ′][ν̃′], (7)

[σ] [σ′] U(N) [ν] [ν′]
U(M) [ν̃]

[ν] h[σ′] h[σ]

[σ′] [σ] S k S k+1

N M
U(N) U(M)

where   or    labels  the irrep of  ,   or    la-
bels  that  of  ,    stands  for  the  conjugated  Young
diagram of  , and   or   is the dimension of the ir-
rep   or   of the symmetric group   or  . It is ob-
vious that ISF shown in (7) is independent of   and  ,
and  only  depends  on  the  irreps  of    or    in-
volved.  Using  the  Robinson  dimension  formula  of  the
symmetric groups [47], we have

h[ f1, f2, f3, f4] =
( f1+ f2+ f3+ f4)!( f1− f2+1)!( f1− f3+2)!( f1− f4+3)!( f2− f3+1)!( f2− f4+2)!( f3− f4+1)!
( f1+3)!( f1− f2)!( f1− f3+1)!( f1− f4+2)!( f2+2)!( f2− f3)!( f2− f4+1)!( f3+1)!( f3− f4)! f4!

, (8)

U(N4) ⊃ U(N)⊗U(4)⟨
[ f̃ ′]

β′(λ′,µ′)
[1]

(20)

∣∣∣∣∣∣ [ f̃ ]
β(λ,µ)

⟩
U(6) ⊃ S U(3)

ds

⟨
(λµ) (20)
κL l

∣∣∣∣∣∣ (λ′µ′)
κ′ L′

⟩
S U(3) ⊃ S O(3)

with which the elementary ISFs of 
are  explicitly  known.  The  elementary  ISFs

  of    needed  for

the  -shell were given by Akiyama [48]. In the calcula-
tion,  we  use  the  Draayer-Akiyama  code  for  the  Wigner

coefficients    of    de-

U(4) ⊃ S US (2)⊗

S UT (2)
⟨

[ f ] [1]
ρS T s t

∣∣∣∣∣∣ [ f ′]
ρ′ S ′T ′

⟩scribed  in  [49,50].  Finally,  ISFs  of 

    given  in  [46,51]  are

adopted.
ĤP,V ĤP,SThus, the matrix elements of   and those of   in

the U(24) basis are given by

⟨k′α′(L′S ′)J′M′J ; T ′M′T |ĤP,V|kα(LS )JMJ ; T MT ⟩ =δkk′δJJ′δMJ MJ′ δLL′δS S ′δTT ′δMT MT ′

×
∑

k′′α′′T ′′
⟨k′α′LS T ||V+||k′′α′′LS T ′′⟩⟨kαLS T ||V+||k′′α′′LS T ′′⟩

⟨k′α′(L′S ′)J′M′J ; T ′M′T |ĤP,S|kα(LS )JMJ ; T MT ⟩ =δkk′δJJ′δMJ M′
J
δLL′δS S ′δTT ′δMT M′

T

×
∑

k′′ α′′S ′′
⟨k′α′LS T ||S +||k′′α′′LS ′′T ⟩⟨kαLS T ||S +||k′′α′′LS ′′T ⟩, (9)

in which

⟨k′α′LS T ||V+||k′′α′′LS T ′′⟩ =
∑

lk̄ᾱL̄S̄ T̄

(−)l+L̄−L(−)s+S̄−S (−)T+1+T ′′
{

T T ′′ 1
t t T̃

}

×
[
3(2L̄+1)(2S̄ +1)(2T̃ +1)

4(2L+1)(2S +1)

]1/2

⟨k′α′LS T ||a†
lst ||k̄ ᾱL̄S̄ T̄ ⟩⟨k̄ ᾱL̄S̄ T̄ ||a†

lst ||k
′′α′′LS T ′′⟩

⟨k′α′LS T ||S +||k′′α′′LS ′′T ⟩ =
∑

lk̄ᾱL̄S̄ T̄

(−)l+L̄−L(−)t+T̄−T (−)S+1+S ′′
{

S S ′′ 1
s s S̄

}

×
[
3(2L̄+1)(2S̄ +1)(2T̄ +1)

4(2L+1)(2T +1)

]1/2

⟨k′α′LS T ||a†
lst ||k̄ ᾱL̄S̄ T̄ ⟩⟨k̄ ᾱL̄S̄ T̄ ||a†

lst ||k
′′α′′LS ′′T ⟩, (10)

⟨k′α′LS T ||a†
lst ||kαLS T ⟩ U(24) ⊃ (U(6) ⊃

where  the  curly  braces  denote  the  related  6j-symbol.  In
these  matrix  elements,  the  one-particle  reduced  matrix
elements   in the basis 

S U(3) ⊃ S O(3))⊗ (U(4)S T ⊃ S US (2)⊗S UT (2))  are  the
most important, which can be expressed, according to the
Racah factorization lemma, as

⟨k′α′L′S ′T ′||a†
lst ||kαLS T ⟩ =⟨[1k′ ]||a†||[1k]⟩

⟨
[1k] [1]

[ f̃ ][ f ] [1][1]

∣∣∣∣∣∣ [1k′ ]
[ f̃ ′][ f ′]

⟩⟨
[ f̃ ] [1]
β(λµ) (20)

∣∣∣∣∣∣ [ f̃ ′]
β′(λ′µ′)

⟩
×

⟨
(λµ) (20)
κL l

∣∣∣∣∣∣ (λ′µ′)
κ′ L′

⟩⟨
[ f ] [1]
ρS T s t

∣∣∣∣∣∣ [ f ′]
ρ′ S ′T ′

⟩
, (11)
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⟨[1k′ ]||a†||[1k]⟩ =
√

k+1δk′ k+1where    is  the U(24)  reduced
matrix element.  Moreover,  the  QQ  and  particle-hole   in-
teraction terms in (1) only contribute to the diagonal mat-
rix  elements  of  the  Hamiltonian  (1)  in  the U(24)  basis
with
⟨k′α′(L′S ′)JMJ ;T ′M′T |Q̂ · Q̂|kα(LS )JMJ ;T MT ⟩
= δkk′δαα′δLL′δJJ′δS S ′δMJ M′

J
δMT M′

T

×
(

2
3

(λ2+µ2+λµ+3λ+3µ)− 1
2

L(L+1)
)

(12)

(λµ)for the corresponding SU(3) irrep   and
⟨k′α′(L′S ′)JMJ ;T ′M′T |Ĥph|kα(LS )JMJ ;T MT ⟩
= δkk′δαα′δLL′δJJ′δS S ′δMJ M′

J
δMT M′

T

×gph

 4∑
i=1

fi( fi+5−2i)−S (S +1)−T (T +1)

 (13)

[ f1, f2, f3, f4]for  the  corresponding U(4)  irrep  ,  where  the
first term in the parentheses on the right-hand-side of (13)
is the eigenvalue of the second order Casimir operator of
U(4).  Once the matrix elements of (1) are thus obtained,
the eigenstates of (1) can be expressed as

|ζ;k (LS )JMJ ;T MT ⟩ =
∑
αC(ζ)
α |kα(LS )JMJ ;T MT ⟩, (14)

C(ζ)
α α ζwhere   is the  -component of the  -th eigenvector of

(1) after diagonalization in the U(24) basis.

3    Isovector and isoscalar pairing competition

k = 2 k = 4
L = 0

J = 0
J = 1 T ⩽ 2

In  order  to  analyze  the  competition  of  isovector  and
isoscalar pairing in the presence of other interactions, we
take   and   cases corresponding to A = 18 and A
=  20  even-even  systems.  In  the  analysis,  only  the 
basis  vectors  are  taken  in  the  diagonalization,  which
should  be  a  good  approximation  to  a  few  lowest  ,

  and    levels  with  the  number  of U(24)  basis

χ = 1− y GV = y(1+ x)
GS = y(1− x) 0 ⩽ y ⩽ 1

−1 ⩽ x ⩽ 1 χ y

vectors  greatly  reduced.  We  set  ,  ,
and    in  (1)  with    MeV  and

, where the units of   and   are MeV, which is
reasonable for the A = 18 and 20 systems.

k = 2 T = 0 S = 1 T = 1
S = 0 [2,0]⊗ [1,1] ⊗

L = 0

18F

(λµ) = (02) (40)
T = 0 S = 1 T = 1 S = 0

T = 0 S = 1
T = 1 S = 0 y = 0.3 y = 0.9

T = 0 S = 1 T = 1 S = 0
x = 0

T = 0
S = 1 T = 1 S = 0

18F T = 0 S = 1
GS

GV

T = 0 S = 1 T = 1 S = 0

T = 0 S = 1 T = 1
S = 0

For  the    case,  only  ( ,  )  or  ( ,
)  states  in    irrep  of U(6) U(4) are   al-

lowed  with  ,  which  is  consistent  with  the  fact  that
these are  indeed  the  only  possible  states  in  the  low   en-
ergy region in A = 18 even-even nuclei, especially in  .
In this case, the particle-hole interaction term becomes a
constant with  no  influence  on  the  competition  of   isov-
ector  and  isoscalar  pairing.  Since  there  are  only  two
SU(3) irreps with   and   involved, there are
four ( ,  )  and ( ,  )  states in total. Fig-
ure 1 shows the ( ,  )  levels  (solid line) and the
( ,  ) levels (dashed line) with   and 
MeV, respectively. It can be seen that there is a crossing
of the ( ,  ) level with ( ,  ) . The cross-
ing  point  with    corresponds  to  the U(4)  symmetry
point.  Therefore,  whether  the  ground  state  is  ( ,

)  or  ( ,  ), it  is  driven  mainly  by  the   com-
petition  of  isovector  and  isoscalar  pairing.  Since  the
ground  state  of    is  in  this  case    and    ,  the
isoscalar pairing strength   should always be a little lar-
ger  . On  the  other  hand,  the  system deformation   rep-
resented  by  the  QQ  interaction  greatly  alters  the  energy
gaps  between  ( ,  )  and  ( ,  )  and  the
other excited levels. Comparing panels (a) and (b) in Fig.
1,  it  is  clearly  seen  that  for  stronger  QQ interaction,  the
energy gap between the lowest ( ,  ) and ( ,

)  levels  becomes  smaller,  while  the  energy  gaps
between the lowest  two levels  and the other  two excited
levels become larger.

k = 4
S = 0 S = 1
For  the    case,  the  low-lying  spectrum,  even  for

the   and   levels, becomes complicated. In par-
ticular, the particle-hole interaction is now effective in the

T = 0 S = 1 T = 1 S = 0 x

k = 2 E

χ = 0.7 χ = 0.1

Fig. 1.      ( ,  )  level (solid lines) and ( ,  )  level (dashed lines) as function of   for two different QQ strengths in the
 system, where the excitation energy   is in MeV The contribution of the constant mean-field and the particle-hole interaction to

the total energy of the system is not included. The particle-hole interaction is in this case irrelevant for the excitation energy. Panel
(a) is for   MeV, and panel (b) is for   MeV.
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S = 0 S = 1
T = 0, 1, 2

20Ne T ⩾ 1 20F 20Na
T = 0

T = 2 20O
20Mg

T = 2 S = 0 L = 0
S = 1

T = 2 L , 0
L = 0

T = 0 S = 0 [4]⊗ [1,1,1,1]
[2,2]⊗ [2,2] T = 1 S = 0 T = 0 S = 1

[2,0]⊗ [1,1] [3,1]⊗ [2,1,1]
T = 2 S = 0 [2,2]⊗ [2,2]
⊗

spectrum. In this case, the low-lying   or   levels
are associated with  , which is only possible for

.  Since    should  be  satisfied  in    and  ,
 levels, shown in Fig. 2 , are removed for these two

cases.  Similarly,  there  are  only    levels  in    and
, for  which  the  isoscalar  pairing  interaction  is   inef-

fective  for  the  ( ,  )  levels  with  . The   iso-
scalar pairing interaction is effective only for   levels
when  ,  which  have    ,  and  is  not  considered
here.  Specifically,  when  only  the    configuration  is
considered,  the ( ,  )  states are in 
and    irreps,  ( ,  )  or  ( ,  )
states  are  in    and    irreps,  and
( ,  )  states  are  in    irrep  of
U(6) U(4), respectively.

T = 0 S = 0
T = 0 S = 0

T = 0 S = 0
x = 0

As shown in Fig.  2,  if  the QQ interaction strength is
strong enough, as shown in panel (a), the ground state al-
ways has   and  , and there is a large energy gap
between  the  lowest  ( ,  )  and  the  other  excited
levels. If the QQ interaction strength is weak, as shown in
panel  (b)  of  Fig.  2,  the  ground  state  is  still  the  lowest
( ,  )  state  among the  relatively  high  density  of
levels, where the U(4) point with   corresponds to the
highest density.  Furthermore,  when  the  particle-hole   in-

teraction  is  switched  on,  the  energy  gap  between  the
ground state and the excited levels becomes larger if  the
particle-hole interaction  is  repulsive,  while  the  gap   be-
comes smaller if the particle-hole interaction is attractive.

T (T +1)

gph gph > 0

gph < 0

gph

gph
gph < 0

T (T +1)

Since the matrix elements of the particle-hole interac-
tion  shown  in  (13)  are  linear  in  , it  may  be   re-
lated  to  the  Wigner  term  in  the  binding  energy  [52].
However, whether  the  particle-hole  interaction   contrib-
utes  to  the  binding  energy  is  mainly  determined  by  the
sign of  .  When  , the particle-hole interaction is
always  repulsive,  which  reduces  the  binding  energy,  but
the  contribution  decreases  with  increasing  T.  When

, the particle-hole interaction increases the binding
energy, but again the contribution decreases with increas-
ing T.  Nevertheless,  it  is  observed  that  a  larger  value  of

 is needed to fit the excitation energies of a nucleus if
its  ground  state  isospin  T  is  small.  With  increasing
ground  state  isospin  T  of  the  neighboring  nucleus,  the
value of   of the neighboring nucleus decreases, where

 for the ground state of  a nucleus with the largest
T,  as  is  indeed  shown  for  the  A  =  18  and  20  nuclei.
Therefore,  although  the  mechanism  of  the  particle-hole
contribution to the binding energy is different, and not al-
ways  proportional  to    like  in  the  Wigner  energy

T = 0 S = 0 T = 1 S = 1 T = 1 S = 0
T = 0 S = 1 T = 2 S = 0

k = 4 gph

Fig. 2.    (color online) ( ,  ) levels (solid lines), ( ,  ) levels (red dot-dashed lines), the lowest ( ,  ) levels (line-
connected open circles), ( ,  ) levels (dotted lines), and ( ,  ) levels (dashed lines) as function of x for two different
QQ and particle-hole interaction strengths in the   sysem. The excitation energy E and the parameters y and   are in MeV. The
contribution of the constant mean-field energy to the total energy of the system is not included.
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term in  the  binding energy formula  [52], it  is  indeed  in-
directly related to the Wigner term.

≈

ds 16O

To estimate the strengths of the the isovector and iso-
scalar  pairing  interactions  in  A  =  18  and  20  even-even
N Z nuclei, not only the excited levels but also the total
contribution  to  the  binding  energy  should  be  properly
considered in  order  to  reduce  the  arbitrariness  in   choos-
ing the model parameters. Since the valence particles are
confined  to  the  -shell,    is  taken  as  the  inert  core.
Thus, the binding energy of a nucleus is defined as

B(8+Nπ, 8+Nν) =B(8, 8)+ES(8, 8)−ES(8+Nπ, 8
+Nν)+EC(8, 8)−EC(8+Nπ, 8+Nν)

−Esym(28+Nπ, 28+Nν)+E0 k−E(1)
k ,
(15)

where
ES(Z, N) =28.2359A2/3 MeV,

EC(Z, N) =0.7173
Z(Z−1)

A1/3 (1−Z−2/3)MeV

Esym(Z, N) =
29.2876

A
|N −Z|2

(
1+

2− |I|
2+ |I|A −

1.4492
A1/3

)
MeV

(16)
I = |N −Z|/A

Nπ Nν
E0

E(1)
k k = Nπ+Nν k

k
k = Nπ+Nν Nπ ≥ 0 Nν ≥ 0

with  , are  the  surface,  Coulomb,  and   sym-
metry energy [53],  respectively,   and   are the num-
ber  of  valence  protons  and  neutrons,  respectively,    is
the average binding energy per valence nucleon in the ds-
shell, which is almost a constant contribution of the shell
model  mean-field,  and    with    is  the  -
particle  ground  state  energy  determined  by  the  model
Hamiltonian (1). The I correction term, introduced in the
symmetry  energy  in  (16),  approximately  describes  the
Wigner  effect  [53], which  is  checked  against  the   sym-
metry energy with the Wigner effect given in [52]. There-
fore,  if  the  parameters  of  the  model  Hamiltonian  are
properly adjusted, the  -particle ground state energy with
fixed   for   and   should satisfy

E(1)
k = ∆B(Nπ,Nν)+E0 k, (17)

∆B(Nπ,Nν)
k

E(1)
k

gph

gph

gph

gph

where    is  determined by (15).  This  provides a
reasonable  constraint  for  fitting  the  -particle  ground
state  energy    of  the  model  Hamiltonian  (1),  and  is
used in the fit. However, if   is used as a free paramet-
er, which is required for fitting the low-lying levels of A
= 20 nuclei, there is still arbitrariness in choosing   for
the A = 18 nuclei, because the excited energy levels con-
cerned  are  independent  of  .  Therefore,  the  isovector
and isoscalar  pairing  strengths  for  A = 18  nuclei  are  es-
timated  from  the  related  excited  levels  only,  so  that  the
parameter    for  each nucleus is  estimated according to
(17).  For  A  =  20  nuclei,  both  the  excited  levels  and  the
total contribution to the binding energy are considered in
the  estimate  of  the  isovector  and  isoscalar  pairing
strengths.

L = 0
J = 0 J = 1

E(1)
k = EQQ+EP+Eph

EQQ EP Eph

χrot ∼ (E2+1 −E0+1 )/6
E2+1 E0+1 = E(1)

k
2+

χ

χ < χrot

E(1)
k EP

χ

χ = 0.245 18O 18Ne χ = 0.066
18F 70

χ = 0.095 20O 20Ne χ = 0.070 20F
χ = 0.02 20Na 25 35

J = 0 J = 1
N ≈ Z GV GS

gph T = 1
S = 1 18O 18Ne T = 2 S = 1
20O L = 0 T = 1 J = 0

18O 18Ne T = 2 J = 0 20O

GV
20F 20Na GV GS

1+1
L = 0

L , 0

GS/GV = 1.82 18F

Since  the  model  is  restricted  to  the    configura-
tion  subspace,  only  a  few  lowest    and    levels
can be  roughly  fitted  by  using  (1)  to  estimate  the   isov-
ector and isoscalar pairing strengths in each nucleus. We
only focus on a best fit to the experimental data for each
nucleus, for which the systematics of the model paramet-
ers is not applied. The total ground state energy of a nuc-
leus  (17)  may  be  expressed  as  ,
where  ,  , and   are the mean values of the ground
state energy  contribution  from  the  QQ  interaction,   pair-
ing interaction, and particle-hole interaction, respectively.
The  QQ  interaction  strength  may  be  estimated  by

 related to the moment of inertia of the
ground  band,  where    and    are  the  excitation
energy of the first   state and the ground state energy of
a nucleus, respectively, for which the energy levels in the
ground band are assumed to be rotational. Since the level
spectra  of  these  nuclei  are  not  typically  rotational,  it  is
found that the actual QQ interaction strength   should be
taken  smaller  than  that  determined  from  the  moment  of
inertia of the ground band with  . Otherwise, due to
the fact that   is a constant, the pairing contribution 
would be too small to generate appropriate energy gaps of
the low-lying levels if   is too large when the total contri-
bution to  the  binding with  the  constraint  (17)  is  applied.
In the fits,   MeV for   and  , and 
MeV for  , which are  % of the values determined by
the  moment  of  inertia  of  the  ground  band.  Similarly,

 MeV for   and  ,   MeV for  ,
and   MeV for  , which are about  %- % of
the  values  determined  by  the  moment  of  inertia  of  the
ground band. Table 1 gives the fit  results for the ground
and a few   and   low-lying levels in A = 18 and
A  =  20    nuclei,  where  the  fit  parameters,  ,  ,
and    for  each  nucleus  are  also  shown.  As  the  ( ,

) states of   and  , and ( ,  ) states of
 are outside the   subspace, only the ( ,  )

levels in   and  , and the ( ,  ) levels in 
are shown in Table 1 . For these levels the isoscalar pair-
ing  is  ineffective,  so  only  the  value  of    is  shown  for
these nuclei. For   and  , the strengths of   and 
are determined based on the lowest   level, with the en-
ergy of the level fixed by the fit. Although the   com-
ponents are dominant in the ground state and a few low-
lying  levels,  the    components, the  spin-orbit   split-
ting of the mean-field, which results in L and S coupling,
and the multi-particle-hole configuration mixing are inev-
itable.  Therefore,  for a given T,  at  most two consecutive
levels with the same J are considered in the fit. The cor-
responding  results  of  the  shell  model  obtained  by  using
the  KSHELL  code  [56]  with  the  USD  (W)  interaction
[57]  are  also  provided  for  comparison.  As  can  be  seen
from Table 1  ,  the ratio   for  ,  indicating
that the isoscalar pairing prevails over the isovector pair-
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GS/GV = 0.82−0.96

N ≈ Z

E0 ≈ 11.75
gph

20Mg
20Mg

ing  in  this  case,  while    for  20F,  20Ne,
and 20Na, indicating that the isovector and isoscalar pair-
ing are comparable in A = 20   nuclei. The fit results
for A = 20 nuclei are restricted by the condition (17) with

 MeV, which is  the  same as  that  used for A =
18  nuclei.  The  parameter    for  each A  =  18  nuclus  is
thus determined as shown in Table 1. There is no theoret-
ical  result  for   because the experimental  level ener-
gies for   are unavailable.

gph 18F 20Ne gph > 0

T > 0 gph

1.153 18F 0.447 0.400
18O 18Ne gph 1.35

20Ne 0.446 20F 0.274
20Na −1.470 20O

18F 20Ne
Eph Ĥph

J = 0 J = 1

Most importantly, it is shown that the strength of the
particle-hole interaction  for   or   with    ,
is the largest when compared with the neighboring A = 18
or A = 20 nuclei with  . With increasing T,   drops
from   MeV for   to   MeV and   MeV for

  and  ,  respectively,  while    drops  from 
MeV for    to   MeV for   and   MeV for

, and to   MeV for  , indicating that the con-
tribution of the particle-hole interaction to the binding en-
ergy  increases  with T.  Fig.  3  shows  the  contribution  of
the particle-hole interaction relative to that in   or  ,

,  calculated  as  the  expectation  value  of    for  the
lowest    and    states  in  these  nuclei.  It  clearly
shows  that  the  relative  contribution  of  the  particle-hole
interaction  indeed  increases  approximately  linearly  with
T , similarly to the smooth part of the Wigner energy term
[58]. The  odd-odd  term  contribution  to  the  binding   en-

18F d(A) = 0.56×47/A

18F

Ĥ(2)
ph = gph n̂2/4

R = ⟨Ĥ(2)
ph ⟩/⟨Ĥph⟩ ⟨Ô⟩

Ô

R = 0.25
R = 0.99 20Ne

R = 0.49 20F 20Na R = 0.67 20O

EW

ergy of   in the Wigner energy, with 
MeV taken from [59], is subtracted from the particle-hole
contribution to   shown in panel (a) of Fig. 3. It should
be stressed that the second term in the particle-hole inter-
action  (5),  with    ,  seems  indispensable  to
reproduce  the  Wigner  effect  in  the  binding  energy.

,  where   stands for the mean value of
 in the ground state, is the ratio of the second term of (5)

and  the  total  contribution  of  the  particle-hole  interaction
to the ground state energy. If the odd-odd term contribu-
tion in the Wigner energy is not included,   for all
A  =  18  nuclei  considered,  while    for  ,

 for both   and  , and   for  . It is
obvious  that  there  would  be  large  deviations  from  the
smooth part of the Wigner energy term   if the particle-
hole interaction is used without the second term.

4    Conclusions

A = 18 N ≈ Z

(24) ⊃ (U(6) ⊃ S U(3) ⊃ S O(3))
⊗(U(4) ⊃ S US (2)⊗S UT (2)) L = 0

In this work, the competition of isovector and isoscal-
ar  pairing  in    and  20  even-even    nuclei  was
analyzed using the mean-field plus dynamic QQ, pairing
and particle-hole interaction model, whose Hamiltonian is
diagonalized in  the  basis U

 restricted to the   config-

J = 0 J = 1 ≈ L = 0Table 1.    Energy (in MeV) of a few of the lowest   and   levels in A = 18 and 20 N Z nuclei fitted by (1) in the   configuration subspace
(Th.). The experimental data (Exp.) for A = 18 nuclei are taken from [54] and for A = 20 from [55]. A “–” sign means that the corresponding level is
not observed experimentally. The shell model results (SM) are obtained by using the KSHELL code [56] with the USD (W) interaction [57]

18O Exp. Th. SM 18F Exp. Th. SM 18Ne Exp. Th. SM

0+g (T=1) 0 0 0 0+1 (T=1) 1.04 1.06 1.19 0+g (T=1) 0 0 0

0+2 (T=1) 3.63 3.64 4.32 0+2 (T=1) 4.75 2.99 5.51 0+2  (T=1) 3.58 3.64 4.32

1+g (T=0) 0 0 0

1+2 (T=0) 1.70 2.98 4.11

GV = 0.160MeV GV = 0.220MeV GV = 0.160MeV

GS = 0.40MeV

gph = 0.447MeV gph = 1.153MeV gph = 0.400MeV

20O Exp. Th. SM 20F Exp. Th. SM 20Ne Exp. Th. SM 20Na Exp. Th. SM

0+g (T=2) 0 0 0 0+1 (T=1) 3.53 3.84 3.49 0+g (T=0) 0 0 0 0+1 (T=1) 3.09 2.80 3.49

0+2 (T=2) 4.46 4.70 5.04 0+2 (T=2) 6.52 3.95 6.52 0+2 (T=0) 6.73 5.64 6.76 0+2  (T=2) 6.53 3.66 6.52

0+3 (T=2) 5.39 5.33 9.13 0+3 (T=1) − 11.83 7.45 0+9 (T=1) 13.64 14.27 13.64 0+3 (T=1) − 10.11 7.45

1+1 (T=1) 1.06 1.06 1.05 0+13(T=2) 16.73 14.26 16.66 1+1 (T=1) 0.98 0.98 1.05

1+2 (T=1) 3.49 4.73 3.35 1+1 (T=1) 11.26 9.629 11.20 1+2 (T=1) 3.00 3.65 3.35

1+(T=0) 9.94 15.47 12.23

1+2 (T=1) 13.17 16.18 13.50

GV = 0.421MeV GV = 0.638MeV GV = 0.800MeV GV = 0.602MeV

GS = 0.522MeV GS = 0.700MeV GS = 0.578MeV

gph = −1.470MeV gph = 0.446MeV gph = 1.350MeV gph = 0.274MeV
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J = 0 J = 1

0+ 1+

J = 0 J = 1

1.8 18F
N ≈ Z

uration  subspace.  This  may  be  an  approximation  for  a
few  lowest    and    levels,  where  multi-particle
and  multi-hole  excitations  are  not  considered.  It  was
shown  that  the  QQ  and  particle-hole  interactions  also
play a  significant  role  in  determining  the  relative   posi-
tions  of  low-lying excited   and    levels and their  en-
ergy gaps, which can result in the ground state first-order
quantum  phase  transition  from    to  .  The
strengths of  the  isovector  and  isoscalar  pairing   interac-
tions in  these  even-even  nuclei  were  estimated  with   re-
spect  to  the  energy  gap  and  the  total  contribution  to  the
binding  energy.  It  was  shown  that  the  ratio  of  the
strengths of  the isoscalar  and the isovector  pairing  inter-
actions is about   in  , and about 0.82−0.96 in A = 20

  nuclei. Most  importantly,  it  was  shown  that   al-

18F 20Ne
N ≈ Z

L = 0

though the mechanism of particle-hole contribution to the
binding  energy  is  different,  it  is  indirectly  related  to  the
Wigner  term  in  the  binding  energy.  This  was  clearly
shown by the contribution of the particle-hole interaction
to  the  binding energy relative  to  that  of   and    in
the  A  =  18  and  A  =  20    nuclei  compared  to  the
Wigner energy term. Since the analysis was restricted to
the    configuration  subspace,  only  a  rough  estimate
of  the  isovector  and  isoscalar  pairing  could  be  made.
Similar calculations using the same model in a larger sub-
space, for example in the entire ds and pf shells, and with
multiple  particle-hole  excitations,  could  be  carried  out,
from which  more  accurate  information  about  the   isov-
ector and  isoscalar  pairing  would  be  available.  This   ap-
proach will be considered in our future work.
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