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a b s t r a c t

Bond-order potentials (BOPs) provide a local and physically transparent description of the interatomic
interaction. Here we describe the efficient implementation of analytic BOPs in the BOPfox program and
library. We discuss the integration of the underlying non-magnetic, collinear-magnetic and noncollinear-
magnetic tight-binding models that are evaluated by the analytic BOPs. We summarise the flow of an
analytic BOP calculation including the determination of self-returning paths for computing themoments,
the self-consistency cycle, the estimation of the band-width from the recursion coefficients, and the
termination of the BOP expansion. We discuss the implementation of the calculations of forces, stresses
and magnetic torques with analytic BOPs. We show the scaling of analytic BOP calculations with the
number of atoms and moments, present options for speeding up the calculations and outline different
concepts of parallelisation. In the appendix we compile the implemented equations of the analytic
BOP methodology and comments on the implementation. This description should be relevant for other
implementations and further developments of analytic bond-order potentials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A key requirement for reliable atomistic simulations is a ro-
bust description of the interatomic interaction. Density-functional
theory (DFT) calculations provide a reliable treatment of the bond
chemistry in many systems but the accessible length- and time-
scales are limited due to the computational effort. Larger systems
and/or longer time scales become accessible by coarse-graining the
electronic structure in DFT to the tight-binding (TB) approximation
and further on to the analytic bond-order potentials (BOPs) [1–5].
This leads to a transparent and intuitive framework for modelling
the interatomic interaction, including covalent bond formation,
charge transfer and magnetism.

The analytic BOPs [2,4] are closely related to the numerical
BOPs [6] as discussed in Refs. [7,8]. Both have been applied in
simulations of different materials, see Ref. [9] for an overview.
Here we describe our implementation of analytic BOPs in the
software package BOPfox [10]. BOPfox has already been used in
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several publications [8,11–26] and is being continuously extended
and optimised. We point out similarities of TB/BOP calculations
and computations carried out using other electronic structure
methods, and discuss the peculiarities of analytic BOPs in detail.
This comprehensive description of the algorithmic framework of
analytic BOPs should be of use for other implementations and
further developments of analytic BOPs.

In Section 2we outline the program flow of TB/BOP calculations
in BOPfox. Section 3 is devoted to thediscussion of the performance
with regard to scaling, speed-up and parallelisation. The full set of
equations that is evaluated during an analytic BOP calculation is
compiled in the appendix with details of the implementation and
references to the original derivations.

2. Program flow

2.1. Overview

The typical flow for computing the bond energy with a non-
magnetic analytic BOP is sketched in Fig. 1 and discussed in detail
in the following. The real-space BOP calculations can easily be
complemented by reciprocal-space TB calculations that employ
the same Hamiltonian matrix elements.

https://doi.org/10.1016/j.cpc.2018.08.013
0010-4655/© 2018 Elsevier B.V. All rights reserved.
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Fig. 1. Overview of the calculation of the bond energy for a non-magnetic system
with analytic BOPs in BOPfox.

2.2. Input files

The initial stage of TB and BOP calculations in BOPfox is (i)
reading the central control file (infox.bx), (ii) the specified struc-
ture file (default: structure.bx) and (iii) the specifiedmodel file
with the TB/BOP parameters (default: models.bx). The presently
available TB/BOP models in BOPfox include parameters for mag-
netic calculations for Fe [19,27,28], Fe–C [29,30], for non-magnetic
calculations for V [31], Cr [31], Nb [17,31], Mo [17,31], Ta [17,31],
W [17,31,32], Ir [33], Si–N [34], and a canonical d-bandmodel [35].
The set of TB/BOP parametrisations available in BOPfox is being
constantly extended.

2.3. Initialisation

Two neighbour-lists of the crystal structure are created by
setting up ghost cells and constructing cell linked-lists. The

implementation scales linearly with the number of atoms. The
short-ranged neighbour-list is used for the construction of the
intersite matrix elements of the Hamiltonian (Hiαjβ in Fig. 1), in-
terference paths (ξ (n)

iαjβ in Fig. 1) and transfer paths (T (n,m)
iαjβ in Fig. 1).

The second, long-range neighbour-list is used for the evaluation of
the repulsive energy.

2.4. Hamiltonian

For each pair of atoms, the Hamiltonian matrix elements Hiαjβ
are constructed (Eq. (A.13)) with the specified tight-bindingmodel
and rotated to the global coordinate system (Eq. (A.15)). TB/BOP
calculations taking into account collinear or non-collinear mag-
netism use Hamiltonians with spin-dependent onsite levels as
given in Eqs. (A.17) and (A.18), respectively. The implementation
of collinear magnetism in BOPfox uses a loop over the ↑ and ↓ spin
channels. The calculations for the individual spin channels are very
similar to non-magnetic BOP calculations. The similar processes in-
volved in non-collinear magnetic calculations, collinear magnetic
calculations and non-magnetic calculations (see Appendix C) allow
reuse of large portions of the code for each type of calculation.
Switching the implementation to non-collinear magnetism is con-
trolled by a preprocessor flag in the Makefile that includes the
relevant parts of the source code.

2.5. DOS and Fermi energy

A key difference between the TB and BOP implementations is
the calculation of the local density of states (DOS) niα(E): (i) In
analytic BOP calculations, the pairwise Hiαjβ are used to construct
niα(E) in real space as outlined in Appendix B.1. (ii) In TB calcula-
tions, the Hiαjβ are used to generate a Hamiltonian with periodic
boundary conditions that is diagonalised in reciprocal space using
LAPACK routines [36].

The local DOS niα(E), whether obtained using TB calculations
in reciprocal space or using BOP calculations in real space, is inte-
grated up to the Fermi energy EF. The Fermi energy is determined
by the bisection method to match the sum of electrons in all
orbitals with the total number of electrons in the system.

2.6. Self-consistency

The onsite levelsHiαiα are optimised in the self-consistency loop
(Eq. (A.30) or Eq. (A.29)) before the contributions to the binding
energy (Eqs. (A.1)–(A.11)) and the forces (Eq. (C.14)) are computed.
The self-consistency condition in TB and BOP calculations is ap-
proached iteratively. The onsite levels E(n+1)

iα of step n+1 in the self-
consistency loop are computed according to Eqs. (A.30) and (A.29)
from n(n)

iα (E) that was obtained for the Hamiltonian with onsite
levels E(n)

iα . With the new E(n+1)
iα , the Hamiltonian is updated and

the new n(n+1)
iα (E) is computed. In BOPfox, the input and output

values of the onsite levels can be mixed (i) linearly, (ii) with the
Broyden method [37], (iii) with the FIRE algorithm [38] or (iv)
with molecular dynamics of onsite levels using a damped Verlet
algorithm. In all mixers, the self-consistency loop is carried out
until the specified convergence limit ormaximumnumber of steps
is reached. The convergence of the differentmixers depends on the
particular system at hand, particularly for magnetic systems [39].

2.7. Energy and force contributions

In TB, the bond energy is obtained by integrating the local
electronic DOS niα(E) of the eigenvalues, which result from di-
agonalisation of the Hamiltonian, with the Methfessel–Paxton
scheme [40] or the improved tetrahedron method [41]. In analytic
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Fig. 2. Combination of BOPfox with ASE [47], openKIM [48] and LAMMPS [49] by
the BOPlib API.

BOPs, the bond energy is determined analytically from the local
electronic DOS niα(E) and the Fermi energy EF, see Appendix A.

In both TB and BOP calculations, the forces can be used for
structural relaxation and MD simulations within BOPfox. The cur-
rent implementation includes several relaxation algorithms (e.g.
damped MD, conjugate gradient [42], L-BFGS [43,44], FIRE [38]) as
well as standardMD schemes (e.g. Verlet [45], velocity Verlet [46]).

2.8. BOPfox as library: BOPlib

BOPfox provides an application programming interface (API) for
communication with external software. The API takes the system
configuration (species, positions, onsite levels, etc.) as arguments,
starts a TB/BOP calculation and returns atomic binding energies,
forces, stresses and torques. The combination of API and BOPfox
subroutines can be compiled to a static or dynamic library called
BOPlib.With BOPlib the TB/BOP calculations can be fully integrated
with other external software as sketched in Fig. 2. In particular,
BOPfox can be addressed fromASE [47] ascalculatorwith either
BOPfox as system call or BOPlib as linked library. BOPlib can also
be configured as KIM model to be linked to openKIM [48] and as
pair_style potential to be linked with LAMMPS [49].

3. Performance

3.1. Scalability

The computational effort of energy and force calculations with
analytic BOPs is largely dominated by the evaluation of interfer-
ence paths (Eq. (B.19)) and transfer paths (Eq. (C.6)). The theoretical
scalability of the computational effort with respect to the number
of atoms and the number of moments is discussed in a detailed
complexity analysis and systematic benchmarks in Ref. [23]. For
typical choices of the number of moments, the complexity of the
calculations increases with the number of moments to the power
of approximately 4.5. The implementation of analytic BOPs in
BOPfox reaches this theoretical scaling limit [23]. The increase in
the computational effort with the number of atoms is linear (Fig. 3)
due to the use of linear-scaling linked-cell lists and the locality of
the BOP expansion.

3.2. Speed-ups

BOPfox provides several options to accelerate the energy and
force calculations with analytic BOPs:

Fig. 3. Linear scaling of the execution timewith the number of atoms in the analytic
BOP simulations. The dashed line indicates a linear fit of the data points. Technical
details of the benchmark are given in Ref. [24].

(i) The interference paths that are determined to evaluate the
moments of the DOS are also needed to compute the bond-order
type term Θ̃iανjβµ for the self-consistency (Eq. (A.29)) and the
forces (Eq. (C.14)). An obvious approach to improve the compu-
tational speed is therefore to store the interference paths. The
resulting increase in memory limits this optimisation to moderate
system sizes.

(ii) The self-consistency cycle involves the modification of on-
site levels Eiα which necessitates the repeated computation of
new interference paths (Eq. (B.25)). This can hardly be avoided.
However, small changes in the local atomic structure typically lead
to only small changes in the self-consistent onsite levels. Hence for
relaxations and MD simulations, the computation time can be re-
duced by initialising the onsite levels to the values of the previous
step. For typical step sizes of relaxations or MD simulations, this
leads to significant speed-ups in successive self-consistent energy
or force evaluations as fewer self-consistency steps need to be
carried out.

(iii) In many cases, the interatomic interaction is dominated by
the influence of the local environment of a given atom rather than
effects due to atoms located further away. In the BOP framework,
this expected short-sightedness of the interaction corresponds to
a greater importance of the interference paths which sample the
nearby environment as compared to those that reach out to more
distant atoms. A straightforward improvement in performance is,
therefore, to introduce a maximum radius for the interference
paths. In this way the immediate neighbourhood is fully sampled,
while the paths that reach beyond a specifiedmaximum radius are
neglected. This introduces an additional level of approximation.

3.3. Parallelisation

The computation of forces and energies using analytic BOPs is
perfectly suited for parallel execution. BOPfox provides different
concepts of parallelisation. Here we provide only an overview, the
details and performance analysis are discussed in detail in the
respective references given below. Switching between different
parallelisations is performedduring compilation timewith prepro-
cessor flags.

(i) The shared-memory parallelisation based on OpenMP pro-
vides a straight-forward parallelisation of the loops for computing
the interference paths (Eqs. (B.26)–(B.28)) and the transfer matri-
ces (Eqs. (C.6)–(C.9)). In this implementation all operations make
use of the same arrayswhich are allocated for thewhole simulation
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Fig. 4. Strong scaling of execution time with the number of processes for fixed
system size (top) and weak scaling of execution time with the number of processes
for fixed size of individual processes (bottom). The dashed lines indicate ideal strong
scaling and ideal weak scaling. Technical details of the benchmark are given in
Ref. [24].

cell. Therefore the maximum size of the simulation cell is limited
by the available memory.

(ii) The shared-memory parallelisation [24] based on MPI uses
a TODO list of operations that is distributed to different threads.
As for the shared-memory OpenMP parallelisation, the working
arrays are allocated for the whole simulation cell, which leads to
a memory limitation. This parallelisation approach is also suitable
and implemented for GPU processing.

(iii) The distributed-memory parallelisation [24] based on MPI
performs a domain decomposition of the simulation cell and
thereby reduces the memory required per thread of the parallel
execution. This implementation was optimised to reduce commu-
nication and to avoid redundant operations due to the overlap
of interference-paths calculations in the distributed domains. The
implementation in BOPfox reaches excellent strong scaling (Fig. 4,
top), i.e. a linear decrease of the computation time for a fixed
system size with the number of processes. At the same time it
also shows excellent weak scaling (Fig. 4, bottom), i.e. a constant
execution time for increasing system size at a constant number of
atoms per process.

(iv) The hybrid parallelisation [25] is a combination of
shared-memory and distributed-memory parallelisation that was
developed to make use of the multi-core CPU architectures and
multi-threading-capabilities of modern supercomputers. Here, the
system is decomposed into domains that are distributed to differ-
ent nodes using MPI. On each node the operations are then carried
out on the same memory using OpenMP.

4. Conclusions

Analytic BOPs provide a local and physically transparent de-
scription of the interatomic interaction. The BOPfox program
package provides an implementation of analytic BOPs for non-
magnetic, collinear-magnetic and noncollinear-magnetic calcula-
tions. It computes analytic forces, stresses and magnetic torques.
For completeness, we compiled the implemented equations of the
analytic BOPswith references to the original publications and com-
ments on the implementation in the appendix. This comprehensive
description of the algorithmic framework should prove beneficial
for a broader community of users and developers of analytic BOPs.

The implementation is highly efficient and provides linear scal-
ing of the computation time for energies and forces with the num-
ber of atoms. The different parallelisations make it possible to run
the calculations with optimum use of the hardware resources for a
given problem size. The program can be compiled as standalone
program or as library with an API for linking with an external
software.
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Appendix A. Binding energy in TB and BOP

A.1. Energy contributions

The TB and BOP calculations within BOPfox are based on the
TB bond model [5,50] that can be obtained as a second-order
expansion of the DFT energy [4]. In the absence of external fields
the total binding energy is given by

UB = Ubond + Uprom + Uion + Ues + Urep + UX . (A.1)

The covalent bond energy Ubond summarises the energy that orig-
inates from the formation of chemical bonds between the atoms.
Its onsite representation

Ubond =

∑
iαν

∫ EF
(E − Eiαν) niαν(E)dE (A.2)

is the integral of the local electronic DOS niαν(E) up to the Fermi
energy EF for each orbital α and spin ν of atom i with onsite level
Eiαν . The equivalent intersite representation

Ubond =

iαν ̸=jβµ∑
iανjβµ

βiανjβµnjβµiαν (A.3)

is expressed in terms of the density-matrix elements niανjβµ

(Eq. (B.20)) that are identical to the bond order Θiανjβµ(φF ) aside
from a factor of two for non-magnetic systems. The bond inte-
grals [4,51]

βiανjβµ = Hiανjβµ −
1
2

(
Eiαν + Ejβµ

)
Siανjβµ (A.4)
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include the Hamiltonian matrix elements Hiανjβµ and overlap ma-
trix elements Siανjβµ [5]. The promotion energy Uprom accounts for
the redistribution of electrons across orbitals uponbond formation.
It is given by

Uprom =

∑
iαν

E(0)
iαν

(
Niαν − N (0)

iαν

)
(A.5)

with (0) indicating the non-magnetic free atom as reference and
the number of electrons

Niαν =

∫ EF
niαν(E)dE . (A.6)

The deviation from charge-neutral atoms upon bond formation
leads to charges

qiαν = Niαν − N (0)
iαν . (A.7)

The energies associated with charge redistribution are approxi-
mated to depend only on the total atomic charge

qi =

∑
αν

qiαν . (A.8)

The energy to charge an atom is given by the onsite ionic
energy

Uion = Ēiqi +
1
2

∑
i

Jiiq2i (A.9)

that is determined by the electronegativity Ēi and the resistance
against charge transfer Jii that is related to the Hubbard U [52].
The energy Ēiqi is obtained by a weighted average of the reference
onsite levels [4]

Ēi =

∑
α

E(0)
iα ∆qiα (A.10)

where ∆qiα is the amount of charge which is gained or lost by
orbital iα due to minimisation of the binding energy UB. The inter-
action of the charged atoms is given by the intersite electrostatic
energy

Ues =
1
2

i̸=j∑
ij

Jijqiqj (A.11)

with the Coulomb parameter Jij. The repulsive energy Urep includes
all further terms of the second-order expansion of DFT [5] and is
usually parametrised by empirical functions. The exchange energy
UX due to magnetism is approximated by the typically dominating
onsite contributions

UX = −
1
4

∑
i

Iim2
i (A.12)

with mi the magnetic moment and Ii the Stoner exchange pa-
rameter of atom i. The preparation energy (Eq. 92 in Ref. [5])
vanishes in an unscreened calculation. Further contributions to the
energy due to external magnetic or electric fields can be included
[4].

A.2. Hamiltonian

A.2.1. Construction
For each interacting pair of atoms i and j with orbitals α and

β , the structure of the pairwise Hamiltonian H (b)
ij in the coordinate

system of the bond is given by

H (b)
ij =

js jp jd
is

ip

id

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ σ 0 0 σ 0 0 0 0
σ σ 0 0 σ 0 0 0 0
0 0 π 0 0 π 0 0 0
0 0 0 π 0 0 π 0 0
σ σ 0 0 σ 0 0 0 0
0 0 π 0 0 π 0 0 0
0 0 0 π 0 0 π 0 0
0 0 0 0 0 0 0 δ 0
0 0 0 0 0 0 0 0 δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.13)

for the general case of an spd-valent atom i interactingwith an spd-
valent atom j. The superscript (b) indicates the coordinate system
of the bond aligned along the z axis with ordering of the p and d
orbitals as pz, px, py and d3z2−r2 , dzx, dyz, dx2−y2 , dxy, respectively.
The values of the matrix elements σ and π differ in general for
different combinations of orbitals (e.g. σ (is, js) ̸= σ (ip, jp)) and
atoms (e.g. σ (ip, jd) ̸= σ (id, jp)). For combinations of atoms with
fewer types of valence orbitals, the Hamiltonian reduces accord-
ingly. The values of the matrix elements H (b)

iαjβ are determined for
the interatomic distance rij = |rij| = |ri − rj| from the values of the
distance-dependent bond integralsβiαjβ (rij). The functional formof
βiαjβ (rij) depends on the specific TB/BOPmodel and is, for example,
power-law, exponential, or Goodwin–Skinner–Pettifor [53] type.
The interaction range can be smoothly forced to zero at rcut by
multiplication of βiαjβ (rij) with a cosine function

fcut(rij) =
1
2

(
cos

(
π

[
rij − (rcut − dcut)

dcut

])
+ 1

)
(A.14)

for rcut - dcut ≤ rij ≤ rcut. For each bond, the pairwise Hamiltonian
initialised in the bond coordinate system is rotated to the global
coordinate system

Hij = R(θij, φij)H
(b)
ij (rij)R(θij, φij)T (A.15)

using rotation matrices R(θij, φij) with polar and azimuthal angles
θij and φij determined from the orientation of the bond rij in the
global coordinate system (see Appendix D).

A.2.2. Magnetism
Magnetism enters the Hamiltonian Hiαµjβν via the explicit spin-

dependence of the onsite levels Eiαµν [4]. The spin indices µ and ν

span the four quadrants of neighbouring electron spin ↑↑, ↑↓, ↓↑

and ↓↓. The global onsite-level matrix of orbitals α of atom i [21]

Eiα =

(
Eiα↑↑ Eiα↑↓

Eiα↓↑ Eiα↓↓

)
(A.16)

with onsite levels [19]

Eiαµν = Hiαµiαν

= H (0)
iαiαδµν + Bi · σµν −

1
2
Iimi · σµν + Jiqi (A.17)

depends on the non-magnetic onsite levels H (0)
iαiα , any external

magnetic field Bi, the Pauli matrices σµν , the Stoner exchange
integral Ii [54] and the charge qi.

In the case of collinear magnetism [19] with identical axis of
spin quantisation for all atoms the magnetic moments are parallel
or antiparallel to one another. In this case the global magnetic
moment direction can be taken to lie along the z-axis of the unit
cell. Then the ↑↓ and ↓↑ modifications to H (b)

iαjβ vanish and the
global onsite-level matrix takes a diagonal form with decoupled
↑↑ and ↓↓ modifications. Therefore, we may use separate ↑ and ↓
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spin channels ν with onsite elements

Eiαν = H (0)
iαiα − (−1)νBz +

1
2
(−1)ν Iimi + Jiqi (A.18)

for a magnetic moment of

mi =

∑
α

(
Niα↑ − Niα↓

)
. (A.19)

In the case of non-collinear magnetism [21], the axis of spin
quantisation is different for different atoms i. However, with a uni-
tary transformation Uiα , the diagonal form of Eiα can be enforced

E(local)
iα = UiαEiαU

†
iα =

(
E↑(local)
iα 0
0 E↓(local)

iα

)
(A.20)

by a rotation into a local coordinate system that is oriented along
the local magnetic moment. The transformation matrix Uiα is de-
fined [55] in terms of the angle α between the z direction in the
global space, sz , and the direction of the local magnetic moment,
siα

cos(α) = sz · siα (A.21)

and a vector niα that is orthogonal to sz and siα . A computationally
convenient way to express the transformation matrix is [21]

Uiα = cos
(α

2

)
1 − i (σ · niα) sin

(α

2

)
(A.22)

with the identity matrix 1 and the vector of Pauli spin matrices σ.

A.2.3. Screening
The analytic BOP calculations in BOPfox employ orthogonal

TB models that can be obtained by approximate transformations
of non-orthogonal TB models. This transformation leads to an
environment dependency of the bond integrals βiαjβ (rij) in the
orthogonal TB model [56] in terms of screening by environment
atoms kwith orbitals γ .

The transformation to an orthogonal basis is achieved by a
Löwdin transformation [57]

H̃iαjβ = S−1/2
iαkγ Hkγ lδS

−1/2
lδjβ . (A.23)

The diagonal elements of the overlap matrix are one; it can there-
fore be written as

Siαjβ = δiαjβ + Oiαjβ . (A.24)

whereOij = Sij for i ̸= j and zero otherwise. Similarly, we canwrite

S−1/2
iαjβ = δiαjβ −

1
2
Siαjβ . (A.25)

The screened orthogonal Hamiltonian matrix elements are given
as [5]

H̃ (0)
iαjβ = H (0)

iαjβ

−
1
2

(
H (0)

iαkγSkγ jβ + SiαkγH
(0)
kγ jβ

)
+

1
4
SiαkγH

(0)
kγ lδSlδjβ (A.26)

where the bond between atoms i and j is screened by atom k.
The matrices Oiαjβ are constructed analogously to the Hamiltonian
(Eq. (A.13))with pairwise distance-dependent parametrisations. In
BOPfox, the screening is implemented up to the linear term in S,
whileS is approximated to first order as

Siαjβ = Oiαjβ . (A.27)

A.3. Self-consistency

The onsite levels Eiα of the different atoms i in the system are
optimised in a self-consistency loop in order tominimise the bind-
ing energy (Eq. (A.1)). The target quantity ∆SCF

iα that is minimised
with respect to onsite levels [4], defined by
∂UB

∂Eiα
= ∆SCF

iα → 0 (A.28)

can be expressed for the case of BOP calculations as

∆SCF
iα = Θ̃iαiα − Niα =

∑
m

Ξ
(m−1,m)
iαiα − Niα . (A.29)

The bond-order like term Ξ
(m−1,m)
iαiα that includes gradients of the

moments with respect to onsite levels is explained in detail in
Appendix C.

The corresponding minimisation target for TB calculations can
be written as

∆SCF
iα = Eiα −

⎛⎝E(0)
iα +

∑
jβ

Jiαjβqj

⎞⎠ (A.30)

= ∆Eiα −

∑
jβ

Jiαjβqj .

Local-charge neutrality can be enforced by the alternative tar-
get quantity

∆SCF
iα = N (0)

iα − Niα (A.31)

or, implicitly, by large values of Jiαiα .
For non-collinear magnetism [21], the gradient of the binding

energy with respect to local onsite levels E(local)
iαν (Eq. (A.20)), i.e.,

∂UB

∂E(local)
iαν

= Θ̃ (local)
iανiαν − Niαν (A.32)

involves the unitary transformation

Θ̃ (local)
iανiαν = UiανΘ̃iανiανU

†
iαν (A.33)

Appendix B. Bond energy in analytic BOPs

B.1. Density of states

In analytic BOPs, the local density of states niα(ϵ) required for
the calculation of the bond energy (Eq. (A.2)),

niα(ϵ) =
2
π

√
1 − ϵ2

∑
m

gmσ
(m)
iα Pm(ϵ) (B.1)

is determined analytically [2,4,5,58] using Chebyshev polynomials
of the second kind Pm(ϵ) (see Appendix B.2), structure-dependent
expansion coefficients σ

(m)
iα (see Appendix B.3), and damping fac-

tors gm (see Appendix B.4). The expansion of the DOS is based on a
transformation of the Hamiltonian to a tridiagonal form [59]

⟨un|Ĥ|um⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(0) b(1)

b(1) a(1) b(2)

b(2) a(2) b(3)

b(3) a(3)
. . .

. . .
. . .

. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with all other entries identical to zero. This Hamiltonian corre-
sponds to a one-dimensional chain with only nearest-neighbour
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Fig. B.1. Graphical representation of the recursion Hamiltonian as a one-
dimensional chain: the Lanczos chain.

matrix elements, see Fig. B.1 that can be solved by recursion [60]
using the Lanczos algorithm [61] to obtain the local DOS

niα(E) = −
1
π
Im

1

E − a(0)iα −
b(1)iα

2

E−a(1)iα −
b(2)iα

2

...

(B.2)

in terms of the recursion coefficients a(m)
iα and b(m)

iα . In practice, the
recursion is terminated at some level n bymaking assumptions for
the values of a(m)

iα and b(m)
iα form > n. This corresponds to taking the

energy calculation to a local scheme which requires convergence
with respect to n. In BOPfox the required recursion coefficients a(m)

iα
and b(m)

iα for m > n can be taken (i) as constant, (ii) as weighted
average and (iii) as oscillating.

Taking the recursion coefficients as constant values

a(m)
iα = a(∞)

iα , b(m)
iα = b(∞)

iα for m > n (B.3)

corresponds to the so-called square-root terminator as the tail of
the continued fraction can then be given analytically as a square-
root function [62]. The different approaches to obtain the values of
the asymptotic recursion coefficients a(∞)

iα and b(∞)
iα in BOPfox are

summarised in Appendix B.5.
Taking a(m)

iα and b(m)
iα for m > n as weighted averages [21] over

mmax
rec recursion levels

a(approx)iα =

∑mmax
rec

m=0 wma
(m)
iα∑mmax

rec
m=0 wm

, b(approx)iα =

∑mmax
rec

m=1 wmb
(m)
iα∑mmax

rec
m=1 wm

(B.4)

withwm = 1/[β(mmax
rec −m)+1] canprovide smoother convergence

for values of β ≥ 1.
Oscillating values [58] for a(m)

iα and b(m)
iα can be chosen to treat,

e.g., systems with band-gaps [63].

B.2. Chebyshev polynomials

The Chebyshev polynomials of the second kind in Eq. (B.1) are
expressed as

Pm(ϵ) =

m∑
n=0

pmnϵ
n (B.5)

with

p(m+1)n = 2pm(n−1) − p(m−1)n (B.6)

(unless n < 0 or n > m when pmn = 0). They present the
basis of the expansion of niα (Eq. (B.1)) [2]. The values of Pm(ϵ) are
computed iteratively

Pm+1(ϵ) = 2ϵPm(ϵ) − Pm−1(ϵ) (B.7)

with P0 = 1 and P1 = 2ϵ. The phase

ϵ = − cosφ (B.8)

transforms the Chebyshev polynomials

Pm(ϵ) =
sin(m + 1)φ

sinφ
(B.9)

to sine functions with a corresponding DOS

niα(ϵ) =

∑
m

gmσ
(m)
iα sin(m + 1)φ . (B.10)

This expression can be integrated to provide analytic expressions
for the bond energy of orbital α of atom i,

Ubond,iα = b(∞)
iα

∑
m

gmσ
(m)
iα

[
χ̂m+2(φF )

− γ0χ̂m+1(φF ) + χ̂m(φF )
]

, (B.11)

and the number of electrons

Niα(φF ) =

∑
m

gmσ
(m)
iα χ̂m+1(φF ) . (B.12)

The structure-independent response functions

χ̂0(φF ) = 0 (B.13)

χ̂1(φF ) = 1 −
φF

π
+

1
2π

sin (2φF ) (B.14)

χ̂m(φF ) =
1
π

[
sin(m + 1)φF

m + 1
−

sin(m − 1)φF

m − 1

]
(B.15)

with the Fermi phase

cosφF =
EF − a(∞)

iα

2b(∞)
iα

(B.16)

correspond to a weighting of the contribution of the structure-
dependent expansion coefficients σ

(m)
iα to the bond energy.

B.3. Expansion coefficients and moments

The expansion coefficients

σ
(m)
iα =

m∑
n=0

pmnµ̂
(n)
iα (B.17)

in Eq. (B.1) carry the information on the atomic structure in the
normalised moments [2]

µ̂
(n)
iα =

1(
2b(∞)

iα

)n n∑
l=0

(
n
l

)
(−1)la(∞)

iα
l
µ

(n−l)
iα (B.18)

with terminator coefficients a(∞)
iα and b(∞)

iα of orbitalα of atom i. The
moments provide the direct link between the electronic structure,
niα(E), and the atomic structure by the moments theorem [64]

µ
(n)
iα =

∫
Enniα(E)dE = ⟨iα|Ĥn

|iα⟩ (B.19)

=

∑
j1β1...jn−1βn−1

Hiαj1β1Hj1β1j2β2 . . .Hjn−1βn−1iα

This link is schematically illustrated in Fig. B.2 for the second, third
and fourth moment: The self-returning paths of length two, three
and four in the atomic structures are linked to the rootmean square
(RMS) width, the skewness and the bimodality of the electronic
DOS, respectively.

In the intersite representation (Eq. (A.3)), the information on
the individual bonds is contained in the bond order Θiαjβ (ϵ) or the
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Fig. B.2. Schematic illustration of the direct link between the atomic structure
in terms of self-returning paths (top) and electronic density of states (bottom).
The second moment that is linked to the RMS width of the DOS (bottom left) is
determined by self-returning paths of length two (top, left red atom). The third
moment that relates to the skewness of the DOS (bottom middle) is given by paths
of length three (top, middle red atom) and the fourth moment that is linked to the
bimodality of the DOS (bottom right) by paths of length four (top, right red atom).

densitymatrix niαjβ (ϵ) that can be expressed in terms of Chebyshev
polynomials [2]

Θiαjβ (ϵ) = 2niαjβ (ϵ)

= 2
2
π

√
1 − ϵ2

∑
m

gmσ
(m)
iαjβPm(ϵ) (B.20)

with σ
(m)
iαjβ defined equivalently to Eq. (B.17) as

σ
(m)
iαjβ =

m∑
n=0

pmnξ̂
(n)
iαjβ (B.21)

and normalised interference paths (Eq. (B.25))

ξ̂
(l)
iαjβ =

1(
2b(∞)

iα

)l l∑
n=0

(
n
l

)
(−1)la(∞)

iα
n−l

ξ
(n)
iαjβ . (B.22)

A relation between the moments and the atomic structure is es-
tablished in the second equality by the self-returning paths iα →

j1β1 → j2β2 → · · · → jn−1βn−1 → iα from orbital α on atom i
along orbitalsβk of atoms jk (k = 1 . . . n−1). Each element of a self-
returning path corresponds to the pairwise Hamiltonian matrices
in the global coordinate system (Eq. (A.15)) and carries information
about the onsite level of atom i

Hiαiα = ⟨iα|Ĥ|iα⟩ = Eiα (B.23)

and the interatomic interactions between the atomic orbitals on
neighbouring atoms i and j

Hiαjβ = ⟨iα|Ĥ|jβ⟩ . (B.24)

Highermoments correspond to longer paths and thus to amore far-
sighted sampling of the atomic environment. As different crystal
structures have different sets of self-returning paths of a given
length, the moments may be seen as fingerprints of the crystal
structure [22,65] and used to construct maps of structural similar-
ity [26].

The paths can be computed efficiently by realising that (1) only
the sum of all paths is relevant (Eq. (B.19)) and that (2) the sums
across the whole paths can be represented as sums along path
segments. The path segments are the interference paths

ξ
(n)
iαjβ = ⟨iα|Ĥn

|jβ⟩ (B.25)

of length n between atom i and j. The computation of interference
paths can be simplified after realising that they can be (i) con-
structed iteratively

ξ
(n)
iαjβ =

∑
kγ

Hiαkγ ξ
(n−1)
kγ jβ (B.26)

for all interaction neighbours kwith orbitals γ , (ii) inverted in their
direction by taking the transpose

ξ
(n)
iαjβ = ξ

(n)
jβiα

T
(B.27)

and (iii) merged by multiplication of segments

ξ
(n)
iαjβ =

∑
kγ

ξ
(l)
iαkγ ξ

(n−l)
kγ jβ (B.28)

of length 0 < l < n for all common endpoint atoms k
with orbital γ . Using these properties, the summation of matrix
multiplications along the individual self-returning paths can be
decomposed to segments that represent summations of matrix
multiplications along shorter partial paths. It is, therefore, not nec-
essary to determine each possible path ξ

(n)
iαjβ between atoms i and j

individually, but instead sufficient to determine the set of shorter
segments that is needed for their construction. The implemen-
tation of this approach in BOPfox reaches the theoretical scaling
limits of the required execution time and is discussed in detail in
Ref. [23].

A relation between themoments and the electronic structure is due
to the expansion coefficients a(n)iα and b(n)iα [66]. These coefficients
determine the electronic structure in terms of niα , the local DOS, as
given in Eq. (B.2). The first four moments of the local DOS are given
by

µ
(0)
iα = 1 (B.29)

µ
(1)
iα = a(0)iα (B.30)

µ
(2)
iα = a(0)iα

2
+ b(1)iα

2
(B.31)

µ
(3)
iα = a(0)iα

3
+ 2a(0)iα b(1)iα

2
+ a(1)iα b(1)iα

2
(B.32)

which is easily verified by identifying all self-returning paths of
corresponding length in Fig. B.1. Vice-versa, the recursion coeffi-
cients can be determined from the moments [67,68] for each iα
by

an =

n∑
j=0

n∑
l=0

cnj c
n
l µ

j+l+1 (B.33)

and

bn =

n∑
j=0

n−1∑
l=0

cnj c
n−1
l µj+l+1 (B.34)
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where we dropped the common index iα for readability. The coef-
ficients cnj are given by

c00 = 1,

cnj = 0 if j > n or j < 0 or n < 0,

bn+1cn+1
j = cnj−1 − ancnj − bncn−1

j

and determined iteratively.

B.4. Damping factors

The damping factors gm in Eq. (B.1), together with approxi-
mate higher expansion coefficients, were introduced to suppress
Gibbs ringing and ensure strictly positive values of the DOS [58].
Therefore the calculation of the DOS (Eq. (B.1)) with expansion
coefficients σ

(m)
iα from the moments up to m = nmax (Eq. (B.17))

is expanded up to nmax + 1 < m < nexp with estimated higher
expansion coefficients σ

(m)
iα [58]

n(nmax)
iα (ϵ) =

2
π

√
1 − ϵ2

[
nmax∑
m=1

gmσ
(m)
iα Pm(ϵ)

+

nexp∑
m=nmax+1

gmσ
(m)
iα Pm(ϵ)

]
. (B.35)

The higher expansion coefficients σ
(m)
iα are obtained by recursive

calculation of the interference paths [58] along the semi-infinite
chain,

ζ
(m+1)
k = 2

[
âkζ

(m)
k + b̂kζ

(m)
k−1 + b̂k+1ζ

(m)
k+1

]
− ζ

(m−1)
k (B.36)

with

âk =
ak − a(∞)

iα

2b(∞)
iα

and b̂k =
bk

2b(∞)
iα

(B.37)

and σ
(n)
iα = ζ

(n)
0 . The relative importance of the higher, approxi-

mated expansion coefficients with respect to the lower, computed
ones is balanced by the damping factors gm in Eq. (B.1) that vary
smoothly from 1 to 0. In BOPfox, the Jackson kernel [69]

g J
m =

(nmax − m + 1) cos πm
nmax+1 + sin πm

nmax+1 cot π
nmax+1

nmax + 1
(B.38)

for an expansion m = 1 . . . nmax is adapted to Chebyshev polyno-
mials of the second kind by

gm = g J
m+1/g

J
1 (B.39)

as described in Ref. [58].

B.5. Band-width estimates

The different terminators (Eqs. (B.3) and (B.4)) of the continued
fraction (Eq. (B.2)) require the recursion coefficients a(m)

iα and b(m)
iα

beyond the ones that can be computed from the µ
(n)
iα with m > n

by Eqs. (B.33) and (B.34). We determine approximate values of a(m)
iα

and b(m)
iα from estimates of the centre and the width of the DOS

a(∞)
iα = A(∞)

iα (B.40)

b(∞)
iα = B(∞)

iα (B.41)

with

A(∞)
iα =

1
2
(Etop

iα + Ebottom
iα ) (B.42)

B(∞)
iα =

1
4
(Etop

iα − Ebottom
iα ) . (B.43)

The values of A(∞)
iα and B(∞)

iα can be estimated in BOPfox in several
ways based on the computed recursion coefficients a(n)iα and b(n)iα for
n levels of orbital α on atom i. The simple approximations are (i)
the lowest computed recursion coefficients, i.e.,

A(∞)
iα = a(1)iα , B(∞)

iα = b(1)iα , (B.44)

(ii) the highest computed recursion coefficients

A(∞)
iα = a(nmax)

iα , B(∞)
iα = b(nmax)

iα , (B.45)

(iii) averaged values [19] similar to Haydock and Johannes [70],

A(∞)
iα =

∑nmax
n=0 a(n)iα

nmax + 1
, B(∞)

iα =

√∑nmax
n=1 b(n)iα

2

nmax
, (B.46)

(iv) the average band-centrewith the band-width from the highest
computed recursion level

A(∞)
iα =

∑nmax
n=0 a(n)iα

nmax + 1
, B(∞)

iα = b(nmax)
iα , (B.47)

or (v) lowest computed band-bottom and highest computed band-
top [19]

A(∞)
iα =

max
(
a(n)iα

)
+ min

(
a(n)iα

)
2

, (B.48)

B(∞)
iα =

max
(
a(n)iα

)
− min

(
a(n)iα

)
+ 4max

(
b(n)iα

)
4

. (B.49)

Further choices are (vi) the approach of Beer et al. [71] that min-
imises the band-width with preserved moments of the DOS and
(vii) Gershogorin’s circle theorem [72] which leads to estimates of
the band-edges [58]

Ebottom
iα = min

(
a(n)iα − b(n)iα − b(n+1)

iα

)
(B.50)

Etop
iα = max

(
a(n)iα + b(n)iα + b(n+1)

iα

)
. (B.51)

For testing purposes the user can also define (viii) global values of
A(∞) and B(∞) that hold for all atoms.

B.6. Example with typical settings: bcc Ta

As an example of an analytic BOP calculation, we used the
parametrisation of Ref. [17] to determine the DOS of bcc Ta shown
in Fig. B.3. This non-magnetic BOP calculationwith a d-bandmodel
uses 9 moments (Eq. (B.19)), a square-root terminator (Eq. (B.3)),
the Gershogorin bandwidth estimate (Eq. (B.50)), and estimated
expansion coefficients up to moment 200 (Eq. (B.37)) that are
damped with a Jackson kernel (Eq. (B.38)). The DOS obtained by
analytic BOPs is in good agreement with the TB reference (20 × 20
× 20 k-point mesh, tetrahedron integration). In both cases, the
Fermi level is in the pseudo-gap of the bimodal DOS that is typical
for bcc transition metals. The bandwidth of the DOS, as well as
the position and height of the two most prominent peaks are
well captured. The integrated DOS of analytic BOPs is in excellent
agreementwith the TB referencewhich is the basis for reproducing
DOS-integral quantities like the bond energy.
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Fig. B.3. DOS of bcc Ta computed by reciprocal-space TB (black) and real-space BOP
(red) computed with the parametrisation of Ref. [17]. The integrated DOS of TB and
BOP (divided by a factor of five for plotting convenience) are given as dashed lines.
The dotted line marks the Fermi level.

Appendix C. Forces and torques in analytic BOPs

C.1. General binding-energy derivative

The minimisation of the binding energy in the self-consistency
cycle (see Appendix A.3) is based on the derivative of the bind-
ing energy with respect to onsite-levels Ejβµ. The computation of
forces and stresses requires the derivative of the binding energy
with respect to the position rj, while determining the torques
makes use of the derivative of the binding energy with respect to
the spin orientation sjβµ of atom j. These are all specific examples
of derivatives of the binding energy which can be written in a
generic form as derivatives with respect to a general parameter Λ,
[4]

dUB

dΛ
=

∑
iαν

nmax∑
n=0

w
(n)
iαν

dµ(n)
iαν

dΛ

−

∑
iαν

Niαν

dEiαν

dΛ
+

dUrep

dΛ
. (C.1)

The total derivative of the bond energy Ubond (Eq. (A.3)) with
respect to Λ is transformed to partial derivatives with respect to
moments µ

(n)
iαν and associated partial derivatives of the moments

with respect to Λ. This allows the derivative of the bond energy to
be expressed in the form of Hellmann–Feynman-type forces

dUbond

dΛ
=

∑
iανjβµ

Θ̃iανjβµ

dHjβµiαν

dΛ
(C.2)

with a bond-order-like term

Θ̃iανjβµ =

nmax∑
n=1

Ξ
(n−1,n)
iανjβµ . (C.3)

Inserting Ejβµ for Λ leads to the self-consistency condition of
Eq. (A.29). Replacing Λ with rj or sjβ yields forces and torques as
described in Appendices C.2 and C.3, respectively.

The derivatives of Ubond with respect to the moments

w
(n)
iαν =

∂Ubond

∂µ
(n)
iαν

(C.4)

enter Θ̃iανjβµ as weights w
(m)
iαν in

Ξ
(n−1,m)
i1α1ν1 inαnνn

=

∑
i2α2ν2...in−1αn−1νn−1

(
n∑

l=1

w
(m)
ilαlνl

)
Hi1α1ν1 i2α2ν2 . . .Hin−1αn−1νn−1inαnνn (C.5)

and are given in detail in Appendix C.4. This compact form leads to
an efficient recursive computation of Θ̃iαjβ by

Ξ
(n−1,m)
iαjβ = T (n−1,m)

iαjβ + w
(m)
iα ξ

(n−1)
iαjβ (C.6)

with transfer paths T (n,m)
iαjβ . The transfer paths are closely related to

the interference paths (Eq. (B.19)) and exhibit similar properties
(Eqs. (B.26)–(B.28)). In particular, the transfer paths can also be (i)
constructed iteratively

T (n,m)
iαjβ =

∑
kγ

Hiαkγ T
(n−1,m)
kγ jβ + w

(m)
iα ξ

(n)
iαjβ , (C.7)

(ii) inverted by taking the transpose

T (n,m)
iαjβ = T (n,m)

jβiα
T
, (C.8)

and (iii) merged by a product rule

T (n−1,m)
iαjβ =

∑
kγ

T (l−1,m)
iαkγ ξ

(n−l)
kγ jβ +

∑
kγ

ξ
(l−1)
iαkγ T (n−l,m)

kγ jβ . (C.9)

These properties of the transfer paths are the basis for the effi-
cient [23] and parallel [24,25] implementation of self-consistency,
forces and torques in analytic BOPs.

For non-collinear magnetism, the above equations are trans-
formed by rewriting the moments and weights as 2 × 2 matrices
in spin space (see Appendix A.2.2). The general derivative of the
binding energy (Eq. (C.1)) reads [21]

dUB

dΛ
=

∑
iα

nmax∑
n=0

Tr

(
w(n)

iα
dµ(n)

iα

dΛ

)

−

∑
iαν

Niαν

dEiαν

dΛ
+

dUrep

dΛ
(C.10)

with

dµ(n)
iα

dΛ
=

⎛⎜⎜⎝
dµ↑↑(n)

iα

dΛ
dµ↑↓(n)

iα

dΛ
dµ↓↑(n)

iα

dΛ
dµ↓↓(n)

iα

dΛ

⎞⎟⎟⎠ (C.11)

and weights that are constructed in the local frame

w(n,local)
iα = Uiαw

(n)
iα U †

iα =

(
w

↑(n,local)
iα 0
0 w

↓(n,local)
iα

)
(C.12)

from the global counterparts by a unitary transformation like the
onsite levels (Eq. (A.20)). The transformation of the bond order
term Θ̃iανjβµ and the transfer matrices T (n−1,m)

iαjβ to 2 × 2 spin space
leads to the same equations as Eqs. (C.3) and (C.6), respectively,
with corresponding interference paths

ξ
(n)
iαjβ =

(
ξ

↑↑(n)
iαjβ ξ

↑↓(n)
iαjβ

ξ
↓↑(n)
iαjβ ξ

↓↓(n)
iαjβ

)
. (C.13)

C.2. Forces

Replacing the derivative d/dΛ in Eq. (C.1) with the gradient
∇k leads to the analytic forces. With self-consistent onsite levels
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dU/dEiα = 0 (Eq. (A.29)), the forces on atom k in TB and BOP
calculations are given by [4,19,21]

Fk = −∇kUB

= −

iα ̸=jβ∑
iαjβ

Θ̃iαjβ∇kHjβiα

−
1
2

∑
iαjβ

(∇kJiαjβ )qjβqiα

+
1
4

∑
iαjβ

(∇kIiαjβ )mjβmiα

− ∇kUrep . (C.14)

(This expression also holds for non-collinear magnetism as there
only the onsite levels are affected by the rotation [21].) In TB
calculations this expression corresponds to Hellmann–Feynman
forces [73,74] and

Θ̃iαjβ =
∂UB

∂Hiαjβ
. (C.15)

becomes the density matrix niαjβ (Eq. (A.3)). In analytic BOP calcu-
lations, in contrast, the approximate evaluation of the DOS means
that a self-consistent set of charges and magnetic moments does
not correspond to a stationary point in the BOP energy (as it does
in DFT or TB approaches) [4]. However, taking exact derivatives of
the energy with respect to atomic positions, this form can still be
used to represent forces [4,19] (Eq. (C.14)) and stresses [30]. The
contribution of the bond energy to the atomic virial stress is [30]

σ
(i)
bond =

1
2

∑
αjβ

Θ̃iαjβ
(
∇jHjβiα − ∇iHjβiα

)
⊗ rij . (C.16)

C.3. Torques

Inserting the local spin direction siα for Λ in the general deriva-
tive (Eq. (C.1)) leads to the torques, i.e., to the change in binding
energy due to rotation of local spin directions. The derivatives of
the rotation matrices can be taken into account by expressing the
weights in terms of their local counterparts [21]

w(n)
iα =

[
1
2

(
w

↑

iα + w
↓

iα

)
1 +

1
2

(
w

↓

iα − w
↑

iα

)
siα · σ

]
(C.17)

where we dropped the index (n, local) of wiα for brevity. With
∆iα = E↓

iα − E↑

iα , the derivative of the bond energy with respect
to siα is given by [21]
dUB

dsiα
=

1
2

(
Tr
(
Θ̃iαiασ

)
∆iα − Iimimi

+

nmax∑
n

(
w

↓

iα − w
↑

iα

)
Tr
(
σµ

(n)
iα

))
(C.18)

wheremi is the spin direction on atom i and σ is the vector of Pauli
spin matrices. The cross product with the spin direction leads to
the magnetic torque [75] given by

tiα =
dUB

dsiα
× siα (C.19)

for orbital α on atom iwhere siα × miα = 0.

C.4. Common partial derivatives

The weights (Eq. (C.4)) can be determined analytically. To
this end, the band and onsite contributions are separated

as [19]

w
(n)
iαν =

∂Uband

∂µ
(n)
iαν

+
∂

∂µ
(n)
iαν

∫ EF
niανdE ·

(
Eiαν

−

∑
jβµ Ejβµnjβµ(EF )∑

jβµ njβµ(EF )
Jiqi −

∑
jβ Jjqjnjβ (EF )∑
jβ njβ (EF )

−
1
2

(
(−1)ν Iimi −

∑
jβµ(−1)µIjmjnjβµ(EF )∑

jβµ njβµ(EF )

))
with

∂Uband

∂µ(n) =

nmax∑
m=0

(
∂b(∞)

∂µ(n) σ
(m)[χ̂m+2 − 2ϵF χ̂m+1 + χ̂m

]
+ b(∞)

(
∂σ (n)

∂µ(n) +
∂σ (n)

∂a(∞)

∂a(∞)

∂µ(n) +
∂σ (n)

∂b(∞)

∂b(∞)

∂µ(n)

)
·
[
χ̂m+2 − 2ϵF χ̂m+1 + χ̂m

]
+

[
∂χ̂m+2

∂a(∞) − 2
∂ϵF

∂a(∞) χ̂m+1 − 2ϵF
∂χ̂m+1

∂a(∞) +
∂χ̂m

∂a(∞)

]
· b(∞)σ (m) ∂a

(∞)

∂µ(n)

+

[
∂χ̂m+2

∂b(∞) − 2
∂ϵF

∂b(∞) χ̂m+1 − 2ϵF
∂χ̂m+1

∂b(∞) +
∂χ̂m

∂b(∞)

]
· b(∞)σ (m) ∂b

(∞)

∂µ(n)

)
(C.20)

where a constant terminator (Eq. (B.3)) was assumed and

∂

∂µ(n)

∫ EF
n(E)dE =

nmax∑
m=0

(
χ̂m+1(φF )

·

(
∂σ (m)

∂µ(n) +
∂σ (m)

∂a(∞)

∂a(∞)

∂µ(n) +
∂σ (m)

∂b(∞)

∂b(∞)

∂µ(n)

)
+ σ (m)

(
∂χ̂m+1

∂a(∞)

∂a(∞)

∂µ(n) +
∂χ̂m+1

∂b(∞)

∂b(∞)

∂µ(n)

))
.

(C.21)

where we omitted the common index iαν for brevity. The partial
derivatives of the expansion coefficients with respect to the mo-
ments are given by

∂σ (m)

∂µ(n) =

m∑
k=n

pmk
∂µ̂(k)

∂µ(n) =

m∑
k=n

pmk(
2b(∞)

)k (kn)(−a(∞))(k−n)
(C.22)

and with respect to the asymptotic recursion coefficients

∂σ (m)

∂a(∞) =

m∑
k=0

pmk
∂µ̂(k)

∂a(∞)

= −

m∑
k=n

pmk(
2b(∞)

)k
k−1∑
n=0

(k − n)
(
k
n

)
µ(n)(

−a(∞))(k−n−1)
(C.23)

∂σ (m)

∂b(∞) =

m∑
k=0

pmk
∂µ̂(k)

∂b(∞) = −

m∑
k=1

k
pmk

b(∞) µ̂
(k) (C.24)

(Note that Eq. (C.24) corrects a misprint in Eq. A8 of Ref. [19].)
The derivatives of the response functions are given in terms of the
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Fermi phase by

∂χ̂m

∂a(∞) =
∂χ̂m

∂ cos (φF )

∂ cos (φF )

∂a(∞) (C.25)

∂χ̂m

∂b(∞) =
∂χ̂m

∂ cos (φF )

∂ cos (φF )

∂b(∞) (C.26)

with partial derivatives of Eqs. (B.15) and (B.16)

∂χ̂m

∂ cos (φF )
= −

cos(m + 1)φF − cos(m − 1)φF

π sin (φF )
(C.27)

∂ cos (φF )

∂a(∞) = −
1

2b(∞) (C.28)

∂ cos (φF )

∂b(∞) = −
cos (φF )

2b(∞) . (C.29)

The derivatives of the recursion coefficients are given by [68]

∂an
∂µm

= bn+1

n+1∑
j=0

n∑
l=0

cn+1
j cnl δl+j,m − bn

n∑
j=0

n−1∑
l=0

cnj c
n−1
l δl+j,m (C.30)

∂bn
∂µm

=
bn
2

⎛⎝ n∑
j=0

n∑
l=0

cnj c
n
l δl+j,m −

n−1∑
j=0

n−1∑
l=0

cn−1
j cn−1

l δl+j,m

⎞⎠ .

(C.31)

This set of partial derivatives is computed (i) in every self-
consistency step to optimise the onsite-levels (Eq. (A.29)) and (ii)
in every force (Eq. (C.15)) or torque calculation (Eq. (C.19)).

Appendix D. Rotation matrices

The rotation matrices R(θ, φ) in Eq. (A.15) are constructed from
the polar and azimuthal angles θ and φ between the interatomic
bond and the global coordinate system. (θ is the angle to the xy-
plane and φ the angle to the x-axis in the xy-plane.) For the orbital
ordering in Hij of Eq. (A.13), the elements of the rotation matrix for
p-orbitals are given by

R(θ, φ)1,1 = cos(θ ) (D.1)

R(θ, φ)2,1 = − sin(θ )

R(θ, φ)3,1 = 0.0

R(θ, φ)1,2 = cos(φ) sin(θ )

R(θ, φ)2,2 = cos(φ) cos(θ )

R(θ, φ)3,2 = − sin(φ)

R(θ, φ)1,3 = sin(φ) sin(θ )

R(θ, φ)2,3 = sin(φ) cos(θ )

R(θ, φ)3,3 = cos(φ)

The matrix entries of the rotation matrix for d-orbitals are given
by

R(θ, φ)1,1 = cos2(θ ) − 1/2sin2(θ ) (D.2)

R(θ, φ)2,1 = −
√
3 sin(θ ) cos(θ )

R(θ, φ)3,1 = 0

R(θ, φ)4,1 =

√
3/4sin2(θ )

R(θ, φ)5,1 = 0

R(θ, φ)1,2 =
√
3 cos(φ) sin(θ ) cos(θ )

R(θ, φ)2,2 = cos(φ)(cos2(θ ) − sin2(θ ))

R(θ, φ)3,2 = − sin(φ) cos(θ )

R(θ, φ)4,2 = − cos(φ) sin(θ ) cos(θ )

R(θ, φ)5,2 = sin(φ) sin(θ )

R(θ, φ)1,3 =
√
3 sin(φ) sin(θ ) cos(θ )

R(θ, φ)2,3 = sin(φ)(cos2(θ ) − sin2(θ ))

R(θ, φ)3,3 = cos(φ) cos(θ )

R(θ, φ)4,3 = − sin(φ) sin(θ ) cos(θ )

R(θ, φ)5,3 = − cos(φ) sin(θ )

R(θ, φ)1,4 = (cos2(φ) − sin2(φ))
√
3/4sin2(θ )

R(θ, φ)2,4 = (cos2(φ) − sin2(φ)) sin(θ ) cos(θ )

R(θ, φ)3,4 = −2 sin(φ) cos(φ) sin(θ )

R(θ, φ)4,4 = (cos2(φ) − sin2(φ))(cos2(θ ) + 1/2sin2(θ ))

R(θ, φ)5,4 = −2 sin(φ) cos(φ) cos(θ )

R(θ, φ)1,5 =
√
3 sin(φ) cos(φ)sin2(θ )

R(θ, φ)2,5 = 2 sin(φ) cos(φ) sin(θ ) cos(θ )

R(θ, φ)3,5 = (cos2(φ) − sin2(φ)) sin(θ )

R(θ, φ)4,5 = sin(φ) cos(φ)(cos2(θ ) + 1)

R(θ, φ)5,5 = (cos2(φ) − sin2(φ)) cos(θ )

Both rotation matrices become identity matrices for sin(φ) = 0
and sin(θ ) = 0. The rotation matrices for multiple orbital-types
on one atom or for different orbitals on two interacting atoms are
constructed by combinations of the above matrices.
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