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Abstract

The evaluation of output performance statistics for systems of high-dimensional uncertain input parameters is crucial for
robust real-time decision-making tasks of large-scale complex systems that operate in an uncertain environment. We develop a
framework that integrates Multivariate Probabilistic Collocation Method (M-PCM) and Orthogonal Fractional Factorial Design
(OFFD) to achieve an effective and scalable output statistics estimation. In this paper, we prove that when the degree of each
uncertain parameter does not exceed 3 and under the widely held assumption for high-dimensional systems that the interactions
among uncertain input parameters are negligible beyond certain order, the integrated M-PCM—-OFFD method breaks the curse of
dimensionality for correct output mean estimation by maximally reducing the number of simulations from 2 m o 2l logy(m+1)
for a system mapping of m uncertain input parameters. In addition, the resulting reduced-size simulation set is the most robust
to numerical truncation errors of simulators among all subsets of the same size in the M-PCM simulation set. The analysis also
provides new insightful formal interpretations of the optimality of OFFDs.

OC 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Large-scale complex systems (such as complex information systems, power grids, and traffic networks) commonly
involve high-dimensional uncertain input parameters, which modulate system dynamics. The importance of consid-
ering these uncertainties in achieving robust decision-making solutions is increasingly recognized, when developing
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both model-based and data-driven learning-based decision solutions [36,66,67]. In order to achieve autonomous real-
time decision-making for large-scale complex systems under uncertainty, a critical step is to develop an effective and
scalable systematic procedure to evaluate statistical system performance in the presence of high-dimensional uncertain
input parameters. With the real-time statistical system performance evaluation capabilities, automatic closed-loop
control solutions can be made to shape the dynamics to meet desired performance requirements.

This statistical system performance evaluation problem can be formulated as the estimation of output statistics for
a system of multiple uncertain input parameters with known distributions, and is typically solved using the Monte
Carlo (MC) simulation method [28,55]. However, as MC requires a very large number of simulations to converge
to meaningful performance estimates, it does not meet the real-time requirement, especially for large-scale complex
system applications, which typically consume considerable computational time for each simulation run. Additional
advanced random sampling approaches extended from MC have been developed to improve computational efficiency,
including Latin Hypercube sampling [41], importance sampling [19], multilevel MC [18], greedy and adaptive
sampling [24,30]. However, they still do not produce effective output-statistics estimation, that is fast in time, accurate
in estimation performance, robust to numerical issues, and scalable with respect to the dimension of the uncertain input

parameters.

We propose a new framework to quickly and accurately estimate the output statistics for systems of high-
dimensional uncertainties. The framework, referred to as M-PCM-OFFD, integrates Multivariate Probabilistic
Collocation Method (M-PCM) [70,71] with Orthogonal Fractional Factorial Designs (OFFDs) [4,22,48,49] to achieve
high effectiveness. M-PCM selects a significantly reduced number  of simulations compared to MC, when the
dimension of uncertain input parameters is low, to construct a low-order mapping, which estimates the output mean of
an original system mapping (also called functional model or response surface [ 5,34]) based on statistical information
of uncertain input parameters. However, the number of M-PCM simulations increases exponentially as the number of
uncertain input parameters increases, causing computational time issues for large-scale complex system applications.
We show that by integrating M-PCM with the procedures of the experimental design method OFFD, the number of
simulations can be further reduced with the accurate output mean estimation property retained, which significantly

improves the scalability of M-PCM for high-dimensional uncertainty evaluation.

To the best of our knowledge, this is the first study that leverages OFFD to systematically address the scalability
issue of M-PCM. Considering that the simulation of large-scale systems is often computationally intensive, reducing
the number of simulation runs is a critical step towards achieving real-time output statistics estimation. In this paper,
we focus on output statistics estimation for a system of m uncertain input ~ parameters when the degree of each
parameter does not exceed 3 and under the widely held assumption for high-dimensional systems that the interactions
among uncertain input parameters are negligible beyond certain order. The M-PCM—-OFFD framework can also be
used to estimate higher output moments, and to analyze systems of higher parameter degrees and even nonlinear
systems (see e.g., [65,60,71]). We discuss these aspects conceptually in this paper, and leave the complete analysis
for more general systems for future work. For the system of interest in this paper, we show that the integrated
M-PCM-OFFD method reduces the number of simulations required to estimate the correct output mean from2 2
to the range of ~2/'eg20m* DI 2m=1" "where [ x] denotes the nearest integer above the number x . In addition, many
simulators have resolution constraints on input parameters, and numerically truncate input parameter values to the
allowed resolution levels. Such truncation may unfortunately fail the output mean estimation. We prove that the
reduced-size simulation set selected by the integrated M-PCM—OFFD method is the most robust to such numerical

truncation errors of simulators among all subsets of the same size in the M-PCM simulation set.
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Absent results addressing the curse of dimensionality specifically for M-PCM,  an output statistics estimation
method, we review relevant studies in the broader directions of uncertainty evaluation and multivariate dimension
reduction. Similar to M-PCM, polynomial chaos expansion (PCE) also uses the quadrature-based rules, however
PCE aims to approximate the original system mapping with another mapping constructed from quadrature-based
generalized polynomials and quantify uncertainty of the output [8,32,58,59,63,69]. M-PCM, on the other hand, aims
for precise estimation of mean based on arbitrary probability distribution functions of uncertain input parameters,
through its specific polynomial construction and truncation rules that result in a low-order mapping. ~ With respect
to PCE, when the number of Gaussian quadrature points (roots of the next  higher-order orthogonal polynomials)
used in these approaches is larger than the number of parameters in truncated PCE mappings (not necessarily of
a lower-order as M-PCM does), several methods were introduced to reduce the number of simulations required to
estimate mapping coefficients. Papers [58,59] use a subset of the Gaussian quadrature points (or collocation points) to
estimate the coefficients of PCE, but the selection criteria were not specified. To improve the robustness of estimation
results, paper [32] suggested a regression method, called stochastic response surface method (SRSM), that follows
a heuristic procedure to select the set of simulation points that favor those in regions of high probability and of the
size typically twice the number of PCE mapping coefficients. Also of relevance, when all cross-terms (i.e., terms
that involve multiple parameters) are negligible, the univariate dimension reduction method (UDR) uses multiple
univariate functions to approximate the original system mapping. UDR requires mn + 1 simulations to estimate
an m-parameter system mapping, if n points are selected for each univariate function [37].  The high-dimensional
model representation (HDMR) based on the analysis of variance (ANOVA) [39,50,51,54] is a more general model
approximation method. It decomposes a multivariate function into a finite number of terms of increasing dimensions,
where each term is a nonlinear function. By viewing the coefficient estimation problem as least-squares estimation,
recent results also include the coherence-optimal sampling and its variants [ 14,25-27,47], a Markov Chain MC based
approach that chooses a small set of samples to achieve a statistical optimality in terms of the spectral radius of the
matrix constructed from samples.

By observing the dimension problem caused by the tensor product of Gaussian quadrature points, methods like
monomial cubature rules (MCR), sparse grids (SG) and its extensions from the numerical integration literature were
recently developed to break the curse of dimensionality [ 10,11,20,23,29,40,44,46,63]. In paper [63], the full set of
points generated by MCR of the degree 2n + 1 formula is used to estimate the coefficients of PCE mapping of order
n through regression. However, the method is not justified. It does not produce an accurate estimation of output mean
for PCEs of orders 2 and 3, and its performance for PCEs of order higher than 3 is unknown. Recently, paper [40]
used SG points to calculate, one by one, the coefficients of the associated orthonormal polynomial in PCE. As each
coefficient can be represented by an integral, the SG is naturally applied to approximate this integration operation. The
required number of simulations depends on the accuracy level of the applied SG, and may still be large. The use of
SG for pseudospectral approximation and partial differential equations are explored in [ 10,11,23,44]. Another related
line of work is tensor decomposition [3,15,20,21,45,52], which decomposes the mapping of high dimensional inputs
into mappings of low-dimensional inputs.

Our proposed M-PCM-OFFD, different from the above studies on function approximation, aims for correct output
statistics estimation based on the distributions of uncertain input parameters. Based on quadrature rules, M-PCM takes
advantage of the low-order mapping which only approximates the original mapping over the likely range of uncertainty
parameters to estimate the output mean correctly. The “balanced” and “orthogonal” structure of ~ OFFD further
addresses the scalability issue. M-PCM—OFFD offers the following features: (1) the systematic design procedure
facilitates automatic real-time performance evaluation and management under high-dimensional uncertainties,
(2) arbitrary probabilistic distribution knowledge of the uncertain input parameters are allowed, (3) output mean can be
precisely estimated with rigorous analysis provided, and (4) robustness to numerical truncation errors of simulators
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is guaranteed. In the simulation studies, we also compare in detail the performance of M-PCM—-OFFD with seven
representative function approximation methods in terms of computation and estimation correctness. While we were
developing this paper based on earlier results in the brief conference paper [ 68], we noticed a very recent development
that through simulation studies show the use of OFFD to reduce the computation for PCE approximations [ 62], which
provides further evidence for our study.

The remainder of this paper is organized as follows. In Section 2, we review fundamentals of M-PCM and OFFD.
In Section 3, we present the integrated M-PCM—OFFD algorithm, and prove the main results on its performance in
terms of (1) output mean estimation, (2) robustness to numerical truncation errors of simulators, and (3) estimation of
the effects of the parameters. Section 4 includes simulation studies on some illustrative examples, and compares the
performance of M-PCM-OFFD with existing function approximation approaches. Section 5 concludes the paper. For
better readability, we move the proofs of all lemmas, theorems, and corollaries to the Appendix.

2. Preliminaries

We review fundamentals of the M-PCM and OFFD methods, which pave the foundation for main results in this
paper.

2.1. M-PCM: Multivariate probabilistic collocation method

The Probabilistic Collocation Method (PCM) was developed to quickly and accurately estimate the output mean for
a system of one uncertain input parameter, which may or may not be correlated [31,61]. M-PCM extends PCM to ad-
dress systems of multiple uncertain input parameters [70,71]. Although computationally effective in each uncertainty
dimension, it does not address the exponential expansion of computational costs with linearly increasing uncertainty
dimensions. For a system mapping g(x 1, x2, . ;) of m uncertain input parameters, with the degree £ ; of each
parameter x; up to 2n; — 1, a total number of 2~ "L, n; simulations are needed to uniquely determine the mapping.

The procedure of M-PCM, Algorithm 1, shown at the next page, selects n ; simulation points for each parameter
based on statistical knowledge of uncertain input parameters in general forms such as joint probabilistic distribution
funﬁions (pdfs), historical datasets, and simple low-order moments such as the mean and the variance. A total number
of ., n; simulations evaluated at combinations of these simulation points constructs a reduced-order mapping
gt (x1,x2, . . x) with the degree of each parameter reducedton ; — 1. Whenm = 1, we refer the method as
PCM [31,61]. The reduced-order mapping correctly estimates the output mean of the original mapping as shown
in Theorem 1. The proof can be found in [71]. In this paper, we assume the independence of these uncertain input
parameters. Properties of the correlated case can be found in [71].

Theorem 1 (/70,71]). Consider a multivariate system with the following mapping

2% —1283 -1 2m5—1
gl o mo,
g(xl,xz, .. xm) = k1,ko s, Jom x,- y (1)
k1=0 kp=0  kp=0 i=1
where the coefficients "Ukl,kz ,,,,, k, € R andny, ny, ... ,n, are integers greater than 1. Assume that the uncertain
parameters Xxi, X, ..., Xy followindependent distributions fx (x1), fx,(x2), ..., and fx, (xn) respectively.
g(xy, x2, . . Xxu) can be approximated by the following reduced-order system mapping
1 1 ny—1
. _EE no,
g (xl;x25 .. xm) - eee kl,kz ,,,,, km xl‘ s (2)
k1 =0 k=0 k=0 i=1

using the procedure shown in Algorithm 1, where the coefﬁcientstl,kz,m, tm € R. Then, the following equality holds

E[g(xl,xz, .. xm)] = E[g+(X1,X2, .. xm)]
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Algorithm 1: M-PCM

1

5

/* Step 1: Choose M-PCM simulation set */
fori ¢« 1tomdo

Initialize H, ' (x;) = b '(x;) = 0 and HO(x;) = h0(x;) = 1;
for k; ¢« 1ton; do
k

( ) ( 1
Sy — T ) T oy W T ey = HE T ), HE T ) P R TR )
( Y1
B Gei) = HE )/ H G, HE (i) s

ki —
Hi (x[) = xih

6 end
7 end
s Find the roots ofhl'.'i(xi) = 0 in Line 5 as the n; PCM simulation, denoted as x; (1), = - %j,4)3
/* Step 2: Run simulations */
9 For each m-tuple simulation point (x1(y,), X2(r5)> - - Xm(r,,)) in the M-PCM simulation set, where 1; € i, .. ny},run
simulation and find the corresponding output g(x(»\), X2(ry)> - - Xm(ry))>
/ Stepr’iz Calculate thfe output r[nean */

ao,...,0 8(x1(1)s Xm(1))

ap,.., 1 gxX1(1), - Xm(2))
10 Apply \‘ . J:/__l [ @ . " J,Where’_ =

Any—1,. ny—1 X 1(ny)s o Xm(ny))
-1 Z

BOCer()eh Com(1)) B Gt ()i o))+ BYT @enay) kg L em(1))
-1 _

BCer()-h em@) A1)y Com@)  BIYT @iy kg L em2))

to find the coefficients g, f, ... ,, in the reduced-order

m =1

B G101 o) B @1y >)}..h$,<xm<n2» M i >>‘..h512 Emirm)) n
. . +( L. s )_ n]7]2n27] nmfl m hk,( )
mapping: g (X1, X2, Xm) = k1=0 k=0 """ kyu=0 Ak, b i=1" Xi)s

1 The predicted output mean is gy ,... ¢;

Notes of Algorithm 1

. . . .
1. In Line 4, {p(x;), g(x;)) denotes the integration operation ~ p(x;)q(x;) fx,(x;)d %. Hik’ (x;) is the orthogonal

polynomial of degree k; for the uncertain input parameter x;, and 4 f.{" (x;) is the normalized orthonormal
polynomial [2].

2. In Line 8, the indices in the two column vectors are arranged in the lexicographic order, from0 ,0, . . 0fo
ni—1,ny—1, .. n,—1,andfrom1,1, . . 1fon,,ny, . . n,, respectively. The entries in/ are arranged
accordingly.

Remarks
1. The coefficients Qk],kz,.‘., &, 10 (2) can be derived by reorganizing terms in g (x;, x2, . . X,) obtained in Line

10 of Algorithm 1. The reduced-order mapping, as a by-product of this estimation process, enables further
studies, such as sensitivity analysis and optimization [72,73].

. Besides accurately predicting the output mean with a reduced computational cost, M-PCM has other attractive

statistical characteristics [70,71]. In particular, it also precisely predicts the cross-statistics (i.e., statistics of
cross input—output relationship) up to a certain degree [ 70,71]. Moreover, its performance is tightly connected
to the minimum mean square estimation. These properties suggest that the reduced-order polynomial mapping
g¥(x1,x2, . . x,)approximates the original system mapping g(x 1, X2, . . x,) well over likely ranges of
parameter values. We also note that the methodology can be modified to estimate high-order moments as
well, but a larger 7 may be required to achieve the same level of accuracy, due to the increase of the order of
interactions. For instance, the second-order moment of the output can be estimated by evaluating the expected
mapping of g2, e.g., E (g%). We leave the study on high-order output statistics for future work.
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3. In line 8 of Algorithm 1[5 can be calculated by the expression (W )T W, where W = diag {wq, w, . . . ;| w
w, = 1|7 |l,and/ = "', n,. (-);. represents the i th row of the matrix in the parenthesis, and || - fis the
L, norm. Computing polynomial coefficients from interpolation at the zeros of orthogonal polynomials is
equivalent to computing these coefficients via Gauss quadrature (quadrature collocated at zeros of orthogonal
polynomials). As W is an orthogonal matrix, and the linear system can be solved via simple transposition and
matrix multiplication (W )" W [6,17].

4. Instead of following lines 8—10 in Algorithm 1 to find mapping coefficients Qk],kz,,.,. kn» We can also directly
calculate them using all M-PCM simulation points. Specifically, we can respectively replace each element
hf" (X)) in matrix I with x,.k" (X ;)), to construct matrix L, where x iki (xi ) represents the k ;th power of x;
evaluated at the PCM simulation point x; (). The coefficients Q, ky..... ky, can be directly computed by

I Q0.0 1 gl 1), X2x1ys - - Xm(1))
Q
0,0,..., 1 B g1y, X2a1ys - - Xm(2))
{ : J =L . )
= Lny =L, i =1 gX1(np)s X2(n9)s -+ - Xm(np))
where
-1 _
i) xS Comay) Xy 1(361(1))'-'16,'3,’” "Xm(1))
ny— —
= @)Xy Cn) X @) ()
-1 _
x?(xl(nl))--'xr(zl(xm(nm)) o 'x;ll (xl(nl))--'x,’:,m 1(xm(nm))

The indices in the two column vectors in (3) are arranged in the lexicographic order (see Note 2 of Algorithm
1 at the previous page). Th? outpfut mean can then be calculated either through an integration

Elgkx, . . xw)]= . g @, . x)f, 60 - fr,Gnddxi - - d Xy, “)
or through a simple transformation
Elgx, . . xy)]=(""0L),.B, &)

where B is the coefficient vector on the left-hand side of (3). The orthogonal basis (captured by matrix ) is
preferred over the natural basis (matrix L) to achieve better invertability, as captured by the condition number
metric [71]. In this paper, we use L for the ease of presentation in proofs; however the results also apply to the
case when I is used.

Even though it provides a significant computational load reduction from 2 ™ H;”ZI n; to Hl'.":l n;, M-PCM does
not scale with the dimension m of uncertain input parameters. In realistic applications, high-order cross-terms in a
mapping have negligible effects on the output [4]. With such assumptions that generally hold for real-world large-
scale complex system applications, only a subset of the M-PCM simulation set is needed to perform computation-
intensive simulations. This motivates our study that leverages OFFD to address the curse of dimensionality problem of
M-PCM.

2.2. OFFDs: Orthogonal fractional factorial designs

OFFDs have been widely used to reduce the number of experiments and to enact various parameter and
system studies such as influential parameter identification, sensitivity analysis, model optimization and software
testing [38,42,64]. For an experiment that involves multiple parameters (or factors) with each parameter evaluated at
several values (or levels), all combinations of the parameter values form a large design space, called the full factorial
design. OFFDs select a subset from the full factorial design to retain the significant effects of input parameters (i.e., the
main effects of single parameters and low-order interaction effects of a few parameters) with minimal aliases. To
illustrate the concepts of main effect, interaction effect, and aliases, we here describe the 2-level full factorial design
and OFFD designs (for which each parameter only takes two values [4,22,48,49]) from the estimation perspective.
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Xey  Xey  Xey | XeyXe,  XeXes  XeyXes  XeyXeXe; |V Yo Yo Yo |V
1] =1 =1 —1] +1 +1 +1 -1 » LI -1 —1 41 ]ys
B4 | =0 [ =i =10 [ =1 | i 1 | » 2|+ -1 =Ly
3 =1 41 =1
3 -1 1 -1 —1 1 —1 o
i3 i +1 3 4 +1 41 +1 |

40 +1 +1 —1 | +1 -1 -1 -1 V4
Xep Xy Xes | Y

50-1 —1 41| +1 =1l =1 +1 Vs
1] -1 -1 —1]|n
6| +1 -1 +1| -1 +1 -1 -1 V6 2|41 41 -1
70 -1 41 +1| -1 -1 +1 -1 7 3 =1 41 41|
8| +1 +1 +1 +1 +1 +1 +1 8 4141 -1 41|y

(a) (b)

Fig. 1. Tllustration of 3-factor (a) 23 full factorial design and (b) the design tables of two 2 3711 OFFDs.

Consider m parameters, x1, X, . . . , %, coded as factors, x.,, X,, . . . , ¥,,, each of which is evaluated at two levels
(or coded values), 4+ 1’ and ‘—1°. The 2-level full factorial design of 2 parameter combinations constructs a saturated
model that describes the effects of these m factors on the output [49]:

b o Ho2 yl o
y :/3)0 + /:’)ixci + /J)ijxc,-xcj- + /J)ijkxc,--xc’jxck + - +i/?,).mxcixc]-----xcm + € (6)
i=1 i=1 j=i+1 i=1 j=i+ lk=j+1

where the coefficients reflect the effects of corresponding terms to the output, and e is a random noise with zero

A

mean. Denoting ¢ ~’ as the average operator, the standard least squares estimation gives the estimates [y = 7y,
pi = %()71':+ —yi=—), Bij = %()7,-_,-:+ — Vij=—-),and fB;; = %(JZ_,;,,:+ — Yi;..=—). Here, y is the mean of all outputs,
Yi=+ denote the output means when x ., = =1, and y;; =+ denote the output means when x iXejen = +1. Defining
the main effect y; of factorx ., as x; = y;=+ — Yi=—, and the interaction effect (interaction of muAltiple factors)
)g,»_,-_, of cross-term x iXej-e B8 Xij. = Yij..=+ — Yij..=—, We obtain the least squares estimates of f; = % Xi, and
Bij.. = % Xij... [4,49]. Full factorial designs estimate all main and interaction effects (of any order) independently of

one another. The disadvantage is that they are expensive in requiring many simulation runs. A full factorial design for
three factors is shown in Fig. 1(a).

A 2-level OFFD is described as & 7. The fiactionation constant,y, in the range of 1<y <m —[ log,(m+ 1)][4],
indicates that N = 2”7% simulations are selected from the full set of 2" simulations [22,48]. The upper bound ofly is
determined by the minimum number of runs (N = m + 1) to estimate m main effects and the mean. The resolutionR
represented by a Roman numerical subscript, describes the length of the shortest generator, which defines the rules
to generate factor levels [48]. For example, the two halved-size OFFDs in Fig. 1(b)are both 2}} designs produced by
setting x., = #x.,X.,. The corresponding generator is / = x., x,Xc;, and the resolution R=r11T.

A 2-level OFFD is captured by the design table, where each entry i , j represents the level of factor j selected in
the i th simulation. Now let us briefly illustrate the procedure to generate @ * OFFDs for given m and y. The steps in
Algorithm 2 illustrated below deviate to some extent from the iterative procedures in the standard experiment design
literature [16] to address the uncertainty evaluation problem.

Algorithm 2: OFFD

/* Step 1: Generate the 2m=Y full factorial design for m — y factors. */
1 List all 2 =¥ combinations for the m — yfactors;

[* Step 2: Specify y generators. */
2 Select generators that maximize the resolution R ;

/* Step 3: Determine the levels of all other y factors. */

3 Generate the levels for all other y factors using the generators selected in Step 2;

In Line 2, we refer to [60] for standard generator designs.

Lemma 1. 423 Y OFFD satisfiesm — y >R — 1.
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The 25~ OFFDs are characterized by the balance and orthogonality properties [48]. Denote the OFFD design
table as D of dimension 2 "~ X m, and its i th column as d ;. Then the balance property leadsto d ; - 1 = 0, where
1 <i < m,and ‘-’ denotes the inner product of two vectors. The orthogonality property leads to d; - d; = 0, where
l<i,j<mand?/=j.

An advantage of OFFDs is that they are inexpensive, but with the “price-paid” that every fractional design —
orthogonal or otherwise — has confounding (aliasing) by which main effect estimates reflect the factor of interest,
but also have contributions from other sources (namely, interaction effect(s)) [4,49]. The orthogonality and balance
properties of OFFDs permit the confounding to be isolated, pre-determined (pre-data collection), and minimized
in the sense that main effect estimates are confounded with high-order interaction effects and not with other main
effects [48]. When these higher-order interaction effects are negligible, OFFDs provide very good estimates of main
and interaction effects.

Multiple 2”7¥ OFFDs may exist with different confounding structures [22,48]. For given m and y;, it is desirable
to choose the highest possible resolution R, because this assures that the main effects are only confounded with
the highest-order interaction effects that can be achieved [4]. For designs of y > 1, the main effect of factor x ; is
only confounded with the interaction effects of at least R — 1 factors among the other m — 1 factors (with R < m).
Moreover, the k-factor interaction effect is only confounded with the interaction effects of at lead® — k factors (when
k < R — k) [48]. For instance, if 2-factor interaction effects cannot be neglected, a design of resolutiod® = I /I may
not be sufficient. At the extreme, consider the half-fraction design (i.e.,y =1). The generator for 2! has a form of
I = =x. X+ - x,. Under this resolution, the main effect of factor x; is only confounded with the interaction effect
of all other m — 1 factors, and a k-factor interaction effect is only confounded with the interaction effects of all other
m — k factors (assuming k < m — k). Therefore, if (m — k)-factor interaction effects can be negligible, the k-factor
interaction effect estimates are also very accurate.

In viewing the M-PCM simulation set as a full factorial design, Algorithm 2 provides a systematic procedure to
select a subset of m-tuple simulation points to reduce the number of simulations. In the next section, we show that the
resulting reduced-order polynomial mapping correctly estimates the output mean of the original system mapping, and
is the most robust to numerical truncation errors of simulators.

3. Integrated M-PCM-OFFD design and analysis

In this section, we integrate M-PCM and OFFD to break the curse of dimensionality for effective output mean
estimation. We first present the integrated M-PCM—OFFD algorithm, and then analyze its performance using three
metrics: (1) estimation of output mean, (2) robustness to numerical truncation errors of simulators, and (3) estimation
of significant effects. The specific OFFD to select is based on the knowledge that cross-terms in the original system
mapping involve at most a certain number of parameters. Such knowledge can be obtained from experimental studies
of underlying physical systems.

3.1. The M-PCM—-OFFD algorithm

Consider an original system mapping of m uncertain input parameters, xi, Xs, . . . , ¥, each with a degree up to 3:

22 3 n .
g(x1,x2, . . Xp) = I 70 S T (7
1 =0ky=0 =0 i=1

where the coefficients q”kl ,,,,, k., € R. Assume that the uncertain input parameters follow independent distributions
Jx,(x1), fx,(x2), ..., and £, (x,). In addition, assume that cross-terms have up ta parameters, where 7, the maximal
cross-product power, is an integer of 1 < 7 <m. In other words, qul,,.,, k, = 0if more than 7 of ky, . . k, are non-
zero. T is determined either based on prior field knowledge of the physical system, or through an iterative procedure
that trades off between the computational cost and the estimation accuracy.

Algorithm 3 constructs a reduced-order polynomial mapping

X DIEDI D3 n .,
g (x1, X2, . . Xp) = Q gk X 3
K1=0kr=0  kp=0 i=1
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where thefoefﬁcients le,kz,..., t, € R, and le,kz ,,,,, tn, = 0ifmorethan 7 ofky, k2, . . k, are non-zero. Note that
T =max , k; in the reduced-order mapping g*, wherei € 1,2, . . m).
Algorithm 3: M-PCM-OFFD

/* Step 1: Select the M-PCM simulation set */

1 Follow Step 1 of the Algorithm 1 where 5 = 2 foralli € {,2, . . m};
2 ifm >2and1 < v <[] —1then
3 ‘ Go to Step 2;

4 else
5 Go to Step 4, as no reduction of simulations can be achieved;
6 L € 2™, where [, is the number of M-PCM-OFFD simulations;
7 end
/* Step 2: E{)etermine y* to sa(vf 2”(’ —)%’”_Y* simulations. } */
sy*emax yl[l<ysm—logg "7y "), and2g ¥ OF FDexists WithR 227 +1';
/* Step 3: Select the M-PCM-OFFD simulation set using the zﬁ_”* OFFD. */

9 Use Algorithm 2 to select /gy = 2"~ ! parameter combinations to form m-tuple simulation points from the full set of 2"
M-PCM simulation points obtained in Step 1. These 2" ™Y : m-tuple simulation points constitute the M-PCM-OFFD
simulation set;

/* Step 4: Simulation */

o Run simulation for the M-PCM—-OFFD simulation set at each of the j;gfy ’ m-tuple simulation points;

/* Step 5: Calculate the output mean */

n if/ = [,y then

—

—

2 Find the coefficients in (8) similar to Step 3 of Algorithm 1, but with a reduced-size matrid , denoted as the input
matrix T, € RlowaX! which excludes those columns with more thanz of k1, k2, ....km being nonzero, and rows
representing points not selected in the reduced M-PCM-OFFD simulation set;

13 else

—

, ()
4+ | Find the coefficients in (8) by replacing/ o with T L7~ T [43],
15 end

16 The predicted output mean is aﬁ) .
ﬂ][l“_ﬂo

m

Notes of Algorithm 3

. x . .
1. InLine 8,/ = f:o( ” ) denotes the number of M-PCM—-OFFD coefficients to be estimated.
2. Step 4 is the most time-consuming step for large-scale complex system applications.

Remarks

1. In Line 16 of Algorithm 3, the output mean can also be calculated by integrating the reduced~order mappiﬂng
using (4), or through a simple matrix nPanipulation. In pal]ticular, E[g(x,x2, . . x)] = (T Oyﬂ._dlL;“\d)L: B
if lyy = Lor E[gx1,x2, . . xw)] = (T AT )7Ly, B if Ly > I, where L

offd  offd om € Rl s a reduced-
size L matrix derived in the way same as matrix ! . B is areduced-size B vector, which excludes entries
corresponding to cross-terms of more than T parameters.

2. The ordering of entries in matrix L _, or I' . does not need to strictly follow Note 2 of Algorithm 1. They
only need to match the orderings of simulation points and the simulated outputs. ~ Without loss of generality
(WLOG), we assume in the sequel that columns in matrix L( « are arranged in the graded reverse lexicographic
order as follows for the ease of proofs. First, the number of parameters in these columns increases from 0 toz.
Second, columns of the same number of parameter are arranged in the order of increasing indices. For instance,

for a system with m = 3 parameters and the maximal cross-product power 7 = 3, the columnsin L , are
arranged in the following order: {1, x1, x, X3, X1X2, X1X3, X2X3, X1X2X3].
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In this sequel, we only analyze the case of using matrix L
presentation. As matrices F ., and L.

. toconstruct g*(xy, x2, . . x,) for the ease of
. share the same structure, similar conclusions hold if using /" instead.

3.2. Performance analysis on estimation correctness

In this section, we consider the case where a further reduction of simulations is possible (i.e., whenl < 7 <
[%] —1,and m > 2), and show that the reduced M-PCM—OFFD simulation set obtained using Algorithm 3 correctly
estimates the output mean of the original system mapping with the degree of each parameter up to 3 (Theorem 2).

We first present several lemmas. We show in Lemma 2 that the reduced-order mapping does not increase the maximal
cross-product power.

Lemma 2. Consider an original system mapping g(x 1, X2, . . Xu) of maximal cross-product power t, (7). The
maximal cross-product power of the reduced-order mapping g (x1, x2, . . Xm) is also T.
Given the maximal cross-product power 7 in cross-terms of g(x1, X2, . . Xu), or equivalently g* (x1, x2, . . Xu)

according to Lemma 2, Lemma 3 partially justifies Steps 1 and 2 of Algorithm 3.

Lemma 3. Consider the reduced-order M-PCM mapping g* (x1, x2, . . Xw), (2), of maximal cross-product power
T. An OFFD design can further reduce the number of  simulations, if 1 < 7 < | m] — 1, andm > 2 (Step 1
of Algorithm 3). 7("1% nu(nbeﬁf of simulations can be reduced from 2 ™ to 27 ¥max ysing g 2 ™7 ¥max OFFD, where

Ymax = M — HOgZ i=0 i

In order for the 2™ ~max OFFD in Lemma 3 to lead to a valid M-PCM—OFFD design (e.g., Step 5 of Algorithm 3
is possible), the input matrix L, needs to have full column rank. Lemmas 46 state that this requirement is satisfied
when the resolution R > 27 + 1. We first introduce a matrix ¥ € R"%<! and establish its connection with the 25 *
design table, D, in Lemma 4. Here we denote ° © as the hadamard product.

Lemma 4. Consider a matrix V. € R'i! constructed from the input matrix L ot € Rlewxl (with 1 < 7 < %] -1
andm > 2). In matrix V, each column ¥ is the i th column of L, with its entries xi1) and xy) replaced by the coded
factors ‘—1’ and ‘+ 1’ respectively, where k € S; is the index of input parameters, and S; is a set that includes all

the indices of input parameters in column i . The following equalities hold. ¥ = 1. The column v; in matrix V', where
1<i ﬁ—[n + 1, equals the (i — 1)th column of the OFFD design table D, i.e., ¥ = d;_. Column v;, wherei > m+ 1,

equals s, Vi.

The connection of ¥ and the OFFD design table shown in Lemma 4 suggests that /" can also be directly constructed
from the design table. Lemmas 1, 2 and 4 lead to Lemma 5, which states the condition for the orthogonality of matrix
V.

Lemma 5.  Any two columns of V are orthogonal, i.e., v; -v; = 0, foranyi/= j,andi,j = (1,2, . . 1}, if
R >27+1.

Based on Lemma 5, Lemma 6 shows that the matrix L _, constructed by M-PCM-OFFD is of full column rank
(ie.,rank(L ) =1).

Lemma 6. Whenl < 1t < M — 1 andm > 2, the input matrix L . € Rli*! (constructed using Algorithm 3) is

//i

of full column rank, and can be expressed as L i = VU, where Ue R XU is an upper triangular matrix, with its i th
diagonal enn{y
1 if i=1
Ui = I1 s ©))
zlgai— kesl- Axk lf I/: 1

where D x;, = Xk2) — Xk, & is the size ofs,-, and X2y > xi) WLOG.

Theorem | and Lemmas 2—6 lead to the following theorem, which states that M-PCM—OFFD correctly estimates
the output mean of the original system mapping.
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Theorem 2. Whenl < 7 < [%] —landm > 2, the reduced-order mapping g*(x1, x2, . . Xm), (8), constructed

using the integrated M-PCM and 2 "~ OFFD methods (Algorithm 3) correctly estimates the output mean of the
original system mapping g(x1, X2, . . Xu), i.e.,

E[g(x, x2, . . xw)] = E[g"(x1,x2, . . X)]. (10)

The algorithm reduces the number of simulations from 2" to 2"~7" in the range of[ZHOgZ('"Jr DI, gm=17,

3.3. Performance analysis on the robustness to numerical truncation errors of simulators

In this section, we study the robustness of M-PCM-OFFD to numerical truncation errors of simulators. A
robustness metric and problem formulation are described in Section 3.3.1. The optimality of M-PCM-OFFD under
this metric is proved in Section 3.3.2.

3.3.1. Metric and problem formulation ( )

The M-PCM-OFFD algorithm involves L ! or LT L ! L.T, which requires L _, to have full column rank.
We showed in Lemma 6 that this full column property holds when the resolution satisfies R > 27 + 1. Numerical
truncation errors caused by allowable parameter resolutions of simulation software [ 71] and computational limitations
of computing devices [33] may introduce disturbances and push L | to lose rank. Evenif suchanZ _ under
disturbances does not lose rank, the correctness of inversion computation becomes sensitive to such numerical
truncation errors [13]. As such, L . needs to have a large margin to rank loss under parameter value disturbances
for practical use.

We here show that L_, has the largest margin to rank loss among all subsets of the same size selected from the
M-PCM simulation set. To facilitate the analysis, we introduce L ~ to represent a matrix constructed in the similar
way as L, by using an arbitrary subset of the size 2”~?" in the M-PCM simulation set. We also define a metric to
measure the distance to column rank loss as the fiull-column-rank margin M(L), which is measured by the Frobenius

norm [35] of the smallest perturbation matrix to make L  lose rank [12,33],
M(L ) = min |||z |rank(L + e) < z} (11)

where e € R%1*/ is a perturbation matrix on parameter values.

3.3.2. Optimality analysis

Lemma 7 shows the expression of full-column-rank margin for M-PCM—-OFFD when the maximal cross-product
power T = 1. Theorem 3 shows that OFFD produces the largest full-column-rank margin among all simulation subsets
of the same size selected from the M-PCM simulation set. Lemma 8§ and Theorem 4 extend the results to the general
casewhere 1 < 7 < %] —1. Two corollaries follow to show exemplary designs where L loses full column rank and
therefore cannot be used for output mean estimation.

Lemma 7. Consider an original system mapping g(x1, X2, . . Xw), (7), withm > 2 and v = 1. The M-PCM—OFFD
simulation set (se{jzcted using Algorithm 3) produces the full-column-rank margin:

, L.

ML) = T”“min{Axl,sz, oDy, (12)
Theorem 3. Consider an original system mapping g(x 1, X2, . . Xw), (7), withm > 2 and © = 1. The M\-PCM-
OFFD simulation set (selected using Algorithm 3) has the largest full—column-r@nk mar;gin among all subsets of'2¥ !
simulation points in the M-PCM simulation set of size 2". Mathematically, max M(L ") = M(L

uffd)'

Before we show Lemma 8 and Theorem 4, let us first introduce some notations. Define A = (1,2, .. m},and
A, =A — Kk}, where k € A) We construct a set A ki from A to contain all sets consisting i number of elements in
A Thesizeof Ay ;is ™ !". Thejthsetin Ay, is denoted as A, ;. For instance, when k = 1,i = 2, j = 2 and
m = 4’A = {15 2’ 3’ 4}’A| = {27 35 4}9A 1,2 = {Q: 3}: {2’ 4}5 S’ 4}}7 andAl,Q,Z = {2’ 4}
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Lemma 8. Consider an original system mapping g(x 1, X2, . . Xw), (7), withm > 2and1 < © < [3] — 1. The
M-PCM-OFFD simulation set (selected using Algorithm 3) produces the full-column-rank margin:
P 1]
, L. Tty 21
ML )= —"min Dx;y 1+ L—. X2+ X2 J JkeA (13)
offe 2 l ) 21 ) J
i=1 j=1 a€A kij
Theorem 4. Consider an original system mapping g(x 1, X2, . . Xu), (7), withm > 2and 1 < v < 5| — 1. The

M-PCM-OFFD simulation set (selected using Algorithm 3) has the largest full-column-rank margin among all subsets
of 27" simulation points in the M-PCM simulation set of size 2". Mathematically, max(M(L )) = M(L

Qtfd) .

Corollaries 1 and 2 list two sufficient conditions for L to be singular, i.e., M (L) = 0.

Corollary 1.  Consider an original system mapping g(x 1, x2, . . Xu), (7), withm > 2 and the maximal cross-
product power T = 1. A design 0f2””3’* simulation points selected from the M-PCM simulation set of size 2™ leads
to M(L ) = 0, if there exist two columns in L " that contain a pair of input parameters with no more than two out of
four combinations of levels.

Corollary 2. Consider an original system mapping g(x 1, X2, . . Xm), (7), withm > 2and1 < 7 < [%] —1.4
design of2’””’* simulation points selected from the M-PCM simulation set of size 2 ™ leads to M(L ') = 0, if there
exist two columns in L which contain a pair of input parameters with no more than three out of four combinations of
levels.

3.4. Performance analysis of the correctness of effect estimation

For the completeness of performance analysis, we show in Theorem 5 the performance of M-PCM—-OFFD in
estimating effects of input parameters on the output.

Theorem 5.  Consider an original ~m-parameter system mapping g(x 1,x2, . . Xw), (7), The M-PCM-OFFD
simulation set (selected using Algorithm 3) correctly estimates the main effects and all interaction effects.

4. Tllustrative examples and comparative studies

We first use a 3-parameter small example to illustrate the whole design procedures and properties of the integrated
M-PCM—-OFFD algorithm, and then briefly discuss a 50-parameter example to show its effectiveness in larger-
size problems. To further demonstrate the performance of M-PCM—OFFD, we compare it with existing approaches
reviewed in Section 1.

4.1. A small-scale example

Consider an original system mapping g(x 1,x2,%3) = 1+ x1 + x2 + x} + xa + x3 + xj + x3 + x2 + x3,
where x | follows an exponential distribution fx,(x;) = 2¢7 %1, x; = 0, x, follows a uniform distribution of
fr,(x2) = 15,5 < xp < 20; apd x5 also follows a uniform distribution of fy,(x3) = 1,5 < x3 < 10. The output
mean is E[g(x 1, x2, x3)] = g(x1, x2, x3) fx, (¥1) fx,(x2) fx;(x3)d xid d x3 = 3381.1. Identifying all coefficients
requires 4> = 64 simulations.

Now let us use the M-PCM—-OFFD algorithm (Algorithm 3) to choose ({11ly 4 simulatioras. First,(we choose the I\jl-
PCM s&mulation set off} points b(ased upon the pd)f of each(parameter: = )fl(l), xz(l)(, xX31) »P2 = xlp), X2(1) {3(1) s
p3 = xl()l)a X2(2)» x3(1)(, P4 = X12), X)z(z), X3(1) » P5 = X1(1)> X2(1)> X32) » P6 = X1(2)> X2(1)> X3(2) » P7 = X1(1)»
X2(2)> X3(2) » andpg = X12)> X2(2)> X3(2) » WhCI‘C)ﬁ(]) = 02929, X102 = 1,7071, X1y = 81699, X20) = 168301,
X31y) = 6.0566 and x 32y = 8.9434. We then use the 2 3} OFFD (as the design table shows in Fig. 1(b)) to select
the M-PCM—~OFFD simulation set { p2, ps, ps, ps] (as the 3-D cube shows in Fig. 2(a)) or{ p1, pa, ps, p7). The input
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Fig. 2. 3-D cube representation of the (a) 2 37,1 OFFD, and (b)-(f) other possible simulation sets of size 4 in the M-PCM simulation set of size 8.

Each vertex i of the 3-D cube represents the M-PCM simulation point p;. The selected subset is marked in orange.

[ 1

Ly x0) X3
- [1 X1 Xay X3
o 1 xi0) X200 X3
I xigp xme 30

matrix for the first design is L J . We then run simulations to evaluate g(x |, x2, x3)

at these 4 M-PCM-OFFD simulation points and estimate coefficients of the reduced-order polynomial mapping
g5(xy, x0, x3) = —4442.2 + 6.5x; + 513.5x, + 186.8x3.
The output mean of g *(xy, x2, x3) is £ [g *(x1, X2, x3)] = g7 (x1, X2, X3) fi, (x1) fx, (¥2) fir; (x3)d xid xod x5 =

3381.1, same as the original output mean. Compared with M-PCM—OFFD that requires only 4 simulation points to
generate the accurate output mean, M-PCM requires 8 simulation points, and the MC requires about 2400 simulations
to reach the range from 3231.1 to 3531.1 (which is =150 around the true mean 3381.1) with 97% confidence.

To verify the robustness property of the integrated algorithm to numerical  truncation errors of simulators, we
calculate the full-column-rank margin of L _,, and compare it with other designs. According to Lemma 7, we find
ML ) = min{Dx;,Dx;, Dx;] =1.4142, where Dx; = 1.4142, A x; = 8.6602 and D x; = 2.8868. The minimal
|le||F is achieved when the perturbation errors &y = 0.7071, ey, = —0.7071, and ey, |, = ey, (,) = 0 forall 7= 1.

Other possible subsets of simulation points include (1) four points on one surface (Fig. 2(b)), (2) four points on the
diagonal plane (Fig. 2(c)), (3) three points on two surfaces (Fig. 2(d)), (4) three points on only one surface (Fig. 2(e)),
and (5) three points on three surfaces (Fig. 2(f)). The full-column-rank margins of the input matrices for these designs
take one of the four values [0, 0.8660, 1.2247, 1.4142}. The M-PCM~OFFD simulation set is thus the most robust to
numerical truncation errors of simulators, with the largest full-column-rank margin 1.4142.

4.2. A large-scale example

In this example, we considei a system gf 50 uncertain input  parameters. The original system mapping
g(xy,x2, . . X59) = 1521 x; + fgl xi2 + fgl xi3 , where each parameter x ; follows a uniform distribution of
Jfx;(xi) = 1,0 < x; < 1. The output mean is E[g(x 1, X2, . . Xx50)] = 55.1667.

To obtain the accurate output mean, M-PCM requires 2 °° simulations. Assuming that 7 = 1, we have y* =
m—[log,(1+ 50)] =44 andR =3 > 27 +1, and we can further use the 39,* OFFD to reduce the size of simulation
set from 2%° to 64. Tlf reduced-order polynomial mapping estimated using M-PCM—OFFD is g*(xy, x2, . . Xxsp) =
—15.6667 + 2.8333 fﬁl x;, which correctly estimates the output mean E[g *(x, x2, . . xs0)] = 55.1667. This
example further shows the effectiveness of M-PCM—OFFD in evaluating statistical system performance, especially

for systems of high-dimensional uncertain input parameters.
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Table 1
Comparison results.
x; follows N (1, 0.5%) x; follows U (0, 1) No. of
Value Error Value Error Simulations
True Output Mean 23.8047 * 2.9306 * *
M-PCM 23.8047 0 2.9306 0 64
Cross-product power 7 =3 23.8047 0 2.9306 0 64
M-PCM-OFFD Cross-product power 7 =2 23.8047 0 2.9306 0 32
Cross-product power 7 =1 23.8047 0 2.9306 0 8
PCE of order 3 NaN NaN NaN NaN 168
SRSM PCE of order 2 24.2423 0.4376 3.0972 0.1666 56
PCE of order 1 15.3269 8.4778 2.5570 0.3736 13
PCE-MCR Formula IV, PCE of order 3 23.5210 0.2867 2.8771 0.0535 137
) Formula I, PCE of order 2 23.8047 0 3.1500 0.2194 44
Level n = 4, PCE of order 1,2,3 23.8047 0 2.9306 0 389
PCE-SG (Gaussian) Level n = 3, PCE of order 1,2,3 23.7813 0.0234 2.9301 0.0005 85
Level n = 2, PCE of order 1,2,3 22.6250 1.1797 2.8646 0.0660 13
Level n = 4, PCE of order 1,2,3 23.8047 0 2.9306 0 257
PCE-SG (KP) Level n = 3, PCE of order 1,2,3 23.7813 0.0234 2.9301 0.0005 73
Level n = 2, PCE of order 1,2,3 22.6250 1.1797 2.8646 0.0660 13
4 points for each parameter 22.6250 1.1797 2.8646 0.066 25
UDR 3 points for each parameter 22.6250 1.1797 2.8646 0.066 19
2 points for each parameter 22.6250 1.1797 2.8646 0.066 13
Coherence-Optimal PCE of order 3 23.7273 0.0774 2.9319 0.0013 168
Samplin P PCE of order 2 25.3835 1.5788 2.8905 0.0401 56
pling PCE of order 1 31.9276 8.1229 3.0750 0.1444 13

4.3. Comparative studies

In this section, we compare the performance of M-PCM-OFFD with some existing approaches reviewed in
Section 1, including M-PCM, SRSM [32], PCE-MCR [63], PCE-SG [29,40,46], UDR [37], and coherence-optimal
sampling [14,25,26].

Consider a 6-parameter system of the mapping g(x 1, x2, . . X¢) = 1.5+ x5 — 0.5x7 — 2x} + 5xjx; + 4x3x] +
3x2x2 + 2x3x2 + 0.5x7x3x3 — 0.5x,x7x4, where all uncertain input parameters x follow either the normal distribution
N (1, 0.5%) or the uniform distribution U (0, 1). We aim to accurately estimate the output mean E [g(x |, X2, . . X¢)]
by running only a small number of simulations. Note that the original system mapping g(x 1, X2, . . Xg) is treated
as a black box, with only inputs and outputs accessible. Table 1 summarizes the estimation results obtained using
each uncertainty evaluation approach. The results are also compared to the true output mean £ [g(x 1, X2, . . X¢)]
calculated through integration using the explicit expression of g(x;, x, . . Xe).

M-PCM accurately estimates the output mean withn ; = 2fori € {1,2, . . 6, as proved in Theorem 1. The
number of simulations is 26 = 64. M-PCM~OFFD also estimates the output mean accurately by [seqting the maximal
cross-product power 7 = 3. In this case, M-PCM—-OFFD is equivalent to M-PCM as 7 = 3 > g — 1 (see Step 1
of Algorithm 3) and no further reduction can be achieved by OFFDs. If we sett =2, a 2?,]1 OFFD can be applied to
reduce the size of simulation set to 32. Furthermore, if we set =1, a 2?,_3 OFFD can be used to further reduce the size
of simulation set to 8. Of interest, in these two latter cases, despite that 7 is smaller than what is needed to guarantee
estimation correctness, the simulations still show excellent output-mean estimation performance. The special structure
of OFFD reflected in the balance and orthogonality properties tends to minimize the impact of high-order cross-terms.
Due to space limitation, we will investigate the performance bounds of M-PCM—OFFD for nonlinear, high-order
systems, and high-order cross-terms in the future. Here 7 can be determined through an iterative procedure. A larger
value of 7 results in better estimation accuracy but more simulation points. In cases when the computational cost is of
little concern, 7 can be determined by gradually increasing its value (starting from = = 1) until the estimated output
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mean converges. The use of M-PCM—-OFFD in the application of air traffic flow management and its capability in
facilitating stochastic optimal control can be found in [65,66,71].

For PCE based approaches including SRSM, PCE-MCR, PCE-SG and coherence-optimal sampling, transfor-
mations are sometimes needed to first represent uncertain input parameters as standardized random variables.  For
instance, for SRSM and PCE-MCR that adopt PCE with variables following standard normal  distributions, the
uncertain input parameters can be converted to standard normal random variables ¢; of the distribution N (0, 1) using
the following operations [32]:

1+ O,Sai( ) if x; follows N (1, 0.5%)

X; = 1 1 i . (14)
3+ zerf »“—5 if x; follows U (Q 1)
I
where erf(x ) is defined as erf(x ) = *2_5 0 e~ d t . Then PCEs of order 3 have cross-terms containing up to 3

parameters to approximate the original mapping. We also tried lower-order PCEs for the comparison purpose. In
our study of SRSM, a set of simulation points with size twice the number of PCE coefficients is selected, if enough
points are available. The simulations show that the performance of SRSM decays significantly with the decrease of
PCE order. When the applied PCE has an order of 3, SRSM often fails to calculate the output mean, as it randomly
selects simulation points when no more points can be further eliminated after filtering.

For PCE-MCR, different formulas of MCR lead to different numbers of simulations. We here follow the simulation
studies conducted in [63], and evaluate two formulas of MCR: (1) Formula I for PCE of order 2, and (2) Formula IV
for PCE of order 3. The simulations imply that PCE-MCR has smaller estimation error compared to SRSM, but still
cannot achieve accurate estimation of the output mean.

The PCE-SG provides a systematic procedure to generate a set of quadrature points to estimate each mapping
coefficient. As the output mean of a PCE mapping equals the coefficient  associated with the constant term, the
accuracy level of the applied SG determines the accuracy of output mean estimation, rather than the order of PCE.
Note that an SG of accuracy level n can correctly estimate the integral of a polynomial with the total order 2n  — 1.
In this example, as the total order of the system mapping is 7, the SG of accuracy level n = 4 is capable of correctly
estimating the output mean. In the simulation, we use PCE with Hermite polynomials and apply SG with Gauss—
Hermite quadrature rules when uncertain input parameters 5 follow normal distributions. We use PCE with Legendre
polynomials and apply the SG with the Gauss—Legendre quadrature rules when x; follow uniform distributions [29].
Other than the standard Gaussian rules based SG, we also evaluate the Kronrod—Patternson (KP) rules based SG,
which generates a nested set of points and is more efficient in high dimensions [ 10,29,46].  The simulations show
that both Gaussian rules based and KP rules based SG have good estimation performance, but require many more
simulation points compared to M-PCM—-OFFD. The estimation performance decays with the decrease of the accuracy
level n. Furthermore, we vary the order of PCE and verify the conclusion that the order of PCE does not have an
impact on the estimation accuracy.

For UDR, the idea to calculate output mean is to obtain the output mean of each univariate function constructed for
each uncertain input parameter. For fair comparison with M-PCM—OFFD, we here follow the procedures of Algorithm
1 (with m = 1) to select simulation points, construct the univariate functions, and calculate the output means. Note
that n simulation points can accurately approximate the output mean of a univariate function of orderupto2n — 1.
Therefore, in this example, 2 simulation points are enough to accurately approximate a univariate function with the
highest order up to 3. For verification, we also tested the performance of UDR when more simulation points are used
to construct higher-order univariate functions. The simulations show that this approach does not perform well no
matter how many points are used, as it ignores all cross-terms. In addition, the constant output means estimated for all
three cases verify our statement on the number of simulation points that are sufficient for the output mean estimation.

For coherence-optimal sampling, we use the Matlab code available at ~ www.github.com/CU-UQ to generate
samples. The number of samples can be customized. We here adopt the same settings as the SRSM, as we found the
estimation performance of the coherence-optimal sampling is not satisfactory when the number of samples is equal or
slightly larger than the number of PCE coefficients. The simulations show that the performance of coherence-optimal
sampling also degrades with the decrease of PCE order, but it outperforms SRSM. Besides, by adopting higher-order
PCEs and using more samples, the output mean estimated by the coherence-optimal sampling is expected to converge
to the accurate value.



108 J. Xie, Y. Wan, K. Mills et al. / Mathematics and Computers in Simulation 159 (2019) 93-118

Overall, among all these uncertainty evaluation approaches, M-PCM—OFFD performs the best in estimating the
output mean in this example. It also requires fewer simulation points than all other approaches. Compared to PCE-
based approaches, the UDR generally requires fewer simulations, but it does not perform well when cross-terms are
not negligible. We also compare estimation errors for methods of similar number of simulations.  In particular, we
select M-PCM-OFFD of 7 = 1, SRSM and coherence-optimal sampling when the PCE is of order 1, UDR with 2
points selected for each parameter, and SG with accuracy level n = 2. As we can see in Table 1, M-PCM-OFFD
performs the best, while SRSM produces the largest error.

5. Conclusions

The real-time decision-making of large-scale complex systems requires an effective method to evaluate statistical
performance for systems of high-dimensional uncertainties. In this paper, we integrate M-PCM with OFFD, and
show that the integrated method maintains the good estimation performance of M-PCM, while significantly reduces
the number of simulations. In particular, we found that under the conditions that the original system mapping of m
parameters has the degree of each parameter up to 3 and the maximal cross-product power satisfiesz < [5] —1, the
reduced-order polynomial mapping constructed using the M-PCM—OFFD method has the following features: (1) it
precisely estimates the output mean of original system mapping; (2) it reduces the number of simulations from 2” to
the range of [2[ loga(m+ D] 2"~171, breaking the curse of dimensionality; (3) it is the most robust to numerical truncation
errors of simulators among all subsets of the same size in the M-PCM simulation set to meet parameter resolution
requirements; and (4) it correctly estimates main and significant interaction effects. The theoretical analysis developed
in this paper on the estimation correctness, computational scalability, and robustness to numerical truncation errors
of simulators demonstrate appealing properties of M-PCM—OFFD for its practical use in developing fast decision-
making solutions for large-scale system applications. The development in this paper also provides new insights into
the optimality of OFFDs, and gives rise to its broad new usage for real-time uncertainty evaluation applications. In our
future work, we will generalize the degrees of uncertain input parameters by exploring multi-level OFFDs and exploit
parameter correlations to further reduce the number of simulations [ 1,7,9,38,53]. We will also investigate performance
bounds for general systems of nonlinear mappings and high-order cross-terms.
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Appendix

A.1. Proofof Lemma 1

According to Step 1 in Algorithm 2, any m — yfactors are determined according to the full factorial design. The
values of all other factors are determined using a subset of these m — yfactors according to the generators. As the
resolution R equals the shortest length of all these generators, m — y >R — 1 holds.

A.2. Proofof Lemma 2

According to the proofs for Theorems 1 and 2 in [71], = M-PCM recursively reduces the degree of each input
parameter to produce a reduced-order mapping of the same output mean. As this procedure does not introduce new
parameters to each cross-term, the numbers of parameters in all cross-terms in the reduced-order mapping do not
increase.
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A.3. Proofof Lemma 3

We first prove that an OFFD design can further reduce the number of simulations if 1 <t <[%] -1and

m > 2. Step 2 of Algorithf 3 sCaggests that the number of M-PCM—OFFD coefficients for a mapping of maximal

cross-produ poyen is ;- 7 . As OFFDs reduce the number of simulations at least by half, the number of

coefficients ,.’(:0 )’,” ing*(x1, X2, . . Xx,) must be less than or equal to 2" ! to ensure correct estimation. Note that
m—1 m m
o, Xmd . moy _ n . :
2nl =7 20 rwhenmisoddand T L, 7 < 27! < T 2 "7 when m is even. The maximum of 7 thus
m—1 : —
. 22— if mmod2 =1 . . .
satisfies max 7 = 2 = [%] — 1. As the maximal cross-product power 7 is an integer

%—1 if mmod2 =0

greater than or equal to 1, it needs to be in the range of 1 < 7 < f] —1.
We next prove t}iat tl&e r?)aximal reduction of simulations can be achieved using the 2 " 7¥max OFFD, where
T m

Ymax = m — [log, — [_, %7 "]. This is straightforward, @s ‘She number of simulations 2 % must be larger than or
equal to the number of M-PCM—OFFD coefficients [_, 7" to ensure the correcﬁestiEnaﬂon of mappingfoefpcifnts
ing*(x1,x2, . . xw)org*(xi,xz, . . xw). Therefore, ymax = max y [2777 =7 7" =m—[log,(" [=o 7))l

A.4. Proof of Lemma 4

The first column of L;ﬁd is 1, and hence v = 1. For 1 < i < m+ 1, v; contains the coded values of parameter x_1,
X¢,_,- According to Step 5 of Algorithm 3, all rows in L _, that are not in the OFFD design table are eliminated. It is
thus clear thatv; = d;_; for 1 < i < m+ 1. The construction of L;ffd in Algorithm 3 also indicates thaﬁlts i th column,
where i > m + 1, is an element-wise vector multiplication of a subset of its first ns+ 1 columns. v; = ke, Vi is thus
derived.

A.5. Proof of Lemma 5

According to Lemma 4 and the orthogonality and balance properties of OFFD design table stated in Section

2.2, 1t is sfraightf(jrward thetl:[v,» v, = {)I when i,)j e {1, (Z,H . m,+)l}. For arbitrary i andj wherei/= j,
ViV, = V; 0V, -V = keS;Vir1 O jes Vi1 VI = wesVk+1 Vi, Where S=S US_,».According to
Lemma 3, the sizes of S; and S ; produced from V for the reduced-order mapping are both less than 7, and hence the
size of S must be smaller than or equal E(i_f T. Note) thatina 2 5 ¥ OFFD, any m — yfactors form a full factorial

design (Step 1 of Algorithm 2). Hence, ’ wes Vk+1 + Vi = 0 for an arbitrary S’ whose size is less than or equal to

m — ¥ according to the orthogonality property of full factorial design discussed in Section 2.2. Therefore, to prove

this lemma, we only need to show that 2 7 < m — y Accordingto Lemma2,m — y >R — 1. When R > 27 + 1
(Step 2 of Algorithm 3), m — y >R — 1 > 27 holds.

A.6. Proofof Lemma 6

Note that for fach parame}er x k(its PCM poi)nts can be efpressed as X k1) = % Xk + Xk) — % Xk2) — XK(1) >
1 1

andxk(z) = 3 XK + Xk2) + 1 Xk2) — Xk(1) - Define 5 Xk1) + Xk2) = Xko0 andyk = Xp — Xgo0- We have
XK1y = xk}or—%A Xiey Xp2) = Xg0F EA Xk, Hld Ve(1) = ﬁéﬁxk,yé(z) = %A xk.)Theﬁlement in thzr th row eﬁd i th column
of matrix L, can then be represented s ycs. Xky) = eS;, Vi) ¥ X60 = ke, Vi) ¥ S;cS, € keS; Vo)

where 7, € (1,2} and ¢; are some constants. Construct a matrix K _, € R/ from L, ¥jth x4a) and xy@) in L -

replaced by y a1y = —%A xp and ygo) = %A Xy, respectively. The expression above about k€S, Xk(ry) SUBEESts that
there exists an upper triangular connection matrix f € R’/ of unity diagonal terms (and off-diagonal elements given
by the ¢; constants above) that satisfies L, = K, U;.

According to the definitions of the K _ and ¥ matrices, we have K . = V U, where U, € R is a diagonal
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matrix with the i th diagonal element equal to 1 if £ 1 and - & ers A x otherwise. We then have L, = V U, where
U = U U, is an upper triangular matrix with the same dlagonal elements as matrix U 2. Matrix ¥ has orthogonal
columns according to Lemma 5, and it satisfies 1 VTV = I.Therefore, both matrices ¥ and U have full column
ranks, and hence matrix L , also has full Column rank

A.7. Proofof Theorem 2

Theorem 1 states that the reduced-order M-PCM mapping g * (x1, x2, . . Xu) correctly estimates the output
mean of g(x 1, X2, . . X,), with a reduction of simulations from 2 2" to 2”. Lemma 2 states that M-PCM mapping
g*(x1,x2, . . Xn) has the same maximal cross-product power T as the M-PCM—-OFFD mapping g*(x, X2, . . Xu).

Lemma 3 states that there exists an OFFD to further reduce the number of simulations, when 1 <7<[%] -1

andm > 2 (Step 1 of Algorithm 3).  Lemma 6 states that when R > 27 + 1, the 2~ " OFFD results in a
full-column-rank matrix Z ,, and hence the calculation in Step 5 of Algorithm 3 is feasible. ~ We nofithat wi\)en
l<7<4%] -landm >2,sucha2g” " OFFD always exists, where y*satisfies 1 < y* <m — Jog, ~ [_, 7 '],
and R > 27 + 1. In particular, the 2”~! OFFD produced using the generators / = = X Xe, * t X, always exists,
and meets the conditions, as y = land R = m > 2[%] —1 = 27 + 1. Inall, the M-PCM-OFFD mapping
g*(xy1, x2, . . X) is the same as the M-PCM mapping g (x1, x2, . . Xu), despite the reduction of simulation points,
as all the M-PCM points are precisely on the mapping g *. The correct output mean estimation naturally follows.
Furthermore, acc‘grdln(g tﬁ)) Lemma 3—6, the number of simulations is reducefl to2 ™7 ¥" where y* = max y |1 <

y <m— flog, ~ [, 7", and2r” v OFF Dexists, WwithR =2t +1 . The lower bound of 277" is achieved
when 7 = 1, and the upper bound holds as an OFFD at least halves the number of simulations.

A.8. Proofof Lemma 7
According to Lemma 6, L_, is of full column rank and L _,, = V U .Now we find the minimum |le||r to make

L., + eloserank, according to the definition of full-column-rank margin in (11). Weuse e, s to represent the
perturbation to x; ;) and %; () = x,« W * exq to represent the corrupted parameter value, where i = (1,2, . . m},

and r; = {1,2}. Similarto L ,, Lo+ (ﬁ:an alsoﬁe expressedas L | + e = VU, where U is an upper trlangular

matrix with the determinant det ( U )= - 2( kes, Ay, where A%y, = Xk2) — Xrqy. Clearly, the rank of L

is solely determined by U . Therefore, L. +e loses rank if and only if there existsan i € (1,2, . . m] such that
A% =0.Inthe case of A%, = 0, we have A% = %10 — X0y = (i) + er1) — (X1() + €x,)) = 0 and therefore
exiy = €xi) +\/X1(2) X1 = ex](z) X1 Consequently,

\

llell = @kez + &2 + 2 4@ 2
F 2 X X1(2> \/(1) *2(2) Ym(1) Xm(2)

Lo I /

o_ 2 2 — oﬂd A oFFdA

> € + exl(z) (exuz) + Bx)2 + eX1(2) z— X1
The equality holds when e, = 1B xy, Cxa = —14 xiand ey, ) = ey, = 0forall /= 1. Similarly, we obtain
llellr = ["ffdAx,,l € 2,3, mj. As such, M(L ) = %min{ﬂxl, Dy,, .. A,xm} and the minimum l"“"Axi
is achieved when A x; < ij for all /=1, &) = %Ax,-, €x; ) = %Ax,-, and ;1) = €x;) = =0forall /=1i.

A.9. Proofof Theorem 3
Before showing the proof of Theorem 3, we first present a lemma, which will be used to prove this theorem.

Lemma 9. Consider an original system mapping g05, X2, . . X), (7), withm> 2 andt = 1. Matrix L constructed
from an arbitrary subset of size 2llog2m+ D1 iy the M-PCM simulation set can be transformed to an upper triangular
matrix of the same column rank, where the first diagonal entry is 1, and the (k  + 1)th diagonal entry is an integer
multiple of D x.
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Proof. Denote the entry of matrix L~ at the i th row and j th column as Ll ;- In cases when 7 = 1, matrix L " consists
of m + 1 columns arranged in the following order: {1, x, x2, . . X} (see Remark 2 of Algorithm 3 for the ordering
criteria). As the (k + 1)th column of matrix L ~contains only two possible values, x wy and xi0), k € 1,2, . . m),
matrix L~ can be transformed to an upper triangular form, ~ with diagonal entries being integer multiples of Ax,
through a sequence of elementary row operations: fori = 1tom — 1do the followmg, (1) make L;,;=0 by
subtracting the j th row with a multiple of the i throw, for j =i+ 1, .. m;(2)ifL .,y = 0, ﬁnd a non-zero
element L ,;’H .k =1i+2, .. m, andswitch row k withrow i + L. Note that the elementary row operations do not
change the column rank of matrix L [56].

Now let us find the minimuml||e||» to make L + e lose rank. The case that L is not of full column rank is trivial, as
in this case the minimum ||e||z = 0 and M(L ) = 0, where e is a null matrix. When L is full rank, we can transform,
through elementary row operations described in the proof of Lemma 9, L + e to an upper triangular matrix, in which
the first diagonal entry is 1, and the (k+ 1)th diagonal entry is an integer multiple of & %, i.e., A %, where A, € Z
and Z denotes the set of integers. Matrix L ' being of full column rank implies that A’ = 0, forallk € {I,2, . . m/.
As such, L + e loses column rank if and only if & £, = 0.

Procedures similar to those used to calculate M (L) in the proof of Lemma 7 lead to

L ] L ] }
. ) [ 5 ] [ 5 5 ]
M(L ) =min ; Clexl(l) + (o — Cl)e ' "Cmexm(l) + (b — Cm)exm(z)
1

*1(2)

. c1(lyw — € el —
— min l( offd I)Axl, L m( offd m)Axm

offd loffd

(15)

¢iota—c;i

where c; is the number of x ;i) in the (i + 1)th column of L ". The minimum at - cillotra—ci) \ x; is \e}chleved when

— (oma—c)B x; — D x; [y cillora=Ci) A\ . < lofla—c; A
ey = M ey, = —=hand forall /=14, j € 1,2, . . m}, we have Lom—PAx; < i;Llolm
and ey ) = ex; 5 = 0. i N i
Since  Glbm—ci) — Lo —lmyr g b <l e haye GUom=¢)A ) < Ay, (15) can then be further
lofra Lofta 2 4 22 Lofra 2

/\

simplified to M(L ) < 12““ min{Bx;,Bx,, . . Bx,} =M(L ). The equality is achieved by an OFFD.

A.10. Proofof Lemma 8

To prove Lemma 8, we first constructﬂeH r and then find its mﬁlmum to mﬁ«: i lose ranb( Note that the L, + e

matrix has the same structure as that of L, with its i th column s X = keS; xk + ey, . Simple algebra leads
to
@Aﬂ 2 0 22l ) ( ]
||e||F - exk(rk) + 22 exl(rl) + Xl(rl) ex2(r2) + x2(l‘2)
k=1rp=1 ri=lrm=1
. 1
' L 2
L) 2 2 I ) 1 ]
—X1(r)X2(r) + - - - .5? - eXk(rk) + Xk(rp) Xk(rp) 4+ - e (16)
ri=1 re=1 k=1 k=1

Similar to the proof of Lemma 7, L, + e loses rank if and only if at least one of A %; = 0,i € A. We assume WLOG
A%, =0, and thus ey T X11) = exyy) t X1), and €xyq) = €xyp * Dx,.

In this case, to find the minimum |le|| for L, to lose rank, we show that the minimum of each error summation
term corresponding to each column of L + e in (16) and hence the minimum of||e|| is achieved when & = 1Bxy,
e = 3bx,ande, =e,, =0forall /=1,j €A. sy, s,

. . . . m 2 2

F1rst for columns of L + e that contain only one input parameter, we have — ,_, — _ _, ) =z =16 o =

The minimum value is achieved when e , |, =

I _ _ _ L _
EAxl,exl(z) = —30x, and iy = € = Oforall /=1,
] eA
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Next, for columns that contain two input parameters (7 = 2), we consider two cases. In the first case, the column
does not contain the input parameter x ;. The minimum of corresponding error summation term is achieved when no
error is introduced. That is,

2 2| P

(€ + Xi)(€x; ) + Xj ) ~XiXjepy =0

ri=lr;=1
where i, 7/ = 1, and the minimum is achieved when ¢, W) = €y = €xj) = € = 0. For columns that contain input
parameter x|, we have

2 2 ) ( ) L :

Cxipop T X101 Cxigy F Xi) T XIeDXim)  lxay F X1 eyt Xiq) T X1mXi()
ri=1ri=1

[( ) ( ) o ) ( ) >

ol t Y1) eygyt Xiy TXIXia) t ey T X)) eyt Xi@) T X1)Xi @

[( ) ( ) B

ool T XIQ) eyt Xi@ T X12%Xi©

[ ) ( RN ) e

1
=2 eyt X1y eyt Xiy — 5 Xy + X1y Xy * Exiz(l)Axlz

[< ) ( )1l ) e

+ 2 et X)) engt Xig) — 5 X+ Xie) Xi@ ot Ex[(Z)Axlz

1 ) 1 I )
2\ 2 2 ) _ 2 2 2
= EAxl Xiyt Xig) = EAxl Xuy t Xa2)
ach 1,1,i—1
where A 1.1i—1 = {i}. The minimum value can be achieved when &y = %A X1, € = %A x1, and x;y = €xia) =
0, where/=1,i €A.
For terms that contain s number of input parameters, £ 3,4, . . . ,(tr & 3), the same conclusion can be obtained

by following similar procedures. In particular, for columns that do not contain y, it is clear that the minimum of error
summation is 0, which is achieved when no error is introduced. For columns that contain x , the minimum of error
summation is achieved when input parameters except x ; in this column is free of error. We here show, WLOG, the

calculation for the column that contains input parameters {x|, x5, . . X,
[ 1,
» 2 [l )
T Caep T Xk T Xk
=l rg=1 k=1 k=1
[ 1
5 ), 1 LZ? ( )2
=2 €xiq + X100 €xy1) + X2 eXk(rk) *+ Xk
k=3 =1
[ 1
[ ( ) ]
=2 exgy t X11) ey X2 Xi(1) + X12) X2(1) Xir) Cxiryy F X0
k=3 =1
[ j
. L), o, ) ( LI 2 )2
Xy T X X Yyt Xy F 2 exgy t X)) ey T X2 €y Xk
k=3 k=3 r=1
[ )
) n= ( )
=2 exgy T i) expy t X2) Xyt X1 X2 Xiry)  Cxagryy T Xkirp)

k=3 =1
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2 2 2 2 2
oYt Y Yo Ykt Y
k=3
5| ry ( ) ! |
2 1
=2 Exipy T Xk(rp) ] [ Exiqy T X1y exygy X2
k=3 ri=1
2
mn lx, ( )] ]
1 ) k=3 =t Yhen Gyt Yoy 1, )
—§x2(1) X111y + X102 I LZZ { 1B - Exz(l) X111y + X102
s
k=3 re=l Cxagp T Xk
mn lx, ( )]
k=3 l.rk:lxk("/k) Cxpipy T Xk(rp) ( ) ) ) ) o>
m 'z, ¢ 2T ot e o S T
k=3 m=1 Cxiep) + Xk(rg) k=3 =1
[ m, Iz, ( . )] 1
5 , 0, ) 1( )y k=3 me=t XK Cxigy * koo,
= X1y + X2 l X1y + X1) X ~ 5 X1 + X100 I Lz 5 { IBL J
k=3 rp=1 s

k=3 =1 Xy * Xk(ry)

By using the Cauchy—Schwarz Inequality [57], we have

2 2 2 ) H 2‘2
oyt e | Xt Yie Xirp)
k=3rp=1
mn lx, ( )12 ]
1( )y k=3 cre=1 XKD Gy Xk,
—= Xyntx f
57 Y+ Y M 'y, ¢« L
k=3 re=1 exk(rk) * Xk(ry)

)!(2 I E

2 2 2
Z Xmt X Yot XYie) Xire) — 3 X1+ X12)
k=3 rp=1
m (x, . )11, [22 ( ), l
k=3 =15k k=3 =1 gy T OXk0R
T s, | BX |
k=3 r=1 Gy * Xk(ry)
0 [ ]
_( 2 2 ) 2 ( 2 1 )2
= Xm t X X X1yt X1e) T 5 X1+ X12)
k=3 re=1
_1 2H ( 2 2 ) _ 1A 2 I 2 2
=5 Xy ¥ Y T 5o Xay ¥ Xa)

k=2 achA Ls—1,1

113
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where A1 = (2,3, . . s}, The minimum value is achieved when e oy = %Axl, o = —%Axl, and
€1y = € = Oforall j € {2, .. s|, Based on all above analyses, we see that the minimum value of each
error summation term in (16) in the case of A%, = 0isachieved at the same condition, i.e., ey = %A X1,
— 1 —_ — . — . Lot
e = —iAxl,/andqxj(]) = e, = Ofor1 all j/= 1,j € A. Therefore, we have |le|r > 2“dAx1
[ P ( 71
1+Z,,. R 2 4 x2 hen & %, = 0. Similarl btai
=1 o =i wehr,; ¥a) * Xap > WhenB8J; = 0. Similarly, we can obtain
J 1 U/
~ loffdA V1 2 [ 1 l 2 2
llellr 2 —=Rx/ 1+ 5 (aqy + Xa)
i=1 =l afA g
A — .. . . _ 1 _ 1 _ _
when A% = 0. The minimum is achieved when e y,\, = 38x;, ey, = —38x;, and €xiqy = € = Oforall

J/ =k, j €A. The result naturally follows, similar to the proof of the first part for Lemma 7.

A.11. Proofof Theorem 4

To prove that M(L) < M(L _,,), it suffices to show the existence of a perturbation matrix e which makes & e lose
rank and has a norm smaller than or equal to M(L “w)- To find such a[peyturbgﬁion matrix, we first study the structure
of L . Note that matrix L can be partitioned into two matrices L = L, L, ,where L, € RwX"+1) contains the
first m + 1 columns, each of which has at most one input parameter. L, € R'/7@(=m=1) that contains the rest of the
columns is not needed in the analysis that follows. Applying the elementary row operations described in the proof of
Lemma 9 to the first m+ 1 columns of L', we can transform Li to an upper triangular form, with its (&+ 1)th diagonal
entry MDx,, where Ay € Zand k €A, Clearly, any 4+ = 0 or A x;, will lead to M(L ') =0.

Now let us study some forms of perturbation matrices e for L + e to lose rank. The case that L is not full rank is
trivial, as M (L ') = 0. When L is full rank, L + e will lose rank if there exists any Az, = 0. Assume WLOG that
Az =0, ey = €xj = 0, forall /=1, €A Let us calculate ||e]|r. Clearly, €y = €xy Ay, and

il

_V 2 2 2 2 2
lellr =Y cie}, ) + (b — 1)}, + binxiay + €1~ by Xy €3,
k=2

[ [

] 1
1 ]

t { ]
+ biXigy * L= by X €,

ﬁ( ){ pul ( ) }

2
= exl(z) + Axl c1 + bk(l)x,f(l) + ¢ — bk(l) x]f(z) + - - -
k=2
f }
FT . -
+e)%](2) (laffd_cl)"' bk(2)xk(1) + g — €1 — by Xipy ¥t
k=2
| — |
) > [ ) , ]
=V € Lo + by + bry Xy ¥ Lo = bry = br)” Xy * v v -
k=2
{ |
Av o A 2l ), ]
+ ZeXI(z) X+ X3 c| + bk(l)xk(1)+ Cl _bk(l) xk(z) + - - -
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where b1y and by are respectivFly the g.lmbefr(s of x k(l)xm)) and x k((l)xl(z) in the colun}n tha} corresponds to X 1X1
m

jnL’ gor si?plicity, we denote [y, + = }bk(l) + br) Xpgy + Lo — by = br)” Xjpy + ¢ ¢ ras By, and
{
cr + ?:2 bk(l)xz(l) + ¢ — bk(l xl%(Z)] + - -asB 1,25 B]}], Bl’z > 0. Note that 31,1 - B1’2 = (loffd - C]) +
2 2
1’:[:2 bk(z)xk(l) + lom —C] — bk(2) xk(z) + - B Then,
v f }
||e||F = e)zgl(z)Bl,l + 2ex1(2)AX1 + Ax]z BI,Z
— ER =
1.2 1.2
—\/ Bl,l ex](z) + —Axl + Axlz B] 72— —
11 L1
J
k B, I Bi2(B1,1 — B1,2)
= By eyy,t+ ——DBx;  + Dy} — -
’ @ B, B
e T——
A B> Bi1— B
>0 x
By,
N
\/The equality holds when e = %Axl andey,, = —%Axl. Note that A x, B‘—’Z%Z = Ay
[ \ ’ ’ ’
-1 kB —Bl’l)2+81’1<A Bi1 d th lity holds when B = Bu indicating that
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In cases when 8 £, = 0, ¥ = 1, we define By, and By » in a similar way as B; and B . Then similar results can be

obtained, which lead to

[ \
)
By Br1— By

M(L ) < min (Boxe 5 |
k,1
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The equality is achieved by an OFFD.

A.12. Proofof Corollary 1

Assume WLOG that the two input parameters x; and x5 in the second and third columns of L " have & out of four
combinations of levels, where k& € {1, 2}. The elementary row operations shown in the proof of Lemma 9 lead to
non-zero diagonal entries in the first k rows. After subtraction of all the other 2”~¥" — k rows by one of these first k
rows, the first three elements in all these other rows become zeros, leading toA, = 0. M(L ') = 0 then follows.

A.13. Proofof Corollary 2

Assume WLOG that x; and x, are the two input parameters which have k out of four combinations of levels, where
k € {1,2,3}. Through switching the column of xx; to the 4th column, the first kX rows contain different combinations.
After subtraction of the other 2 ~Y" — k rows by one of the first k rows, the first four elements in these other rows
become zeros, leading to A3 = 0. M(L ) = 0 then follows.

A.14. Proof of Theorem 5

Whenm <2ort > | %] — 1, no further reduction is possible. The M-PCM simulation set forms a full factorial
design, which correctly estimates all effects of input parameters. Whenm > 2,1 <7 < [%] — 1, and OFFDs
are applied to further reduce the size of simulation set.  According to the property of OFFDs discussed in Section

2.2 [4,48], a k-factor interaction effect is only confounded with interaction effects of at least ( R — k)-factors. The
conditions 1 <k < rand R > 27 + 1 simplyleadtoR —k >R — 7 > 7 4 > 7. As interaction effects involving

more than  factors do not exist, neither the main effects nor any interaction effect is confounded.
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