

Effects of Post-Pyrolysis Air Oxidation on the Chemical Composition of Biomass Chars Investigated by Solid-State Nuclear Magnetic Resonance Spectroscopy

Xiaoyan Cao¹, Feng Xiao², Pu Duan¹, Joseph J. Pignatello³, Jingdong Mao⁴, Klaus Schmidt-

Rohr^{1,*}

¹ Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States

² Department of Civil Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States

³ Department of Environmental Sciences, The Connecticut Agricultural Experimental Station, New Haven, Connecticut 06511, United States

12 ⁴Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd,
13 Norfolk, Virginia 23529, United States

Submitted to *Carbon*

Revised June 30, 2019

22 *Corresponding author. Tel: 781 736-2520. E-mail: srohr@brandeis.edu (Klaus Schmidt-Rohr)

23 **Abstract**

24 Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to characterize the
25 chemical changes induced by thermal air oxidation of biomass chars. Post-pyrolysis air oxidation
26 (PPAO) was applied to anoxically-prepared maple wood and pecan shell chars at PPAO
27 temperatures ranging from 300 to 600 °C for up to 40 min. The ¹³C NMR data showed that
28 PPAO treatment introduced oxygen functionalities into aromatic rings, primarily C-O and C=O,
29 but also carboxyl groups (COO) identified after spectral editing. The concentration of COO was
30 relatively low (<3% of all C), consistent with potentiometric titration, and reached a discernable
31 maximum slightly above 300 °C. The COO enhancement from PPAO was lower than observed
32 after wet-chemical oxidation with HNO₃ or ammonium persulfate. Concentrations of the C-O
33 and C=O groups reached a maximum at PPAO temperatures between 350 and 400 °C, and
34 decreased at higher temperatures. These oxygen-containing functional groups were shown to
35 generally increase with increasing PPAO time. Insight into the types and concentrations of
36 oxygen functional groups induced by exposure of biomass chars to hot air has major implications
37 for an understanding of the interaction of char with nutrients, natural organic matter, pollutants,
38 and microbes, as well as electron transfer processes in soil.

39

40

1. INTRODUCTION

42 Chars are the carbonaceous products of incomplete combustion or pyrolysis of biomass and play
43 a significant role in the global carbon cycle. They are ubiquitous in soil as a result of wildfires,
44 land clearing, and crop-residue burning.[1-4] Oxidized chars contribute up to 80% of soil organic
45 carbon in Amazonian Terra Preta soils, and 40-50% in dark, fertile Midwest prairie soils of the
46 United States.[1, 5]. Their carboxylate (COO⁻) groups can account for most of the cation
47 exchange capacity of these soils.[5] The incorporation of fresh char produced by anoxic
48 pyrolysis of biomass (“biochar”) into soil has attracted attention in the agricultural and
49 environmental communities for its potentially beneficial effects, such as carbon sequestration,
50 improved soil fertility,[6, 7] suppression of nitrous oxide emissions,[8] and reduction in the
51 mobility and bioavailability of chemical contaminants.[9]

52 The surface chemistry and pore characteristics of chars essential to their functions are affected
53 by the biomass precursor materials [10] and, more importantly, the conditions (temperature–time
54 heating profile) under which they are formed, produced, or weathered.[11-14] An important but
55 less studied pyrolysis condition is ambient O₂ gas concentration.[15] Although fire-derived chars
56 are typically exposed to a wide range of O₂ concentrations during their formation, engineered
57 chars are generally produced from pyrolysis during which air is only occasionally introduced to
58 the reactor to supplement energy input[16] or cool the reactor.[17] A few studies have reported
59 the effects of thermal air oxidation (AO) after pyrolysis on the physical-chemical and adsorptive
60 properties of chars. For instance, thermal AO has been considered as a step in the preparation of
61 activated carbons from coal or nut shells[18-20], expanding pores and increasing surface area. It
62 has also been shown to increase surface oxygen functionality, such as phenolic, carboxyl, and
63 carbonyl groups.[21-24] Recent studies have shown that post-pyrolysis AO (PPAO) enhances the

64 adsorptive properties of biomass chars,[23, 24] possibly by removing pore wall matter and/or
65 tarry deposits from pores (“reaming”) or by creation of new acidic functionality for specific
66 adsorptive sites.

67 Despite the potential benefits of thermal AO on adsorptive properties, the underlying
68 chemical changes induced by oxidation are not well understood. For instance, characterization of
69 the surface chemistry of air oxidized chars has mostly relied on X-ray photoelectron
70 spectroscopy (XPS), Boehm titration, and Fourier transform infrared (FT-IR) spectroscopy,[21-
71 24] which provide neither quantitative nor definitive information on oxygen-containing
72 functional groups in chars. XPS of chars typically shows only one or two resolved peaks,[25] has
73 an unresolved nonlinear baseline,[26] and cannot reliably quantify the composition of the whole
74 sample since it probes merely the top few tens of nanometers of the sample. Solid-state nuclear
75 magnetic resonance (NMR) spectroscopy is a powerful technique for characterizing chars
76 because it is non-destructive and can provide comprehensive and quantitative composition
77 information for the whole sample. Specifically, ^{13}C NMR spectroscopy can distinguish and
78 quantify oxygen-containing functional group composition with respect to phenols/ethers,
79 carboxyls/esters,[5] ketones/quinones, and aldehydes. NMR, unlike many other spectroscopies,
80 is intrinsically quantitative and achieves small uncertainties of $\pm 0.5\%$ of the total spectral area
81 for peaks accounting for $\sim 10\%$ of the spectrum if direct polarization (DP) or multiple cross
82 polarization (multiCP) is used with appropriate relaxation delays.[27, 28] The average fused ring
83 size can also be estimated.[29] In the present study, we apply solid-state NMR spectroscopy to
84 determine and quantify the chemical changes of biomass chars induced by PPAO. The air-
85 oxidized char structure is compared with that of wet-chemically oxidized chars and with that of

86 natural oxidized char residues in soils. The effects of feedstock and of air oxidation temperature
87 and duration are also investigated.

88

89 **2. EXPERIMENTAL**

90 **2.1. Char Production and Oxidation**

91 Maple wood char (MC) was prepared by heating wood shavings to 400 °C in a flow of N₂ (1.5
92 L/min) and holding them at 400 °C for 2 h. Pecan shell char (PC) was made anoxically from
93 crushed shells at 400 °C and provided by the United States Department of Agriculture
94 (USDA)–Agricultural Research Service (ARS). PPAO was carried out by heating 0.1 g portions
95 of char contained in 60 mL flat-bottom glass vials (diameter, 28 mm; height, 139 mm) open to
96 the air in a muffle furnace at temperatures of 300, 350, 400, 500, or 600 °C for 30 min. To
97 evaluate the effect of PPAO time, chars were PPAO-treated at 400 °C for 10, 20, 30 or 40 min.
98 During the course of the PPAO process, the partial pressure of O₂ decreased from 0.2 bar to no
99 less than 0.1 bar. The partial pressure of H₂O was below 0.05 bar. Further details of char
100 preparation and oxidation have been described by Xiao and Pignatello.[24] The chars are
101 denoted as MC_{xxx}-yy or PC_{xxx}-yy, where xxx corresponds to the PPAO temperature (°C) and
102 yy corresponds to the PPAO time (min). Under the PPAO conditions used, the MC400 and
103 PC400 chars underwent ≤ 20% weight loss, depending on the PPAO time.[24]

104 The conversion of COOH to COOK groups, which results in a characteristic ¹³C NMR
105 chemical shift change of +7 ppm,[30, 31] was achieved by treating 100 mg of the MC350-30
106 char material suspended in deionized (DI) water with 0.1 M KOH. Titration to pH of 8.0 ensures
107 deprotonation of COO groups, but not phenols, in the material. The treated char material was

108 washed three times with 1 mL of 0.1 M KOH and pelleted by centrifugation. After washing with
109 DI water, the material was freeze-dried.

110 The PC350-30 char materials (~150 mg) were also oxidized separately with HNO₃ or
111 ammonium persulfate (APS) following literature methods.[32] A saturated APS solution was
112 prepared by adding an excess amount of APS (~75 g) to 100 mL of 1 M H₂SO₄. After 48 h of
113 stirring, the saturated APS solution was filtered using a 0.22 µm filter (Millipore) and the filtrate
114 was used for char oxidation. Briefly, ~15 mL of APS or 4 M HNO₃ were added to a glass
115 pressure tube containing ~150 mg of char material, and the mixture was continuously stirred for
116 8.5 h at 120 °C in an oil bath. Each oxidized char was removed from solution through 1.5 µm
117 filter paper and rinsed with DI water until the pH of the filtrate was neutral. The filtered and
118 rinsed chars were then freeze-dried.

119 **2.2. Quantitative ¹³C NMR Analysis**

120 All NMR experiments were performed at 100 MHz for ¹³C and 400 MHz for ¹H using a Bruker
121 Avance 400 spectrometer equipped with a 4-mm double-resonance probe head. The ¹³C chemical
122 shifts were referenced to tetramethylsilane, using the COO resonance of glycine in the crystalline
123 α-modification at 176.46 ppm as a secondary reference. Nearly quantitative ¹³C NMR spectra
124 were obtained by an improved, composite-pulse multiple cross polarization (multiCP)
125 technique.[28] The modified multiCP pulse sequence replaced the direct 90° pulse in the
126 conventional multiCP pulse sequence [27] with non-orthogonal phase 90°-180° pulses to reduce
127 ¹³C magnetization loss due to pulse imperfections. The multiCP experiments used a recycle delay
128 of 0.7 s, ten 86-100% ¹H-amplitude ramp CP periods of 1.1 ms (and one of 0.55 ms duration)
129 separated by 0.4 s delays for ¹H repolarization.

130 With a documented $\pm 5\%$ relative uncertainty of the intensity of a given peak in a multiCP
131 spectrum,[28] a peak of 10% intensity has an ‘absolute’ uncertainty of $\pm 5\% \times 10\% = \pm 0.5\%$.

132 Part of the $\pm 5\%$ error is systematic, affecting the signal of a given type of carbon in different
133 samples in the same way, so the *trend* with PPAO temperature or time is even less uncertain.

134 From the fractional peak area (e.g., $(5.0 \pm 0.3)\%$ of C=O carbon) and the total mass of carbon
135 in the sample (easily calculated by multiplying the sample mass with the carbon content from
136 elemental analysis; e.g., 40 mg C), one can specify the quantity of C=O carbon; in our example,
137 it would be $(5.0 \pm 0.3)\% \times 40 \text{ mg C} = (2.0 \pm 0.1) \text{ mg C}$, corresponding to an amount of $(0.17 \pm$
138 $0.01) \text{ mmol C=O}$ in the sample. Note that only the correct *fractional* peak areas (relative
139 abundances) were required in the calculation. This means that any NMR processes that scale all
140 peaks equally (e.g., spin-diffusion-homogenized $T_{1\rho}$ relaxation of ^1H magnetization during
141 multiCP) will not interfere with quantification of the C=O carbons (“2.0 mg C”, “0.17 mmol
142 C=O”) as outlined above.

143 In chars and other forms of black carbon, conductivity, diamagnetism, and unpaired
144 electrons may create challenges to quantitative NMR. Fortunately, the pyrolysis temperature of
145 the materials studied here was so low that conductivity did not interfere with NMR; specifically,
146 no significant increase in the width of the electronic resonances of the probe head was observed,
147 consistent with previous studies.[33] Diamagnetic broadening has been identified as a serious
148 challenge to the observability of graphite NMR signal,[34] but even the moderate separation of
149 graphene sheets due to intercalated ions is sufficient to greatly reduce this problem.[34] The
150 fused ring systems generated by pyrolysis at 400 °C are fairly small [33], as shown by the
151 significant fraction of C-H and C-O sheet-edge carbons, and the material is not graphitizable, i.e.
152 the ring systems do not stack as in graphite,[35, 36] so the diamagnetic effect will remain small.

153 Coupling to unpaired electrons may make some nuclei unobservable by NMR. A hallmark of
154 a significant concentration of unpaired electrons is fast spin lattice relaxation with $T_{1C} < 5$ s for
155 all carbon sites.[37] However, this was not observed in the char samples studied here, which is
156 consistent with a previous study [15] that reported shortened T_{1C} only in chars made by pyrolysis
157 at ≥ 500 °C. This matches with EPR studies in the literature, which have shown that the radical
158 concentration increases strongly only above a pyrolysis temperature of 400 °C.[38] Signal loss
159 due to unpaired electrons was quite insignificant in MC400-40 according to spin counting using
160 direct polarization, which is particularly reliable[39] since the overall intensity is not affected by
161 T_{1p} relaxation of ^1H , unlike in multiCP NMR. Figure S1 compares spectra of MC400-40
162 obtained with 280-s DP and multiCP ^{13}C NMR, recorded in 47 and 8 hours, respectively. The
163 spectra are in good agreement, confirming that multiCP provides correct fractional peak areas,
164 with a much better signal-to-noise ratio than DP. Spin counting in turn demonstrates that the DP
165 spectrum reflects $(81 \pm 15)\%$ of the carbon in the sample. This quantification analysis was
166 achieved by comparison of the DP ^{13}C NMR intensities of MC400-40 and of the methyl signals
167 of Boc-alanine. In the analysis, the carbon masses were taken into account, as obtained by
168 multiplying each sample mass in the NMR rotor with the carbon mass fraction (74 wt% C in
169 MC400-40 from elemental analysis and 51 wt% C in Boc-alanine [27] from its chemical
170 formula).

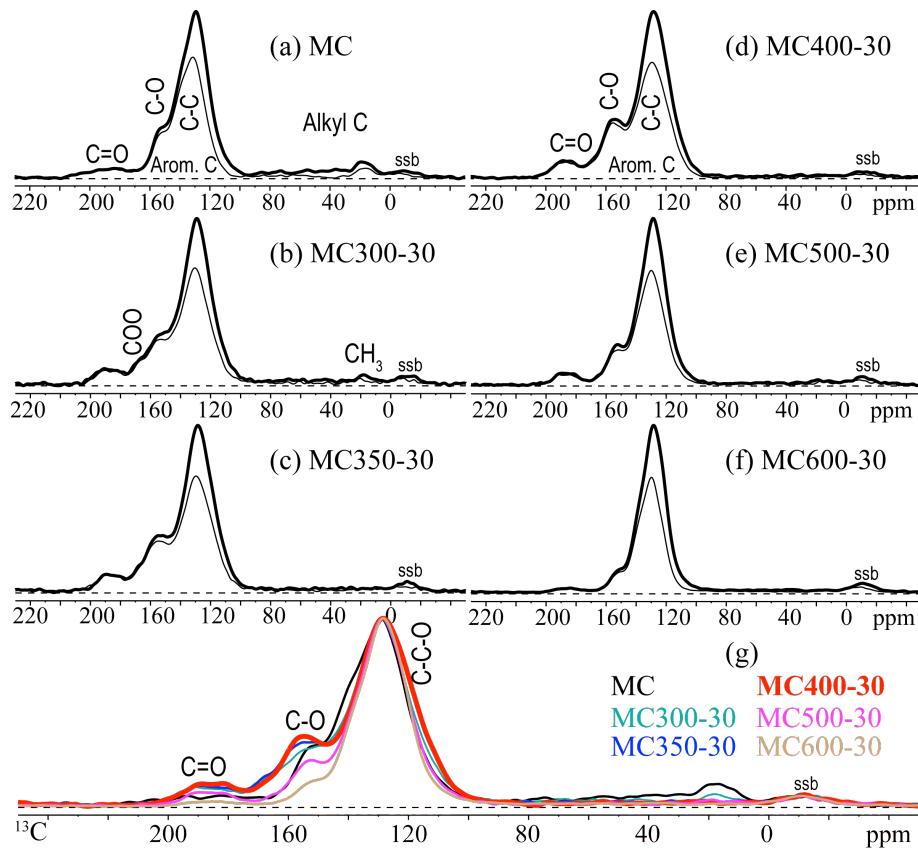
171

172 **2.3. ^{13}C NMR Spectral Editing**

173 Nonprotonated and mobile fractions were identified by applying a period of recoupled dipolar
174 dephasing of 68 μs to dephase magnetization of carbons with strong dipolar couplings to ^1H ,
175 such as in immobile CH and CH_2 groups. To enhance the signals of COO groups relative to those

176 of aromatic carbons based on their smaller chemical-shift anisotropy,[40] total suppression of
177 spinning sidebands (TOSS)[41] was applied at 4 kHz magic-angle spinning (MAS). The
178 dynamic range of the COO signal was further improved by gated decoupling of 40 μ s duration,
179 which removed the aromatic C-H peak.

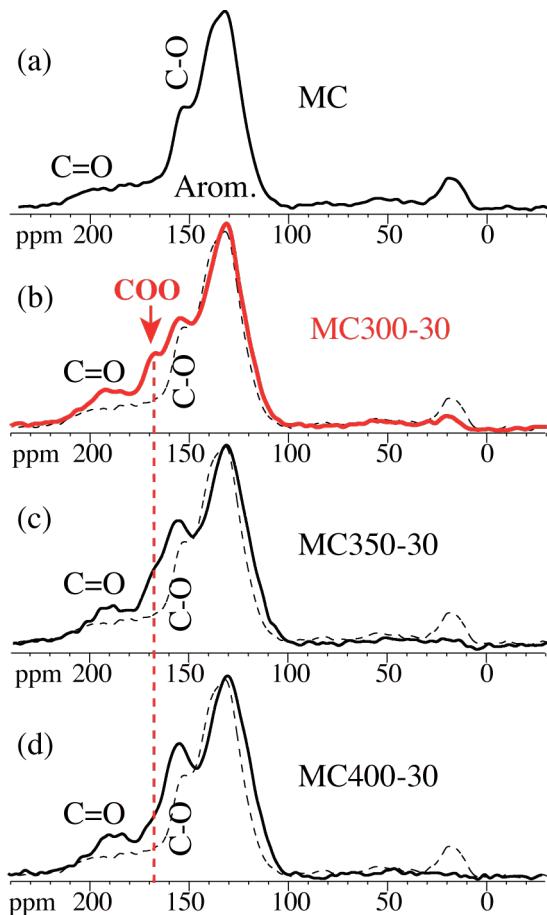
180 Long-range $^{13}\text{C}\{\text{H}\}$ dephasing can be used to assess the dipolar couplings of ^1H to aromatic
181 carbons, which decrease as the size of the aromatic domains increases. Therefore, this method is
182 useful for estimating the size of condensed aromatic clusters. This technique has usually been
183 performed after direct polarization (DP), which provides relatively low sensitivity due to long
184 recycle delays between scans.[29] Here we combined long-range C-H dephasing with multiCP
185 instead of DP excitation. Given the shorter recycle delays and signal enhancement in multiCP,
186 this allows for the spectra to be recorded with much enhanced signal-to-noise ratios. As a result,
187 the peak positions and line shapes of the interior carbons can be determined more precisely. To
188 detect nonprotonated carbons with good relative efficiency, multiCP and total suppression of
189 spinning sidebands were used at a spinning frequency of 7 kHz, with a recycle delay of 1 s, ten
190 0.55 ms and one 1.1 ms 86-100% ramp CP periods, and a 0.3 s delay for ^1H repolarization. The
191 ^{13}C 90° and 180°-pulse lengths were 4.2 and 8.4 μ s, respectively, and ^1H 90°-pulse length was 4.3
192 μ s. These experiments were performed for MC, MC400-20, MC400-30, and MC400-40.


193

194 **3. RESULTS AND DISCUSSION**

195 **3.1. Effects of PPAO Temperature**

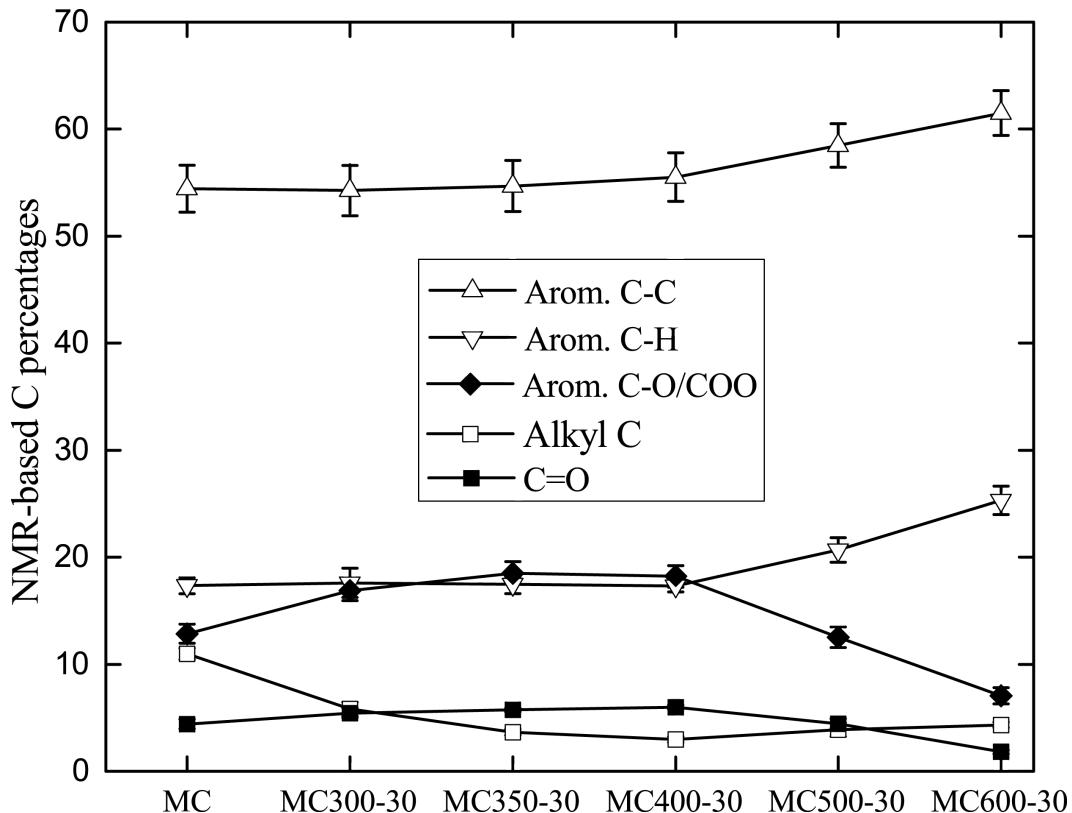
196 The ^{13}C NMR spectrum of untreated maple wood char (MC, Fig. 1a, thick line) contained a
197 major aromatic carbon peak, with a distinct shoulder at \sim 150 ppm arising from aromatic C-O in
198 furans or phenols.[42] The minor signals in the alkyl region arose primarily from CH_3 and some


199 from CH_2/CH groups. The selective spectrum of nonprotonated C and CH_3 (thin line) indicates
 200 that the fraction of nonprotonated aromatic C-C is large (~54% of all C). The presence of
 201 significant signals for $\text{C}=\text{O}$ in ketones or quinones between 174 and 220 ppm is also noteworthy.
 202 Spectral changes after PPAO treatment for 30 minutes at different temperatures are evident (Figs.
 203 1(b-g)). Compared to the untreated maple wood char, the alkyl C (mainly CH_3) intensities
 204 decreased with increasing temperature. The aromatic C-O shoulder or peak near 155 ppm
 205 became better resolved with increasing temperature but decreased in intensity beyond MC400-30.
 206 Its intensity change was accompanied by a corresponding change in the signal intensity near 110
 207 ppm, which can be assigned to aromatic carbons two bonds away from O; both signals reach a
 208 maximum in MC400-30 (Fig. 1g).

210 **Figure 1.** Nearly quantitative multiCP ^{13}C NMR spectra of maple wood chars treated by PPAO
211 at different temperatures. Thick line: all C; thin line: nonprotonated C as well as CH_3 . (a) MC,
212 (b-f) MC PPAO-treated at 300, 350, 400, 500, and 600 °C for 30 minutes, and (g) overlay of
213 spectra of all samples to facilitate comparison. The spectra were scaled to match the intensity of
214 the aromatic C band. ‘ssb’: spinning sideband.

215

216 A shoulder resonating between 160-170 ppm in the spectra of MC300-30 and MC350-30
217 corresponds to carboxyl (COO) groups. It is better resolved in the spectra after TOSS at 4 kHz
218 MAS and dipolar dephasing, which suppresses the aromatic-carbon resonances; see Figure 2.
219 With this spectral editing, the COO peak of MC300-30 (Fig. 2b) produces a discernable
220 maximum.



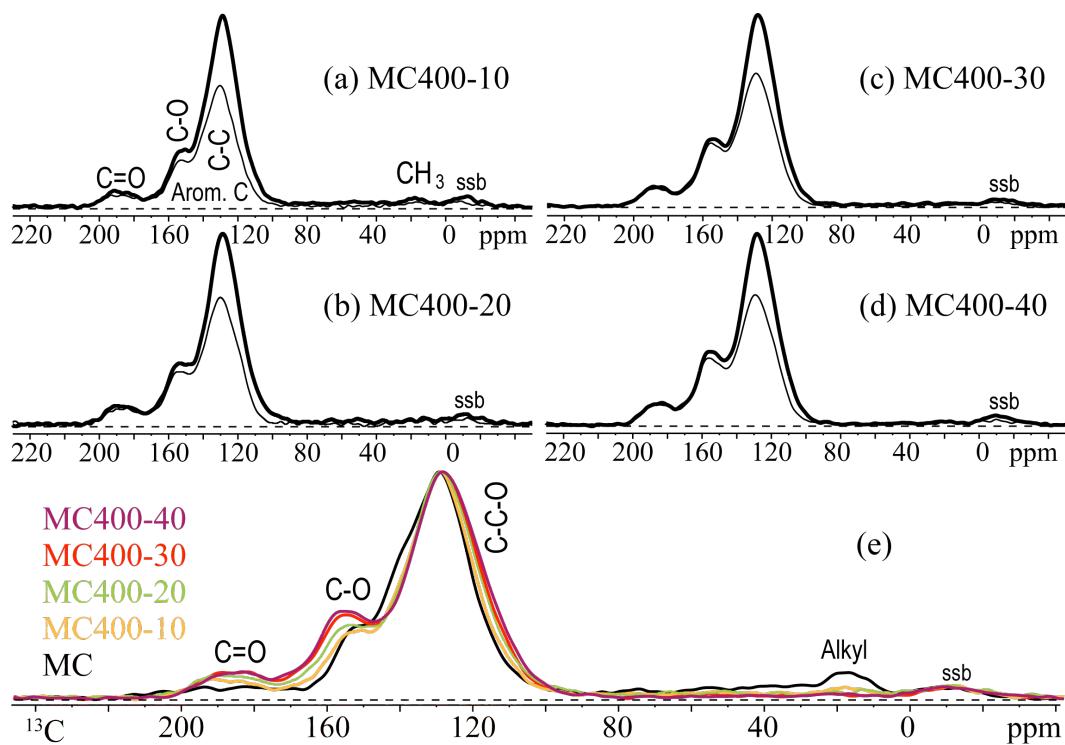
221

222 **Figure 2.** Selective ^{13}C NMR spectra of maple wood chars treated by PPAO at different
 223 temperatures, with COO bands enhanced relative to aromatic carbon signals by TOSS at 4 kHz
 224 MAS and dipolar dephasing. (a) MC without PPAO. This spectrum is shown as a dashed
 225 reference in the following three panels. (b-d) MC PPAO-treated for 30 minutes at (b) 300 °C, (c)
 226 350 °C, and (d) 400 °C. The spectra have been scaled to equal maximum peak height.

227 Quantification of functional groups showed that compared to untreated MC the relative
 228 abundances of aromatic C-O/COO increased in MC300-30, reached a maximum in MC350-30
 229 chars, and decreased sharply in MC500-30 and MC600-30 (Fig. 3). The trend for C=O groups
 230 was similar, but the maximum appeared at slightly higher temperature (MC400-30).
 231 Nonoxygenated aromatic C including protonated aromatic C (Arom. C-H) and C-bonded

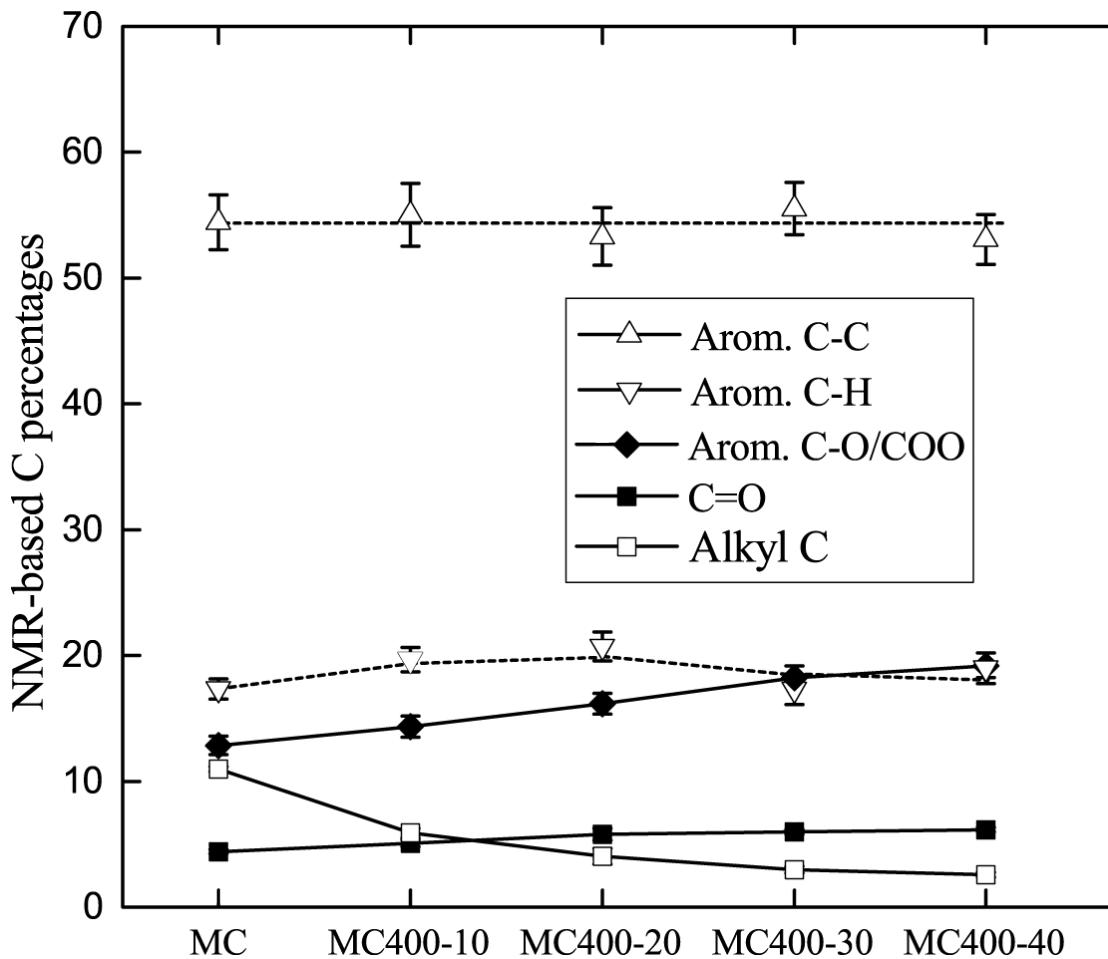
232 aromatic C (Arom. C-C) was unchanged below 400 °C, but then increased markedly in MC500-
233 30 and MC600-30. Interestingly, the alkyl C content decreased to a low minimum in MC400-30
234 and then appeared to increase slightly at the two higher temperatures. Overall, the results show
235 that at 600 °C, further pyrolysis rather than oxidation seemed to dominate.

236
237 **Figure 3.** Plot of NMR-derived relative abundances of functional groups after PPAO for 30 min
238 at increasing temperatures.


239

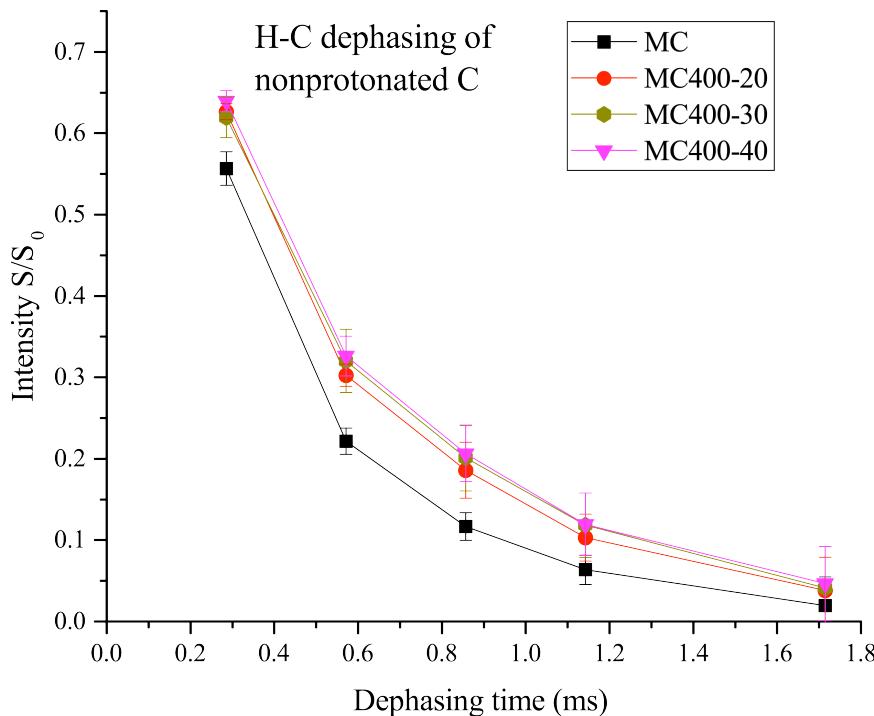
240 **3.2. Effects of PPAO Time**

241 The ^{13}C NMR spectra of maple wood chars PPAO-treated for different times at 400 °C are
242 shown in Fig. 4. The alkyl signals decreased strongly within the shortest treatment time (10 min;
243 Fig. 4(a)). Compared to untreated maple wood char (MC), the relative abundances of aromatic
244 C-O/COO and C=O increased, while that of alkyl C (mainly CH_3) decreased with PPAO time


245 (Figs. 4(e) and 5). These changes were smaller but more consistent than those observed for the
246 temperature series (Fig. 1(g)).

247

248

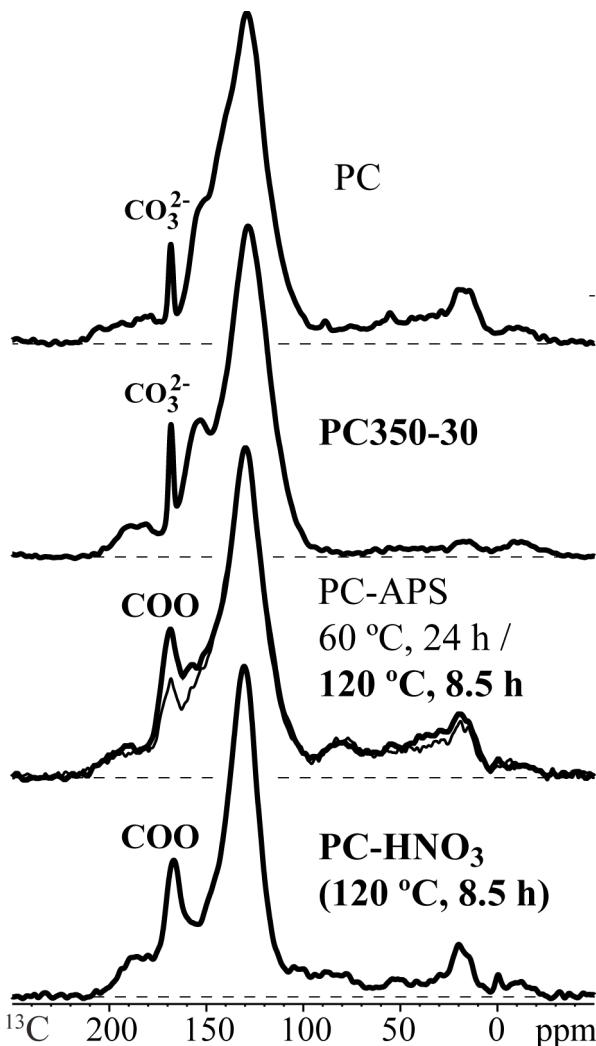

249 **Figure 4.** Nearly quantitative multiCP ^{13}C NMR spectra of maple wood chars treated at 400 °C
250 for (a) 10 min, (b) 20 min, (c) 30 min, and (d) 40 min. (e) Overlay of spectra of all samples to
251 facilitate comparison. Thick line: all C; thin line: nonprotonated C as well as CH₃. The spectra
252 were scaled to the same maximum peak height.

253
254 **Figure 5.** Plot of NMR-derived concentrations of functional groups as a function of duration of
255 PPAO at 400 °C.

256
257 Recoupled ^1H - ^{13}C dipolar dephasing was applied to further identify changes in aromatic
258 structures. The H-C dephasing of C-bonded aromatic C becomes progressively slower with
259 increasing PPAO time (Fig. 6), a trend that is usually interpreted as an increase in aromatic
260 cluster size. However, this trend may be also explained by extensive oxygen substitution
261 occurring at the edge of the aromatic clusters, which removes hydrogens and increases the
262 distance between interior aromatic carbons and their nearest hydrogens.

263

264


265 **Figure 6.** Plot of the area of ^{13}C NMR signals of nonprotonated aromatic carbons resonating
 266 between 107 and 142 ppm, under long-range ^1H - ^{13}C dipolar dephasing.

267

268 **3.3. Identification of Carboxyl Groups**

269 Carboxyl groups attached to aromatic rings typically resonate near 170 ppm. While a COO peak
 270 is evident in spectra of pecan shell chars chemically oxidized by APS or HNO_3 (see Fig. 7), in
 271 agreement with the literature,[43] no similarly distinct band can be recognized in the NMR
 272 spectra of PPAO-treated chars, apart from a small shoulder at ~ 167 ppm for MC300-30, which is
 273 only revealed as a peak by TOSS selection (Fig. 2). Thus, a notable finding from this study is
 274 that the increase of carboxyl groups following PPAO treatment is not pronounced.

275

276
277 **Figure 7.** MultiCP ^{13}C NMR spectra of pecan shell chars (PC), PC treated by PPAO (PC350-30),
278 and pecan shell chars chemically oxidized by APS (PC-APS) or HNO_3 (PC- HNO_3).
279

280 Based on results from potentiometric titration, Suliman et al.[21] concluded that air oxidation
281 at 250 °C for 30 min increased acidic functional groups, especially carboxyl on char surfaces.
282 Xiao and Pignatello[24] concluded that air oxidation at 400 °C for 30 min doubled the acidic
283 functional groups, from 6.5 mequiv/g corresponding to ~1% carboxyl-C relative to total-C in
284 untreated maple wood char, to 13 mequiv/g corresponding to ~2% of carboxyl-C relative to

285 total-C in the air-oxidized samples. These concentrations are consistent with the NMR
286 observation and indicate that thermal air oxidation of chars introduces fewer carboxyl groups
287 than does wet chemical oxidation.

288

289 **3.4. Identification of Carbonyl Groups**

290 The NMR spectra show that PPAO treatment remarkably increased carbonyl (ketone or quinone)
291 functionalities on chars. Previous studies of air-oxidized chars relying on titration or FT-IR
292 spectroscopy were not capable of identifying ketones/quinones. The broad carbonyl signals in
293 the 175-200 ppm region were retained after dipolar dephasing, indicating that they are in
294 nonprotonated C=O forms, i.e., ketone or quinone rather than aldehyde carbons. This relatively
295 low chemical shift range further indicates that the C=O moieties are bonded to aromatic
296 carbons.[40]

297

298 **3.5. Implications**

299 This study is among the first to show spectroscopically the identities and quantities of specific
300 oxygen functional groups introduced by exposure of biomass chars to hot air. The assignments of
301 C=O as well as C-O carbons and their structural environments can be further validated and
302 delineated with advanced two-dimensional ^{13}C - ^{13}C NMR experiments of ^{13}C -labeled and PPAO-
303 treated glucose chars. Work along these lines is underway in our laboratories. Work is also in
304 progress to determine the structural changes induced by including air in the initial pyrolysis step,
305 as well as those induced by air oxidation under ambient conditions simulating aging in the
306 environment.

307 PPAO of biochars clearly does not result in the distinct structural features observed in chars
308 that have undergone long-term oxidation in soils or chemical oxidation in controlled laboratory
309 experiments. NMR analysis of char residues in soils[5] showed approximately 5 carboxylate
310 carbons per 22 fused ring carbons; the level of carboxyl substitution is considerably higher than
311 the levels found in the PPAO-treated chars of this study.

312 Introduction of oxygen functional groups by air oxidation has major implications for the
313 interaction of char materials with nutrients, natural organic matter, pollutants, and microbes in
314 soil. Carboxyl groups provide cation exchange capacity that helps regulate the retention and
315 bioavailability of nutrient cations in soil. Moreover, carboxyl groups can undergo strong
316 hydrogen bonding with weak acid and base functional groups of pollutants[9, 24, 44] and soil
317 organic matter.[45] Keto and phenolic groups belonging to quinone/hydroquinone systems are
318 thought to contribute to the electron donor-acceptor properties of chars,[46, 47], which may be
319 linked to molecule-to-molecule, molecule-to-cell and cell-to-cell electron transfer processes.[9,
320 48]

321

322 **ACKNOWLEDGMENTS**

323 This work was funded by the National Science Foundation of the United States (grant CHE
324 1709532).

325

326

327

328

329

- [1] B. Glaser, L. Haumaier, G. Guggenberger, W. Zech, The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics, *Naturwissenschaften* 88 (1) (2001) 37-41
- [2] M.W. Schmidt, A.G. Noack, Black carbon in soils and sediments: analysis, distribution, implications, and current challenges, *Global Biogeochem. Cycles* 14 (3) (2000) 777-793
- [3] J.O. Skjemstad, D.C. Reicosky, A.R. Wilts, J.A. McGowan, Charcoal carbon in US agricultural soils, *Soil Sci. Soc. Am. J.* 66 (4) (2002) 1249-1255
- [4] J. Skjernstad, J. Taylor, R. Smernik, Estimation of charcoal (char) in soils, *Commun. Soil. Sci. Plant. Anal.* 30 (15-16) (1999) 2283-2298
- [5] J.-D. Mao, R. Johnson, J. Lehmann, D. Olk, E.G. Neves, M. Thompson, et al., Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration, *Environ. Sci. Technol.* 46 (17) (2012) 9571-9576
- [6] D.A. Laird, The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality, *Agron. J.* 100 (1) (2008) 178-181
- [7] J. Lehmann, S. Joseph, Biochar for environmental management: science, technology and implementation, Routledge, 2015.
- [8] L. Van Zwieten, C. Kammann, M.L. Cayuela, B.P. Singh, S. Joseph, S. Kimber, et al., Biochar effects on nitrous oxide and methane emissions from soil, *Biochar for environmental management: science and technology*. 2nd ed. London, New York: Earthscan Books Ltd (2015) 489-520
- [9] J. Pignatello, W.A. Mitch, W. Xu, Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds, *Environ. Sci. Technol.* 51 (16) (2017) 8893-8908
- [10] L.C. Bornemann, R.S. Kookana, G. Welp, Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood, *Chemosphere* 67 (5) (2007) 1033-1042
- [11] Y. Chun, G. Sheng, C.T. Chiou, B. Xing, Compositions and sorptive properties of crop residue-derived chars, *Environ. Sci. Technol.* 38 (17) (2004) 4649-4655

[12] C. Lattao, X. Cao, J. Mao, K. Schmidt-Rohr, J.J. Pignatello, Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars, *Environ. Sci. Technol.* 48 (9) (2014) 4790-4798

[13] F. Xiao, J.J. Pignatello, Interactions of triazine herbicides with biochar: Steric and electronic effects, *Water Res.* 80 (2015) 179-188

[14] S.M. Martin, R.S. Kookana, L. Van Zwieten, E. Krull, Marked changes in herbicide sorption-desorption upon ageing of biochars in soil, *J. Hazard. Mater.* 231 (2012) 70-78

[15] C.E. Brewer, E.T. Hall, K. Schmidt - Rohr, D.A. Laird, R.C. Brown, K. Zygourakis, Temperature and reaction atmosphere effects on the properties of corn stover biochar, *Environ. Prog. Sustain. Energy* 36 (3) (2017) 696-707

[16] N. Gil-Lalaguna, J. Sánchez, M. Murillo, V. Ruiz, G. Gea, Air-steam gasification of char derived from sewage sludge pyrolysis. Comparison with the gasification of sewage sludge, *Fuel* 129 (2014) 147-155

[17] N. Mahinpey, P. Murugan, T. Mani, R. Raina, Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor, *Energy Fuels* 23 (5) (2009) 2736-2742

[18] H. Oda, M. Takeuchi, C. Yokokawa, Effect of air-oxidation on the pore-structure of coals and cokes or chars obtained from oxidized coals, *Fuel* 60 (5) (1981) 390-396

[19] J. Pis, T.A. Centeno, M. Mahamud, A.B. Fuertes, J. Parra, J.A. Pajares, et al., Preparation of active carbons from coal Part I. Oxidation of coal, *Fuel Process. Technol.* 47 (2) (1996) 119-138

[20] M.S. Tam, M.J. Antal, Preparation of activated carbons from macadamia nut shell and coconut shell by air activation, *Ind. Eng. Chem. Res.* 38 (11) (1999) 4268-4276

[21] W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.-M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Modification of biochar surface by air oxidation: Role of pyrolysis temperature, *Biomass Bioenergy* 85 (2016) 1-11

[22] A. Koch, A. Krzton, G. Finqueneisel, O. Heintz, J.-V. Weber, T. Zimny, A study of carbonaceous char oxidation in air by semi-quantitative FTIR spectroscopy, *Fuel* 77 (6) (1998) 563-569

[23] F. Xiao, A.H. Bedane, J.X. Zhao, M.D. Mann, J.J. Pignatello, Thermal air oxidation changes surface and adsorptive properties of black carbon (char/biochar), *Sci. Total Environ.* 618 (2018) 276-283

[24] F. Xiao, J.J. Pignatello, Effects of post-pyrolysis air oxidation of biomass chars on adsorption of neutral and ionizable compounds, *Environ. Sci. Technol.* 50 (12) (2016) 6276-6283

[25] V.N. Tsaneva, W. Kwapinski, X. Teng, B.A. Glowacki, Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy, *Carbon* 80 (2014) 617-628

[26] G. Levi, O. Senneca, M. Causà, P. Salatino, P. Lacovig, S. Lizzit, Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS, *Carbon* 90 (2015) 181-196

[27] R.L. Johnson, K. Schmidt-Rohr, Quantitative solid-state ^{13}C NMR with signal enhancement by multiple cross polarization, *J. Magn. Reson.* 239 (2014) 44-49

[28] P. Duan, K. Schmidt-Rohr, Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state ^{13}C NMR, *J. Magn. Reson.* 285 (2017) 68-78

[29] J.-D. Mao, K. Schmidt-Rohr, Recoupled long-range C-H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings, *J. Magn. Reson.* 162 (1) (2003) 217-227

[30] T.M. Duncan, *Principal Components of Chemical Shift Tensors: A Compilation*, Farragut Press, 1997.

[31] Z. Gu, A. McDermott, Chemical shielding anisotropy of protonated and deprotonated carboxylates in amino acids, *J. Am. Chem. Soc.* 115 (10) (1993) 4282-4285

[32] L.A. Langley, D.H. Fairbrother, Effect of wet chemical treatments on the distribution of surface oxides on carbonaceous materials, *Carbon* 45 (1) (2007) 47-54

[33] C.E. Brewer, K. Schmidt-Rohr, J.A. Satrio, R.C. Brown, Characterization of biochar from fast pyrolysis and gasification systems, *Environ. Prog. Sustain. Energy* 28 (3) (2009) 386-396

[34] A. Vyalikh, V.O. Koroteev, W. Münchgesang, T. Köhler, C. Röder, E. Brendler, et al., Effect of Charge Transfer upon Li- and Na-Ion Insertion in Fine-Grained Graphitic Material as Probed by NMR, *ACS Appl. Mater. Interfaces* 11 (9) (2019) 9291-9300

[35] R.E. Franklin, J.T. Randall, Crystallite growth in graphitizing and non-graphitizing carbons, *Proc. R. Soc. Lond. A Math. Phys. Sci.* 209 (1097) (1951) 196-218

[36] A. Oberlin, Pyrocarbons, *Carbon* 40 (1) (2002) 7-24

[37] X. Fang, J. Mao, E. Levin, K. Schmidt-Rohr, Nonaromatic core– shell structure of nanodiamond from solid-state NMR spectroscopy, *J. Am. Chem. Soc.* 131 (4) (2009) 1426-1435

[38] J.-W. Feng, S. Zheng, G.E. Maciel, EPR investigations of charring and char/air interaction of cellulose, pectin, and tobacco, *Energy Fuels* 18 (2) (2004) 560-568

[39] R.J. Smernik, J.M. Oades, The use of spin counting for determining quantitation in solid state ^{13}C NMR spectra of natural organic matter: 2. HF-treated soil fractions, *Geoderma* 96 (3) (2000) 159-171

[40] R.L. Johnson, J.M. Anderson, B.H. Shanks, X. Fang, M. Hong, K. Schmidt-Rohr, Spectrally edited 2D ^{13}C - ^{13}C NMR spectra without diagonal ridge for characterizing ^{13}C -enriched low-temperature carbon materials, *J. Magn. Reson.* 234 (2013) 112-124

[41] W. Dixon, J. Schaefer, M. Sefcik, E. Stejskal, R. McKay, Total suppression of sidebands in CPMAS C-13 NMR, *J. Magn. Reson.* 49 (2) (1982) 341-345

[42] J.M. Anderson, R.L. Johnson, K. Schmidt-Rohr, B.H. Shanks, Solid state NMR study of chemical structure and hydrothermal deactivation of moderate-temperature carbon materials with acidic SO_3H sites, *Carbon* 74 (2014) 333-345

[43] L. Haumaier, W. Zech, Black carbon—possible source of highly aromatic components of soil humic acids, *Org. Geochem.* 23 (3) (1995) 191-196

[44] X. Li, J.J. Pignatello, Y. Wang, B. Xing, New insight into adsorption mechanism of ionizable compounds on carbon nanotubes, *Environ. Sci. Technol.* 47 (15) (2013) 8334-8341

[45] J. Ni, J.J. Pignatello, Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids, *Environ. Sci. Processes Impacts* 20 (9) (2018) 1225-1233

[46] L. Klüpfel, M. Keilweit, M. Kleber, M. Sander, Redox properties of plant biomass-derived black carbon (biochar), *Environ. Sci. Technol.* 48 (10) (2014) 5601-5611

[47] T. Sun, B.D. Levin, J.J. Guzman, A. Enders, D.A. Muller, L.T. Angenent, et al., Rapid electron transfer by the carbon matrix in natural pyrogenic carbon, *Nat. Commun.* 8 (2017) 14873

[48] A. Kappler, M.L. Wuestner, A. Ruecker, J. Harter, M. Halama, S. Behrens, Biochar as an electron shuttle between bacteria and Fe (III) minerals, *Environ. Sci. Technol. Lett.* 1 (8) (2014) 339-344