

How accurately can we model magma reservoir failure with uncertainties in host-rock rheology?

Y. Zhan¹ and P. M. Gregg¹

4 ¹*Department of Geology, University of Illinois - Urbana-Champaign, Urbana, Illinois, USA*

5 Corresponding author: Yan Zhan (yanzhan3@illinois.edu)

6 Key points:

- Predictions of the onset magma chamber failure are more sensitive to Young's modulus than other elastic properties
- Displacement at the onset of magma reservoir failure is not sensitive to variations in Young's modulus for stiff host rocks ($E > 40$ GPa)
- Whether viscosity affects brittle failure depends on host-rock relaxation time scales

13 **Abstract**

14 Forecasting the onset of a volcanic eruption from a closed system requires understanding its
 15 stress state and failure potential, which can be investigated through numerical modeling.
 16 However, the lack of constraints on model parameters, especially rheology, may substantially
 17 impair the accuracy of failure forecasts. Therefore, it is essential to know whether large
 18 variations and uncertainties in rock properties will preclude the ability of models to predict
 19 reservoir failure. A series of 2-dimensional, axisymmetric models are used to investigate
 20 sensitivities of brittle failure initiation to assumed rock properties. The numerical experiments
 21 indicate that the deformation and overpressure at failure onset simulated by elastic models will
 22 be much lower than the viscoelastic models, when the timescale of pressurization exceeds the
 23 viscoelastic relaxation time of the host-rock. Poisson's ratio and internal friction angle have
 24 much less effect on failure forecasts than Young's modulus. Variations in Young's modulus
 25 significantly affect the prediction of surface deformation before failure onset when Young's
 26 modulus is <40 GPa. Longer precursory volcano-tectonic events may occur in weak host-rock (E
 27 <40 GPa) due to well-developed Coulomb failure prior to dike propagation. Thus, combining
 28 surface deformation with seismicity may enhance the accuracy of eruption forecast in these
 29 situations. Compared to large and oblate magma systems, small and prolate systems create far
 30 less surface-uplift prior to failure initiation, suggesting more frequent measurements are
 31 necessary.

32

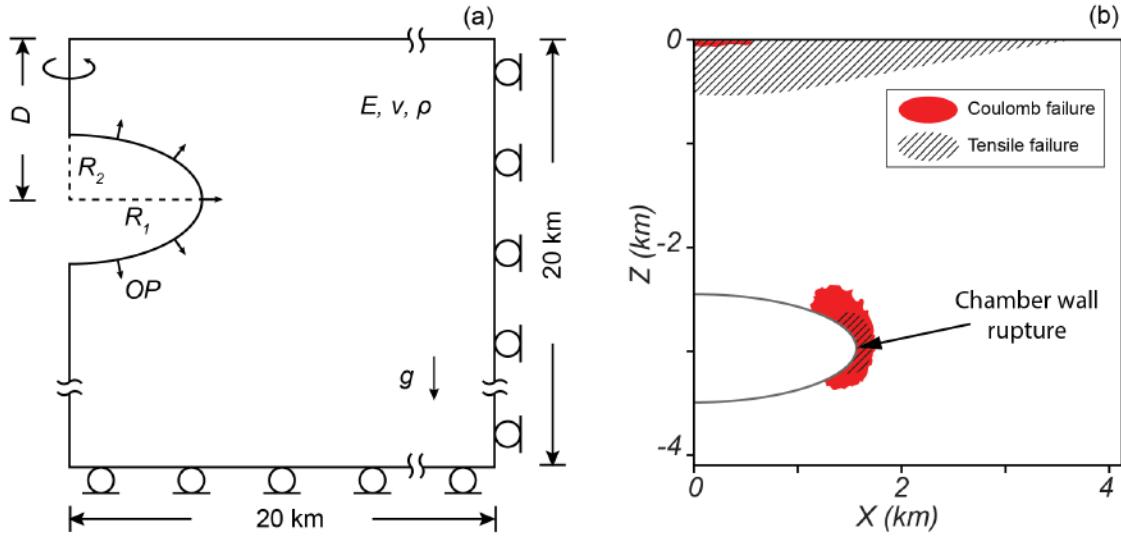
33 **1 Introduction**

34 Ground deformation is one of the most widely used methods to evaluate and forecast
 35 volcanic unrest (Sparks, 2003). Geodetic monitoring methods, including Global Navigation
 36 Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) provide
 37 temporal surface deformation observations of active volcanoes and a glimpse into the evolution
 38 of the underlying magmatic system. Geodetic data alone cannot uniquely constrain some
 39 important parameters of magma reservoirs, like size or overpressure (e.g., Segall, 2019). The
 40 architecture and evolution of a magma reservoir may be better interpreted by combining multiple
 41 geophysical observations, such as seismology, gravity, and magnetotellurics. However, a good
 42 knowledge of reservoir geometry and deformation history does not ensure an accurate eruption
 43 forecast. Substantial surface inflation may not indicate the propensity of volcano eruption (e.g.,
 44 Biggs et al., 2014; Biggs & Pritchard, 2017).

45 Numerical volcano models provide important evaluations of ground deformation signals
 46 using stress calculations and failure predictions, which are essential to give insight into the
 47 dynamic evolution of magma systems (e.g., Grosfils, 2007; Albino et al., 2010; Gerbault et al.,
 48 2012, 2018; Gregg et al., 2012, 2013; Hickey & Gottsmann, 2014; Hickey et al., 2015).
 49 Furthermore, the recent development of sequential data assimilation approaches provides near
 50 real-time estimates of overpressure and stress state of magmatic systems, which is a promising
 51 step towards forecasting volcanic unrest with advanced observations (e.g., Gregg & Pettijohn,
 52 2016; Bato et al., 2017, 2018; Zhan & Gregg, 2017; Zhan et al., 2017; Gregg et al., 2018;
 53 Albright et al., 2019). However, before an accurate forecast can be conducted, we need to
 54 understand the sensitivity of model results to different model parameters in a magmatic system,
 55 such as geometry, initial stress state, and rock properties. Among them, the effect of chamber
 56 geometry has been systematically studied by previous investigations (e.g., Mogi, 1958; Yang et

57 al., 1988; Segall, 2019), and the initial stress is controlled by many factors such as the
 58 deformation history and tectonics, which is beyond the scope of this paper. We focus our current
 59 effort on evaluating the impact of rock rheology, which is an important factor in magma system
 60 models, and is not well constrained.

61 Rock properties for different volcanoes can be distinct. For example, the Young's modulus
 62 inferred by static loading is no more than 1 GPa for Merapi volcano (Beauducel et al., 2000),
 63 while the Young's modulus is greater than 40 GPa for volcanoes in Iceland (Grapenthin et al.,
 64 2006). Even for one volcano, rock properties inferred by different approaches may not be
 65 consistent. Dynamic Young's modulus calculated using seismic methods can be significantly
 66 higher than static Young's modulus determined by laboratory rock tests and geodetic modeling.
 67 For example, dynamic Young's modulus of the crust in Mt. Etna inferred by P-wave velocity can
 68 reach 100 GPa (e.g., Currenti et al., 2007), while laboratory rock tests show that Young's
 69 modulus of a basaltic samples from Mt. Etna is < 30 GPa (Heap et al., 2010). Additionally,
 70 Young's modulus and Poisson's ratio can be modified by ~30% during repeating loading and
 71 unloading (Heap et al., 2010). Similarly, the viscosity of the crust varies from 10^{15} to $10^{21} \text{ Pa} \cdot \text{s}$
 72 depending on the composition and temperature (e.g., Newman et al., 2001). Considering that a
 73 systematic discussion on the effects of rock property on modeling is still absent, this study aims
 74 to test the effect of varying rock properties on modeling brittle failure around a magma reservoir.


75 In this paper, we conduct a series of sensitivity tests using 2-dimensional, axisymmetric
 76 models to evaluate the impact of the uncertainties in assumed rheological parameters. First, we
 77 use viscoelastic models to evaluate the sensitivities of Critical Maximum Surface Uplift (CMSU)
 78 and overpressure before brittle failure onset to a variety of rheological parameters, such as
 79 viscosity, Young's modulus, and loading rate. Then, a series of elastic models are used to test the
 80 effects of Young's modulus, Poisson's ratio, internal friction angle, and tensile strength on the
 81 CMSU and critical overpressure. The effects of these parameters are evaluated under different
 82 geometrical conditions including depth, size, and shape of the magma body. Of particular interest
 83 in this investigation is whether large variations and uncertainties preclude the ability of models to
 84 predict failure of a magma reservoir. Here we only consider the homogenous rock property to
 85 quantify the uncertainties from the varying values of rock properties. Heterogeneity in those
 86 properties is also important (e.g., De Natale & Pingue, 1996; Masterlark, 2007) and should be
 87 studied systematically in the future.

88

89 **2 Methods**

90 *2.1 Model setup*

91 We use 2-dimensional, axisymmetric models (Fig. 1a) solved by finite element code
 92 COMSOL Multiphysics 5.3 to simulate the surface deformation and failure of the host-rock due
 93 to an inflating magma body with an applied overpressure (OP; e.g., Gregg et al., 2012, 2013).
 94 Overpressure is assumed along the boundary of the magma body as a force in excesses of the
 95 lithostatic stress. Roller boundary conditions are defined at the side and bottom of the model.
 96 Gravity is loaded as a body force, which is balanced by an initial hydrostatic stress (i.e., $\sigma_1 =$
 97 $\sigma_2 = \sigma_3 = \rho g z$) prior to the addition of overpressure along the boundary of the spheroid (Fig.
 98 1a).
 99

Figure 1. Model setup and failure onset. (a) The 2-dimensional axial symmetric model (20×20 km). The left boundary is the axis of symmetry. The right and bottom boundaries are defined as roller-type boundary condition. The magma body is represented by an elliptical void along which an overpressure (OP = pressure in excess of the lithostatic pressure) boundary condition is applied. The mesh size of the model ranges from ~ 100 m around the chamber to ~ 1000 m near the right and bottom edges. (b) The failure distribution for a model with a Young's modulus of 50 GPa when the surface uplift is 3 m. The Critical Maximum Surface Uplift (CMSU) is the calculated uplift when the chamber wall rupture is initiated, and is much lower than 3 m. The shaded red area indicates Coulomb failure, while the hatched region indicates tensile failure.

2.2 Rupture of the magma chamber

We use the Coulomb failure criterion (Eq. 1) and the tensile failure criterion (Eq. 2) to calculate failure in the host rocks due to overpressure loading. Coulomb failure or tensile failure is triggered, when:

$$\frac{\sigma_3 / \sigma_0}{2} \cos \phi - \frac{\sigma_1 / \sigma_0}{2} \tan \phi - C_0 > 0 \quad (1)$$

or

$$-\sigma_3 - T_0 > 0, \quad (2)$$

where ϕ is the internal friction angle, C_0 and T_0 are the rock's cohesion and tensile strength, and σ_1 and σ_3 are maximum and minimum principal stresses (Table 1).

Table 1. Model variables and parameters

Name	Description
D	Depth to the center of the magma chamber (-1, -3, -5, -9 km)
R_1	Half-width of the chamber (variable; km)
R_2	Half-height of the chamber (variable; km)
OP	Overpressure - pressure excess the lithostatic pressure (variable; MPa)
$d(OP)/dt$	Overpressure loading rate for viscous tests

	$25 \times 10^1, 5 \times 10^0, 5 \times 10^{-1}, 5 \times 10^{-2}, 5 \times 10^{-3}, 5 \times 10^{-4}$ MPa/day ³
η	Viscosity ($2 \times 10^{15}, 2 \times 10^{17}, 2 \times 10^{19}, 2 \times 10^{21}$ Pa · s)
E	Young's Modulus (5, 20, 40, 60, 80 GPa)
ν	Poisson's ratio (0.15, 0.25, 0.35)
ρ	Density of the host-rock (2700 kg/m ³)
g	Gravitational acceleration (9.8 m/s ²)
C_0	Cohesion of the host-rock (E / 1000; MPa)
T_0	Tensile strength of the host-rock ($C_0 / 2.5$; MPa)
φ	Internal friction angle of the host-rock ($15^\circ \sim 35^\circ$)
σ_I	Maximum principal stress (variable; MPa)
σ_3	Minimum principal stress (variable; MPa)
<u>CMSU</u>	Critical maximum surface uplift (variable; m)

121
 122 Previous rock experiments have shown a uniform, linear relationship between uniaxial
 123 compressive strength (UCS) and Young's modulus for worldwide andesites, basalt, tuff, and
 124 sandstone (e.g., $UCS = 2.28 + 4.11 E$ by Bradford et al., 1998; $UCS = 1.65 + 5.88 E$ by Dincer
 125 et al., 2004). The uniaxial compressive strength is further defined by Hoek (1990) as:

126
$$UCS = \frac{2C_0 \cos \phi}{21 / \sin \phi^3}. \quad (3)$$

127 Therefore, the cohesion of the rock is a linear function of Young's modulus at any given internal
 128 friction angle. The internal friction angle of the rock ranges from 15° to 35° (Byerlee, 1978).
 129 Combining the empirical equation of UCS (Bradford et al., 1998; Dincer et al., 2004) and
 130 Equation (3), we can express the cohesion of rock as a function of Young's modulus (Fig. S1a).
 131 The relationship between cohesion and Young's modulus using different empirical equations and
 132 friction is in the same order (Fig. S1a). We use the empirical equation by Bradford et al. (1998)
 133 and the friction angle as 35° assuming rock cohesion:

134
$$C_0 = E \times 10^{-3}. \quad (4)$$

135 The tensile strength of the rock is usually 1/10 of its UCS (e.g., Jaeger et al., 2007). Therefore,
 136 we assume the tensile strength is approximately given by (Fig. S1b)

137
$$T_0 = E \times 0.4 \times 10^{-3}, \quad (5)$$

138 where E is the Young's modulus applied in the model. When a magma chamber is inflating,
 139 failure tends to initiate at (1) the vertex of an oblate spheroid, and (2) near the surface of the
 140 model space above the magma chamber (Fig. S2). Then, the failure region expands and connects
 141 to form through-going failure (Fig. S2). This stage is highly path-dependent, which means the
 142 distribution of previous failure and weakness will impact generation of new fractures.

143 Additionally, the propagation of fractures may accommodate the transport of magma if the
 144 stresses are properly oriented (i.e., dike propagation coinciding with mode-I failure). The
 145 predicted overpressure at which the through-going failure has formed (Fig. S2) may be greatly
 146 overestimated, if the accumulated damage in host-rocks is not taken into consideration. In this
 147 study, we focus on failure initiated along the magma chamber, representing chamber rupture
 148 (Fig. 1b). We calculate the overpressure and the maximum surface uplift (i.e., the maximum
 149 vertical surface displacement directly above the source center) of a volcano at its initial rupture
 150 as a function of the Critical Maximum Surface Uplift (CMSU). Brittle failure of rock is generally
 151 thought to trigger high-frequency or "volcano-tectonic" (VT) earthquakes (e.g., Roman and

152 Cashman, 2006). In practice, CMSU can infer how much precursory deformation can be
 153 observed before the onset of VT earthquakes.

154

155 *2.3 Calculation of CMSU and critical overpressure*

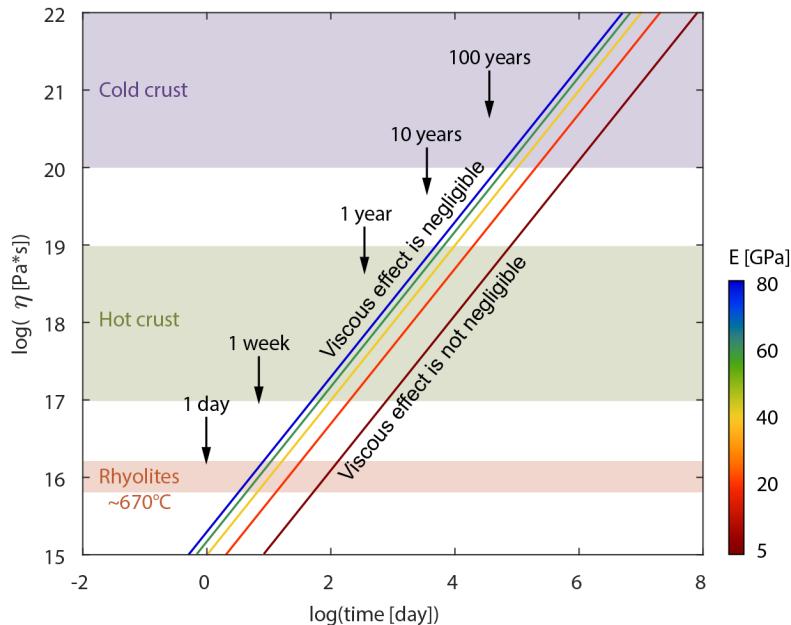
156 The viscous effect is tested by a series of viscoelastic models which employ a standard
 157 linear solid rheology (after Del Negro et al., 2009). In the viscoelastic tests, viscosity varies from
 158 10^{15} to 10^{21} $\text{Pa} \cdot \text{s}$ (Newman et al., 2001) and different overpressure loading rates are assumed
 159 from 50 MPa per day to 50 MPa per 100,000 days representing unrest episodes from single-day-
 160 scale to hundred-year-scale (Table 1). Each viscous model is loaded by a constant overpressure
 161 rate from an equilibrium stress state. The loading process has been evenly divided into 50 steps
 162 until the overpressure reaches 50 MPa. We choose 50 MPa as a terminal overpressure to ensure
 163 the failure occurrence. Using Eq. 1 and 2, we can determine at which step failure has been
 164 initiated along the chamber wall. Therefore, the overpressure and CMSU at that step are the
 165 critical overpressure and CMSU. The viscous tests aim to show whether and when host rock
 166 viscosity will impact failure initiation.

167 In the elastic tests, the Young's modulus varies from 5 GPa to 80 GPa, covering the range
 168 in uncertainty for upper crustal rocks (e.g., Aggistalis et al., 1996; Dinçer et al., 2004). Although
 169 a significantly low Young's modulus ($E < 1$ GPa) has been observed at Merapi volcano (e.g.,
 170 Beauducel et al., 2000), it may present the effect of an unconsolidated edifice material, which is
 171 too low to represent the average upper crust. We also test three Poisson's ratios from 0.15 to 0.35
 172 (Christensen, 1996; Gercek, 2007) and three internal friction angles from 15° to 35° (Byerlee,
 173 1978). The parameters and variables used in the models are shown in Table 1. For elastic tests,
 174 we use an approach method to calculate the CMSU and critical overpressure. First, we model the
 175 stress field with an initial overpressure (i.e., 50 MPa, but not important). Then, we calculate
 176 residual strengths along the chamber wall, which are defined by the left-hand sides (LHS) of Eq.
 177 1 and 2. In the next iteration, we either increase or decrease the overpressure to reduce the
 178 residual. We iterate this process until absolute residual strength of any point along the chamber
 179 wall is $< 5\%$ of the rock cohesion or tensile strength. It usually takes less than 10 iterations to
 180 approach the critical overpressure and CMSU at failure onset. In all tests, the critical
 181 overpressure and CMSU for both tensile and Coulomb failure are calculated to determine which
 182 type failure occurs first.

183 All models are assumed to be homogeneous and isotropic to simplify the calculation. More
 184 sophisticated models with temperature dependent rheology and pre-existing features will be
 185 tested in future investigations. However, this simple approach is capable of providing a
 186 meaningful evaluation of when uncertainties in elastic moduli overwhelm a model's ability to
 187 predict the failure of a magmatic system.

188

189


190 **3 Results**

191 *3.1 The viscous effect*

192 We calculate the Critical Maximum Surface Uplift (CMSU) prior to the presence of the
 193 initial tensile or Coulomb failure for the models with different viscosities and Young's moduli
 194 (Fig. S3 and S4). Since the loading rate is important in viscoelastic models, we test rates from 50

195 MPa / day to 50 MPa / 100,000 day to mimic a wide range of replenishment rates for magma
 196 chambers. In general, when the loading rate is low enough, the CMSUs calculated by the
 197 viscoelastic models start to deviate from the elastic models. Higher CMSUs are expected in
 198 viscous models compared to elastic models, if the characteristic time of loading (i.e., the time-
 199 span for the chamber to be pressurized to 50 MPa) is larger than the viscoelastic relaxation time
 200 (Fig. S3). Models with higher viscosity ($\eta > 10^{19} \text{ Pa} \cdot \text{s}$) tend to behave elastically creating the
 201 same CMSU as the elastic model even if the loading rate is as low as 50 MPa per 10 years (Fig.
 202 S3). We argue that the viscous effect can be neglected if the CMSU prior to failure calculated by
 203 a viscoelastic model equals the elastic model with the same elastic moduli (Fig. S3). The
 204 deviation of the CMSU by a viscoelastic model from an elastic model is controlled by the
 205 relaxation time of host-rock and the characteristic time of loading (Fig. 2). When the
 206 characteristic time is significantly longer than the relaxation time of the model, the viscous effect
 207 cannot be neglected (Fig. 2). A rock with lower Young's modulus or higher viscosity has a
 208 longer relaxation time, which is more likely to behave elastically under the same loading rate.
 209 Both viscoelastic and elastic models predict the same critical overpressure prior to failure onset
 210 at a given Young's modulus, indicating that the overpressure is independent of the viscosity and
 211 loading rate (Fig. S4). The critical overpressure is only controlled by the Young's modulus and
 212 rock strength.

213

214

215 **Figure 2.** The relaxation times for the viscoelastic models. If the time span of pressurization
 216 prior to rupture of the magma chamber's wall is shorter than the relaxation time, the viscous
 217 effect can be neglected. The Critical Maximum Surface Deformation (CMSU; Fig. S3)
 218 calculated by a viscoelastic model is larger than the CMSU calculated by an elastic model with
 219 the same Young's modulus. The viscosity of the crust at different conditions are taken from
 220 Newman et al. (2001).

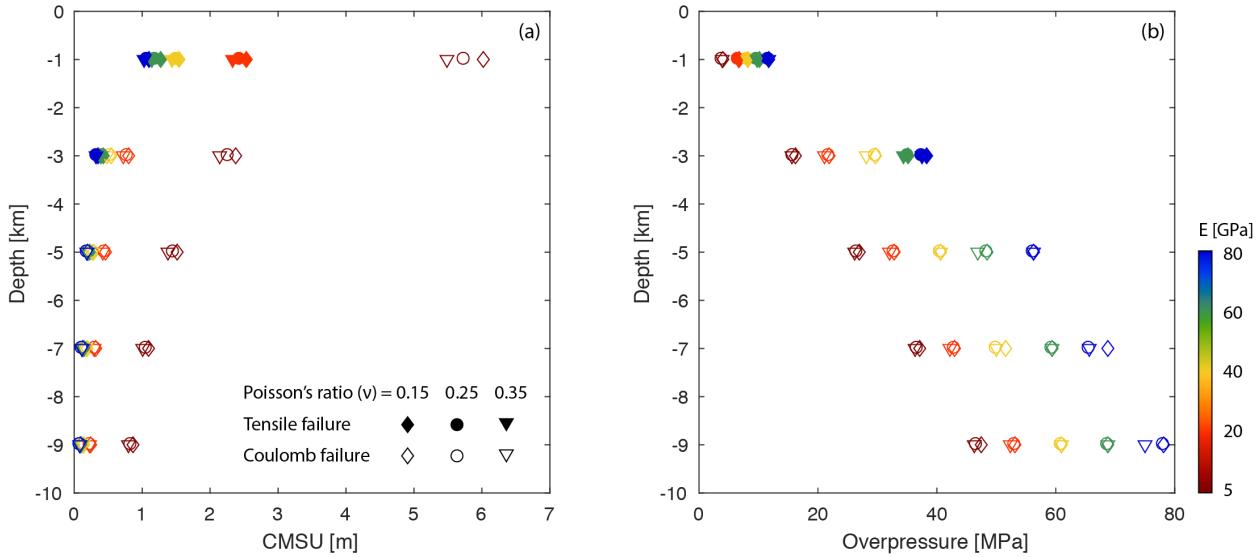
221
222
223
224
225
226
227
228
229
230
231**3.2 Elastic properties**

According to the viscoelastic tests, a linear elastic model is appropriate in cases when the loading time span from zero overpressure to reservoir failure is shorter than the relaxation time (i.e., high loading rate, $> 50 \text{ MPa} / 10 \text{ year}$). Therefore, in these conditions, the elastic moduli and brittle failure parameters become critical for forecasting failure onset. To further examine the effects of other rock properties, we conduct a series of elastic tests on Young's modulus, rock strength which is determined by Young's modulus, Poisson's ratio, and internal friction angle. In particular, the depth, radius, and aspect ratio of the chamber are varied to provide a broad view of the failure predictions (Table 2; Fig. S5).

232 **Table 2.** Geometric parameters and model notation

Model No.	Depth-to-center D (km)	Half-width R_1 (km)	Aspect ratio R_1/R_2
<i>Viscous Test</i>	-3	1.5	3
<i>Elastic Elastic Test 1 (Depth)</i>			
Dp1	-1	1.5	3
Dp2	-3	1.5	3
Dp3	-5	1.5	3
Dp4	-7	1.5	3
Dp5	-9	1.5	3
<i>Elastic Elastic Test 2 (Size)</i>			
Rd1	-3	0.5	3
Rd2	-3	1.0	3
Rd3	-3	1.5	3
Rd4	-3	2.0	3
Rd5	-3	2.5	3
<i>Elastic Elastic Test 3 (Depth + Size)</i>			
DR1	-1	0.74	3
DR2	-2	1.15	3
DR3	-3	1.50	3
DR4	-4	1.81	3
DR5	-5	2.09	3
<i>Elastic Elastic Test 4 (Aspect Ratio)</i>			
L1	-3	1.04	1
L2	-3	1.31	2
L3	-3	1.50	3
L4	-3	1.65	4
L5	-3	1.78	5

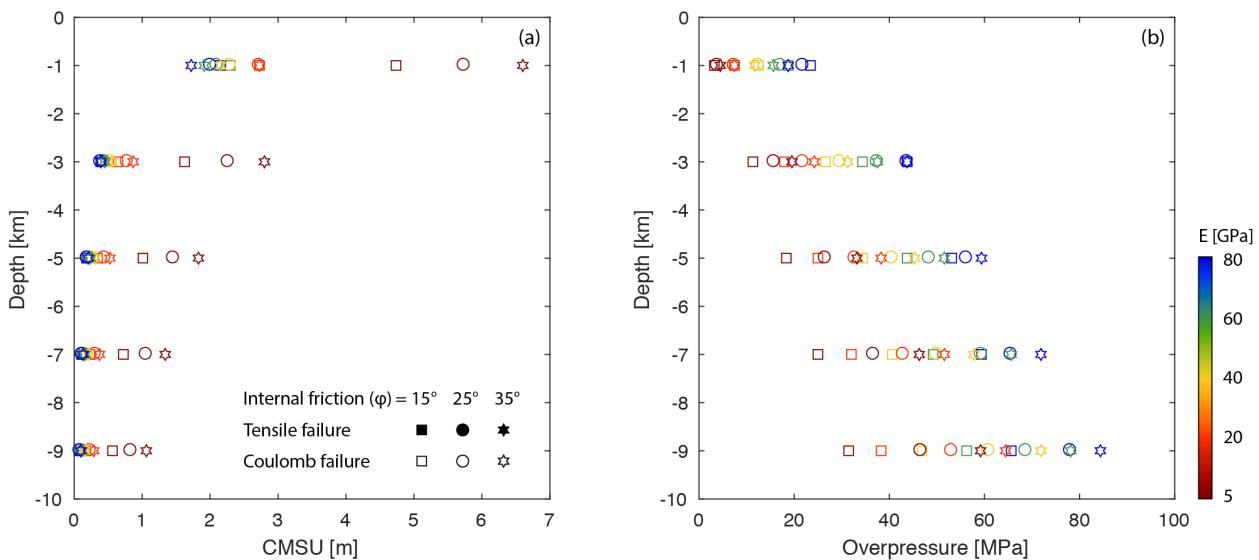
H2	-3	0.83	1/2
H3	-3	0.72	1/3
H4	-3	0.66	1/4


233

234

235 Geodetic data recording the pattern of surface deformation can constrain depth and aspect
 236 ratio of the magma chamber. For example, a deeper chamber exhibits a longer wavelength signal
 237 (Fig. S5a) as illustrated elegantly by the Mogi (1958) model. The horizontal displacement is
 238 more sensitive to the aspect ratio (e.g., Dieterich and Decker, 1975; Yang et al., 1988; Fig. S5d),
 239 the vertical displacement patterns of the models with different aspect ratios are similar.
 240 Parameters like radius or total volume of the chamber cannot be constrained by the deformation
 241 patterns alone (Fig. S5b).

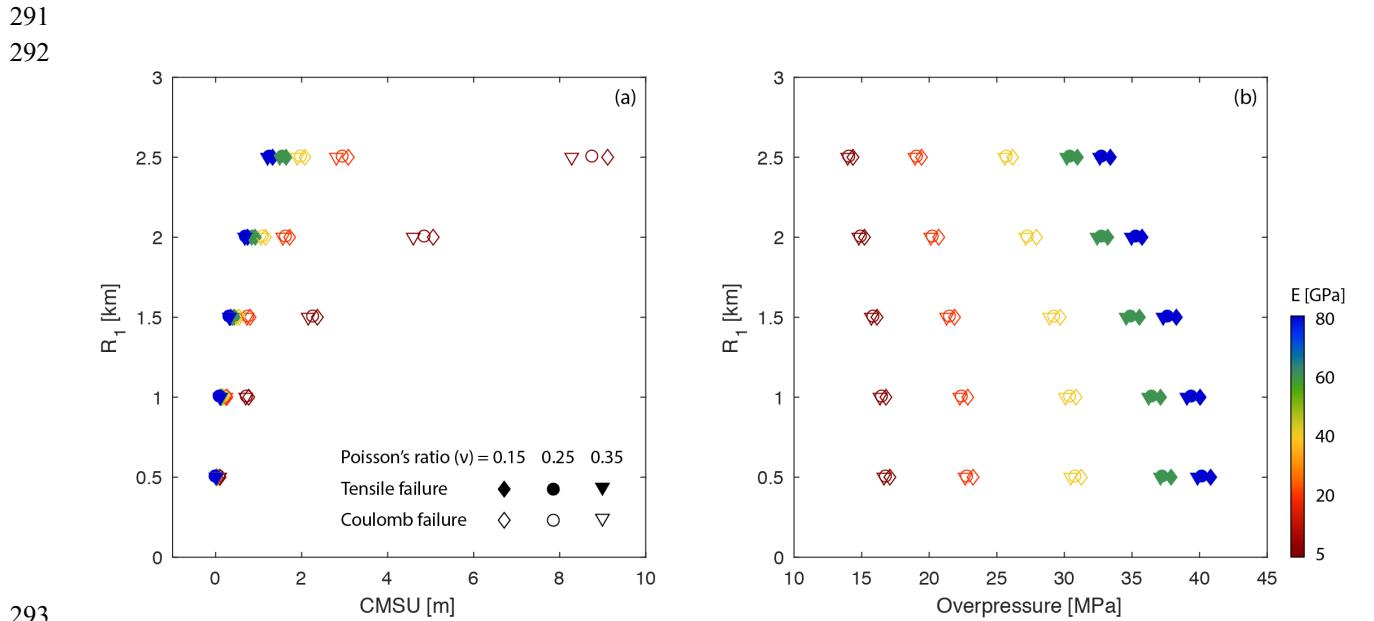
242 Given the same size and shape of a chamber (Elastic Test 1), deeper magma bodies generate
 243 lower CMSU before failure onset than shallower magma bodies (Fig. 3a). Although a deeper
 244 chamber requires a higher overpressure to fail due to the more substantial confining pressure
 245 (Fig. 3b), the higher overpressure generates less detectable surface deformation. Deeper
 246 chambers also have a smaller range of CMSU for different Young's moduli. The range of CMSU
 247 for a chamber below 7 km is less than 0.3 m, even if Young's modulus of crust varies from 20
 248 GPa to 80 GPa, indicating that variation in Young's modulus has a less of an effect on the
 249 accuracy of the failure forecast. Similar to the depth-dependent results, weaker host-rock
 250 generates a greater CMSU prior to failure onset. At a given depth, the variability in predicted
 251 CMSU and critical overpressure significantly decreases when Young's modulus is greater than
 252 40 GPa, suggesting that host-rock deformation is no longer sensitive to Young's modulus once
 253 the host-rock is strong enough (Fig. 3). The models with different Poisson's ratio from 0.15 to
 254 0.35 have similar CMSUs and critical overpressures before failure onset (Fig. 3). Therefore, the
 255 brittle failure of the magma chamber is much more sensitive to Young's modulus than to
 256 Poisson's ratio. Like Poisson's ratio, the internal friction angle has less effect on the CMSU
 257 before brittle failure for stiffer host-rocks (Fig. 4), especially when the chamber is deep.
 258 However, for the soft host-rock ($E = 5$ GPa), the variation in CMSU or overpressure due to the
 259 internal friction angle is still large even for a deep chamber, indicating an accurate estimation in
 260 rock properties for weak host-rock is crucial to failure prediction (Fig. 4).


261

262

Figure 3. The effects of Young's modulus and Poisson's ratio on brittle failure with variations in the source depth to center (Elastic Test 1). A constant internal friction angle ($\phi = 25^\circ$) is assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with different magma chamber depths. The CMSU is the maximum value of the surface uplift that can be observed before any failure is initiated around the magma chamber. (b) The corresponding overpressures of the magma chamber when failure occurs. The shape of the marker indicates the Poisson's ratio of the model. The filled or open marker shows the case that the initial failure is tensile or Coulomb, respectively, same as Figs 4-6. The color represents the assumed Young's Modulus of the host, rock same as Figs 4-6.

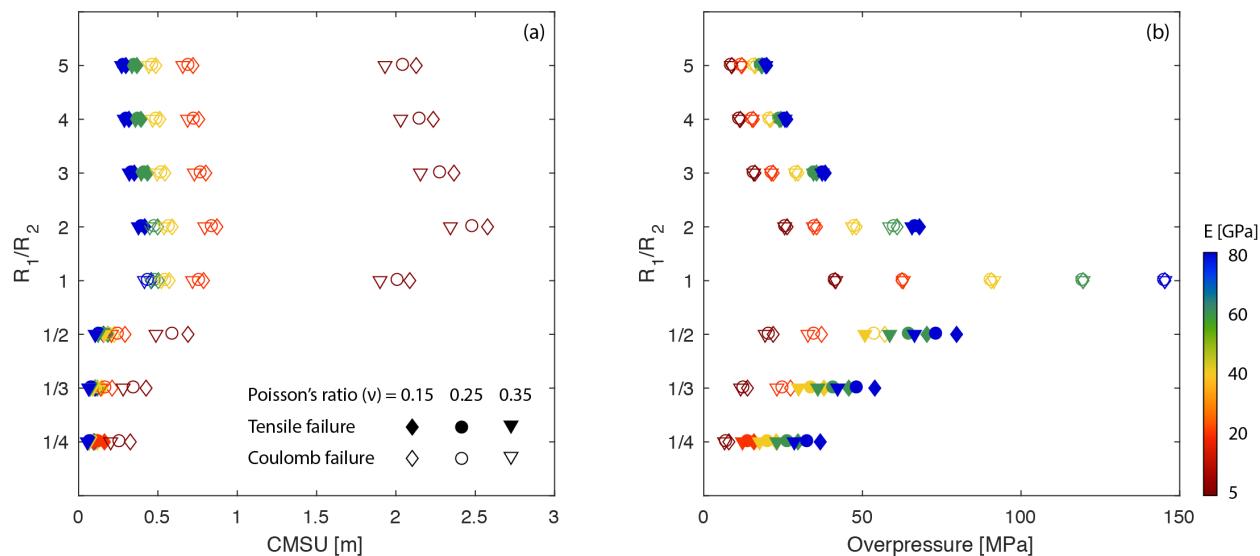
272



273

Figure 4. The effects of Young's modulus and internal friction angle on Coulomb failure with variations in the source depth to center (Elastic Test 1). A constant Poisson's ratio ($\nu = 0.25$) is assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with different sizes of

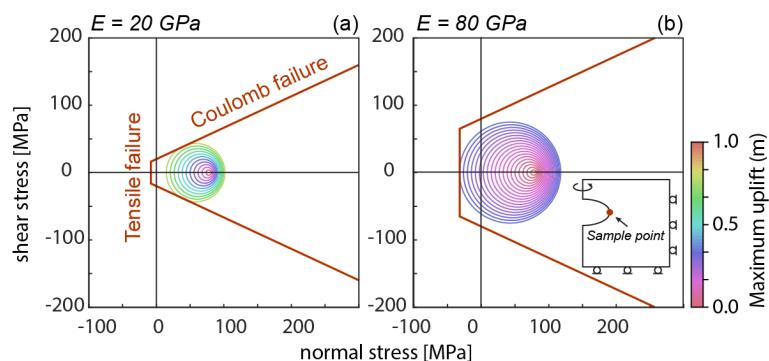
277 magma chamber. (b) The corresponding overpressures of the magma chamber when failure
 278 occurs. The shape of the marker indicates the internal friction angle of the model.


279
 280 For the chambers located at the same depth (Elastic Test 2), smaller chambers fail with
 281 lower CMSUs due to the higher overpressures needed to generate surface deformation (Fig. 5a).
 282 The size of the chamber also magnifies the range of the CMSU caused by the Young's modulus,
 283 suggesting that the behavior of large magmatic systems is strongly dependent on rock properties
 284 whereas smaller chambers ($R_1 < 1$ km) may be less sensitive (Fig. 5a). The overarching control
 285 on failure onset appears to be overpressure. Regardless of the assumed chamber geometry, the
 286 overpressure magnitude is similar at the moment of failure onset for a given Young's modulus
 287 (Fig. 5b). All of the models in Elastic Test 2 have the same magma chamber aspect ratio (R_1/R_2),
 288 which leads to the same pattern of near-field stress concentration regardless of the scales of the
 289 model. Like Elastic Test 1, the Poisson's ratio (Fig. 5) and internal friction angle (Fig. S6a and b)
 290 has little impact on the brittle failure.

294 **Figure 5.** The effects of Young's modulus and Poisson's ratio on brittle failure with variations in
 295 the chamber size as described by the half-width (Elastic Test 2). A constant internal friction
 296 angle ($\varphi = 25^\circ$) is assumed. (a) The Critical Maximum Surface Uplift (CMSU) for models with
 297 different size of magma chamber. R_1 is the length of the long axis of the magma chamber, which
 298 is three times longer than the short axis. (b) The corresponding overpressures of the magma
 299 chamber when failure occurs. The shape of the marker indicates the Poisson's ratio of the model.

300
 301 In Elastic Test 1, larger overpressures are necessary for deeper chambers to create the same
 302 amount of surface uplift, while the overpressure and size of the chamber is not distinguishable in
 303 Elastic Test 2. A deep magma chamber can also generate the same magnitude of surface uplift as
 304 the shallower chambers by enlarging the chamber instead of accumulating overpressure, but the
 305 wavelength will vary (Fig. S7; Elastic Test 3). Unlike Elastic Test 1, a deep and large chamber
 306 creates larger CMSU than a shallow and small chamber (Fig. S7c). The range of the CMSU also
 307 increases with increasing depth and size. A greater overpressure is needed to initiate failure in

308 models with deeper and larger chambers, simply due to higher confining pressure (Fig. S7d).
 309 The aspect ratio of an oblate spheroidal chamber with the same volume has less impact on
 310 the CMSU than the depth and radius (Elastic Test 4; Fig. 6a). A prolate (conduit-like) chamber
 311 has lower CMSU at failure, and its aspect ratio has far less effects on the CMSU compared to an
 312 oblate chamber. When the magma body is sill-like, the CMSU decrease slightly with growing
 313 aspect ratio. The CMSU is much less sensitive to aspect ratios than to depth (Fig. 3 and 4) and
 314 radius (Fig. 5) at least for oblate chambers. However, the variability of the overpressures
 315 required to initiate failure is quite large (Fig. 6b). A highly-oblate chamber ($R_1/R_2 = 5$) requires
 316 less than 25 MPa to initiate failure, while this value rises to 150 MPa for a spherical chamber
 317 whose aspect ratio is one (Fig. 6b). The critical overpressure falls back to 40 MPa when the
 318 chamber becomes prolate. Notably, the extremely high overpressure for the spherical chamber
 319 does not create a significant uplift, suggesting the stability of the whole system is sensitive to
 320 aspect ratio. Although a perfectly spherical chamber has the greatest stability, it is unlikely to
 321 exist in natural settings.
 322



324 **Figure 6.** The effects of Young's modulus and Poisson's ratio on brittle failure with variations in
 325 the chamber aspect ratio (Elastic Test 4). A constant internal friction angle ($\phi = 25^\circ$) is assumed.
 326 (a) The Critical Maximum Surface Uplift (CMSU) for models with different shapes of the
 327 magma chamber. The sensitivity of the CMSU to the aspect ratio is noticeably decreased when
 328 the magma body is conduit-like ($R_1/R_2 < 1$). (b) The corresponding overpressures of the magma
 329 chamber when failure occurs. The shape of the marker indicates the Poisson's ratio of the model.
 330

331 In all elastic tests (Figs. 3-6), Young's modulus shows the most significant effect on the
 332 development of brittle failure. The stiffer (Young's modulus > 40 GPa) and stronger ($C_0 > 40$
 333 MPa and $T_0 > 16$ MPa) the host-rock (e.g., intact granite, diorite, and metamorphic rocks; Perras
 334 & Diederichs, 2014) is assumed to be, the more likely that tensile failure will initiate around the
 335 chamber boundary first, while models with a weak host rock favor Coulomb failure at the
 336 chamber wall. Because a higher cohesion is expected in stronger rocks, making their Coulomb
 337 failure envelope more difficult to reach (Fig. 7). Additionally, deeper chambers prefer Coulomb
 338 failure as the first failure onset, since tensile failure is harder to initiate due to the high confining

339 pressure at depth.

340

341

342 **Figure 7.** Mohr circle diagrams illustrating that the initial failure type is controlled by host-rock
 343 stiffness and strength. The Mohr circles represent of the stress state at the tip of the chamber in
 344 Model Dp2 (Table 2; Depth = 3 km, $R_1 = 1.5 \text{ km}$, and $R_2 = 0.5 \text{ km}$) as shown in the inserted plot.
 345 (a) For the host-rock with relatively low Young's Modulus ($E = 20 \text{ GPa}$) and cohesion (20 MPa),
 346 the Mohr circle increases and touches the Coulomb failure envelop first. (b) The high cohesion
 347 (80 MPa) of the stronger rock ($E = 80 \text{ GPa}$) allows the Mohr circle to reach tensile failure first.

348

349 Although laboratory rock tests indicate that tensile strength of rocks ranges from ~ 1 to ~ 20
 350 MPa, in natural conditions, the host-rock may be fractured, causing its tensile strength greatly
 351 decreased. We compare the CMSU and critical overpressure of the models assuming $T_0 = E$
 352 /2500 to the models with $T_0 = 0$ (Fig. S8). The results show that using zero tensile strength
 353 makes slightly lower CMSU at tensile failure onset, indicating CMSU is not sensitive to tensile
 354 strength (Fig. S8). The critical overpressure of the models with $T_0 = 0$ is constant for each model
 355 with the same geometry but different Young's modulus, indicating that the critical overpressure
 356 for tensile failure is independent of Young's modulus.

357

358 4 Discussion

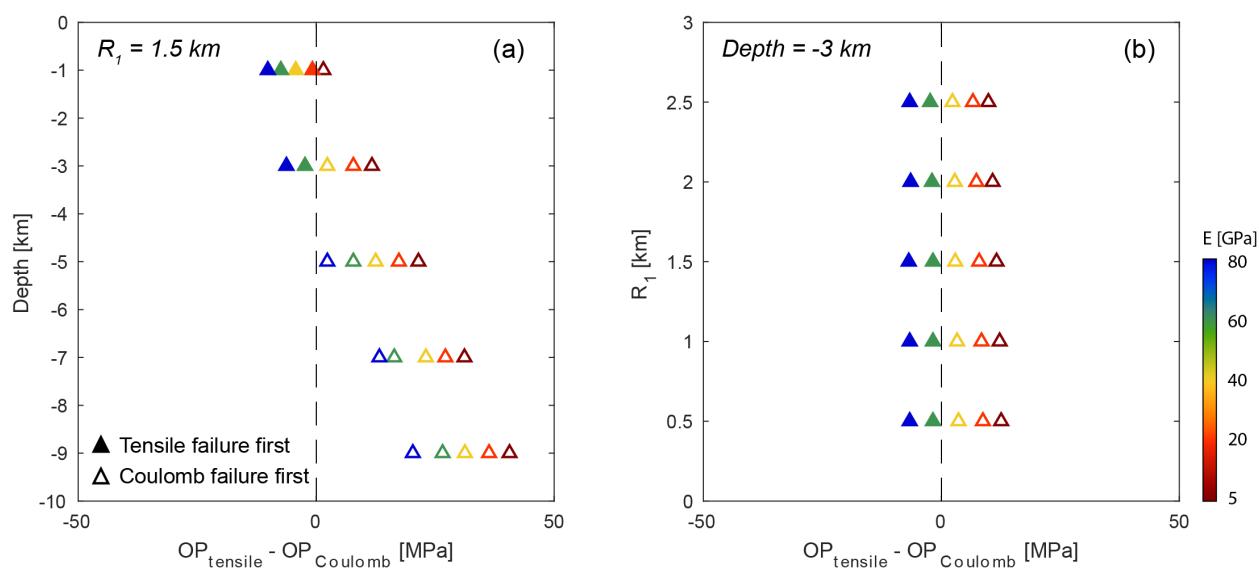
359 4.1 Uncertainty derived from rock properties

360 The results of the viscoelastic tests indicate that the overpressure at failure onset is
 361 independent of the viscosity of the host-rock (Fig. S4) and is only determined by its elastic
 362 moduli. A higher overpressure is needed to trigger failure in a stiffer and stronger system (Fig.
 363 S4 and Fig. 3-6). Whether or not the viscosity of the host-rock will impact the brittle failure
 364 forecast is determined by viscoelastic relaxation time of the crust (Fig. 2). The CMSU at failure
 365 onset for a particular elastic model will be lower than the viscous model with the same elastic
 366 moduli, only if the time scale of the pressurization episode is longer than the viscous relaxation
 367 time. Therefore, knowing the relaxation time of the system as well as the over-pressurizing rate
 368 is useful to determine if the model needs to take viscosity into consideration. Models with higher
 369 viscosities and lower Young's moduli have longer relaxation times. For a cold crust with a
 370 viscosity larger than $10^{20} \text{ Pa} \cdot \text{s}$, an elastic model is sufficient to simulate the deformation and
 371 failure if the replenishment prior to the failure is < 100 years. For a quartz-bearing crust at 350°C
 372 (Newman et al., 2001), the crust will still behave elastically if the replenishment episode lasts no

373 more than several years. For a rhyolite close to the solidus, the viscous effect cannot be neglected
 374 if it takes more than one day to build overpressure to fail the host-rock (Fig. 2). The
 375 overpressures required for all viscoelastic models to initiate failure along the chamber wall are
 376 the same as the elastic models with the same elastic moduli (Fig. S4), since the brittle failure of
 377 the rocks is only controlled by its strength and current stress state.

378 Among Young's modulus, Poisson's ratio, internal friction angle and tensile strength,
 379 Young's modulus plays the most important role in the displacement at brittle failure onset. All
 380 tests conducted indicate that a lower Young's modulus results in greater surface deformation
 381 (i.e., CMSU) before the host-rock starts to fail, even if the host-rock has lower compressive and
 382 tensile strengths (Fig. 3-6). The difference in CMSU between the stiffest and weakest rocks is
 383 largely dependent on the location and geometry of the magma body. This difference can be as
 384 great as several meters if the magma body is large and shallow (Fig. 3a and 5a). The accuracy of
 385 the failure forecast for a system with a low Young's modulus is tenuous without constraining the
 386 elastic properties. However, the sensitivity of the CMSU to Young's modulus decreases with
 387 increasing Young's modulus, especially when assuming a proportional rock strength (Aggistalis
 388 et al., 1996; Dinçer et al., 2004). The elastic properties of the host-rock are determined by the
 389 composition and depth. Generally, the Young's modulus of the upper crust increases with depth
 390 from ~10 GPa at the surface to ~50 GPa around 2~3 km, and up to ~100 GPa below 5~6 km
 391 (e.g., Gudmundsson, 1988). The uncertainty of Poisson's ratio does not significantly impact the
 392 CMSU (Fig. 3, 5, and 6). Poisson's ratio of the upper crust is more well constrained than
 393 Young's modulus (Christensen, 1996). A poor constraint on internal friction angle will introduce
 394 large uncertainties when the Young's modulus is < 5 GPa (Fig. 4). Therefore, if the magma body
 395 is near the surface or in the volcanic edifice, where the Young's modulus is low, the uncertainty
 396 in its material properties will be problematic for forecasting failure initiation. This limitation may
 397 be overcome by conducting rock tests on samples from the volcano, since the near surface
 398 samples may represent the host-rock for a shallow magma body. But laboratory test results can
 399 only be scaled up to represent in-situ/outcrop scale host-rocks, if the host-rock is not strongly
 400 fractured. On the other hand, for a deep magma body, the uncertainty introduced by elastic
 401 moduli is negligible compared to the uncertainties derived from other factors such as depth (Fig.
 402 3) and radius (Fig. 4).

403 4.2 Geometrical considerations for geodetic observations


404 The magnitude of the surface deformation before the onset of host-rock failure (CMSU) is
 405 strongly affected by the depth (Fig. 3 and 4), size (Fig. 5), and shape (Fig. 6) of the magma body.
 406 Under the same overpressure, a deep, small, or prolate magma chamber is limited in the
 407 magnitude of vertical surface displacement it can promote before its failure. For example, the
 408 conduit inflation of Colima volcano created only ~4 cm uplift no earlier than 11 days prior to the
 409 2013 explosive eruption (Salzer et al., 2014). While, an oblate source under Sierra Negra
 410 volcano, Galápagos created ~5 m vertical displacement from 1992 until its 2005 eruption
 411 (Chadwick et al., 2006). Beside the absolute magnitude of vertical displacement, the rate of
 412 displacement is also important. For volcanoes with small CMSUs, slow deformation rates can
 413 ensure their precursory deformation being captured by weekly or monthly geodetic measurement
 414 such as InSAR (e.g., Lohman & Simons, 2005; Pinel et al., 2014).

415 Among all of the geometric uncertainties, the error introduced by the inaccurate estimation
 416 of a magma system's size has the greatest effect on producing a failure forecast. Unlike depth
 417 and aspect ratio, size and overpressure of a magma body can hardly be distinguished from one

418 another by geodetic observations alone (e.g., Mogi, 1958). Therefore, additional constraints on
 419 the dimensions of the magma plumbing system are necessary, such as seismic tomography,
 420 gravity, and/or magnetotellurics.

421 *4.3 Failure and VT-earthquakes*

422 Volcano-Tectonic (VT) earthquakes can be triggered by the brittle failure of the host-rock.
 423 A combination of seismicity and geodesy gives insight into both stress field and deformation
 424 field which increases the accuracy of forecasting volcanic unrest (e.g., Lengliné et al., 2008,
 425 Carrier et al., 2015). Our models show that, when the overpressure of the magma chamber
 426 increases gradually, stronger host-rock favors the initiation tensile failure (Fig. 8), while weaker
 427 host-rock favors Coulomb failure and the generation of shear fractures first. In the weak host
 428 rock case, more overpressure is needed to open tensional cracks for dikes, even though the
 429 occurrence of the shear fractures will greatly reduce the tensile strength of the rock (Fig. 7a).
 430 Therefore, during the period between Coulomb failure onset and tensile failure onset, the
 431 earthquake swarms are only generated by shear fractures, indicating that seismicity should be
 432 dominated by high-frequency (VT) events. Once tensile failure is initiated, it is very likely
 433 followed by dike propagation and possible eruption (White & McCausland, 2016). During dike
 434 propagation, earthquakes can be triggered by both brittle failure of host-rocks (Roman &
 435 Cashman, 2006), and magma/volatile movement in the dike, indicating low-frequency
 436 earthquakes may be observed (McNutt, 2005). Since Coulomb failure does not open a pathway
 437 for magma to move to the surface, volcanoes triggering Coulomb failure first may experience a
 438 longer period of seismic unrest until tensile failure is initiated. The numerical results show that
 439 shallow magma chambers surrounded by stronger host-rock favor tensile failure as their initial
 440 failure type, indicating those systems are likely to erupt without triggering a lot of VT
 441 earthquakes, if the speed of dike propagation is fast enough. For example, the 2008 Okmok
 442 eruption was preceded by less than 5 hours of seismicity (Larsen et al., 2009), which may be
 443 related with dike propagation after tensile failure initiated.
 444

445
 446 **Figure 8.** The overpressure required to initiate tensile failure compared to the overpressure
 447 required to initiate Coulomb failure ($OP_{\text{Tensile}} - OP_{\text{Coulomb}}$) for models with different chamber

448 depths (a) and half-widths (b). (a) and (b) show the results from models with internal friction =
449 25° and Poisson's ratio = 0.25 in Elastic Test 1 and Elastic Test 2. If the difference in
450 overpressure for the two types of failure is positive, tensile failure will occur after Coulomb
451 failure is triggered. In this case, it is expected that shear fractures will develop generating
452 earthquake swarms during a relatively long period prior to the onset of tensile failure and magma
453 propagation. On the other hand, if the difference in overpressure is negative, Coulomb failure
454 will not be triggered prior to dike propagation.

455

456 *4.4 Limitations*

457 Forecasting eruptions by modeling failure as an instantaneous response to the host rock
458 stress state has three main limitations. First, the relationship between failure and eruptions is
459 unclear. Through-going failure which connects the magma chamber to the surface has been
460 indicated as a potential catalyst of caldera formation eruptions (e.g., Gregg et al., 2012, 2013;
461 Cabaniss et al., 2018). However, large caldera eruption cycles may be much longer than
462 thousands of years, far outside of the time scales in this investigation. When forecasting
463 eruptions of a system with much shorter eruption cycles, the effect of diking events cannot be
464 neglected. Dikes may be solidified and trapped depending on their temperature and viscosity
465 (e.g., Delaney & Pollard, 1982; Rubin, 1995; Maccaferri et al., 2011), laying huge uncertainties
466 between failure initiations and the ability of magma to propagate to the surface and erupt. The
467 second shortcoming in the current models is the lack of changes in the rock properties due to
468 failure accumulation. In this study, we focus on the initiation of the failure controlled by the pre-
469 failure stress state, which is more predictable than the stress state evolution during failure
470 propagation. Failure introduces localization of weakness in the host-rock and is usually
471 anisotropic (e.g., Heap et al., 2010). The first two limitations may be overcome by applying
472 dynamic failure propagation models, which are widely used in hydrofracturing studies (e.g.,
473 Camacho & Ortiz, 1996; Fu et al., 2013). However, numerical models of dike propagation may
474 be more complicated than hydrofracturing due to the multiphase nature of propagating magma.
475 Another limitation is the use of homogeneous rock properties, since rock properties vary with
476 depth and temperature, and are also affected by pre-existing structures. A final limitation of
477 these models, which is also fundamental to most volcano modeling approaches, is the lack of
478 knowledge of the initial state. In the presented approach, it is assumed that there is no stress
479 accumulation prior to the observed inflation of the magma chamber. The assumption of an intact
480 host-rock in equilibrium before precursory deformation may greatly impact model forecasts in
481 many systems. Studying multiple volcanic eruption cycles may help to eliminate the effect of the
482 unknown initial state. Furthermore, healing of the host-rock is another important factor,
483 especially under the conditions such as high temperature, confining pressure, and repeated
484 loading (e.g., Batzle et al., 1980; Fredrich & Wong, 1986; Smith et al., 2009). Future efforts
485 should focus particular care to evaluate the impact of the pre-deformation stress condition on
486 forecasts of system unrest and eruption potential.

487 **5 Conclusion**

488 A suite of numerical experiments was implemented to answer what is the effect of
489 variations in rock properties on modeled overpressure and critical maximum surface uplift
490 (CMSU) at failure onset along the wall of magma chambers. Model results indicate that, in most

491 of cases, the predicted overpressure and CMSU at failure onset is sensitive to rock properties,
 492 which means without knowing rock properties can impair the accuracy of failure modeling.

493 The overpressure of the magma chamber at failure onset is affected by the elastic properties
 494 and strength of the host-rock. Neglecting the viscous effect results in lower CMSU predictions
 495 than the calculated CMSU if the time scale of pressurization is longer than the relaxation time of
 496 the crust. The CMSU before failure onset is much more sensitive to Young's modulus than to
 497 Poisson's ratio or internal friction angle, especially when the Young's modulus of the host-rock
 498 is < 20 GPa. The accuracy of host-rock stability estimates for a deep (> 5 km), small (half-width
 499 < 1 km) or prolate magma chamber are less likely to be impaired by the uncertainty from rock
 500 properties than by other uncertainties such as geometry. To forecast the unrest of small and/or
 501 prolate magma systems, frequent observations are necessary to record the subtle, and often rapid,
 502 precursory deformation prior to eruption. However, for shallow, large, or sill-like magma bodies,
 503 significant surface deformation may be observed prior to host rock failure initiation. Magma
 504 chambers surrounded by a weak host-rock (Young's modulus < 20 GPa) will continue to inflate
 505 after triggering Coulomb failure until tensile failure is initiated and dike propagation can be
 506 catalyzed. Therefore, prolonged earthquake swarms associated with Coulomb failure may be
 507 observed, providing extra information for eruption forecast.

508 Acknowledgement

509 We are grateful for helpful discussions with D. Roman, H. Le Mével, Z. Lu, M. Poland, R.
 510 Bendick, M. Coombs, J. Freymueller, J. Albright, H. Cabaniss, R. Goldman, V. Romano, and the
 511 UIUC Geodynamics Group. We would also like to thank J. Hickey, Y. Aoki, and two
 512 anonymous reviewers for their comments which greatly improved our manuscript. Research
 513 reported in this publication is supported by grants from NASA (19-EARTH19R-0104 – Zhan,
 514 18-ESI18-0002 – Gregg) and the National Science Foundation (OCE 1834843, EAR 1752477 –
 515 Gregg). Model implementations presented here are available at GitHub
 516 (https://github.com/geoyanzhan3/JGR2019_RockProperty).

518 Reference

520 Aggistalis, G., Alivizatos, A., Stamoulis, D., & Stournaras, G. (1996). Correlating uniaxial compressive strength
 521 with schmidt hardness, point load index, Young's modulus, and mineralogy of gabbros and basalts (northern
 522 Greece). *Bulletin of the International Association of Engineering Geology - Bulletin de l'Association
 523 Internationale de Géologie de l'Ingénieur*, 54(1), 3–11. <https://doi.org/10.1007/BF02600693>

524 Albino, F., Pinel, V., & Sigmundsson, F. (2010). Influence of surface load variations on eruption likelihood:
 525 application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. *Geophysical Journal International*,
 526 181(3), 1510–1524. <https://doi.org/10.1111/j.1365-246X.2010.04603.x>

527 Albright, J. A., P. M. Gregg, Z. Lu, and J. Freymueller (2019), Hindcasting magma reservoir stability preceding the
 528 2008 eruption of Okmok, Alaska, *Geophysical Research Letters*, <https://doi.org/10.1029/2019GL083395>.

529 Bato, M. G., Pinel, V., & Yan, Y. (2017). Assimilation of Deformation Data for Eruption Forecasting: Potentiality
 530 Assessment Based on Synthetic Cases. *Frontiers in Earth Science*, 5. <https://doi.org/10.3389/feart.2017.00048>

531 Bato, M. G., Pinel, V., Yan, Y., Jouanne, F., & Vandemeulebrouck, J. (2018). Possible deep connection between
 532 volcanic systems evidenced by sequential assimilation of geodetic data. *Scientific Reports*, 8(1), 11702.
 533 <https://doi.org/10.1038/s41598-018-29811-x>

534 Batzle, M. L., Simmons, G., & Siegfried, R. W. (1980). Microcrack closure in rocks under stress: Direct
 535 observation. *Journal of Geophysical Research*, 85(B12), 7072. <https://doi.org/10.1029/JB085iB12p07072>

536 Beauducel, F., Cornet, F.-H., Suhanto, E., Duquesnoy, T., & Kasser, M. (2000). Constraints on magma flux from
 537 displacements data at Merapi volcano, Java, Indonesia. *Journal of Geophysical Research: Solid Earth*, 105(B4),
 538 8193–8203. <https://doi.org/10.1029/1999JB900368>

539 Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., & Mather, T. A. (2014). Global
 540 link between deformation and volcanic eruption quantified by satellite imagery. *Nature Communications*, 5.
 541 <http://www.nature.com/ncomms/2014/140403/ncomms4471/full/ncomms4471.html?message-global=remove>
 542 Biggs, Juliet, & Pritchard, M. E. (2017). Global Volcano Monitoring: What Does It Mean When Volcanoes
 543 Deform? *Elements*, 13(1), 17–22. <https://doi.org/10.2113/gselements.13.1.17>
 544 Bradford, I. D. R., Fuller, J., Thompson, P. J., & Walsgrove, T. R. (1998). Benefits of assessing the solids
 545 production risk in a North Sea reservoir using elastoplastic modelling. In *SPE/ISRM Rock Mechanics in*
 546 *Petroleum Engineering*. Society of Petroleum Engineers.
 547 Byerlee, J. D. (1978). Rock Friction and Earthquake Prediction, 414.
 548 Cabaniss, H. E., Gregg, P. M., & Grosfils, E. B. (2018). The Role of Tectonic Stress in Triggering Large Silicic
 549 Caldera Eruptions. *Geophysical Research Letters*, 45(9), 3889–3895. <https://doi.org/10.1029/2018GL077393>
 550 Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle materials. *International*
 551 *Journal of Solids and Structures*, 33(20–22), 2899–2938. [https://doi.org/10.1016/0020-7683\(95\)00255-3](https://doi.org/10.1016/0020-7683(95)00255-3)
 552 Carrier, A., Got, J.-L., Peltier, A., Ferrazzini, V., Staudacher, T., Kowalski, P., & Boissier, P. (2015). A damage
 553 model for volcanic edifices: Implications for edifice strength, magma pressure, and eruptive processes. *Journal*
 554 *of Geophysical Research: Solid Earth*, 120(1), 567–583. <https://doi.org/10.1002/2014JB011485>
 555 Chadwick, W. W., Geist, D. J., Jónsson, S., Poland, M., Johnson, D. J., & Meertens, C. M. (2006). A volcano
 556 bursting at the seams: Inflation, faulting, and eruption at Sierra Negra volcano, Galápagos. *Geology*, 34(12),
 557 1025–1028. <https://doi.org/10.1130/G22826A.1>
 558 Chang, C., Zoback, M. D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties
 559 in sedimentary rocks. *Journal of Petroleum Science and Engineering*, 51(3), 223–237.
 560 <https://doi.org/10.1016/j.petrol.2006.01.003>
 561 Cheng, C. H., & Johnston, D. H. (1981). Dynamic and static moduli. *Geophysical Research Letters*, 8(1), 39–42.
 562 <https://doi.org/10.1029/GL008i001p00039>
 563 Christensen, N. I. (1996). Poisson's ratio and crustal seismology. *Journal of Geophysical Research: Solid Earth*,
 564 101(B2), 3139–3156. <https://doi.org/10.1029/95JB03446>
 565 Currenti, G., Del Negro, C., & Ganci, G. (2007). Modelling of ground deformation and gravity fields using finite
 566 element method: an application to Etna volcano. *Geophysical Journal International*, 169(2), 775–786.
 567 <https://doi.org/10.1111/j.1365-246X.2007.03380.x>
 568 De Natale, G., & Pingue, F. (1996). Ground Deformation Modeling in Volcanic Areas. In R. Scarpa & R. I. Tilling
 569 (Eds.), *Monitoring and Mitigation of Volcano Hazards* (pp. 365–388). Berlin, Heidelberg: Springer Berlin
 570 Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_11
 571 Del Negro, C., Currenti, G., & Scandura, D. (2009). Temperature-dependent viscoelastic modeling of ground
 572 deformation: application to Etna volcano during the 1993–1997 inflation period. *Physics of the Earth and*
 573 *Planetary Interiors*, 172(3), 299–309.
 574 Delaney, P. T., & Pollard, D. D. (1982). Solidification of basaltic magma during flow in a dike. *American Journal of*
 575 *Science*, 282(6), 856–885. <https://doi.org/10.2475/ajs.282.6.856>
 576 Dincer, I., Acar, A., Cobanoğlu, I., & Uras, Y. (2004). Correlation between Schmidt hardness, uniaxial compressive
 577 strength and Young's modulus for andesites, basalts and tuffs. *Bulletin of Engineering Geology and the*
 578 *Environment*, 63(2), 141–148. <https://doi.org/10.1007/s10064-004-0230-0>
 579 Fredrich, J. T., & Wong, T. (1986). Micromechanics of thermally induced cracking in three crustal rocks. *Journal of*
 580 *Geophysical Research: Solid Earth*, 91(B12), 12743–12764. <https://doi.org/10.1029/JB091iB12p12743>
 581 Fu, P., Johnson, S. M., & Carrigan, C. R. (2013). An explicitly coupled hydro-geomechanical model for simulating
 582 hydraulic fracturing in arbitrary discrete fracture networks: FULLY COUPLED MODEL FOR HYDRO-
 583 FRACTURING IN ARBITRARY FRACTURE NETWORKS. *International Journal for Numerical and*
 584 *Analytical Methods in Geomechanics*, 37(14), 2278–2300. <https://doi.org/10.1002/nag.2135>
 585 Gerbault, M., Cappa, F., & Hassani, R. (2012). Elasto-plastic and hydromechanical models of failure around an
 586 infinitely long magma chamber. *Geochemistry, Geophysics, Geosystems*, 13(3).
 587 <https://doi.org/10.1029/2011GC003917>
 588 Gerbault, M., Hassani, R., Lizama, C. N., & Souche, A. (2018). Three-Dimensional Failure Patterns Around an
 589 Inflating Magmatic Chamber. *Geochemistry, Geophysics, Geosystems*, 19(3), 749–771.
 590 <https://doi.org/10.1002/2017GC007174>
 591 Gercak, H. (2007). Poisson's ratio values for rocks. *International Journal of Rock Mechanics and Mining Sciences*,
 592 44(1), 1–13. <https://doi.org/10.1016/j.ijrmms.2006.04.011>

593 Grapenthin, R., Sigmundsson, F., Geirsson, H., Árnadóttir, T., & Pinel, V. (2006). Icelandic rhythms: Annual
 594 modulation of land elevation and plate spreading by snow load. *Geophysical Research Letters*, 33(24).
 595 <https://doi.org/10.1029/2006GL028081>

596 Gregg, P. M., Mével, H. L., Zhan, Y., Dufek, J., Geist, D., & Chadwick, W. W. (2018). Stress triggering of the 2005
 597 eruption of Sierra Negra volcano, Galápagos. *Geophysical Research Letters*.
 598 <https://doi.org/10.1029/2018GL080393>

599 Gregg, Patricia M., & Pettijohn, J. C. (2016). A multi-data stream assimilation framework for the assessment of
 600 volcanic unrest. *Journal of Volcanology and Geothermal Research*, 309, 63–77.
 601 <https://doi.org/10.1016/j.jvolgeores.2015.11.008>

602 Gregg, P.M., de Silva, S. L., Grosfils, E. B., & Parmigiani, J. P. (2012). Catastrophic caldera-forming eruptions:
 603 Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. *Journal of Volcanology and Geothermal Research*, 241–242, 1–12. <https://doi.org/10.1016/j.jvolgeores.2012.06.009>

604 Gregg, P.M., de Silva, S. L., & Grosfils, E. B. (2013). Thermomechanics of shallow magma chamber pressurization:
 605 Implications for the assessment of ground deformation data at active volcanoes. *Earth and Planetary Science
 606 Letters*, 384, 100–108. <https://doi.org/10.1016/j.epsl.2013.09.040>

607 Grosfils, E. B., McGovern, P. J., Gregg, P. M., Galgana, G. A., Hurwitz, D. M., Long, S. M., & Chestler, S. R.
 608 (2015). Elastic models of magma reservoir mechanics: a key tool for investigating planetary volcanism. In T. In Platz, M. Massironi, P. K. Byrne, & H. Hiesinger (Eds.), *Volcanism and Tectonism Across the Inner Solar
 609 System* (Vol. 401, pp. 239–267). Bath: Geological Soc Publishing House.

610 Gudmundsson, A. (1988). Effect of tensile stress concentration around magma chambers on intrusion and extrusion
 611 frequencies. *Journal of Volcanology and Geothermal Research*, 35(3), 179–194. [https://doi.org/10.1016/0377-0273\(88\)90015-7](https://doi.org/10.1016/0377-0273(88)90015-7)

612 Heap, M. J., Faulkner, D. R., Meredith, P. G., & Vinciguerra, S. (2010). Elastic moduli evolution and accompanying
 613 stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes
 614 during deformation: Elastic moduli evolution and stress changes. *Geophysical Journal International*, 183(1),
 615 225–236. <https://doi.org/10.1111/j.1365-246X.2010.04726.x>

616 Hickey, J., & Gottsmann, J. (2014). Benchmarking and developing numerical Finite Element models of volcanic
 617 deformation. *Journal of Volcanology and Geothermal Research*, 280, 126–130.
 618 <https://doi.org/10.1016/j.jvolgeores.2014.05.011>

619 Hickey, J., Gottsmann, J., & Mothes, P. (2015). Estimating volcanic deformation source parameters with a finite
 620 element inversion: The 2001–2002 unrest at Cotopaxi volcano, Ecuador. *Journal of Geophysical Research: Solid
 621 Earth*, 120(3), 1473–1486. <https://doi.org/10.1002/2014JB011731>

622 Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). *Fundamentals of rock mechanics* (4th ed). Malden,
 623 MA: Blackwell Pub.

624 Larsen, J., Neal, C., Webley, P., Freymueller, J., Haney, M., McNutt, S., et al. (2009). Eruption of Alaska Volcano
 625 Breaks Historic Pattern. *Eos, Transactions American Geophysical Union*, 90(20), 173.
 626 <https://doi.org/10.1029/2009EO200001>

627 Lengliné, O., Marsan, D., Got, J.-L., Pinel, V., Ferrazzini, V., & Okubo, P. G. (2008). Seismicity and deformation
 628 induced by magma accumulation at three basaltic volcanoes. *Journal of Geophysical Research: Solid Earth*,
 629 113(B12). <https://doi.org/10.1029/2008JB005937>

630 Lohman, R. B., & Simons, M. (2005). Some thoughts on the use of InSAR data to constrain models of surface
 631 deformation: Noise structure and data downsampling: THOUGHTS ON INSAR. *Geochemistry, Geophysics,
 632 Geosystems*, 6(1), n/a-n/a. <https://doi.org/10.1029/2004GC000841>

633 Maccaferri, F., Bonafede, M., & Rivalta, E. (2011). A quantitative study of the mechanisms governing dike
 634 propagation, dike arrest and sill formation. *Journal of Volcanology and Geothermal Research*, 208(1–2), 39–50.
 635 <https://doi.org/10.1016/j.jvolgeores.2011.09.001>

636 Masterlark, T. (2007). Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions. *Journal
 637 of Geophysical Research*, 112(B6). <https://doi.org/10.1029/2006JB004860>

638 McNutt, S. R. (2005). Volcanic Seismology. *Annual Review of Earth and Planetary Sciences*, 33, 461–491.
 639 <https://doi.org/10.1146/annurev.earth.33.092203.122459>

640 Mogi, K. (1958). Relations between the eruptions of various volcanoes and the deformations of the ground surfaces
 641 around them. *Bull. Earthq. Res. Inst., University of Tokyo*, 36, 99–134.

642 Newman, A. V., Dixon, T. H., Ofoegbu, G. I., & Dixon, J. E. (2001). Geodetic and seismic constraints on recent
 643 activity at Long Valley Caldera, California: evidence for viscoelastic rheology. *Journal of Volcanology and
 644 Geothermal Research*, 105(3), 183–206.

648 Perras, M. A., & Diederichs, M. S. (2014). A Review of the Tensile Strength of Rock: Concepts and Testing.
649 Geotechnical and Geological Engineering, 32(2), 525–546. <https://doi.org/10.1007/s10706-014-9732-0>

650 Pinel, V., Poland, M. P., & Hooper, A. (2014). Volcanology: Lessons learned from Synthetic Aperture Radar
651 imagery. *Journal of Volcanology and Geothermal Research*, 289, 81–113.
652 <https://doi.org/10.1016/j.jvolgeores.2014.10.010>

653 Roman, D. C., & Cashman, K. V. (2006). The origin of volcano-tectonic earthquake swarms. *Geology*, 34(6), 457.
654 <https://doi.org/10.1130/G22269.1>

655 Rubin, A. M. (1995). Propagation of Magma-Filled Cracks. *Annual Review of Earth and Planetary Sciences*, 23(1),
656 287–336. <https://doi.org/10.1146/annurev.ea.23.050195.001443>

657 Salzer, J. T., Nikkhoo, M., Walter, T. R., Sudhaus, H., Reyes-DÃ¡vila, G., BretÃ³n, M., & ArÃ¡mbula, R. (2014).
658 Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at VolcÃ¡n de
659 Colima, Mexico. *Frontiers in Earth Science*, 2. <https://doi.org/10.3389/feart.2014.00012>

660 Segall, P. (2019). Magma chambers: what we can, and cannot, learn from volcano geodesy. *Philosophical
661 Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 377(2139), 20180158.
662 <https://doi.org/10.1098/rsta.2018.0158>

663 Smith, R., Sammonds, P. R., & Kilburn, C. R. J. (2009). Fracturing of volcanic systems: Experimental insights into
664 pre-eruptive conditions. *Earth and Planetary Science Letters*, 280(1–4), 211–219.
665 <https://doi.org/10.1016/j.epsl.2009.01.032>

666 Sparks, R. S. J. (2003). Forecasting volcanic eruptions. *Earth and Planetary Science Letters*, 210(1–2), 1–15.
667 [https://doi.org/10.1016/S0012-821X\(03\)00124-9](https://doi.org/10.1016/S0012-821X(03)00124-9)

668 White, R., & McCausland, W. (2016). Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes
669 and forecasting eruptions. *Journal of Volcanology and Geothermal Research*, 309, 139–155.
670 <https://doi.org/10.1016/j.jvolgeores.2015.10.020>

671 Yang, X.-M., Davis, P. M., & Dieterich, J. H. (1988). Deformation from inflation of a dipping finite prolate spheroid
672 in an elastic half-space as a model for volcanic stressing. *Journal of Geophysical Research: Solid Earth*, 93(B5),
673 4249–4257.

674 Zhan, Y., & Gregg, P. M. (2017). Data assimilation strategies for volcano geodesy. *Journal of Volcanology and
675 Geothermal Research*, 344(Supplement C), 13–25. <https://doi.org/10.1016/j.jvolgeores.2017.02.015>

676 Zhan, Y., Gregg, P. M., Chaussard, E., & Aoki, Y. (2017). Sequential Assimilation of Volcanic Monitoring Data to
677 Quantify Eruption Potential: Application to Kerinci Volcano, Sumatra. *Frontiers in Earth Science*, 5.
678 <https://doi.org/10.3389/feart.2017.00108>