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ABSTRACT

A population quantity of interest in statistical shape analysis is the location of landmarks, which are points
that aid in reconstructing and representing shapes of objects. We provide an automated, model-based
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approach to inferring landmarks given a sample of shape data. The model is formulated based on a linear

reconstruction of the shape, passing through the specified points, and a Bayesian inferential approach is
described for estimating unknown landmark locations. The question of how many landmarks to select is
addressed in two different ways: (1) by defining a criterion-based approach and (2) joint estimation of the
number of landmarks along with their locations. Efficient methods for posterior sampling are also discussed.
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We motivate our approach using several simulated examples, as well as data obtained from applications
in computer vision, biology, and medical imaging. Supplementary materials for this article, including a
standardized description of the materials available for reproducing the work, are available as an online

supplement.

1. Introduction

Shape analysis is an emerging field within statistics due to the
necessity of making inference on the shapes of objects. Shape
is an important physical property of objects and emerges in
various application areas including medical imaging, pattern
recognition, computer vision, biometrics, biology, bioinformat-
ics, and many others. In general, statistical shape analysis refers
to a set of tools, which can be used for alignment, comparison,
averaging, summarization of variability, statistical inference,
and other tasks performed on shape spaces. These tools can
resemble standard statistical methods developed for multivari-
ate numerical data; however, developing these methods require
extra care for several reasons. First, there is no consensus on
the choice of shape representation, which determines how these
objects are treated mathematically. Many representations have
been developed; two of the most common classes are landmark-
based and function-based, and are described later in this sec-
tion. Second, most shape representation spaces are quotients of
nonlinear manifolds (where performing operations like adding
shapes is not straightforward as in a linear space). This is due to
the most common definition of shape as an inherited property
of an object, which remains unchanged under some transfor-
mations (most commonly rotation, scaling, and translation).
Quotient spaces are required to deem two shapes equivalent
when they only differ by this set of transformations. Third, in the
case of functional representations of shape, the underlying shape
spaces are infinite-dimensional. Thus, any statistical analysis on
these spaces requires tools from functional data analysis.
Initially, the statistical shape analysis community represented
an object’s shape using a finite point set comprised of so-called

landmarks. These ideas were first introduced by Kendall (1984),
who defined shape as a property of an object which remains
unchanged under rigid motion and scaling. The landmark
points represent important mathematical (e.g., curvature) or
salient anatomical features of the objects and are in corre-
spondence across a population of shapes—this means that, for
instance, ifalandmark is placed at the tip of a human’s nose, then
this particular point should be matched with the nose of another
human that may be compared to it. In this framework, the entire
object is represented by a low-dimensional landmark configura-
tion matrix which is based on the coordinates of the landmarks.
After some adjustments to account for the desired shape invari-
ances, standard multivariate analyses can be performed on these
shape representation spaces (details provided in Dryden and
Mardia 2016; Small 1996; Dryden and Mardia 1992; Bookstein
1986). If landmarks can be located on objects of interest, then
this approach provides a low-dimensional shape representation
for which many statistical tools are readily available.

As computing technology improved, researchers developed
infinite-dimensional, functional representations of shape based
on parameterized curves of the objects’ outlines. These repre-
sentations allow one to model the full structure of the object
of interest, but also lead to some additional challenges. Most
notably, statistical shape analysis of parameterized curves often
should be invariant to reparameterization of the curves (in addi-
tion to rigid motion and scaling). In other words, any statistical
analyses should be the same regardless of the rate at which the
curve is traversed. To overcome this challenge, elastic statistical
shape analysis (Younes 1998; Michor et al. 2007; Srivastava
et al. 2011) was introduced as a parameterization-invariant
way to compare and model curves. This is accomplished by
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matching corresponding geometric features across shapes (for
instance, the tails of animals being compared), which provides
improved results over arc-length parameterization methods
(Zahn and Roskies 1972; Klassen et al. 2004). Srivastava et al.
(2011) introduced a novel representation of shape called the
square-root velocity function (SRVF), which greatly simplifies
statistical analysis under the elastic shape analysis paradigm.

More recently, Strait et al. (2017) extended this work to
allow hard landmark constraints in the SRVF representation
(known as landmark-constrained elastic shape analysis). This
new development provides tools for statistical modeling of the
full parameterized curve representation of an object’s boundary
while at the same time respecting given landmark constraints,
that is, by enforcing exact landmark matching. These methods
are useful for comparison of shapes where the entire object is
treated as a function, but special points are “forced” to match
(for instance, if a particular shape feature is visible on one
object and known but not visible on the other object). Other
examples of landmark-constrained elastic shape analysis include
the works of Bauer, Eslitzbichler, and Grasmair (2017) and Liu,
Srivastava, and Zhang (2010), where landmarks are treated as
soft constraints, that is, landmarks are used to compute optimal
deformations and distances between shapes, but are not neces-
sarily matched exactly.

This work seeks to answer two pertinent questions related to
landmark-based shape analysis methods, including landmark-
constrained elastic shape analysis. First, in general settings, it
is not clear how many landmark points should be selected to
represent the shape of interest. Too few landmarks may result in
the absence of important features of objects, effectively leading
to biased estimation; too many may result in overfitting, a
classical statistical problem. Once the number of landmarks is
decided, one may also wonder where these landmarks should
be located. In the case of anatomical landmarks, the points are
usually selected by an expert in the application field, for exam-
ple, in medical imaging, doctors manually annotate important
anatomical features in an image. However, such an approach is
time consuming, expensive, and prone to human error. Thus, we
propose a novel automatic, model-based approach for answer-
ing these two questions under a joint framework. The Bayesian
paradigm is a natural approach to infer fixed but unknown
landmark locations while accounting for their associated uncer-
tainty.

1.1. Previous Work

The proposed automatic landmark detection framework is
applicable to any open or closed curve, regardless of type,
dimensionality, or shape. Automatic landmark detection has
been discussed mainly in the presence of specific classes of
shapes (e.g., specific anatomy), and primarily from an image
analysis perspective. These include the work by Chen et al.
(2014) who focus on the inference of landmarks on X-ray
images based on a voting scheme through displaced image
patches. Facial landmarks have been the subject of many
manuscripts, including those by Tie and Guan (2013), Segundo
etal. (2010), and Gilani, Shafait, and Mian (2015). The latter two
focus on curvature-based methods. A more general approach

(applicable to an arbitrary class of shapes) was proposed by
Rueda, Udupa, and Bai (2008a, 2008b). Existing frameworks
are based primarily on feature detection and optimization
of various application-specific criteria, and not developed
from underlying statistical models; this can make uncertainty
quantification challenging. To the best of our knowledge, one
of the only mentions of a model-based automated landmark
detection method in the Bayesian setting was presented by
Domijan and Wilson (2005). However, this model was presented
from an image analysis perspective, where the likelihood was
based on distances between segmented image pixels and a
polygon formed by landmarks; it did not account for shape-
preserving transformations. In contrast, we are interested in
finding landmarks directly on the given shapes (rather than
their corresponding image). Note that this problem is unrelated
to landmark registration of functions found in functional data
analysis (see Ramsay and Silverman 2005; Gasser and Kneip
1995), which has the goal of aligning functions based on
automatically detected or user-specified landmarks (i.e., local
extrema). Our goal is not to register shapes, but to automatically
identify these landmarks, which is often quite difficult because
identifying local extrema is not trivial for shapes.

The methods of Prematilake and Ellingson (2018) and Strait
and Kurtek (2016) are most relevant to this work. Premati-
lake and Ellingson (2018) address the problem of choosing the
number and location of discretization points used to store and
analyze an infinite-dimensional shape. These are distinct from
landmarks, but comprise a candidate set for landmark selec-
tion. In their framework, the number of discretization points
is selected by minimizing an approximation error; locations of
these sampling points are then automatically determined to be
equally spaced with respect to arc-length or absolute curva-
ture. We seek to go one step further and characterize the most
important points (landmarks) on a shape. The model proposed
by Strait and Kurtek (2016) allows for landmark inference for
generic shapes within the Bayesian framework. However, their
model has some severe limitations which we address in the
current work. First, their approach is able to identify landmarks
on one shape only (rather than a collection of shapes); this allows
Strait and Kurtek (2016) to use importance sampling to generate
posterior samples, which is not computationally feasible as the
sample size increases (see Section 1 of the supplementary mate-
rial for further discussion). Second, their model requires that the
number of landmarks be known. The main contribution of our
work is a Bayesian model-based approach for automatic infer-
ence of landmark locations, and their number, which addresses
all of the above-described limitations.

The rest of this article is organized as follows. Section 2
outlines useful background information and motivates our
framework. Section 3 presents our model for a sample of shapes
under the assumption that the number of landmarks is known
and fixed. In Section 4, the original model is extended for
an unknown number of landmarks. Simulation studies are
included in Section 5. Finally, we present several applications
in Section 6, and close the article with a discussion and some
directions for future work in Section 7. The supplementary
material includes further discussion on posterior sampling,
assessments of Markov chain Monte Carlo (MCMC) conver-
gence, discretization issues, and additional examples.
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Figure 1. Nonelastic (left) and elastic (right) deformation between two shapes.

2. Background Material: Elastic Shape Analysis

We present a brief overview of topics in elastic statistical shape
analysis relevant to the proposed approach. For further details,
please consult Srivastava et al. (2011), Kurtek et al. (2012), and
Srivastava and Klassen (2016). Let 8 : D — R? be an absolutely
continuous curve (corresponding to the outline of the object of
interest) defined on a domain D. For open curves, the domain is
the interval D = [0, 1]. Closed curves, defined on the unit circle
D = S!, will be equivalently represented for ease of exposition
by rescaling the domain to D = [0, 1] and further enforcing the
end-point constraint 8(0) = B(1) (i.e., D isequivalent to a circle
with radius (277)71). In subsequent sections, we focus on the
case of planar curves (d = 2), but the presented models readily
extend to higher-dimensional curves. Thus, 8 can be written as
B() = (B«(0), ﬂy(t))T, where B, B, are coordinate functions
mapping D — R.

In this article, we consider shape as a property of an object
invariant under its rotation, translation, scale, and reparam-
eterization. This is called elasticity. In other words, applying
any combination of these transformations to an object does
not change its shape. Mathematically, a reparameterization is
defined as an element of the group I' = {y [0,1] —
[0,1] | y(0) = 0,y(1) = 1,0 < y < 00}, where y is the
time-derivative ‘;—)t'. A reparameterization of a curve § using a
function y € T, given by the composition B o y, effectively
changes the rate of traversal of the curve in the same direction.

Statistical analysis on the space of elastic shapes requires a
metric which respects the desired shape invariances. One way to
compare shapes of two curves 81 and B, is to use the IL? metric,

defined as g1 — fall = \/ [ 1B1(6) — Ba(0) 2alt, where | - | is

the standard Euclidean norm in R?. However, this metric is not
invariant to reparameterizations because the action of I' is not
distance-preserving, that is, ||[1 — Ball # |Bioy — Bao V.
To fix this, Srivastava et al. (2011) instead consider a notion of
distance between SRVFs.

Definition 2.1. Let £ be the time-derivative of A. The SRVF of
an absolutely continuous curve g : D — R is defined as

B

VIB®)

0 otherwise

© if B is differentiable at ¢ and | (f)| # 0
q(t) = .

There are several benefits to representing a curve by its
B(®)
B@I

;2—20 and speed (1B = |g()|?) of B. In fact, given the

assumption of absolute continuity and a starting point 8(0),
there is a smooth bijective mapping between g and 8 (Robinson
2012) given by B(t) = B(0) + fo q(s)|q(s)|ds. Notice that the
SRVF is automatically invariant to translation due to the sole
dependence on . This representation is also useful because it
is valid for both open and closed curves of any dimension d.

SRVE First, q encodes the instantaneous direction (

Most importantly, the IL? distance between SRVFs is preserved
under common reparameterization and is equivalent to the
elastic metric between the original curves, which measures the
amount of bending and stretching required to deform one shape
into another (see Younes 1998; Srivastava et al. 2011; Kurtek et
al. 2012 for more details).

To formally compare two generic shapes, one must account
for the variability due to shape-preserving transformations.
Scale invariance is imposed by rescaling the original curves
to unit length. Then, using the L.? distance between SRVFs,
one seeks a rotation and reparameterization, which optimally
register one curve to the other. This process is discussed in detail
in Kurtek et al. (2012); finding the optimal reparameterization
allows for flexibility in matching shape features, and thus
underlies the elastic property of the method. Figure 1 shows a
comparison of nonelastic and elastic deformations between two
half circle shapes; the indentation of the bottom line segment
in these two shapes is located on opposite sides. The nonelastic
approach does not match the indentation feature across the
two shapes; as a result, this prominent feature nearly disappears
along the deformation path. The elastic path is more natural, as
the indentation is simply shifted to the right due to the improved
matching of this particular feature. In this article, we use the 1.2
distance between SRVFs to define the likelihood function.

3. Detection of a Fixed Number of Landmarks

We first assume that the number of landmarks in a population
of shapes is known. In this section, we present a Bayesian
model and associated methodology for sampling from the pos-
terior distribution over the landmark locations. In Section 4, we
extend the model to the case where the appropriate number of
landmarks is unknown.

3.1. Model Specification for Shape Data

First consider the problem of identifying a fixed number, k, of
landmarks, with domain locations @ = (6y,...,6;) € Dk fora
population of shapes, subject to the constraint 6; < --- < 6.
We assume the sample of M shapes is drawn from a homoge-
neous population, meaning that an arc-length parameterization
is sufficient and shape registration is not necessary; in cases
when this assumption does not hold, one can first perform
multiple registration using the elastic metric (Srivastava et al.
2011). Let B1,..., By : D — R? be a sample of curves formed
from the outlines of these M objects. Our goal is to infer one
set of landmark locations simultaneously using the sample of M
curves. As a preprocessing step, we rescale the original curves to
unit length to give equal weight to each shape in the sample.
We first consider reconstruction of shapes, using landmark
locations, as illustrated in Figure 2. An appropriate set of land-
marks can be defined as a set for which a linear reconstruc-
tion through the landmarks closely matches the original curve
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28N, LY (0)) = 0.8429

(8, LY(9)) = 0.0739

Figure 2. Poor (left) and good (right) linear reconstructions L, (6) (green) of B (blue), with squared reconstruction errors reported below. The landmarks 6 are shown as

red dots.

(as shown in the left panel); the likelihood should place high
probability on these configurations. More formally, we choose
reconstructions of the mth curve in the sample, B,,, via a linear
interpolation constructed by piecewise segments Ly, (t; 0;, 0;41)
passing through the landmarks. The expression for the linear

interpolator segment between 6; and 0;1; fori=1,...,k—1is
t—6;
Lin(6:,0i41) = | 1 — ———— | Bm(6))
Oir1 — 0

t—06;
+ (—l >,3m(9i+1), 0; <t <Oy
Oiv1 — 0
(3.1)

Note that Equation (3.1) only gives an expression for the seg-
ment between consecutive landmarks; this does not define the
entire interpolator. For open curves, the linear reconstructions
must additionally connect to 8,,(0) and B,,(1). Thus, two addi-
tional segments are required: (1) one connecting f,,(0) and
Bm(61), and (2) one connecting B, (0x) and B, (1). The expres-
sion for these segments is identical to Equation (3.1), treating
the starting point of these segments as 6; and ending point of
these segments as 0;11. For closed curves, 8,,(0) = B (1),s0 the
linear reconstruction must also be closed. This is guaranteed by
forming a segment connecting 8,,(6x) and B,,(01), again using
Equation (3.1). For the remainder of the article, we suppress the
input t and let L,,(6) be the full linear interpolator for the mth
curve, constructed by joining these piecewise linear segments.
We observe a random sample of M shapes B = (Bi1,...,
Bm) T, with corresponding SRVFs qpg,,...,qp,. Given land-
mark locations @, we obtain the SRVFs of their linear recon-

structions gz, ), - - - » q1,,(8)> and model the SRVFs gg,, . . ., gy,
of our shape data as follows
QB = qLp@®) +Em» m=1,..., M, (3.2)

where ¢ is a Gaussian process on D with zero mean function
and covariance function C. Since the SRVF is related to the
instantaneous velocity of the curve, it is reasonable to use a
Gaussian process, as both negative and positive values of g, —
qr,,0) are equally likely at each time (and one would not expect
a negative value to be more likely than a positive value). Thus,
the likelihood in terms of SRVFs is

A | 4Ln8)0 ~ GP (41,,6)> C) - (3.3)

C is a covariance function, chosen to reflect variability between
q8,, and qr,,(e). Since the likelihood is specified in terms of the
SRVFs rather than the original curves, spatial dependence is
difficult to model in the general case. Generalization of C to
incorporate this spatial dependence or desired smoothness is left
as future work.

3.1.1. Likelihood

For a curve B,, with reconstruction L,,(6), we first compute
the corresponding SRVFs gg,, and qr,,¢). Assume that gg, and
qr,.) are discretized using N points (call these discretization
points). The number of discretization points is typically large,
chosen externally, and assumed fixed in our model. We assume
that it is defined by the resolution of the imaging device (e.g.,
a magnetic resonance imaging scanner) used to capture the
shape of the object. Decreasing N can result in loss of shape
features, while increasing N may introduce additional noise.
More details on the choice of the number of discretization points
for simulated data is provided in the supplementary material.
We define the reconstruction error as

A, LY 0)) = [vec(qy,) —at e, (34)

where vec is the vectorize operator which forms a vector of size
2N by vertically stacking the x and y coordinates of the SRVFs, ||
is the Euclidean norm in RN, and the superscript (N) denotes
the given function discretized using N points. (In general, if we
are dealing with a d-dimensional curve, the vectorize operator
will form a vector of size dN.) A small value of d(ﬂ,(nN), Lfﬁ] ) 6))
indicates that the landmarks 6 yield an accurate reconstruction
of the mth curve, and the landmarks approximate the full object
well. Figure 2 shows two landmark-based linear reconstructions
of a simulated curve defined in Section 5; the left one results
in a large error, as chosen landmarks do not provide a faithful
reconstruction of the original curve. The right reconstruction is
visually much better, with a much smaller error.

Discretizing Equation (3.3), and choosing a covariance
matrix, we obtain,

(N) (N) (N) (N)
Vec(qﬂ1 — qu(()))’ . ,Vec(qﬂM — qLM(o))|0,K

iid 1
~ N(OZN) _IZN>> (35)
2K



wherex = 2%2 is a precision parameter. The likelihood function

for the data gV = (,BfN), R ﬂl(\fI\]))T is then given by

M
FB10.0 =7 My (Y- B, 1000

m=1

(3.6)

where d(ﬁ&N),Lfé\])(H)) is defined in Equation (3.4). For a
d-dimensional curve, the normal model is still appropriate,
where dN replaces 2N in the mean and covariance. Notice
that I.?> distance between SRVFs of curves is used, rather
than the IL? distance between coordinates of the curves. This
likelihood model is similar to that of Cheng, Dryden, and Huang
(2016) and Kurtek (2017), where it was used for registration of
functional data.

3.1.2. Priors

Next, we specify prior distributions on « and . Prior indepen-
dence is often a reasonable assumption when the relationship
between parameters is unknown a priori, for example, Bernardo
and Smith (2008), so that 7w (k,0) = 7 (k)7 (#). Because k is a
precision parameter (and a nuisance parameter), we choose a
prior that is conditionally conjugate under our normal model
(see, e.g., Gelman et al. 2004):

k ~ Gammal(a, b). (3.7)

Prior specification for # must enforce the ordering constraint
on its components. To simplify this task, we transform 6 to a
vector of consecutive differences between landmarks, denoted
by s. The dimension of s depends on whether we are detecting
landmark locations on open or closed curves. For open curves,
we define the components s; = 6,47 — i fori = 1,...,k — 1;
we set s = 607 and s = 1 — 0 (as the linear reconstruction is
required to pass through the start and endpoints of the curve),
and let s = (sg,$1,...,Sk), which is (k + 1)-dimensional. For
closed curves, the components are still defined as s; = 6,41 — 6;
fori = 1,...,k — 1; however, we let s = (6; — 6;) mod 1.
There is a one-to-one correspondence between 6 and s for
open curves; for closed curves, if a starting point along the
curve is designated, then a one-to-one correspondence is also
achieved. Thus, we proceed by using s, and then recover 6
for inferential purposes. For notational simplicity, any notation
which depends on 6 may also be written to depend on s instead
(ie., d(ﬂ,(nN),L,(qu) (#)) is equivalent to d(ﬁ,(nN),Lg) (s))). Notice
that ) ;s; = 1ands; > 0 for all i for both open and closed
curves, and by construction, s does not require the ordering
constraint on its components. Thus, a natural prior for s is the
Dirichlet distribution with concentration parameter o:

s ~ Dir(a1), (3.8)

where 1 is a vector of ones with dimension equal to k 4 1 for
open and k for closed curves.

One must also choose appropriate values of prior hyper-
parameters. In the case of k, we desire a diffuse prior to
reflect our prior uncertainty in landmark error precision; thus,
we select a = 1, b = 0.01. Another common choice for
precision parameters is to set a = b = € withe — 0

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

(Gelman et al. 2004). In Section 5.3, we show that this choice,
with € = 0.01, is appropriate. The hyperparameter for the prior
on s is chosen to favor landmarks which are equally spaced
to reflect our prior uncertainty about landmark locations.
Setting @ = 1 is equivalent to a uniform prior on the simplex
whose dimension is equal to the number of landmarks. This
class of priors is commonly used for modeling multinomial
distributions (Gelman et al. 2004).

3.1.3. Posterior

The density of the posterior distribution over landmark spacings
s given the data M) is denoted by 7 (s|B Ny The precision
parameter « is not of direct interest to us (since our goal is to

solely infer landmark locations), so we compute the marginal
likelihood,

FBMs) = / FBM s, k) () die
Ry
7~ NM[ (g + NM)b®
= a+NM’ (3.9)
I'(a) (b M @2ER, Ly (s)))
and use it to obtain the posterior density,
m(sIB™N) o fF(BN )7 (s). (3.10)

Note that if « is of interest to the researcher, then the algo-
rithm described in Section 3.2 can be implemented, with an
additional Gibbs step to sample from the full conditional of .
Posterior samples of s can be transformed to # for visualization,
as described in Section 3.1.2. As posterior functionals of interest
are not analytically tractable, inference will be based on approx-
imations computed from MCMC samples. Section 1 of the
supplementary material provides an alternative approach based
on importance sampling. While MCMC is more appropriate for
this model due to poor scaling of importance sampling with
respect to the number of curves and discretization size, impor-
tance sampling can still be useful for quick posterior estimation
of landmark location medians and maxima a posteriori (MAP).

3.2. Posterior Sampling via MCMC

In this section, we describe sampling strategies for obtaining
estimates when posterior functionals of interest are not available
analytically. For posterior inference on the locations of a fixed
number of landmarks, we use the random walk Metropolis
algorithm. We initialize the algorithm by sampling s!% from
7(s). The superscript |1 will denote the state of the Markov
chain at iteration ¢t. For a given MCMC iteration ¢, a proposal
vector of landmarks is generated by selecting the jth component
of the landmark vector 8 and applying a symmetric proposal
distribution A. In our implementation, h is a normal probability
density function with mean Gj[t] and variance v. This symmetric
proposal mechanism yields a proposed vector s*. The Metropo-
lis acceptance ratio is then defined as

el gy = TEBT) _ fEPsm(sn)

= = . 3.11
@) FE ey O



6 J. STRAIT, O. CHKREBTII, AND S. KURTEK

92 6

0,

63

02

Figure 3. Example of the identifiability issue encountered when detecting landmarks on closed curves. Our model deems these three landmark configurations as

equivalent.

The proposal s* is accepted with probability min{1, a(s!*], s*)}.
As this procedure only updates one parameter at a time, con-
vergence can require a large number of iterations; this is feasible
because the likelihood is easy to evaluate. The algorithm is mon-
itored for convergence, and approximate posterior samples are
obtained after a suitable burn-in period with a thinning step to
reduce autocorrelations. Convergence is assessed both visually
(monitoring trace plots, autocorrelations, and acceptance rates)
and via the Gelman-Rubin diagnostic (Gelman et al. 2004); see
Section 3 in the supplementary material for more details.

Care must be taken in selecting proposal mechanisms to
ensure that the Markov chain traverses the parameter space effi-
ciently; this is important in the specified model, as the posterior
can often be multimodal. In all cases, samples which violate
the ordering assumption of @ are automatically rejected; this is
evident in the specification of the prior on s. Care must also
be taken when dealing with closed curves: since there is no
designated start or endpoint, proposals must be allowed to wrap
around the circular curve domain. We discuss the implementa-
tion for closed curves in more detail in the next section.

3.3. Implementation for Closed Curves

The issue of identifiability arises when dealing with closed
curves since the circular domain has no natural start/endpoint.
Thus, we must find a point in the domain that can be identified
with ¢ = 0. Figure 3 illustrates this with k = 3 landmarks for a
half-circle; the reconstruction is invariant to how the landmarks
01, 61, 03 are labeled. This means that the model is exchangeable
with respect to the ordering of 8.

To address this issue, we designate a reference point with
parameter value 6y to be the point of maximal curvature on
the first shape in the sample. Then, we preprocess the entire
collection of curves as follows. We shift the order of points for
the first curve such that t = 0 is identified with 6y. Then,
all subsequent curves are aligned to the first curve by finding
the ordering of points which minimizes the SRVF distance to
the first curve. Note that this is not the same as a full reg-
istration step in the context of elastic shape analysis; instead,
we are systematically defining a starting point on each curve,
since it is not well-defined for a given sample of closed curves.
To visualize the posterior samples for closed curves, we post-
process them to lie on the rescaled unit circle by eliminating the
boundary between & = 0 and 6 = 1 as follows. We align all n
posterior samples according to the set of locations for the first
posterior sample ;. That is, for samples 0; for i = 2,...,n,
we compute the distance between corresponding components

j=1,...,kusing the circular metric dile;,6,) = min{|9i[]] —
07,107 — 1 —611,16"" + 1 — 6[}}. Then, we find the land-
mark ordering (using circular permutations) which minimizes
de;,0,) = Z}‘Zl di1(0;,0,). This alignment process is done
using the full configuration of #. We have found this procedure
to be robust to the choice of the first posterior sample based
on many simulations and real data examples. An alternative
approach is to jointly compute the posterior mean of all samples
while modding out by S!, which we will explore as future work.

4. Estimation of Number and Location of Landmarks

Addressing how many landmarks to select on a given set of
curves is a complex task and is akin to a model selection problem
found in many facets of statistics, where “the number of things
you don’t know is one of the things you don’t know” (Richardson
and Green 1997). There are generally two ways in which statis-
ticians approach this problem. One way is to develop a criterion
which must be optimized while making sure to not “overfit”
the model. The other is to treat the number of parameters as
unknown and infer it from the data. In this section, we discuss
two such approaches for selecting k, the number of landmarks.

4.1. Distance-Based Criterion

The criterion-based method for selecting k is borrowed from
dimension reduction problems for high-dimensional data. One
example of this is principal component analysis (PCA); it forms
a much lower-dimensional space of uncorrelated modes of
variation, which are first ordered by proportion of variability
explained. The number of components is selected by choosing a
cut-off where, at a certain point, the percentage of variation
begins to “level off, as including additional components
becomes unnecessary. Typically, the number of components
selected is chosen based on the “elbow” of the plot of percent
variation versus the number of components (known as a scree
plot).

We use a similar approach to choose the number of land-
marks k. For each value of k considered, we draw posterior sam-
ples@y,...,0, (nis the posterior sample size of #, each of which
is a k-dimensional vector). For a posterior sample indexed by

i, we form the linear reconstructions L(lzi\]), ces L%) (for the M
curves in the data) and compute the average cumulative squared

distance di = % i Z%I:l d? (ﬁ,(nN),L%) (s)). We repeat this
procedure for multiple values of k and plot the resulting d2; we

expect d? to decrease as k increases, since linear reconstructions



improve as the number of landmarks increases. Then, k can be
chosen at the “elbow” of this curve, which is the point at which
including additional landmarks does not lead to a substantial
reduction in reconstruction errors.

The distance criterion is intuitive, but is not without issues.
The goal of building this model is to automatically select the
number of landmarks without any manual selection. Using a
plot of d} requires the user to identify the “elbow;” and select that
value as the desired number of landmarks. This choice may not
always be immediately obvious; it certainly could be automated,
but this could lead to faulty conclusions (e.g., the right panel of
Figure 6). It also leaves the user unable to quantify uncertainty
in choosing k, and requires performing the analysis many times
with different values of k, which is computationally demanding.
Thus, it may instead be better to let k be unknown and build it
into the Bayesian model.

4.2. Extension of the Landmark Detection Model to
Unknown k

Unknown k is considered by conditionally specifying an
additional level in the Bayesian hierarchical model. The
likelihood, now g (N)|s, k, is identical to the likelihood B (N)|s
in Section 3.1.1 (after marginalizing over the prior on «, which
is assumed independent of k). The prior on the locations s and
their number k is specified as

(s, k) = w(s|k)m (k). (4.1)

The prior s|k still follows a Dirichlet distribution (as described
in Section 3.1.2), where the dimension of the concentration
parameter vector depends on k. We must specify a prior on
k as well. Note that for open curves, k > 1 (to get a valid
reconstruction); however, for closed curves, there is no start or
endpoint, so k > 3. To account for this, we choose as the prior
for k a shifted Poisson distribution: we assume k = v + 1 and
k = v + 3 for open and closed curves, respectively. Then, the
prior on v is given by

v ~ Poisson(}). (4.2)

We justify the use of an informative Poisson prior by reminding
the reader that our goal is to select a fairly low-dimensional
landmark set; by setting A to be small, this prior places high
mass on small values of k. The shift guarantees that prior prob-
abilities are greater than zero for the appropriate values of k
only. Selection of A is an interesting and difficult problem. We
view A as a regularization parameter. Because the likelihood
only depends on reconstruction error, adding more landmarks
will generally strengthen the likelihood relative to the prior.
Thus, to avoid overfitting, the prior on k can be chosen to place
most of its mass very close to zero to penalize choosing high
values of k. Varying A will therefore yield a path of posterior
probability distributions; the dependence of posterior inference
on the choice of A is shown in Section 5.4.

4.3. Posterior Sampling Using Reversible Jump MCMC

Treating k as unknown complicates posterior inference on
s, k|B ) due to the dependence of the dimensionality of s on k:
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different values of k result in a different number of landmark
location parameters to infer. Standard MCMC methods are
defined on parameter spaces of fixed dimension. Dependent
proposals between parameter spaces of different dimension
k can be made via reversible jump MCMC (Green 1995;
Richardson and Green 1997; Grenander and Miller 1994,
referred to as RIMCMC). This type of procedure is commonly
used in model selection problems, where one wants to infer
model parameters as well as their number. In particular, the
birth—death form of RIMCMC proposes a new parameter vector
by first randomly choosing to increase the dimension of the
parameter space by one (a birth), decrease the dimension by one
(a death), or keep the dimension the same (a stay). In the case
of a birth, a new component is added to the model according
to a chosen distribution. Similarly, a component is “killed”
through random selection. This extra step of selecting a move
type and developing the proposal based on the selected move
is accounted for in the acceptance probability of a proposal.
Section 2 of the supplementary material provides a detailed
RJMCMC procedure for the proposed automatic landmark
detection model.

5. Model Assessments via Simulations
5.1. Detection of a Fixed Number of Landmarks

To test various properties of the proposed model, we construct a
simple shape based on a sine curve with well-defined peaks and
valleys. Consider the curve (t) = [t, sin(47)]’, t € [0,1],
with two peaks and two valleys, each of which appear to be
optimal locations for landmark placement due to low recon-
struction error, yielding a total of k = 4 landmarks. We first
begin by drawing posterior samples under the fixed k = 4 model
with N = 200 discretization points. We use the random walk
Metropolis algorithm as described in Section 3.2, specifying
a =1, b = 0.01 in the prior for x, « = 1 in the prior for s, and
proposal variance v = 0.02. The chain is run for 10° iterations;
the first 10% is discarded as burn-in, and the remaining sample
is thinned by 100 to reduce autocorrelations. Trace plots used to
diagnose convergence for this example are shown in Section 3
of the supplementary material; a table of the Gelman-Rubin
diagnostic is also included, suggesting convergence with values
close to one. A discussion of choice of N for simulated data,
which in principle can be constructed at any resolution, is given
in Section 4 of the supplementary material. Computing time was
1811.8 sec (MATLAB R2017b on ASUS F555UA-EH71 laptop
with 8 GB RAM and Intel Core i7 processor).

The top left panel of Figure 4 shows the original curve with
samples from the marginal posteriors of landmark locations
plotted on top. The posterior samples from 6|8™N) obtained
using our model coincide with the peaks and valleys of 8 as
expected. Posterior uncertainty for each landmark is illustrated
in the density plots in the bottom of Figure 4. Each density is
fairly concentrated, indicating high confidence in identifying
the four landmark locations. Standard posterior summaries can
also be computed for 6. The top right panel of Figure 4 shows the
mean, median, MAP, and 95% credible intervals for each com-
ponent of #. The mean and median are very similar; the MAP
estimate is a little bit different, due to the complex dependencies
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Mean: 8 = (0.1255,0.3758, 0.6242, 0.8745)

Median: med(8) = (0.1256, 0.3762, 0.6238, 0.8745)

MAP: 0)4p = (0.1233,0.3748,0.6207, 0.8721)

Figure 4. Top: Curve § with posterior sample of landmark locations (left, red = 1, yellow = 2, purple = 3, green = 4) and posterior landmark summaries (right, circle = mean,
asterisk = median, diamond = MAP, squares = 95% credible interval). Bottom: Density plots of marginal posterior samples 9,-|ﬂ(N), i=1,...,4, and table with posterior

summaries of 6.

in the landmark locations. The 95% credible intervals are
narrow and disjoint, indicating precisely estimated landmark
locations.

5.2. Model Invariance to Shape-Preserving
Transformations

It is important to check that our inference in Section 5.1 is
invariant to shape-preserving transformations, which include
translation, scaling, and rotation; reparameterization is not con-
sidered here, as the given curves are always sampled using arc-
length due to the population homogeneity assumption. Our
models are automatically invariant to translations due to the
model’s dependence on the SRVF only, which is translation
invariant as it is defined using the derivative of 8. A rescaling of
the curve should also result in no change to inference, as curves
are preprocessed to have unit length. Figure 5 confirms this for
scaled by a factor of two; the resulting marginal posteriors look
extremely similar to those of the original curve. The invariance
to rotations is not immediately obvious. In Figure 5, we also
demonstrate inference on a version of the original curve 8 which
was rotated by 45° counter-clockwise. The marginal posteri-
ors again appear to coincide with the original densities, and
landmarks are located at the peaks and valleys as before. These
experiments were conducted under the same settings as the
example in Figure 4 and demonstrate that the proposed Bayesian
model is invariant to shape-preserving transformations.

5.3. Sensitivity Analysis to Choice of Hyperparameters

As with any Bayesian analysis, studying the sensitivity of
inference to the choice of hyperparameters is an important

consideration. We assess the impact of hyperparameters a
and b for the prior on the nuisance parameter x. These two
hyperparameters play prominent roles in the marginalized
likelihood of B™). Our goal is to select priors that are weakly
informative. In particular, since a is absorbed into an exponent
in f(B M|s) (which involves the number of points N and the
number of curves M), as long as a is chosen to be small relative
to NM, the posterior is not sensitive to changes in this parameter.
However, the choice of b is more impactful, as large values of b
will tend to dominate the linear reconstruction error term; this
will result in a flattening of the posterior and greater variability
in inference of §|8™).

Table 1 shows marginal 95% posterior credible intervals of
the components of 8 for the example described in Section 5.1
under different prior hyperparameter settings (as compared to
the original setting of a = 1, b = 0.01). As expected, the
intervals remain very similar when a is changed. In a similar
tashion, as b is decreased toward 0, the credible intervals change
very little from the ones obtained under the original setting.
However, as b is increased, the prior becomes more informative.
This increases the variance in the posterior and results in wider
credible intervals for landmark locations. Nonetheless, as is
evident in this table, our overall inference is robust to the choice
of hyperparameters a and b.

5.4. Inference of Number and Location of Landmarks

In Section 5.1, we assumed k = 4 based on the number of
significant features of 8. However, it may be ideal to use fewer
or more landmarks based on the reconstruction error. First, we
select k using the distance criterion defined in Section 4.1. The
left panel of Figure 6 shows the plot of the average cumulative
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Figure 5. Left: Rescaled and rotated versions of B with posterior sample of landmark locations (red = 1, yellow = 2, purple = 3, green = 4). Right: Density plots of marginal
posterior samples 9,~|/3(N), i=1,...,4

Table 1. 95% credible intervals for 8|8") under different choices of prior hyper-
parameters for «, for the simulated curve example in Section 5.1.

a b 6 6y 03 on
1 0.01 (0.1215,0.1280) (0.3699,0.3792) (0.6208,0.6297) (0.8720,0.8781)
0.01 0.01 (0.1217,0.1280) (0.3700,0.3793) (0.6208,0.6300) (0.8720,0.8782)
0.1 0.01 (0.1219,0.1280) (0.3699,0.3793) (0.6208,0.6301) (0.8720,0.8780)
3 0.01 (0.1227,0.1280) (0.3699,0.3792) (0.6208,0.6300) (0.8720,0.8782)
5 0.01 (0.1226,0.1280) (0.3700,0.3792) (0.6208,0.6301) (0.8720,0.8776)
1 0.0001 (0.1231,0.1280) (0.3700,0.3793) (0.6208,0.6300) (0.8720,0.8769)
1 0.001 (0.1230,0.1280) (0.3700,0.3792) (0.6208,0.6300) (0.8720,0.8769)
1 0.1 (0.1190,0.1302) (0.3697,0.3793) (0.6208,0.6303) (0.8697,0.8810)
1

(0.1124,0.1377)

(0.3629,0.3876)

(0.6123,0.6381)

(0.8621,0.8882)

squared distance (di) as a function of k for k = 1,...,10; we
used 100,000 iterations of MCMC with a = 1, b = 0.01,
and N = 100 to generate posterior samples for each value of
k. As expected, d,zc decreases as k increases due to the reduced
reconstruction error. However, at k = 4, we observe a clear
“elbow” after which the marginal utility of adding additional
landmarks is diminished. Thus, it would appear reasonable
to select k 4 based on this criterion. However, as stated
earlier, this process requires the user to identify this point on
the curve, which may not always be obvious, and removes the
automation in landmark detection. Computing time for this
particular example was 1238.8 sec, using parallel computing for
the MCMC chains run for all of the values of k considered;
one would expect greater computational cost for more complex
shapes, where it may be necessary to consider more than k = 10
landmarks.

Next, we treat k as a parameter and infer it using RIMCMC
with the conditional model given in Section 4.3. We use Algo-
rithm 1 (see Section 2 in the supplementary material) with the
concentration parameter « = 1 for the prior on s. We select
v = 0.02 for the variance of the normal proposal in the “Stay”
step, and seta = 1, b = 0.01 for the prior on «. Again, N = 100
discretization points are used. As stated in Section 4.2, varying A
(the prior parameter for k) changes the magnitude of the penalty
on k. Thus, we present a path of posterior solutions for different
values of 1, as listed in Figure 7. After running the algorithm for
100,000 iterations, we discard the first 10,000 iterations as burn-
in, and take every 100th iteration to reduce autocorrelation and
form the approximate posterior distribution. Convergence is
diagnosed by monitoring acceptance rates, the log posterior, and
examining trace plots of the parameters given values of k. The
top panel of Figure 7 shows posterior histograms for k| for
the different settings of A. Computation time here was 462.0 sec
with the same software and hardware, which is much shorter
than the corresponding inference using the distance criterion.

As expected, as A increases, the penalty for large values of k
diminishes, and thus the posterior of k| is shifted toward
higher values. Note that A = 107 yields a posterior mode
which is consistent with the k obtained using the criterion-
based approach. Posteriors with larger values of k tend to exhibit
greater variability as well, since even miniscule differences in lin-
ear reconstruction error are rewarded when X is not extremely
small. Thus, controlling A allows the user to select how detailed
these linear reconstructions need to be to represent the given
data: large A will favor reconstructions which capture the major-
ity of the high curvature points (i.e., small-scale details), while
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Figure 6. Plot of average cumulative squared distance versus k using MCMC sampling for the simulated curve from Section 5.1 (left) and the deer from Section 6.1 (right).
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Figure 7. Inference on the number of landmarks and their locations for the example in Section 5.1. Top: Histograms of samples ofkl,B(N) for different settings of 1. Bottom:
Conditional on the mode of the posterior of k, linear reconstructions (green) of 8 (blue) based on the mean configuration (red) under different values of A.
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Figure 8. Left: Curves B, ..
618N, i=1,...,4

small A aims for reconstructions which are more parsimonious
and ignore smaller details of the shape. The magnitude of A is
dependent on the number of discretization points N and the
sample size M; higher values of N or M require a “stricter”
regularization (i.e., A must be made much smaller to penalize
the likelihood). This is shown in the bottom panel of Figure 7.
Here, linear reconstructions of B are shown for values of k
which exhibit high posterior probability under various settings
of 1. The displayed reconstructions are formed from the pos-
terior mean of 0|8 for the particular value of k. Notice that
additional landmarks are placed around the detailed peaks and
valleys, which are more crucial to the linear reconstruction than
the other parts of §.

5.5. Inference Based on Multiple Curves

Most problems of landmark detection involve multiple curves;
since the proposed model was specified for a general sample
size M, this extension is simple. Consider a collection of M =
5 curves with N = 200 discretization points, each of which
has two peaks and two valleys, but now with different heights:
Bm(t) = [t, msin(4nt)]T, t € [0,1], m = 1,...,5. Our goal
is to infer the locations of k = 4 landmarks as in Section 5.1.
This set of landmarks is simultaneously inferred using the full

., Bs with posterior sample of landmark locations (magenta = 1, black = 2, red = 3, green = 4). Right: Density plots of posterior samples

set of five curves assuming independence across curves. The
peaks and valleys in this random sample of curves occur at
the same locations along each curve. Thus, we expect improved
inference of landmark locations (i.e., a more precise estimation
of landmarks) as compared to that in Section 5.1. However,
this is not immediately obvious, because while the number of
curves increased from the previous example, the cumulative
linear reconstruction error will also increase. The proposal h
(see Section 3.2) is chosen to be a normal density centered
at the previous value of the chosen component with variance
v = 0.02. We obtain 10° dependent samples via MCMC, and
the approximate posterior is again formed by discarding the
first 100,000 iterations for burn-in and thinning by every 100
iterations. Figure 8 shows the posterior sample of landmark
locations plotted on all five curves, and density estimates for 6.
These distributions are slightly more concentrated than those in
Figure 4 as a result of the increased sample size.

6. Computer Vision and Medical Imaging Applications
6.1. Complex Shapes in Computer Vision

We present several examples of posterior landmark inference
applied to complex shapes from the well-known MPEG-7



Figure 9. Posterior 95% credible intervals for landmarks on the bird (left) and bone
(right). Colors for each component of # are red = 1, yellow = 2, purple = 3, green =
4, blue =5.

benchmark (http://www.dabi.temple.edu/~shape/ MPEG7/data
set.html) computer vision. All of the examples involve closed
curves; thus, we perform the pre and postprocessing steps
described in Section 3.3.

The left panel of Figure 9 shows the outline of a bird, which
contains features at different scales. The area around the feet
complicates linear reconstructions using small landmark sets.
We select k = 5 with the same MCMC settings as in Section 5.1,
except with proposal variance v = 0.04. The 95% credible
intervals are shown on the bird’s outline. These intervals are
very narrow in general and appear to capture the extreme points
of the outline which help minimize the reconstruction error.
Notice that the beak, which is an important feature but quite
isolated from the other prominent features, has a very narrow
credible interval. Clearly, this is an important structure that
must be captured by the landmarks. The right panel of Figure 9
shows the credible intervals for a bone shape with k = 4.
The credible intervals are again quite narrow, indicating that
the four extreme points of the bone will yield a good linear
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reconstruction of the object. In this example, placing additional
landmarks at the high absolute curvature points on the bone
may be beneficial.

The MPEG-7 dataset features M = 20 observations of each
type of shape. To examine joint inference for multiple shapes, we
take a further look at posterior samples drawn for M = 20 bones
with k = 4 landmarks. Figure 10 shows posterior landmark
locations on the extrinsic mean (cross-sectional average at each
of the N discretization points) of the 20 bones, as well as on each
individual bone. Notice that the model still captures landmarks
at the high absolute curvature points of the bone, even when
there are abnormalities within an individual bone structure.

An interesting example to consider is the introduction of
a second shape to joint posterior inference, where the second
shape has a fairly different structure. Consider Figure 11; on
the left are posterior locations of k = 4 landmarks on one half
circle (i.e., M = 1). Notice the low variability in the landmarks
on the base, and higher variability in landmarks on the curved
portion of the shape, reflecting the difficulty of constructing a
linear reconstruction which captures the shape’s curvature. We
introduce a second half circle with a large portion of the right
side “missing;” and perform posterior sampling with M = 2.
This is shown in the right panel of the figure; clearly, the infer-
ence of the landmarks on the top portion of the shapes changes
drastically. In particular, landmark 2 (yellow) shifts locations as
compared to the left panel, and exhibits much lower variability.
This is due to the large amount of curvature that occurs in the
newly introduced shape, which forces a linear reconstruction to
capture that particular feature.

For shapes which are even more complex, selecting the num-
ber of landmarks is not trivial. For the deer in Figure 12, the
legs and antlers make it difficult for the researcher to select an
appropriate number of landmarks heuristically; thus, it makes
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Figure 10. Posterior landmark locations plotted on the extrinsic sample mean of the 20 bones (left) and each individual bone (right); red = 1, yellow = 2, purple = 3,

green =4,

M=1
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Figure 11. Posterior landmark inference for one (left) and two (right) half circles (k = 4). Note the change in inference for landmark 2; red = 1, yellow = 2, purple = 3,

green =4,


http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html

12 (&) J.STRAIT, O.CHKREBTI|, AND S. KURTEK

A = 0.00001

A =0.0001

A =0.001

1 0.6

=
Y

Probability
Probability

=
ha

Probability

Figure 12. Top: Histograms of samples of k\ﬁ(N) for different settings of A. Bottom: Conditional on the mode of the posterior of k, linear reconstructions (green) of 8 (blue)

based on the median configuration (red) under different values of A.

sense to assume k as unknown. We first attempt to estimate k
for the deer outline using the distance criterion from Section 4.1;
the result is shown in the right panel of Figure 6. While in the
simulated open curve example there was a discernible point
for which there was no benefit to adding more landmarks,
there does not seem to be such a clear distinction in this case,
even as we increase the number of landmarks to more than
15. As mentioned previously, this can happen, particularly with
complex objects, because it is not as clear where, or how many,
landmarks should be selected. This plot will begin to level off,
as increasing the number of landmarks will certainly improve
the linear reconstruction; it is possible that the “elbow” point
has simply not occurred yet when k = 18. Computationally,
this is extremely inefficient, and thus, it may make more sense to
proceed with this problem by estimating k within the Bayesian
model.

Next, we use RIMCMC to estimate the number of landmarks
k on the deer example witho = 1, v = 0.05, a = 1l,and b =
0.01. As in the example in Section 5.4, Figure 12 shows posterior
summaries of k| ) for different values of A, which again acts as
a regularizer. As expected, increasing A shifts the marginal pos-
terior of k to higher values and rewards better reconstructions
over sufficiently small values of k. Linear reconstructions for the
median configuration of landmarks are also shown in Figure 12.
Notice that all three of the landmark configurations capture
important features of the deer outline. In fact, our approach
allows the user to control the number of landmarks selected on
the shape of interest through an appropriate choice of A. For
complex shapes, such as the deer example given here, it may
be beneficial to select more landmarks; on the other hand, for
simpler shapes like the bone, a few landmarks are sufficient.

6.2. Mice Vertebrae

Anatomy is a useful application of automatic landmark detec-
tion, as existing approaches usually rely on expert knowledge.

The second thoracic mice vertebrae exhibit differences in shape
and size when mice are controlled for diet. In this section, we
use data obtained from the R “shapes” package, as described
in Dryden and Mardia (2016). Refer to Figure 3 of Strait et al.
(2017) for a description of the anatomy of a mouse vertebra.
Also, each data curve is sampled with the given N = 61
discretization points.

We begin by analyzing a single mouse vertebra; the outline
appears to have four distinct landmark locations (corresponding
to the neural spine, centrum, and transverse processes), so we
assume k = 4 and proceed with the fixed k model. Once again,
we perform random walk Metropolis, using the same settings as
in Section 5.1. The resulting posterior summaries are shown in
Figure 13. Notice that the 95% credible interval is quite narrow
for estimating all of the landmarks, which appear to correspond
to the anatomical meaningful neural spine, centrum, and trans-
verse processes.

To see the impact of increased sample size on posterior
inference, we also show results for M = 4 closed curves of mice
vertebrae outlines. We use 10° iterations of MCMC with appro-
priate burn-in and thinning, and the same model parameters as
in the M = 1 case. The posterior landmark sample locations are
plotted on the right side of Figure 13. Notice that, similarly to
the simulated example in Section 5.5, the variability in landmark
locations is smaller when inference is based on M = 4 mice
vertebrae rather than one; this is due to the dependence of the
likelihood on the sum of reconstruction errors over all curves
in the data. The estimated landmark locations appear to identify
the four natural landmarks of the vertebrae as before.

This particular dataset features mice controlled for diet. We
now examine posterior landmark locations for the full sample
size (M = 30) of vertebrae from a subpopulation of mice
which were not genetically selected for a large or small body
weight (i.e., a control group of mice). We use the same MCMC
settings as above (except with 10° iterations) and show the
results in Figure 14. Due to the large number of samples, we
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Figure 13. Left: Mouse vertebra with the posterior mean, median and 95% credible intervals of 0|/3(N) (red = 1, yellow = 2, purple = 3, green = 4; circle = mean,
asterisk = median, diamond = MAP, squares = 95% credible interval). Right: Posterior sample landmark locations for M = 4 mice vertebrae.
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Figure 14. Left: Extrinsic mean curve B for 30 control mice with posterior samples of landmark locations (red = 1, yellow = 2, purple = 3, green = 4). Right: Density plots

of marginal posterior samples 9,-|;3(N), i=1,...,4

show a plot of landmark locations on the extrinsic mean § of the
sample of 30 curves {B1, ..., B30}. As expected, landmarks are
again identified at the same locations. Density plots of posterior
samples are also shown in the figure.

6.3. Brain Substructures From Magnetic Resonance Image
Slice

As mentioned in Section 1, a particular motivation for auto-
mated landmark detection arises in the field of medical imag-
ing. Doctors are often required to manually annotate images
of anatomical structures with important landmarks, which is
tedious, subjective, and prone to human error. In this section,
we apply our model to four different substructures (caudate,
hippocampus, putamen, and thalamus) extracted from brain
magnetic resonance images (MRI) of 10 different subjects. An
example of a subject’s original MRI slice, as well as outlines of
substructures associated with all 10 subjects can be found in
Kerr, Kurtek, and Srivastava (2011).

Figure 15 shows posterior landmark locations for the four
substructures applied across the sample of M = 10 subjects;
each observation was sampled with N 50 points, which
provided a fine resolution for landmark inference. We choose to
demonstrate inference for fixed k, where k = 3 for the caudate,
k = 4 for the hippocampus and thalmus, and k = 5 for the
more structurally complex putamen. We ran MCMC for 10°
iterations for each substructure, using a proposal variance of
v = 0.02; the first 100,000 iterations were discarded for burn-in,

and the remaining sample was thinned by every 100 iterations.
Note the similar amount of variability for all landmarks in both
the caudate and hippocampus. The putamen is interesting; with
high posterior probability, three landmarks (yellow, purple, and
green) are placed at the top of the structure and one landmark
(red) is placed at the bottom. However, the blue landmark
exhibits more variability, as it does not appear to be as necessary
to the linear reconstruction as the other four landmarks. This
procedure allows for automatic annotation of landmarks that
doctors may otherwise be forced to do manually.

7. Discussion and Future Work

We defined a Bayesian model for inference of landmark
locations given a random sample of shapes drawn from a
homogeneous population. The benefits of this model include
the ability to obtain automatic estimates of landmark locations
along with measures of uncertainty, thereby eliminating the
need for a researcher to manually annotate important features
on shapes. We propose a hierarchical model for both the fixed-
landmark and variable-landmark settings and describe methods
for approximate sampling from the associated posterior
distributions. In the variable dimension landmark setting,
we discuss the impact of the regularization parameter A on
posterior inference on the number of landmarks k.

One challenge in our framework is the choice of the parame-
ter A in the prior distribution for the number of landmarks k in
Section 4.2. As discussed and illustrated using various examples,
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Figure 15. Posterior sample of landmarks (red = 1, yellow = 2, purple = 3, green = 4, blue = 5) plotted on the extrinsic sample mean of each substructure (left) and

individually (right).

A can be chosen to regularize the number of landmarks k; low
A typically results in the posterior for k concentrating around
small values, and increasing X yields a path of posterior prob-
ability distributions. The choice of A, however, is not intuitive.
One could potentially add a hyperprior on A and infer this
quantity; however, this is a subjective choice, and may not solve
the issue. For the purpose of this problem, we desire a small
number of landmarks, and so large prior mass on low values of
A would be reasonable. One could also try to infer A through
some other quantity (e.g., curvature), or even perhaps through
cross-validation; reconciliation of the choice of A is left as future
work.

In this article, we present an approach to infer landmarks
for two-dimensional curves; however, as briefly discussed in
Section 3.1.1, this model can be easily extended to curves in any
dimension. Additionally, similar ideas can be used to develop

a Bayesian model for landmark inference on surfaces. Surfaces
present new challenges for a variety of reasons. First, landmarks
can be points, curves, or potentially even subsurfaces in this
setting. Thus, the definition of a “linear reconstruction” no
longer applies and a new measure must be developed; defining
an appropriate type of reconstruction which fits the data well
is a difficult problem. However, if one were to take a similar
approach to the work presented here, one simplification arises
in prior specification: the landmark points are no longer order-
constrained on two- or higher-dimensional domains. Thus, the
prior distribution can be placed without adjusting for this order-
ing constraint (e.g., a uniform distribution over the domain
would be sufficient). While this simplification happens for land-
mark points, it is unclear at this stage how one could construct
appropriate priors for landmark curves or subsurfaces. We leave
this exciting problem for future work.



Another extension of the proposed approach is to consider
heterogeneous shape populations. In the multiple curve case,
introducing heterogeneity complicates inference, as values of
6 may not necessarily correspond to the same feature across
the sample of shapes, especially in the presence of large elastic
variability or missing parts. This can be resolved by finding
the optimal groupwise registration prior to landmark inference.
This can be treated as a preprocessing step with direct appli-
cation of methods discussed in Srivastava et al. (2011) and
Kurtek et al. (2012). However, incorporating registration into
the Bayesian model by conditioning on a registration function,
which respects landmark locations, seems more appropriate.
Cheng, Dryden, and Huang (2016) discuss a Bayesian method of
function and curve registration without landmarks, which could
be extended to include different types of landmark constraints
for this purpose.

The last few directions for future work consider our current
implementation of MCMC. First, we will explore more efficient
posterior sampling strategies. Due to the high-dimensionality
of the landmark detection problem, combined with the intri-
cate geometric details of the objects under study, our current
MCMC implementation based on component-wise proposals
can sometimes make it challenging to explore multimodal pos-
teriors. Other MCMC schemes, designed to more efficiently tra-
verse multimodal posteriors, may be required for more complex
shapes. Second, we will further explore different choices for
model specification, including the choice of priors and hyperpa-
rameters. Finally, we will address the problem of how to evaluate
posterior landmark estimates. In several examples, we have cal-
culated the mean, median, and MAP estimates. The mean and
median are found marginally for each landmark location, and
thus do not account for posterior landmark dependencies; on
the other hand, the MAP estimator does. Studying suitability of
these estimators for shape analysis problems could be important
for automatic landmark detection; this is a problem of Bayesian
decision theory.

Supplementary Materials

The supplementary materials include additional discussion of important
Bayesian modeling issues (e.g., with posterior sampling and diagnosis
of Markov chain Monte Carlo convergence), as well as a more in-depth
overview of issues associated with discretization. Extra examples are also
illustrated. Additionally, code for implementation, as well as the simulated
data of Section 5, are available online.
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