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Abstract
The size of primary challenge with lipopolysaccharide induces changes in the innate
immune cells phenotype between pro-inflammatory and pro-tolerant states when
facing a secondary lipopolysaccharide challenge. To determine the molecular mech-
anisms governing this differential response, we propose a mathematical model for
the interaction between three proteins involved in the immune cell decision making:
IRAK-1, PI3K, and RelB. The mutual inhibition of IRAK-1 and PI3K in the model
leads to bistable dynamics. By using the levels of RelB as indicative of strength of
the immune responses, we connect the size of different primary lipopolysaccharide
doses to the differential phenotypical outcomes following a secondary challenge. We
further predict under what circumstances the primary LPS dose does not influence the
response to a secondary challenge. Our results can be used to guide treatments for
patients with either autoimmune disease or compromised immune system.

Keywords Innate immunity · Bistable dynamics · Mathematical modeling

1 Introduction

The human innate immune system responds immediately to foreign challenges by
sending various signals to immune cells to migrate toward the site of the infection
and destroy the offending microbe (Janeway et al. 2001). The innate immune system
can initiate an immune response in several ways, including signaling the start of an
inflammatory response. Pro-inflammatory cytokines are released, signalingmonocytes
within the bloodstream to differentiate into macrophages, migrate toward the site
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of infection, and phagocytose invading microbes. Macrophages in turn will release
pro-inflammatory cytokines themselves to recruit more cells, thus upregulating an
inflammatory response within the immune system (Shi and Pamer 2011). The innate
immune system acts ahead of the adaptive immune system due to its in-born ability
to recognize and destroy nonspecific stimuli. It is thought, however, that it does not
generate any memory to repeated challenges (Sun et al. 2014). It has been recently
shown that, depending on the strength of the primary stimuli, the innate immune
system can exhibit either a pro-inflammatory or pro-resolvent response when acted
upon by secondary stimuli, suggesting that memory may be a characteristic of innate
immunity after all (Morris and Li 2012). Understanding the mechanistic interactions
leading to the differential responses between the two phenotypes and predicting how a
state can be avoided can guide treatment development for diseases in which the patient
is experiencing either immunodeficiency or an overactive immune response.

A switch between inflammation and tolerance has been observed in the response
of macrophages to lipopolysaccharide (LPS), a strong inflammatory stimulant derived
from gram-negative bacteria (Chen et al. 2009; Morris and Li 2012). Different pri-
mary doses of LPS will prompt specialized macrophage functions (Dillingh et al.
2014). High primary LPS doses (10–100ng/ml) trigger inflammation in the form of
high-level cytokine production with sometimes fatal consequences (Hirohashi and
Morrison 1996; Shnyra et al. 1998; Hume et al. 2001). Such responses can be repro-
grammed by administration of more than one LPS challenge. In particular, a primary
challenge with super-low-dose LPS (0.05–1ng/ml) followed by a subsequent boost-
ing with high-dose LPS (10–100ng/ml) leads to macrophage priming (Hirohashi and
Morrison 1996; Shnyra et al. 1998; West and Koons 2008; Zhang and Morrison
1993). Macrophages become fully activated through signaling pathways, and start
producing pro-inflammatory cytokines (Deng et al. 2013; Zhang and An 2007) such
as IRAK-1 and PI3K. In addition to greater production of pro-inflammatory cytokines,
macrophage priming also blocks the production of anti-inflammatory cytokines such
as RARα and RORα, allowing for a non-resolving inflammation within the system
(Maitra et al. 2011; Yuan and Li 2016). By contrast, a primary challenge with high-
dose LPS (10–100ng/ml) followed by a subsequent boosting with high-dose LPS
(10–100ng/ml) leads to suppression of pro-inflammatory signals, or an LPS-induced
tolerance (Biswas and Lopez-Collazo 2009;West and Heagy 2002). Tolerance is char-
acterized by the suppression of pro-inflammatory cytokines, such as IL-12 and TNF-α
(Wysocka et al. 2001; Ma et al. 2015; Medvedev et al. 2000; Ziegler-Heitbrock 1995),
which results in an acute, transient inflammatory response.

One transcription factor influencing an innate immune cell’s phenotype is RelB,
which blocks transcription of pro-inflammatorymediators by assembling a suppressive
complex on their promoters (Chen et al. 2009; Deng et al. 2013). Differences in
the primary LPS dose alter the upstream molecular mechanisms that regulate the
production of RelB, such as the dynamics of the kinases phosphoinositide 3-kinase
(PI3K), and interleukin receptor-associated kinase 1 (IRAK-1). In particular, LPS
lowers IRAK-1 production and increases PI3K activation. In return, PI3K enhances
RelB and inhibits IRAK-1 productions, while IRAK-1 degrades RelB (Deng et al.
2013). Therefore, super-low primary LPS dose results in low RelB production and
high primary LPS dose results in high RelB production. The interactions between
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these three proteins contribute to the emergence of primed and tolerant macrophage
responses, although due to the complex nature of the intracellular signaling networks,
it is difficult to present a quantitative understanding of how a state is achieved based
on the size of LPS.

To shed light on the molecular mechanisms governing the differential responses
between tolerance and immune exacerbation and into their connection to the LPS lev-
els, we investigate the molecular network describing the phenotypical response, i.e.,
the interactions between RelB, IRAK-1 and PI3K. Previousmodels looking at priming
and tolerance due to endotoxin challengewere abstract and did not look at specific pro-
tein interactions (Day et al. 2006; Reynolds et al. 2006), which makes our model novel
and informative. In particular, we are interested in understanding the types and levels
of feedbacks between the three nodes of the network. Since experimental testing of the
roles of eachmolecule is expensive and time-consuming, we usemathematical models
to predict the motifs behind the differential response. Such models are inexpensive
and easy to manipulate, and their predictions can help guide experiments. Our focus
lies on explaining a possible mechanism yielding different RelB levels depending on
the strength of LPS. We develop a deterministic mathematical model with bistable
dynamics yielding different RelB levels at equilibrium based on the initial levels of
IRAK-1, PI3K, RelB, and LPS. The model has bistable dynamics. We use the vari-
ables kinetics and their role in macrophage behavior to connect the size of secondary
LPS doses with the rise of pro-inflammatory or pro-tolerant macrophage phenotypes.
Quantifying lipopolysaccharide doses leading to macrophage priming may offer sig-
nificant advantage in inducing an adaptive-like defense against invading pathogens.
Similarly, quantifying lipopolysaccharide doses leading to macrophage tolerance may
help control the induction of immunosuppression.

2 Mathematical Modeling of Priming and Tolerance

2.1 Model

We consider the interactions between three proteins IRAK-1 (x), PI3K (y), and RelB
(z) in the presence of LPS (L). It has been reported that LPS induces IRAK-1 and PI3K
production (Chaurasia et al. 2010; Huang et al. 2004; Guha and Mackman 2001). For
simplicity, and in the absence of other information, we assume that the LPS effect on
IRAK-1 and PI3K production is linear. Hence, IRAK-1 and PI3K are produced at rates
cx + ax L and cy + ayL , respectively. IRAK-1 and PI3K are competing intracellular
players (Deng et al. 2013; Fan and Cook 2004; Noubir et al. 2004; Chaurasia et al.
2010). We reflect this competition by modeling a mutual inhibition between these
two proteins, with IRAK-1 being inhibited by PI3K at rate 1/(bmx + ym) and PI3K
being inhibited by IRAK-1 at rate 1/(by + x), where bx and by are the y and x values
where the inhibition is half maximal. By modeling this mutual inhibition, we account
for the experimentally observed opposing modulations of LPS on IRAK-1 and PI3K
(Deng et al. 2013). We further assume that IRAK-1 decays at per capita rate dx and
that PI3K is lost (in a density-dependent manner) at rate dy/(bv + y), where dy is the
maximal loss rate and bv is the y where the loss is half maximal (Goldbeter 1995). It
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Fig. 1 Model schematic

has been shown (Deng et al. 2013) that RelB production is enhanced by PI3K, while
its loss is enhanced by IRAK-1 and inhibited by PI3K. We model this by assuming an
PI3K-induced production at rate az y/(bz + y), where az is the maximal production
rate and bz is the y where the production is half maximal. Moreover, we model the
degradation term to be dzzx/(bz + y), where dz is the maximal degradation rate and
bz is the y where the loss is half maximal. Lastly, following initial inoculation, LPS
decays exponentially at per capita rate dL . A schematic diagram of these interactions is
shown in Fig. 1, and the mathematical representation is given by the following system

dx

dt
= cx + ax L

bmx + ym
− dx x,

dy

dt
= cy + ayL

by + x
− dy

y

bv + y
,

dz

dt
= az y

bz + y
− dzz

x

bz + y
,

dL

dt
= −dL L,

(1)

where cx = cy = 0 if L = 0 and cx , cy �= 0 if L �= 0.
For simplicity, we assume that the inhibition rates bmx = by = bz = bv = 1. In an
unstimulated cell that never encountered LPS, the proteins IRAK-1, PI3K or RelB
are not activated and at an equilibrium value (Arango Duque and Descoteaux 2014).
Therefore, in the absence of LPS, variables x , y and z are assumed to be zero. Since
model (1) is created to consider previously unstimulated cells, we choose this equilib-
rium state as our initial condition, i.e., x(0) = x0 = 0, y(0) = y0 = 0, z(0) = z0 = 0.
Further, L(0) = L0 is the stimulus size of the LPS challenge. One can show that for
cy < dy , all solutions of system (1) with positive initial conditions are positive and
bounded. Therefore, this model is biologically feasible (see “Appendix”).
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2.2 Parameter Acquisition

We assume that, in the absence of the LPS stimulus, there are no interactions between
IRAK-1, PI3K, and RelB. Thus, the model becomes

dx

dt
= −dx x,

dy

dt
= −dy

y

1 + y
,

dz

dt
= −dzz.

(2)

Moreover, based on experimental findings, we know that (in the absence of LPS) the
IRAK-1, PI3K, and RelB’s half-lives are 5h, 0.25h and 2.5h (Yamin andMiller 1997;
Kollewe et al. 2004; Ko et al. 2014; Abd-Ellah et al. 2018). Solutions of (2) with initial
y(0) = y0 = 0 yield degradation parameters (see Table 1)

dx = ln(2)

5 h
= 0.138 h−1,

dy =
1
2 y0 + ln(2)

0.25 h
= 2.773 h−1,

dz = ln(2)

2.5 h
= 0.277 h−1.

(3)

The half-lives of the three proteins change when acted upon by an endotoxin chal-
lenge, with the change being dependent on the size of the stimulus. We assume that
when LPS stimulus is present, proteins IRAK-1, PI3K and RelB interact according
to model (1), and connect their measured half-lives with the sizes of their equilibria.
That is, a low (or zero) equilibrium is representative of fast decay and short half-lives.
Conversely, high equilibria corresponds to slow decay and large half-lives.

In the next section, we analytically investigate the equilibria of system (1).

2.3 Stability Analysis

Let E = (x̄, ȳ, z̄, L̄) be the IRAK-1, PI3K, RelB, and LPS equilibria. Further let
A = cy

dy
and B = cx

dx
. Then

L̄ = 0,

x̄ = B

1 + ȳm
,

z̄ = az
dz

· ȳ
x̄
,

(4)

where ȳ satisfies the equation

B

1 + ȳm
− A(1 + ȳ) − ȳ

ȳ
= 0.
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Table 1 Parameter values

Parameter Description Value Unit Reference

dx Decay of IRAK-1 0.138 h−1 Yamin and Miller (1997) and
Kollewe et al. (2004)

dy Decay of PI3K 2.773 h−1 Ko et al. (2014)

dz Decay of RelB 0.277 h−1 Abd-Ellah et al. (2018)

cx Production of IRAK-1 3

ax Production of IRAK-1 1

cy Production of PI3K 2.5

ay Production of PI3K 1

az Production of RelB 1

dL Decay of LPS 0.1 h−1

m 5

The references for the decay rates give half-lives, which we converted to decay rates as described above

We search the parameter space allowing for one or three biologically realistic equilibria
and investigate their stability. In order to ensure biological relevance of our model,
we only consider parameter sets for which cy < dy . When two locally asymptotically
stable equilibria arise, we talk about bistability. For bistability to occur, we have to
find at least three equilibria, since two locally asymptotically stable equilibria are
always separated by an unstable one. As shown in the “Appendix”, a necessary, but
not sufficient condition for equations (4) to have three positive solutions is given by

m > 1. (5)

An equilibrium solution is locally asymptotically stable if it satisfies the condition

AB

m
> ȳm+1 x̄2, (6)

and unstable otherwise (see “Appendix”). If condition (5) is satisfied, then there is
either exactly one equilibrium that is locally asymptotically stable or there are two
locally asymptotically stable and one unstable equilibrium (see “Appendix”). This
shows that our results are robust to parameter choices. Since analytical investigation
is challenging, we choose a set of unitless parameter values that satisfy (5) (see Table 1)
and use them to numerically find the equilibria (4) and their stability (6).

For the parameters given in Table 1, the equilibria (4) of system (1) are

E1 =
(
3.39 × 10−4, 9.14, 9.72 × 104, 0

)
, (7)

E2 =
(
21.64, 4.15 × 10−2, 6.91 × 10−3, 0

)
, (8)

E3 = (0.28, 2.38, 30.54, 0). (9)
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Fig. 2 Left: bifurcation—RelB equilibria versus parameter cy . All other parameters as in Table 1; right:
dependence of the asymptotically approached RelB equilibrium following secondary challenge 150h past
primary low challenge on the strength of the secondary challenge, when cy = 2.5

Using the stability condition (6),we can show that E1 and E2 are locally asymptotically
stable and E3 is unstable. The two locally asymptotically stable equilibria correspond
to low RelB≈ 0 (E2) and high RelB≈ 97156 (E1). Since RelB levels are indicative of
the pro-inflammatory and pro-resolution phenotypes, we are interested in determining
when each equilibrium is reached. It is known that the long-term behavior of bistable
systems is determined by the choice of initial conditions. For system (1), long-term
dynamics are determined by the initial conditions of IRAK-1, PI3K, and LPS, and are
unaffected by the initial RelB. Furthermore, since

z̄ = az
dz

· ȳ
x̄
, (10)

the equilibrium size of RelB depends on the size of ratio of PI3K to IRAK-1 equilibria,
rather than their individual equilibrium values.

For different choices of parameter values, the bistability may be lost. Fixing all
parameters as in Table 1 and varying cy yields the hysteretic bifurcation diagram
shown in the left panel of Fig. 2. We observe that for an IRAK-1 production rate
cy in [2.25, 22.3], we obtain two stable equilibria, one with high and one with low
(close to zero) RelB value, separated by an unstable equilibrium. For 0 < cy < 2.25
and cy > 22.3, only one locally asymptotically stable RelB equilibrium exists. The
corresponding relationship between the strength of secondary LPS challenge and the
equilibrium values of RelB is shown in the right panel of Fig. 2 for fixed cy = 2.5.
As expected, low and high secondary LPS correspond to low RelB equilibrium levels,
while super-high RelB corresponds to high RelB equilibrium levels.
Next, we will numerically investigate the relationship between the size of RelB equi-
libria and the LPS levels during primary and secondary challenges.
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3 Results

3.1 Primary Challenge

We first examine the dynamics of RelB, IRAK-1, and PI3K after a single LPS chal-
lenge.We assume that L0 = 100 (L0 = 0.1) correspond to high (super low) endotoxin
challenges, x0 = y0 = z0 = 0, and all parameters are given in Table 1. A super-low
LPS challenge leads to IRAK-1’s exponential increase to 21.64 (see Fig. 3a, solid
curve). Contrarily, a high LPS challenge leads to an initial short spike in IRAK-1
followed by an exponential decrease to 1.9 × 10−9 within the first 150h (see Fig. 3a,
dashed curve). We can further connect these outcomes to the qualitative differences
in IRAK-1 half-lives for different LPS stimuli observed experimentally. Indeed, our
model predicts that for a super-low LPS stimulus IRAK-1 increases following its ini-
tial spike due to activation, matching the long half-life of 5h observed experimentally
(Kollewe et al. 2004). In contrast, for high LPS stimulus IRAK-1 decreases, match-
ing the shorter half-life of 0.5h observed experimentally (Kollewe et al. 2004). For
the other two proteins, PI3K and RelB, the model predicts exponential decreases to
4.1 × 10−2 and 6.9 × 10−3, respectively, for super-low LPS stimuli (see Fig. 3c, e,
solid curves). In contrast, the model predicts increases to 549.2 and 149.4, respec-
tively, for high LPS challenge (see Fig. 3c, e, dashed curves). As with IRAK-1, these
results match the experimental PI3K and RelB’s half-lives: 2.5 and 3h for high LPS
challenge (Ko et al. 2014; Abd-Ellah et al. 2018), 0.25 and 0.5h for super-low LPS
challenge (Ko et al. 2014; Abd-Ellah et al. 2018).

We observe that the RelB level is high (low) following super-low (high) primary
LPS challenge as seen in experiments (Deng et al. 2013). Since RelB is responsible for
blocking the transcription of inflammatory mediators (Deng et al. 2013), an initial low
RelB level can trigger a strong inflammatory response. We next investigate how this
initial reaction changeswhenRelB response is reprogrammed through two consecutive
LPS challenges.

3.2 Secondary ChallengeWithout a Phenotype Switch

Wenext examinehow the strengthof the primaryLPSchallenge influences the system’s
dynamics following a secondary high LPS encounter.We assume that super-low (high)
primary LPS challenge is followed by high LPS booster (with L0 = 100) τ = 150h
later. The initial conditions for the other variables are set at x(150), y(150) and z(150)
in the primary challenge model. Figure 3b, d, f shows the emerging dynamics. Our
model shows that when we consider two consecutive high LPS challenges, IRAK-1
decreases exponentially to a low equilibrium (Fig. 3b, dashed curve). PI3K and RelB
increase from 549.2 to 1508.6, and 149.4 to 305.9, respectively, (Fig. 3d, f, dashed
curve). Even though the absolute values of all three proteins change between primary
and boosting stimuli, their values during both primary and secondary responses are
representative of a weak inflammatory response which we associate with immune
tolerance. Similarly, when we model the RelB dynamics during a super-low LPS
primary challenge followed by a high LPS booster, the asymptotic dynamics of the
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Fig. 3 Simulated dynamics of model (1) for: (left) single challenge with high (L0 = 100, dashed lines)
and a super-low (L0 = 0.1, solid lines) LPS; (right) two sequential LPS challenges with second challenge
applied 150h after primary challenge, and either high–high doses (dashed lines) or super low– high doses
(solid lines). All parameters as in Table 1. a IRAK-1 dynamics following primary challenge. b IRAK-1
dynamics following primary and secondary challenge. c PI3K dynamics following primary challenge. d
PI3K dynamics following primary and secondary challenge. e RelB dynamics following primary challenge.
f RelB dynamics following primary and secondary challenge
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three proteins follows the outcomes seen after super-low primary LPS dose. Indeed,
the high booster does not change the equilibria of IRAK-1, PI3K or RelB (Fig. 3b,
solid curves). In particular, RelB decreases transiently before increasing to the before
the booster low equilibrium. Therefore, both primary and secondary responses are
representative of a strong inflammatory response (primed state). These results show,
that under these initial conditions, the macrophage phenotype is determined during
the primary stimuli. We will next show how these results can be altered if the booster
stimulus is super high.

3.3 Secondary Challenge with a Phenotype Switch

Themodel predicts distinct dynamics of the three proteins for high–highLPS challenge
compared to super low–high LPS challenges, with the size of the first dose determining
the outcome during the secondary challenge, i.e., inflammation for primary super-low
LPS and tolerance for primary high LPS. This result is dependent on the size of
the booster. Indeed, the bistable nature of the system predicts a possible switch in
macrophage phenotype, depending on the chosen initial conditions. In particular, we
found that we can drive the system in a different state by increasing the dose size. For
a super-high primary LPS challenge, L0 = 250, the RelB will have a high equilibrium
(tolerant state, E1) nomatter how high the booster size. On the other hand, a super-high
LPS boosting, L0 = 250, following a super-low primary LPS challenge can induce a
phenotype switch, driving the system from the pro-inflammatory equilibrium (E2) to
the pro-tolerant equilibrium (E1) (Fig. 4). Indeed, the super low–super high challenges
will drive RelB from low-to-high levels (see Fig. 4f, solid line), corresponding to
macrophage phenotype changes from pro-inflammatory to pro-tolerant. The increase
in PI3K caused by the super-high secondary dose counteracts the IRAK-1 increase
(see Fig. 4b, d, solid line), resulting in decreased inhibition of PI3K and an increase
in RelB levels. By contrast, high-dose boosting of L0 = 100 yields the inhibition of
PI3K by IRAK-1 as the factor determining the system’s dynamics by not allowing for
high enough PI3K levels which would inhibit the IRAK-1 production (see Fig. 3b, d,
solid line). Therefore, the systems stay in a pro-tolerant state.
Besides its strength, the timing of the secondary LPS challenge plays a role in the
outcome as well. An early high (L0 = 100) booster t = 5 h after primary super-low
challenge, drives the system from primed to tolerant. A later high (L0 = 100) booster
t = 10, (75, 150) hours after primary super-low challenge, only leads to transient
changes and does not drive the system into another immune state (see Fig. 5). In
experiments, the cells are usually primed overnight, i.e., for at least 6h (Maitra et al.
2011; Henricson et al. 1990). Our model predicts that, if the primary challenge was
super low, boosting with high-dose (L0 = 100) in a shorter than 6h span following
primary challenge, will drive the system into a tolerant state with elevated RelB. By
contrast, if the primary challenge was super low, boosting at times later than a 6h span
following primary challenge, will keep the system in a pro-inflammatory state with
low RelB levels. A bifurcation diagram for the asymptotic dynamics of RelB versus
both the booster timing and size when the primary LPS challenge is weak (L0 = 0.1)
is shown in Fig. 6.
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Fig. 4 Simulated dynamics of model (1) for: (left) single challenge with high (L0 = 250, dashed lines)
and a super-low (L0 = 0.1, solid lines) LPS; (right) two sequential LPS challenges with second challenge
applied 150h after primary challenge, and either high–high doses (dashed lines) or super low–high doses
(solid lines), including the asymptotic behavior. All parameters as in Table 1. a IRAK-1 dynamics following
primary challenge. b IRAK-1 dynamics following primary and secondary challenge. c PI3K dynamics fol-
lowing primary challenge. d PI3K dynamics following primary and secondary challenge. e RelB dynamics
following primary challenge. f RelB dynamics following primary and secondary challenge
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Fig. 5 RelB dynamics for super-low (L0 = 0.1) followed by high (L0 = 100) LPS challenges, when the
challenge is applied at different times. All parameters as in Table 1
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Fig. 6 Boosting after a super-low (L0 = 0.1) primary challenge. Dependence of the RelB equilibria on the
time and strength of the booster. All parameters as in Table 1

4 Discussion

We developed a mathematical model describing the differential response in
macrophages function between pro-inflammatory and pro-tolerant phenotypes when
challenged with LPS. Previous modeling studies have investigated cellular program-
ming into different phenotypes by either describing the topology of the transcription-
factor networks underlying such switch through theuseof generic deterministicmodels
describing the topological motifs of bistability (Fu et al. 2012; Tyson et al. 2001, 2003;
Tyson and Novak 2010) and inflammation (Reynolds et al. 2006; Day et al. 2006),
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by characterizing the global architecture of cell phenotype (Wang et al. 2014; Bhat-
tacharya et al. 2011), and by describing the biochemical network models involved
in cell fate (Ramsey et al. 2005; Bornholdt 2005). Such models could be applied to
describe the switch in the macrophage phenotype, but would not predict the mech-
anisms behind the switch. In this study, we model the biochemical kinetics of three
molecules involved in macrophage priming: IRAK-1, PI3K, and RelB. By investi-
gating their dynamics, we connected the immunological outcomes with the size of
bacterial endotoxin challenge.

Our model exhibits bistable behavior, with the motif of bistability being induced
by the nonlinear mutual inhibition of proteins IRAK-1 and PI3K. We found that the
pro-tolerant and pro-inflammatory macrophage states are determined by the size of
the initial LPS dose, with a super-low primary LPS leading to inflammation and high
primary LPS leading to tolerance. Perturbing these initial states is highly dependent on
the size of LPS boosting and is one directional. Once we have a tolerant macrophage
response (following a high LPS primary challenge), we cannot revert to an inflam-
matory macrophage response no matter the size of the LPS booster. If the system is
in an inflammatory state (following a super-low LPS primary challenge), however, a
high and early LPS booster can revert the macrophages into pro-tolerant cells. These
results are based on the connection between RelB levels and the phenotypes of the
macrophages.

One model limitation is the assumption that the decay of PI3K needs to be modeled
in a density-dependent manner. When we change this to the more classical linear-type
decay, we maintain bistable kinetics, but we lose the RelB qualitative behavior, i.e.,
the observed low RelB level for low initial LPS stimuli and high RelB level for high
initial LPS stimuli.

Under the model parameters, we quantified the timing and size of LPS booster
needed to observe this switch in phenotype. These results may be useful to study
mechanisms of autoimmune diseases. Autoimmunity refers to diseases in which the
body’s own immune system will attack healthy cells, typically through inflammation.
In reducing the body’s immune response, and thus inflammation, damage to host tissue
can be minimized (Navegantes et al. 2017).

Our model was able to qualitatively match the IRAK-1, PI3K, and RelB dynamics
and half-lives observed experimentally following a single endotoxin challenge with
an increase in IRAK-1 and decay of PI3K and RelB following super-low-dose LPS
challenge; decreased IRAK-1 and increased PI3K and RelB following high-dose LPS
challenge (Deng et al. 2013). We could not, however, determine their physiological
levels as many of the model parameters are unitless. Quantitative knowledge of such
parameters is needed to quantitatively match the three proteins concentrations with
the decision-making predictions given by our model.

In conclusion, we determined a molecular model that can explain the differential
responses between macrophage phenotypes and connected the outcomes with the size
of LPS primary doses. Our results can be used to guide treatments for patients with
either autoimmune diseases or a compromised immune system.

Acknowledgements Funding was provided by Simons Foundation (Grant No. 427115) and National Sci-
ence Foundation (Grant No. 1813011).
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Appendix

Here, we investigate the positivity and boundness of the following system’s solutions
[system (1)].

dx

dt
= cx + ax L

bmx + ym
− dx x,

dy

dt
= cy + ayL

by + x
− dy

y

bv + y
,

dz

dt
= az y

bz + y
− dzz

x

bz + y
,

dL

dt
= −dL L.

(11)

Assume that bmx = by = bz = bv = 1 and all other parameters parm =
{ax , dx , cy, ay, dy, az, dz, dL ,m} are positive. Let w(t) := [x(t), y(t), z(t), L(t)]T
be the solution vector and u(t) := [x(t), y(t), z(t)]T be the vector that considers the
first three variables. Consider the following functions

g : R4+ → R
4 given by

g(t, w) =

⎛
⎜⎜⎝
g1
g2
g3
g4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

cx+ax L
bmx +ym − dx x,

cy+ay L
by+x − dy

y
bv+y

az y
bz+y − dzz

x
bz+y

−dL L

⎞
⎟⎟⎟⎠ , (12)

f : R3+ → R
3given by

f (t, u) =
⎛
⎝
g1
g2
g3

⎞
⎠ ,

and the following initial value problem

w′(t) = g(t, w),

subject to

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0, L(0) = L0 > 0.

(13)

We want to show that the solutions of the initial value problem (13) are positive and
bounded. The fourth variable L(t) yields

L(t) = L0e
−dL t ∈ (0, L0], for all t ∈ [0,∞). (14)

The initial value problem (13) reduces to

u′(t) = f (t, u),

subject to

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0,

(15)
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where L(t) = L0e−dL t .

Proposition 1 There exists a positive number β > 0 such that system (13) has a unique
positive solution on [0, β).

Proof Since f is continuously differentiable on R3+, it is locally Lipschitz on R+
3 . By

Thm. 2, there exists a maximal value β > 0 such that (15) has a unique solution on
the interval [0, β) with values in R3+. �	
Proposition 2 The solution of (15) exists and is positive in R3+. Furthermore, if cy <

dy the solution is bounded.

Proof Assume that β found in Proposition 1 is finite. Since x(t), y(t), z(t), L(t) > 0
and L is decreasing on [0, β), the following inequalities hold for all t ∈ [0, β)

dx

dt
= cx + ax L

1 + ym
− dx x < cx + ax L0,

dy

dt
= cy + ayL

1 + x
− dy

y

1 + y
< cy + ayL0,

dz

dt
= az

y

1 + y
− dz

xz

1 + y
< az .

(16)

This yields

x(t) < x0 + (cx + ax L0)t < x0 + (cx + ax L0)β := xmax,

y(t) < y0 + (cy + ayL0)t < y0 + (cy + ayL0)β := ymax,

z(t) < z0 + azt < z0 + azβ := zmax,

(17)

for all t ∈ [0, β). Thus, x, y and z are bounded from above on [0, β). Using

dx

dt
= cx + ax L

1 + ym
− dx x ≥ cx

1 + ymmax
− dx x,

dy

dt
= cy + ayL

1 + x
− dy

y

1 + y
≥ cy

1 + xmax
− dy y,

(18)

we find that if x ≤ cx
dx (1+ymmax)

, then dx
dt ≥ 0. Similarly, if y ≤ cy

dy(1+xmax)
then dy

dt ≥ 0.
Therefore

x(t) ≥ min

{
x0,

cx
dx (1 + ymmax)

}
:= xmin > 0, for all t ∈ [0, β), (19)

and

y(t) ≥ min

{
y0,

cy
dy(1 + xmax)

}
:= ymin > 0, for all t ∈ [0, β). (20)

Lastly, since

dz

dt
= az y

1 + y
− dz

xz

1 + y
≥ az ymin

1 + ymax
− dz

xmax

1 + ymin
z, (21)
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for all t ∈ [0, β), we have that if z ≤ (
az ymin
1+ymax

)/(dz
xmax

1+ymin
) then dz

dt ≥ 0. Thus

z(t) ≥ min

{
z0,

(
az ymin

1 + ymax

)
/

(
dz

xmax

1 + ymin

)}
:= zmin > 0, for all t ∈ [0, β).

(22)
Therefore, x, y and z are bounded from below on [0, β). If β is finite, there are
positive lower and upper bounds for x, y and z on [0, β), i.e., u = [x, y, z]T is
bounded on [0, β). Since f is continuous, f (u) is bounded on [0, β). By 3◦ of
Thm. 2 limt→β x(t) = 0, or limt→β y(t) = 0, or limt→β z(t) = 0. This contradicts
the positive lower bounds of x, y and z. Thus β = ∞.

It remains to show that for cy < dy , the solutions are bounded on [0,∞). We know
that x, y, z > 0 for t ∈ [0,∞). We have

dx

dt
= cx + ax L

1 + ym
− dx x ≤ cx + ax L0 − dx x, for all t ≥ 0, (23)

which yields that if x ≥ cx+ax L0
dx

then dx
dt ≤ 0. Hence

x(t) ≤ max

{
x0,

cx + ax L0

dx

}
=: x1max, for all t > 0. (24)

Since limt→∞ L(t) = 0 and cy < dy , there exists a constant t1 > 0 such that

cy + ayL(t) < dy, (25)

and
L(t) ≤ L(t1) =: L1, (26)

for t > t1. Then

dy

dt
= cy + ayL

1 + x
− dy

y

1 + y
≤ cy + ayL1 − dy

y

1 + y
, for all t ≥ t1. (27)

Therefore, using cy + ayL1 < dy we obtain that for t ∈ [t1,∞), if y ≥ cy+ay L1
dy−cy−ay L1

,

then dy
dt ≤ 0. Furthermore, y is continuous, therefore bounded on the closed interval

[0, t1]. Thus, for t ∈ [0,∞)

y(t) ≤ max

{
max
t∈[0,t1]

y(t),
cy + ayL1

dy − cy − ayL1

}
=: y1max. (28)

As in Eq. (19)

x(t) ≥ min

{
x0,

cx
dx

(
1 + y1max

m)
}

=: x1min > 0, for all t > 0. (29)
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As in Eq. (20), we have

y(t) ≥ min

{
y0,

cy
dy

(
1 + x1max

)
}

=: y1min > 0, for all t > 0. (30)

To find an upper bound of z we use

dz

dt
= az y

1 + y
− dz

zx

1 + y
≤ az − dz

x1min

1 + y1max
z. (31)

This yields

z(t) ≤ max

⎧⎪⎨
⎪⎩
z0,

az

dz
x1min

1+y1max

⎫⎪⎬
⎪⎭

=: z1max, t ≥ 0. (32)

Lastly, to find a lower bound for z(t) we use

z(t) ≥ min

{
z0,

(
az y1min

1 + y1max

)
/

(
dz

x1max

1 + y1min

)}
=: z1min > 0, for all t ≥ 0. (33)

Thus, we have shown that there is a unique solution of (13) on [0,∞) that is positive
and bounded. �	
Proposition 3 An equilibrium solution of system (1) with bx = by = bz = 1 is locally
asymptotically stable if and only if AB

m > ȳm+1 x̄2, where A = cy
dy

and B = cx
dx
.

Proof Let (x̄, ȳ, z̄, L̄) be an equilibrium solution of system (1). From (14) it follows
that limt→∞ L(t) = 0, therefore we set L̄ = 0. Further, it follows from the proof of
Proposition 2 that x̄, ȳ, z̄ > 0. The Jacobian of system (1) evaluated at (x̄, ȳ, z̄, L̄) is
given by

J =

⎛
⎜⎜⎜⎜⎝

−dx − cxm ȳm+1

(1+ȳm )2
0 − ax

1+ȳm

− cy
(1+x̄)2

− dy
(1+ȳ)2

0 ay
1+x̄

− dz z̄
1+ȳ

az
(1+ȳ)2

+ dz z̄x̄
(1+ȳ)2

− dz x̄
1+ȳ 0

0 0 0 −dL

⎞
⎟⎟⎟⎟⎠

. (34)

Two eigenvalues of J are given by λ1 = −dL < 0 and λ2 = − dz x̄
1+ȳ < 0. The

remaining two eigenvalues λ3 and λ4 satisfy the equation

(λ + a)(λ + d) − cb = 0, (35)

where a = dx , b = cxm ȳm−1

(1+ȳm )2
, c = cy

(1+x̄)2
, and d = dy

(1+ȳ)2
. Since a, b, c, d > 0 this

implies that

λ3,4 = −a + d

2
±

√
(a + d)2

4
− (ad − bc) (36)
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have negative real parts iff ad > bc, which is equivalent to

dxdy
(1 + ȳ)2

>
cxcym ȳm−1

(1 + ȳm)2(1 + x̄)2

⇐⇒ dxdy
(1 + ȳ)2

> cycxm ȳm−1
(

1

1 + ȳm

)2 (
1

1 + x̄

)2

⇐⇒ dxdy
(1 + ȳ)2

> cycxm ȳm−1
(
dx
cx

x̄

)2 (
dy
cy

ȳ

1 + ȳ

)2

⇐⇒ cxcy
dxdym

> ȳm+1 x̄2

⇐⇒ AB

m
> ȳm+1 x̄2.

(37)

We have shown that all eigenvalues of J have negative real part, hence an equilibrium
is locally asymptotically stable, iff AB

m > ȳm+1 x̄2. �	
Proposition 4 If 0 < m ≤ 1 then system (1) has at most two positive equilibria.

Proof We find that if E = (x̄, ȳ, z̄, L̄) is an equilibrium of system (1), then it satisfies

L̄ = 0,

x̄ = B

1 + ȳm
,

z̄ = az
dz

· ȳ
x̄
,

(38)

where ȳ satisfies the equation

B

1 + ȳm
− A(1 + ȳ) − ȳ

ȳ
= 0,

and A = cy
dy

and B = cx
dx
. Therefore system (1) has as many positive equilibria as

there are roots of the function g(y) = B
1+ȳm − A(1+ȳ)−ȳ

ȳ in (0,∞).

We find g(y) = By−[A(1+y)−y](1+ym )
(1+ym )y . Hence, g(y) = 0 if and only if f (y) = 0,

where f (y) = By − [A(1 + y) − y](1 + ym) is the numerator of g(y). Expanding
f (y) and taking terms with the same powers of y together yields

f (y) = ym+1(1 − A) − Aym + (B − A + 1)y − A.

Note that A = cy
dy

< 1 because cy < dy . f is a smooth function on (0,∞). Hence,
for f to have at least three roots in (0,∞) its second derivative needs to have a root
in (0,∞). Using
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f ′′(y) = (1 − A)(m + 1)mym−1 − Am(m − 1)ym−1

= ym−2[(1 − A)(m + 1)my − Am(m − 1)] = 0

⇐⇒ y = Am(m − 1)

(1 − A)(m + 1)m

Since A ∈ (0, 1), the equation f ′′(y) = 0 has one solution in (0,∞) if m > 1 and no
solution in that interval otherwise. Therefore, f and hence g can have at most three
solutions in (0,∞) if m > 1 and at most two solution in (0,∞) if m ≤ 1. �	
Proposition 5 If m > 1 then system (1) has

1. either exactly one locally asymptotically stable equilibrium or
2. exactly two locally asymptotically stable and one unstable equilibrium or
3. exactly one locally asymptotically stable equilibrium and one equilibrium that is

not locally asymptotically stable.

Proof Let g be defined as in proposition 4. In the proof of proposition 4, we have
shown that g has at most three roots in (0,∞). Since g is a smooth function on
(0,∞), limy→0+ g(y) = −∞ and limy→∞ g(y) = ∞, we find that g has

1. either one root y1 ∈ (0,∞) with g′(y1) > 0 and no other roots in (0,∞) or
2. three distinct roots y1, y2, y3 ∈ (0,∞) with y1 < y2 < y3 and g′(y1), g′(y3) > 0

and g′(y2) < 0 and no other roots in (0,∞) or
3. one root y1 ∈ (0,∞) with g′(y1) > 0 and one root y2 ∈ (0,∞) with g′(y2) = 0

and no other roots in (0,∞).

We find

g′(y) = −Bmym+1 + A(1 + ym)2

[(1 + ym)y]2 ,

and therefore g′(y) > 0 if and only if

A(1 + ym)2 > Bmym+1. (39)

for y in (0,∞). Let ȳ be a root of g. Then, ȳ is the y-value of an equilibrium of system
(1) and the corresponding x-value is given by x̄ = B

1+ȳm . Using this in (39) we obtain

AB

m
> ȳm+1 x̄2, (40)

which implies stability of the equilibrium corresponding to the root ȳ of g. Similarly,
we can show that if ȳ is a root of g with g′(ȳ) < 0, then the equilibrium defined by ȳ
is unstable. This implies that statements (1)–(3) are equivalent to the three statements
in the formulation of the proposition. �	
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