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Abstract

The evaluation of output performance statistics for systems of high-dimensional uncertain input parameters is crucial for
robust real-time decision-making tasks of large-scale complex systems that operate in an uncertain environment. We develop a
framework that integrates Multivariate Probabilistic Collocation Method (M-PCM) and Orthogonal Fractional Factorial Design
(OFFD) to achieve an effective and scalable output statistics estimation. In this paper, we prove that when the degree of each
uncertain parameter does not exceed 3 and under the widely held assumption for high-dimensional systems that the interactions
among uncertain input parameters are negligible beyond certain order, the integrated M-PCM–OFFD method breaks the curse of
dimensionality for correct output mean estimation by maximally reducing the number of simulations from 2 2m to 2⌈ log2(m+ 1)⌉

for a system mapping of m uncertain input parameters. In addition, the resulting reduced-size simulation set is the most robust
to numerical truncation errors of simulators among all subsets of the same size in the M-PCM simulation set. The analysis also
provides new insightful formal interpretations of the optimality of OFFDs.
c⃝ 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Large-scale complex systems (such as complex information systems, power grids, and traffic networks) commonly
involve high-dimensional uncertain input parameters, which modulate system dynamics. The importance of consid-
ering these uncertainties in achieving robust decision-making solutions is increasingly recognized, when developing
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both model-based and data-driven learning-based decision solutions [36,66,67]. In order to achieve autonomous real-

time decision-making for large-scale complex systems under uncertainty, a critical step is to develop an effective and

scalable systematic procedure to evaluate statistical system performance in the presence of high-dimensional uncertain

input parameters. With the real-time statistical system performance evaluation capabilities, automatic closed-loop

control solutions can be made to shape the dynamics to meet desired performance requirements.

This statistical system performance evaluation problem can be formulated as the estimation of output statistics for

a system of multiple uncertain input parameters with known distributions, and is typically solved using the Monte

Carlo (MC) simulation method [28,55]. However, as MC requires a very large number of simulations to converge

to meaningful performance estimates, it does not meet the real-time requirement, especially for large-scale complex

system applications, which typically consume considerable computational time for each simulation run. Additional

advanced random sampling approaches extended from MC have been developed to improve computational efficiency,

including Latin Hypercube sampling [41], importance sampling [19], multilevel MC [18], greedy and adaptive

sampling [24,30]. However, they still do not produce effective output-statistics estimation, that is fast in time, accurate

in estimation performance, robust to numerical issues, and scalable with respect to the dimension of the uncertain input

parameters.

We propose a new framework to quickly and accurately estimate the output statistics for systems of high-

dimensional uncertainties. The framework, referred to as M-PCM–OFFD, integrates Multivariate Probabilistic

Collocation Method (M-PCM) [70,71] with Orthogonal Fractional Factorial Designs (OFFDs) [4,22,48,49] to achieve

high effectiveness. M-PCM selects a significantly reduced number of simulations compared to MC, when the

dimension of uncertain input parameters is low, to construct a low-order mapping, which estimates the output mean of

an original system mapping (also called functional model or response surface [5,34]) based on statistical information

of uncertain input parameters. However, the number of M-PCM simulations increases exponentially as the number of

uncertain input parameters increases, causing computational time issues for large-scale complex system applications.

We show that by integrating M-PCM with the procedures of the experimental design method OFFD, the number of

simulations can be further reduced with the accurate output mean estimation property retained, which significantly

improves the scalability of M-PCM for high-dimensional uncertainty evaluation.

To the best of our knowledge, this is the first study that leverages OFFD to systematically address the scalability

issue of M-PCM. Considering that the simulation of large-scale systems is often computationally intensive, reducing

the number of simulation runs is a critical step towards achieving real-time output statistics estimation. In this paper,

we focus on output statistics estimation for a system of m uncertain input parameters when the degree of each

parameter does not exceed 3 and under the widely held assumption for high-dimensional systems that the interactions

among uncertain input parameters are negligible beyond certain order. The M-PCM–OFFD framework can also be

used to estimate higher output moments, and to analyze systems of higher parameter degrees and even nonlinear

systems (see e.g., [65,66,71]). We discuss these aspects conceptually in this paper, and leave the complete analysis

for more general systems for future work. For the system of interest in this paper, we show that the integrated

M-PCM–OFFD method reduces the number of simulations required to estimate the correct output mean from 2 2m

to the range of
[
2⌈ log2(m+ 1)⌉ , 2m−1

]
, where ⌈ x ⌉ denotes the nearest integer above the number x . In addition, many

simulators have resolution constraints on input parameters, and numerically truncate input parameter values to the

allowed resolution levels. Such truncation may unfortunately fail the output mean estimation. We prove that the

reduced-size simulation set selected by the integrated M-PCM–OFFD method is the most robust to such numerical

truncation errors of simulators among all subsets of the same size in the M-PCM simulation set.



J. Xie, Y. Wan, K. Mills et al. / Mathematics and Computers in Simulation 159 (2019) 93–118 95

Absent results addressing the curse of dimensionality specifically for M-PCM, an output statistics estimation

method, we review relevant studies in the broader directions of uncertainty evaluation and multivariate dimension

reduction. Similar to M-PCM, polynomial chaos expansion (PCE) also uses the quadrature-based rules, however

PCE aims to approximate the original system mapping with another mapping constructed from quadrature-based

generalized polynomials and quantify uncertainty of the output [8,32,58,59,63,69]. M-PCM, on the other hand, aims

for precise estimation of mean based on arbitrary probability distribution functions of uncertain input parameters,

through its specific polynomial construction and truncation rules that result in a low-order mapping. With respect

to PCE, when the number of Gaussian quadrature points (roots of the next higher-order orthogonal polynomials)

used in these approaches is larger than the number of parameters in truncated PCE mappings (not necessarily of

a lower-order as M-PCM does), several methods were introduced to reduce the number of simulations required to

estimate mapping coefficients. Papers [58,59] use a subset of the Gaussian quadrature points (or collocation points) to

estimate the coefficients of PCE, but the selection criteria were not specified. To improve the robustness of estimation

results, paper [32] suggested a regression method, called stochastic response surface method (SRSM), that follows

a heuristic procedure to select the set of simulation points that favor those in regions of high probability and of the

size typically twice the number of PCE mapping coefficients. Also of relevance, when all cross-terms (i.e., terms

that involve multiple parameters) are negligible, the univariate dimension reduction method (UDR) uses multiple

univariate functions to approximate the original system mapping. UDR requires mn + 1 simulations to estimate

an m-parameter system mapping, if n points are selected for each univariate function [37]. The high-dimensional

model representation (HDMR) based on the analysis of variance (ANOVA) [39,50,51,54] is a more general model

approximation method. It decomposes a multivariate function into a finite number of terms of increasing dimensions,

where each term is a nonlinear function. By viewing the coefficient estimation problem as least-squares estimation,

recent results also include the coherence-optimal sampling and its variants [14,25–27,47], a Markov Chain MC based

approach that chooses a small set of samples to achieve a statistical optimality in terms of the spectral radius of the

matrix constructed from samples.

By observing the dimension problem caused by the tensor product of Gaussian quadrature points, methods like

monomial cubature rules (MCR), sparse grids (SG) and its extensions from the numerical integration literature were

recently developed to break the curse of dimensionality [10,11,20,23,29,40,44,46,63]. In paper [63], the full set of

points generated by MCR of the degree 2n + 1 formula is used to estimate the coefficients of PCE mapping of order

n through regression. However, the method is not justified. It does not produce an accurate estimation of output mean

for PCEs of orders 2 and 3, and its performance for PCEs of order higher than 3 is unknown. Recently, paper [ 40]

used SG points to calculate, one by one, the coefficients of the associated orthonormal polynomial in PCE. As each

coefficient can be represented by an integral, the SG is naturally applied to approximate this integration operation. The

required number of simulations depends on the accuracy level of the applied SG, and may still be large. The use of

SG for pseudospectral approximation and partial differential equations are explored in [10,11,23,44]. Another related

line of work is tensor decomposition [3,15,20,21,45,52], which decomposes the mapping of high dimensional inputs

into mappings of low-dimensional inputs.

Our proposed M-PCM–OFFD, different from the above studies on function approximation, aims for correct output

statistics estimation based on the distributions of uncertain input parameters. Based on quadrature rules, M-PCM takes

advantage of the low-order mapping which only approximates the original mapping over the likely range of uncertainty

parameters to estimate the output mean correctly. The “balanced” and “orthogonal” structure of OFFD further

addresses the scalability issue. M-PCM–OFFD offers the following features: (1) the systematic design procedure

facilitates automatic real-time performance evaluation and management under high-dimensional uncertainties,

(2) arbitrary probabilistic distribution knowledge of the uncertain input parameters are allowed, (3) output mean can be

precisely estimated with rigorous analysis provided, and (4) robustness to numerical truncation errors of simulators
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is guaranteed. In the simulation studies, we also compare in detail the performance of M-PCM–OFFD with seven
representative function approximation methods in terms of computation and estimation correctness. While we were
developing this paper based on earlier results in the brief conference paper [68], we noticed a very recent development
that through simulation studies show the use of OFFD to reduce the computation for PCE approximations [62], which
provides further evidence for our study.

The remainder of this paper is organized as follows. In Section 2, we review fundamentals of M-PCM and OFFD.
In Section 3, we present the integrated M-PCM–OFFD algorithm, and prove the main results on its performance in
terms of (1) output mean estimation, (2) robustness to numerical truncation errors of simulators, and (3) estimation of
the effects of the parameters. Section 4 includes simulation studies on some illustrative examples, and compares the
performance of M-PCM–OFFD with existing function approximation approaches. Section 5 concludes the paper. For
better readability, we move the proofs of all lemmas, theorems, and corollaries to the Appendix.

2. Preliminaries

We review fundamentals of the M-PCM and OFFD methods, which pave the foundation for main results in this
paper.

2.1. M-PCM: Multivariate probabilistic collocation method

The Probabilistic Collocation Method (PCM) was developed to quickly and accurately estimate the output mean for
a system of one uncertain input parameter, which may or may not be correlated [31,61]. M-PCM extends PCM to ad-
dress systems of multiple uncertain input parameters [70,71]. Although computationally effective in each uncertainty
dimension, it does not address the exponential expansion of computational costs with linearly increasing uncertainty
dimensions. For a system mapping g(x 1, x2, . . . ,xm) of m uncertain input parameters, with the degree k i of each
parameter xi up to 2ni − 1, a total number of 2m

∏m
i=1 ni simulations are needed to uniquely determine the mapping.

The procedure of M-PCM, Algorithm 1, shown at the next page, selects  n i simulation points for each parameter
based on statistical knowledge of uncertain input parameters in general forms such as joint probabilistic distribution
functions (pdfs), historical datasets, and simple low-order moments such as the mean and the variance. A total number
of

∏m
i=1 ni simulations evaluated at combinations of these simulation points constructs a reduced-order mapping

g+ (x1, x2, . . . ,xm ) with the degree of each parameter reduced to n i − 1. When m = 1, we refer the method as
PCM [31,61]. The reduced-order mapping correctly estimates the output mean of the original mapping as shown
in Theorem 1. The proof can be found in [71]. In this paper, we assume the independence of these uncertain input
parameters. Properties of the correlated case can be found in [71].

Theorem 1 ([70,71]). Consider a multivariate system with the following mapping

g(x1, x2, . . . ,xm) =
2n1−1∑

k1=0

2n2−1∑

k2=0

...

2nm−1∑

km=0

Ψk1,k2,..., km

m∏

i=1

xki
i , (1)

where the coefficients Ψk1,k2,..., km ∈ R, and n 1, n2, . . . ,nm are integers greater than 1. Assume that the uncertain
parameters x1, x2, . . . , xm follow independent distributions fX1 (x1), f X2 (x2), . . . , and fXm (xm) respectively.
g(x1, x2, . . . ,xm) can be approximated by the following reduced-order system mapping

g+ (x1, x2, . . . ,xm ) =
n1−1∑

k1=0

n2−1∑

k2=0

...

nm−1∑

km=0

Ωk1,k2,..., km

m∏

i=1

x ki
i , (2)

using the procedure shown in Algorithm 1, where the coefficientsΩk1,k2,..., km ∈ R. Then, the following equality holds

E [g(x1, x2, . . . ,xm)] = E[g + (x1, x2, . . . ,xm)].
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Algorithm 1: M-PCM

/* Step 1: Choose M-PCM simulation set */
1 for i ← 1 to m do

2 Initialize H −1
i (xi ) = h−1

i (xi ) = 0 and H 0
i (xi ) = h0

i (xi ) = 1;

3 for ki ← 1 to ni do

4 Hki
i (xi ) = xi hki−1

i (xi ) −
⟨
xi hki−1

i (xi ), hki−1
i (xi )

⟩
hki−1

i (xi ) −
⟨
Hki−1

i (xi ), Hki−1
i (xi )

⟩ 1
2 hki−2

i (xi );

5 hki
i (xi ) = H ki

i (xi )/
⟨
Hki

i (xi ), Hki
i (xi )

⟩ 1
2 ;

6 end

7 end

8 Find the roots of hni
i (xi ) = 0 in Line 5 as the ni PCM simulation, denoted as xi (1),   · · · ,xi (ni );

/* Step 2: Run simulations */
9 For each m-tuple simulation point (x1(r1), x2(r2), . . . ,xm(rm )) in the M-PCM simulation set, where ri ∈ {1, . . . ,ni }, run

simulation and find the corresponding output g(x1(r1), x2(r2), . . . ,xm(rm ));

/* Step 3: Calculate the output mean */

10 Apply

⎡
⎢⎢⎢⎢⎣

a0,..., 0

a0,..., 1
...

an1−1,..., nm−1

⎤
⎥⎥⎥⎥⎦

= Γ−1

⎡
⎢⎢⎢⎢⎣

g(x1(1), ...,xm(1) )

g(x1(1), ...,xm(2) )
...

g(x1(n1), ...,xm(n m))

⎤
⎥⎥⎥⎥⎦

, where Γ =

⎡
⎢⎢⎢⎣

h0
1(x1(1))...h

0
m (xm(1) ) h0

1(x1(1))...h
1
m (xm(1) ) ··· h

n1−1
1 (x1(1))...h

nm−1
m (xm(1) )

h0
1(x1(1))...h

0
m (xm(2) ) h0

1(x1(1))...h
1
m (xm(2) ) ··· h

n1−1
1 (x1(1))...h

nm−1
m (xm(2) )

.

.

.
.
.
.

. . .
.
.
.

h0
1(x1(n1))...h

0
m (xm(nm )) h

0
1(x1(n1))...h

1
m (xm(nm )) ··· h

n1−1
1 (x1(n1))...hnm−1

m (xm(nm ))

⎤
⎥⎥⎥⎦to find the coefficients ak1,k2,··· ,km in the reduced-order

mapping: g+ (x1, x2,   · · · ,xm ) =
∑ n1−1

k1=0
∑ n2−1

k2=0 ...
∑ nm−1

km=0 ak1,k2,··· ,km

∏m
i=1 hki

i (xi );

11 The predicted output mean is a0,0,··· ,0;

Notes of Algorithm 1

1. In Line 4, ⟨ p(x i ), q(x i )⟩ denotes the integration operation
∫

p(x i )q(x i ) fX i (xi )d xi . H ki
i (xi ) is the orthogonal

polynomial of degree k i for the uncertain input parameter xi , and h ki
i (xi ) is the normalized orthonormal

polynomial [2].
2. In Line 8, the indices in the two column vectors are arranged in the lexicographic order, from 0 , 0, . . . ,0 to

n1 − 1, n2 − 1, . . . ,nm − 1, and from 1, 1, . . . ,1 to n1, n2, . . . ,nm , respectively. The entries inΓ are arranged
accordingly.

Remarks

1. The coefficientsΩk1,k2,..., km in (2) can be derived by reorganizing terms in g+ (x1, x2, . . . ,xm) obtained in Line
10 of Algorithm 1. The reduced-order mapping, as a by-product of this estimation process, enables further
studies, such as sensitivity analysis and optimization [72,73].

2. Besides accurately predicting the output mean with a reduced computational cost, M-PCM has other attractive
statistical characteristics [70,71]. In particular, it also precisely predicts the cross-statistics (i.e., statistics of
cross input–output relationship) up to a certain degree [70,71]. Moreover, its performance is tightly connected
to the minimum mean square estimation. These properties suggest that the reduced-order polynomial mapping
g+ (x1, x2, . . . ,xm ) approximates the original system mapping g(x 1, x2, . . . ,xm) well over likely ranges of
parameter values. We also note that the methodology can be modified to estimate high-order moments as
well, but a larger τ may be required to achieve the same level of accuracy, due to the increase of the order of
interactions. For instance, the second-order moment of the output can be estimated by evaluating the expected
mapping of g2, e.g., E (g2). We leave the study on high-order output statistics for future work.
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3. In line 8 of Algorithm 1,Γ −1 can be calculated by the expression (WΓ )T W , where W = diag {w1, w2, . . . , wl},
wi = 1/∥Γi,:∥, and l =

∏m
i=1 ni . (·)i,: represents the i th row of the matrix in the parenthesis, and ∥  ∥· is the

L2 norm. Computing polynomial coefficients from interpolation at the zeros of orthogonal polynomials is
equivalent to computing these coefficients via Gauss quadrature (quadrature collocated at zeros of orthogonal
polynomials). As WΓ is an orthogonal matrix, and the linear system can be solved via simple transposition and
matrix multiplication (WΓ )T W [6,17].

4. Instead of following lines 8–10 in Algorithm 1 to find mapping coefficients Ωk1,k2,..., km , we can also directly
calculate them using all M-PCM simulation points. Specifically, we can respectively replace each element
hki

i (xi (ri )) in matrix Γ with x ki
i (xi (ri )), to construct matrix L, where x ki

i (xi (ri )) represents the k i th power of x i

evaluated at the PCM simulation point xi (ri ). The coefficientsΩk1,k2,..., km can be directly computed by

⎡
⎢⎢⎢⎣

Ω0,0,..., 0
Ω0,0,..., 1

...
Ωn1−1,n2−1,..., nm−1

⎤
⎥⎥⎥⎦= L−1

⎡
⎢⎢⎢⎢⎣

g(x1(1), x2(1), . . . ,xm(1))

g(x1(1), x2(1), . . . ,xm(2))

...

g(x1(n1), x2(n2), . . . ,xm(nm ))

⎤
⎥⎥⎥⎥⎦

(3)

where

L =

⎡
⎢⎢⎢⎢⎣

x0
1 (x1(1))...x0

m(xm(1) )   · · · xn1−1
1 (x1(1))...xnm−1

m (xm(1) )
x0

1 (x1(1))...x0
m(xm(2) )   · · · xn1−1

1 (x1(1))...xnm−1
m (xm(2) )

...
. . .

...

x0
1 (x1(n1))...x0

m(xm(nm ))   · · · xn1−1
1 (x1(n1))...xnm−1

m (xm(n m ))

⎤
⎥⎥⎥⎥⎦
.

The indices in the two column vectors in (3) are arranged in the lexicographic order (see Note 2 of Algorithm
1 at the previous page). The output mean can then be calculated either through an integration

E [g(x1, . . . ,xm )] =
∫

...

∫

g+ (x1, . . . ,xm) fX1 (x1)   · · ·fXm (xm )d x1   · · ·d xm , (4)

or through a simple transformation

E [g(x1, . . . ,xm )] = (Γ −1L)1,: B, (5)

where B is the coefficient vector on the left-hand side of (3). The orthogonal basis (captured by matrix Γ ) is
preferred over the natural basis (matrix L) to achieve better invertability, as captured by the condition number
metric [71]. In this paper, we use L for the ease of presentation in proofs; however the results also apply to the
case when Γ is used.

Even though it provides a significant computational load reduction from 2 m ∏m
i=1 ni to

∏m
i=1 ni , M-PCM does

not scale with the dimension m of uncertain input parameters. In realistic applications, high-order cross-terms in a
mapping have negligible effects on the output [4]. With such assumptions that generally hold for real-world large-
scale complex system applications, only a subset of the M-PCM simulation set is needed to perform computation-
intensive simulations. This motivates our study that leverages OFFD to address the curse of dimensionality problem of
M-PCM.

2.2. OFFDs: Orthogonal fractional factorial designs

OFFDs have been widely used to reduce the number of experiments and to enact various parameter and
system studies such as influential parameter identification, sensitivity analysis, model optimization and software
testing [38,42,64]. For an experiment that involves multiple parameters (or factors) with each parameter evaluated at
several values (or levels), all combinations of the parameter values form a large design space, called the  full factorial
design. OFFDs select a subset from the full factorial design to retain the significant effects of input parameters (i.e., the
main effects of single parameters and low-order interaction effects of a few parameters) with minimal aliases. To
illustrate the concepts of main effect, interaction effect, and aliases, we here describe the 2-level full factorial design
and OFFD designs (for which each parameter only takes two values [4,22,48,49]) from the estimation perspective.
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Fig. 1. Illustration of 3-factor (a) 23 full factorial design and (b) the design tables of two 2 3−1
I I I OFFDs.

Consider m parameters, x1, x2, . . . , xm , coded as factors, xc1 , xc2 , . . . , xcm , each of which is evaluated at two levels
(or coded values), ‘+ 1’ and ‘−1’. The 2-level full factorial design of 2m parameter combinations constructs a saturated
model that describes the effects of these m factors on the output [49]:

y =β0 +

m∑

i=1

βi xci +

m−1∑

i=1

m∑

j=i+ 1

βi jxci xc j +

m−2∑

i=1

m−1∑

j=i+ 1

m∑

k= j+ 1

βi j kxci xc j xck +    +· · ·  βi j...m xci xc j ...xcm + ϵ (6)

where the coefficients reflect the effects of corresponding terms to the output, and ϵ is a random noise with zero
mean. Denoting ‘ ¯’ as the average operator, the standard least squares estimation gives the estimates β̂0 = ȳ,
β̂i =

1
2 (ȳi=+ − ȳi=−), β̂i j =

1
2 (ȳi j=+ − ȳi j=−), and β̂i j... =

1
2 ( ȳi j...=+ − ȳi j...=−). Here, ȳ is the mean of all outputs,

ȳi=± denote the output means when x ci = ±1, and ȳi j...=± denote the output means when x ci xc j ... = ±1. Defining
the main effect χi of factor x ci as χi = ȳi=+ − ȳi=−, and the interaction effect (interaction of multiple factors)
χi j... of cross-term x ci xc j ... as χi j... = ȳi j...=+ − ȳi j...=−, we obtain the least squares estimates of β̂i = 1

2χi , and

β̂i j... =
1
2χi j... [4,49]. Full factorial designs estimate all main and interaction effects (of any order) independently of

one another. The disadvantage is that they are expensive in requiring many simulation runs. A full factorial design for
three factors is shown in Fig. 1(a).

A 2-level OFFD is described as 2m−γ
R . The fractionation constant,γ , in the range of 1≤ γ ≤m−⌈ log2(m+ 1)⌉ [4],

indicates that N = 2m−γ simulations are selected from the full set of 2m simulations [22,48]. The upper bound ofγ is
determined by the minimum number of runs (N= m + 1) to estimate m main effects and the mean. The resolutionR ,
represented by a Roman numerical subscript, describes the length of the shortest  generator, which defines the rules
to generate factor levels [48]. For example, the two halved-size OFFDs in Fig. 1(b)are both 23−1

I I I designs produced by
setting xc3 = ±xc1 xc2 . The corresponding generator is I = ±xc1 xc2 xc3 , and the resolution R = I I I .

A 2-level OFFD is captured by the design table, where each entry i , j represents the level of factor j selected in
the i th simulation. Now let us briefly illustrate the procedure to generate 2m−γ

R OFFDs for given m andγ . The steps in
Algorithm 2 illustrated below deviate to some extent from the iterative procedures in the standard experiment design
literature [16] to address the uncertainty evaluation problem.

Algorithm 2: OFFD

/* Step 1: Generate the 2m−γ full factorial design for m − γ factors. */
1 List all 2m−γ combinations for the m − γfactors;

/* Step 2: Specify γ generators. */
2 Select generators that maximize the resolutionR ;

/* Step 3: Determine the levels of all other γ factors. */
3 Generate the levels for all otherγ factors using the generators selected in Step 2;

In Line 2, we refer to [60] for standard generator designs.

Lemma 1. A 2m−γ
R OFFD satisfies m − γ ≥R − 1.
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The 2m−γ
R OFFDs are characterized by the balance and orthogonality properties [48]. Denote the OFFD design

table as D of dimension 2 m−γ × m, and its i th column as d i . Then the balance property leads to d i · 1 = 0, where
1 ≤ i ≤ m, and ‘ ·’ denotes the inner product of two vectors. The orthogonality property leads to  d i · d j = 0, where
1 ≤ i, j ≤ m and i ̸= j .

An advantage of OFFDs is that they are inexpensive, but with the “price-paid” that every fractional design –
orthogonal or otherwise – has confounding (aliasing) by which main effect estimates reflect the factor of interest,
but also have contributions from other sources (namely, interaction effect(s)) [4,49]. The orthogonality and balance
properties of OFFDs permit the confounding to be isolated, pre-determined (pre-data collection), and minimized
in the sense that main effect estimates are confounded with high-order interaction effects and not with other main
effects [48]. When these higher-order interaction effects are negligible, OFFDs provide very good estimates of main
and interaction effects.

Multiple 2m−γ OFFDs may exist with different confounding structures [22,48]. For given m and γ , it is desirable
to choose the highest possible resolution R , because this assures that the main effects are only confounded with
the highest-order interaction effects that can be achieved [4]. For designs of γ > 1, the main effect of factor x i is
only confounded with the interaction effects of at least R − 1 factors among the other m − 1 factors (with R ≤ m).
Moreover, the k-factor interaction effect is only confounded with the interaction effects of at leastR−k factors (when
k ≤ R − k) [48]. For instance, if 2-factor interaction effects cannot be neglected, a design of resolutionR = I I I may
not be sufficient. At the extreme, consider the half-fraction design (i.e.,γ =1). The generator for 2m−1

m has a form of
I = ±xc1 xc2   · · ·xcm . Under this resolution, the main effect of factor xi is only confounded with the interaction effect
of all other m − 1 factors, and a k-factor interaction effect is only confounded with the interaction effects of all other
m − k factors (assuming k ≤ m − k). Therefore, if (m − k)-factor interaction effects can be negligible, the k-factor
interaction effect estimates are also very accurate.

In viewing the M-PCM simulation set as a full factorial design, Algorithm 2 provides a systematic procedure to
select a subset of m-tuple simulation points to reduce the number of simulations. In the next section, we show that the
resulting reduced-order polynomial mapping correctly estimates the output mean of the original system mapping, and
is the most robust to numerical truncation errors of simulators.

3. Integrated M-PCM–OFFD design and analysis

In this section, we integrate M-PCM and OFFD to break the curse of dimensionality for effective output mean
estimation. We first present the integrated M-PCM–OFFD algorithm, and then analyze its performance using three
metrics: (1) estimation of output mean, (2) robustness to numerical truncation errors of simulators, and (3) estimation
of significant effects. The specific OFFD to select is based on the knowledge that cross-terms in the original system
mapping involve at most a certain number of parameters. Such knowledge can be obtained from experimental studies
of underlying physical systems.

3.1. The M-PCM–OFFD algorithm

Consider an original system mapping of m uncertain input parameters, x1, x2, . . . , xm , each with a degree up to 3:

g(x1, x2, . . . ,xm) =
3∑

k1=0

3∑

k2=0

...

3∑

km=0

Ψk1,k2,..., km

m∏

i=1

x ki
i , (7)

where the coefficients Ψk1,..., km ∈ R. Assume that the uncertain input parameters follow independent distributions
fX1 (x1), fX2 (x2), . . . , and fXm (xm). In addition, assume that cross-terms have up toτ parameters, where τ , the maximal
cross-product power, is an integer of 1 ≤ τ ≤m. In other words, Ψk1,..., km = 0 if more than τ of k1, . . . ,km are non-
zero. τ is determined either based on prior field knowledge of the physical system, or through an iterative procedure
that trades off between the computational cost and the estimation accuracy.

Algorithm 3 constructs a reduced-order polynomial mapping

g∗(x1, x2, . . . ,xm ) =
1∑

k1=0

1∑

k2=0

...

1∑

km=0

Ωk1,k2,..., km

m∏

i=1

x ki
i , (8)
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where the coefficients Ωk1,k2,..., km ∈ R, and Ωk1,k2,..., km = 0 if more than τ of k1, k2, . . . ,km are non-zero. Note that
τ =max

∑
i ki in the reduced-order mapping g∗, where i ∈ {1, 2, . . . ,m}.

Algorithm 3: M-PCM–OFFD

/* Step 1: Select the M-PCM simulation set */
1 Follow Step 1 of the Algorithm 1 where ni = 2 for all i ∈ {1, 2, . . . ,m};

2 if m > 2 and 1 ≤ τ ≤ ⌈m2 ⌉ −1 then

3 Go to Step 2;

4 else

5 Go to Step 4, as no reduction of simulations can be achieved;

6 loffd ← 2m , where loffd is the number of M-PCM–OFFD simulations;

7 end

/* Step 2: Determine γ∗ to save 2m − 2m−γ∗ simulations. */
8 γ∗← max

{
γ |1 ≤ γ ≤m − ⌈log2

(∑ τ
i=0

( m
i
))
⌉, and 2 m−γ

R O F F D exists wi t hR ≥ 2τ + 1
}
;

/* Step 3: Select the M-PCM-OFFD simulation set using the 2m−γ∗

R OFFD. */
9 Use Algorithm 2 to select loffd = 2m−γ∗

parameter combinations to form m-tuple simulation points from the full set of 2m

M-PCM simulation points obtained in Step 1. These 2m−γ∗
m-tuple simulation points constitute the M-PCM–OFFD

simulation set;

/* Step 4: Simulation */

10 Run simulation for the M-PCM–OFFD simulation set at each of the 2m−γ∗

R m-tuple simulation points;

/* Step 5: Calculate the output mean */
11 if l = loffd then

12 Find the coefficients in (8) similar to Step 3 of Algorithm 1, but with a reduced-size matrixΓ , denoted as the input

matrix Γ ′
offd ∈ Rloffd×l , which excludes those columns with more thanτ of k1, k2, ...,km being nonzero, and rows

representing points not selected in the reduced M-PCM–OFFD simulation set;

13 else

14 Find the coefficients in (8) by replacingΓ ′−1
offd with

(
Γ ′T

offd
Γ ′

offd

) −1
Γ ′T

offd [43].

15 end

16 The predicted output mean is a0, ...,0
  

m

.

Notes of Algorithm 3

1. In Line 8, l =
∑ τ

i=0

( m
i

)
denotes the number of M-PCM–OFFD coefficients to be estimated.

2. Step 4 is the most time-consuming step for large-scale complex system applications.

Remarks

1. In Line 16 of Algorithm 3, the output mean can also be calculated by integrating the reduced-order mapping
using (4), or through a simple matrix manipulation. In particular, E [g(x1, x2, . . . ,xm)] =

[
(Γ ′−1

offd L ′
offd)1,:

]
B′

if loffd = l, or E [g(x 1, x2, . . . ,xm)] =
[
((Γ ′T

offd
Γ ′

offd)
−1 L ′

offd)1,:

]
B′ if loffd > l, where L ′

offd ∈ Rloffd×l is a reduced-
size L matrix derived in the way same as matrix Γ ′

offd. B ′ is a reduced-size B vector, which excludes entries
corresponding to cross-terms of more than τ parameters.

2. The ordering of entries in matrix L ′
offd or Γ ′

offd does not need to strictly follow Note 2 of Algorithm 1. They
only need to match the orderings of simulation points and the simulated outputs. Without loss of generality
(WLOG), we assume in the sequel that columns in matrix L′offd are arranged in the graded reverse lexicographic
order as follows for the ease of proofs. First, the number of parameters in these columns increases from 0 toτ .
Second, columns of the same number of parameter are arranged in the order of increasing indices. For instance,
for a system with m = 3 parameters and the maximal cross-product power τ = 3, the columns in L ′

offd are
arranged in the following order: {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.
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In this sequel, we only analyze the case of using matrix L ′
offd to construct g∗(x1, x2, . . . ,xm ) for the ease of

presentation. As matrices Γ ′
offd and L ′

offd share the same structure, similar conclusions hold if using Γ ′
offd instead.

3.2. Performance analysis on estimation correctness

In this section, we consider the case where a further reduction of simulations is possible (i.e., when 1 ≤ τ ≤

⌈ m
2 ⌉ −1, and m > 2), and show that the reduced M-PCM–OFFD simulation set obtained using Algorithm 3 correctly

estimates the output mean of the original system mapping with the degree of each parameter up to 3 (Theorem 2).
We first present several lemmas. We show in Lemma 2 that the reduced-order mapping does not increase the maximal
cross-product power.

Lemma 2. Consider an original system mapping g(x 1, x2, . . . ,xm ) of maximal cross-product power τ , (7). The
maximal cross-product power of the reduced-order mapping g+ (x1, x2, . . . ,xm) is also τ .

Given the maximal cross-product power τ in cross-terms of g(x 1, x2, . . . ,xm ), or equivalently g+ (x1, x2, . . . ,xm)
according to Lemma 2, Lemma 3 partially justifies Steps 1 and 2 of Algorithm 3.

Lemma 3. Consider the reduced-order M-PCM mapping g + (x1, x2, . . . ,xm), (2), of maximal cross-product power
τ . An OFFD design can further reduce the number of simulations, if 1 ≤ τ ≤ ⌈ m

2 ⌉ − 1, and m > 2 (Step 1
of Algorithm 3). The number of simulations can be reduced from 2 m to 2 m−γmax , using a 2 m−γmax OFFD, where
γmax = m − ⌈log2

(∑ τ
i=0

(
m
i

))
⌉ .

In order for the 2m−γmax OFFD in Lemma 3 to lead to a valid M-PCM–OFFD design (e.g., Step 5 of Algorithm 3
is possible), the input matrix L ′

offd needs to have full column rank. Lemmas 4–6 state that this requirement is satisfied
when the resolution R ≥ 2τ + 1. We first introduce a matrix V ∈ Rloffd×l , and establish its connection with the 2m−γ∗

R

design table, D, in Lemma 4. Here we denote ‘◦’ as the hadamard product.

Lemma 4. Consider a matrix V ∈ Rloffd×l constructed from the input matrix L ′
offd ∈ Rloffd×l (with 1 ≤ τ ≤ ⌈m2 ⌉ − 1

and m > 2). In matrix V , each column vi is the i th column of L′offd with its entries xk(1) and xk(2) replaced by the coded
factors ‘−1’ and ‘+ 1’ respectively, where k ∈ Si is the index of input parameters, and Si is a set that includes all
the indices of input parameters in column i . The following equalities hold.  v1 = 1. The column vi in matrix V , where
1 < i ≤ m + 1, equals the (i−1)th column of the OFFD design table D, i.e., vi = di−1. Column vi , where i > m + 1,
equals

∏̊
k∈Si

vk .

The connection of V and the OFFD design table shown in Lemma 4 suggests that V can also be directly constructed
from the design table. Lemmas 1, 2 and 4 lead to Lemma 5, which states the condition for the orthogonality of matrix
V .

Lemma 5. Any two columns of V are orthogonal, i.e., vi · v j = 0, for any i ̸= j , and i , j = {1, 2, . . . ,l}, if
R ≥ 2τ + 1.

Based on Lemma 5, Lemma 6 shows that the matrix L ′
offd constructed by M-PCM–OFFD is of full column rank

(i.e., rank(L ′
offd) = l ).

Lemma 6. When 1 ≤ τ ≤ ⌈m2 ⌉ −1 and m > 2, the input matrix L ′
offd ∈ Rloffd×l (constructed using Algorithm 3) is

of full column rank, and can be expressed as L ′
offd = V U , where U∈ Rl×l is an upper triangular matrix, with its i th

diagonal entry

Ui,i =

{
1 if i = 1

1
2ξi

∏
k∈Si

∆ xk if i ̸= 1
(9)

where ∆ xk = xk(2) − xk(1) , ξi is the size of Si , and xk(2) > xk(1) WLOG.

Theorem 1 and Lemmas 2–6 lead to the following theorem, which states that M-PCM–OFFD correctly estimates
the output mean of the original system mapping.
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Theorem 2. When 1 ≤ τ ≤ ⌈m2 ⌉ − 1 and m > 2, the reduced-order mapping g∗(x1, x2, . . . ,xm), (8), constructed
using the integrated M-PCM and 2 m−γ∗ OFFD methods (Algorithm 3) correctly estimates the output mean of the
original system mapping g(x1, x2, . . . ,xm ), i.e.,

E [g(x1, x2, . . . ,xm)] = E[g∗(x1, x2, . . . ,xm)]. (10)

The algorithm reduces the number of simulations from 2m to 2m−γ∗ in the range of
[
2⌈ log2(m+ 1)⌉ , 2m−1

]
.

3.3. Performance analysis on the robustness to numerical truncation errors of simulators

In this section, we study the robustness of M-PCM–OFFD to numerical truncation errors of simulators. A
robustness metric and problem formulation are described in Section 3.3.1. The optimality of M-PCM–OFFD under
this metric is proved in Section 3.3.2.

3.3.1. Metric and problem formulation
The M-PCM–OFFD algorithm involves L ′−1

offd or
(
L ′T

offdL
′
offd

)−1
L ′T

offd, which requires L ′
offd to have full column rank.

We showed in Lemma 6 that this full column property holds when the resolution satisfies R ≥ 2τ + 1. Numerical
truncation errors caused by allowable parameter resolutions of simulation software [71] and computational limitations
of computing devices [33] may introduce disturbances and push L ′

offd to lose rank. Even if such an L ′
offd under

disturbances does not lose rank, the correctness of inversion computation becomes sensitive to such numerical
truncation errors [13]. As such, L ′

offd needs to have a large margin to rank loss under parameter value disturbances
for practical use.

We here show that L ′
offd has the largest margin to rank loss among all subsets of the same size selected from the

M-PCM simulation set. To facilitate the analysis, we introduce L ′ to represent a matrix constructed in the similar
way as L ′

offd, by using an arbitrary subset of the size 2 m−γ∗ in the M-PCM simulation set. We also define a metric to
measure the distance to column rank loss as the full-column-rank margin M(L′), which is measured by the Frobenius
norm [35] of the smallest perturbation matrix to make L′ lose rank [12,33],

M(L ′) = min
{
∥e∥F | rank(L ′ + e) < l

}
(11)

where e ∈ Rloffd×l is a perturbation matrix on parameter values.

3.3.2. Optimality analysis
Lemma 7 shows the expression of full-column-rank margin for M-PCM–OFFD when the maximal cross-product

power τ = 1. Theorem 3 shows that OFFD produces the largest full-column-rank margin among all simulation subsets
of the same size selected from the M-PCM simulation set. Lemma 8 and Theorem 4 extend the results to the general
case where 1 ≤ τ ≤ ⌈m2 ⌉ −1. Two corollaries follow to show exemplary designs where L′ loses full column rank and
therefore cannot be used for output mean estimation.

Lemma 7. Consider an original system mapping g(x1, x2, . . . ,xm), (7), with m > 2 and τ = 1. The M-PCM–OFFD
simulation set (selected using Algorithm 3) produces the full-column-rank margin:

M(L ′
offd) =

√
loffd

2
min{∆ x1, ∆ x2, . . . ,∆ xm} (12)

Theorem 3. Consider an original system mapping g(x 1, x2, . . . ,xm), (7), with m > 2 and τ = 1. The M-PCM–
OFFD simulation set (selected using Algorithm 3) has the largest full-column-rank margin among all subsets of 2m−γ∗

simulation points in the M-PCM simulation set of size 2m . Mathematically, max
(
M(L ′)

)
= M(L ′

offd).

Before we show Lemma 8 and Theorem 4, let us first introduce some notations. Define A = {1, 2, . . . ,m}, and
A k = A − {k}, where k ∈ A . We construct a set A k,i from A k to contain all sets consisting i number of elements in
A k . The size of A k, i is

(
m−1

i

)
. The j th set in A k, i is denoted as A k,i, j . For instance, when k = 1, i = 2, j = 2 and

m = 4, A = {1, 2, 3, 4}, A 1 = {2, 3, 4}, A 1,2 = {{2, 3}, {2, 4}, {3, 4}}, and A 1,2,2 = {2, 4}.
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Lemma 8. Consider an original system mapping g(x 1, x2, . . . ,xm ), (7), with m > 2 and 1 ≤ τ ≤ ⌈m2 ⌉ − 1. The
M-PCM-OFFD simulation set (selected using Algorithm 3) produces the full-column-rank margin:

M(L ′
offd) =

√
loffd

2
min

⎧
⎪⎪⎨
⎪⎪⎩
∆ xk






√ 1 +

τ−1∑

i=1

⎡
⎢⎣1

2i

(
m−1

i

)

∑

j=1

∏

a∈A k,i, j

(
x2

a(1) + x2
a(2)

)

⎤
⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭
, k ∈ A (13)

Theorem 4. Consider an original system mapping g(x 1, x2, . . . ,xm), (7), with m > 2 and 1 ≤ τ ≤ ⌈m2 ⌉ − 1. The
M-PCM-OFFD simulation set (selected using Algorithm 3) has the largest full-column-rank margin among all subsets
of 2m−γ∗ simulation points in the M-PCM simulation set of size 2m . Mathematically, max(M(L ′)) = M(L ′

offd).

Corollaries 1 and 2 list two sufficient conditions for L′ to be singular, i.e., M (L′) = 0.

Corollary 1. Consider an original system mapping g(x 1, x2, . . . ,xm), (7), with m > 2 and the maximal cross-
product power τ = 1. A design of 2m−γ∗

simulation points selected from the M-PCM simulation set of size 2 m leads
to M(L ′) = 0, if there exist two columns in L ′ that contain a pair of input parameters with no more than two out of
four combinations of levels.

Corollary 2. Consider an original system mapping g(x 1, x2, . . . ,xm), (7), with m > 2 and 1 < τ ≤ ⌈ m
2 ⌉ − 1. A

design of 2m−γ∗ simulation points selected from the M-PCM simulation set of size 2 m leads to M(L ′) = 0, if there
exist two columns in L ′ which contain a pair of input parameters with no more than three out of four combinations of
levels.

3.4. Performance analysis of the correctness of effect estimation

For the completeness of performance analysis, we show in Theorem 5 the performance of M-PCM–OFFD in
estimating effects of input parameters on the output.

Theorem 5. Consider an original m-parameter system mapping g(x 1, x2, . . . ,xm), (7), The M-PCM–OFFD
simulation set (selected using Algorithm 3) correctly estimates the main effects and all interaction effects.

4. Illustrative examples and comparative studies

We first use a 3-parameter small example to illustrate the whole design procedures and properties of the integrated
M-PCM–OFFD algorithm, and then briefly discuss a 50-parameter example to show its effectiveness in larger-
size problems. To further demonstrate the performance of M-PCM–OFFD, we compare it with existing approaches
reviewed in Section 1.

4.1. A small-scale example

Consider an original system mapping g(x 1, x2, x3) = 1 + x1 + x2
1 + x3

1 + x2 + x2
2 + x3

2 + x3 + x2
3 + x3

3 ,
where x 1 follows an exponential distribution fX1 (x1) = 2e−2x1 , x1 ≥ 0, x2 follows a uniform distribution of
fX2 (x2) = 1

15 , 5 ≤ x2 ≤ 20, and x 3 also follows a uniform distribution of fX3 (x3) = 1
5 , 5 ≤ x3 ≤ 10. The output

mean is E[g(x 1, x2, x3)] =
∫∫∫

g(x1, x2, x3) fX1(x1) fX2 (x2) fX3 (x3)d x1d x2d x3 = 3381.1. Identifying all coefficients
requires 43 = 64 simulations.

Now let us use the M-PCM–OFFD algorithm (Algorithm 3) to choose only 4 simulations. First, we choose the M-
PCM simulation set of 8 points based upon the pdf of each parameter: p1 =

(
x1(1), x2(1), x3(1)

)
, p2 =

(
x1(2), x2(1), x3(1)

)
,

p3 =
(
x1(1), x2(2), x3(1)

)
, p4 =

(
x1(2), x2(2), x3(1)

)
, p5 =

(
x1(1), x2(1), x3(2)

)
, p6 =

(
x1(2), x2(1), x3(2)

)
, p7 =

(
x1(1),

x2(2), x3(2)
)
, and p 8 =

(
x1(2), x2(2), x3(2)

)
, where x 1(1) = 0.2929, x1(2) = 1.7071, x2(1) = 8.1699, x2(2) = 16.8301,

x3(1) = 6.0566 and x 3(2) = 8.9434. We then use the 2 3−1
I I I OFFD (as the design table shows in Fig. 1(b)) to select

the M-PCM–OFFD simulation set {p2, p3, p5, p8} (as the 3-D cube shows in Fig. 2(a)) or{p1, p4, p6, p7}. The input
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Fig. 2. 3-D cube representation of the (a) 2 3−1
I I I OFFD, and (b)-(f) other possible simulation sets of size 4 in the M-PCM simulation set of size 8.

Each vertex i of the 3-D cube represents the M-PCM simulation point pi . The selected subset is marked in orange.

matrix for the first design is L ′
offd =

⎡
⎢⎢⎣

1 x1(1) x2(1) x3(2)

1 x1(2) x2(1) x3(1)

1 x1(1) x2(2) x3(1)

1 x1(2) x2(2) x3(2)

⎤
⎥⎥⎦. We then run simulations to evaluate g(x 1, x2, x3)

at these 4 M-PCM–OFFD simulation points and estimate coefficients of the reduced-order polynomial mapping
g∗(x1, x2, x3) = −4442.2 + 6.5x1 + 513.5x2 + 186.8x3.

The output mean of g ∗(x1, x2, x3) is E [g ∗(x1, x2, x3)] =
∫∫∫

g∗(x1, x2, x3) fX1 (x1) fX2 (x2) fX3 (x3)d x1d x2d x3 =

3381.1, same as the original output mean. Compared with M-PCM–OFFD that requires only 4 simulation points to
generate the accurate output mean, M-PCM requires 8 simulation points, and the MC requires about 2400 simulations
to reach the range from 3231.1 to 3531.1 (which is±150 around the true mean 3381.1) with 97% confidence.

To verify the robustness property of the integrated algorithm to numerical truncation errors of simulators, we
calculate the full-column-rank margin of L ′

offd, and compare it with other designs. According to Lemma 7, we find
M(L ′

offd) = min{∆ x1, ∆ x2, ∆ x3} = 1.4142, where ∆ x1 = 1.4142, ∆ x2 = 8.6602 and ∆ x3 = 2.8868. The minimal
∥e∥F is achieved when the perturbation errors ex1(1) = 0.7071, ex1(2) = −0.7071, and exi (1) = exi (2) = 0 for all i ̸= 1.

Other possible subsets of simulation points include (1) four points on one surface (Fig. 2(b)), (2) four points on the
diagonal plane (Fig. 2(c)), (3) three points on two surfaces (Fig. 2(d)), (4) three points on only one surface (Fig. 2(e)),
and (5) three points on three surfaces (Fig. 2(f)). The full-column-rank margins of the input matrices for these designs
take one of the four values {0, 0.8660, 1.2247, 1.4142}. The M-PCM–OFFD simulation set is thus the most robust to
numerical truncation errors of simulators, with the largest full-column-rank margin 1.4142.

4.2. A large-scale example

In this example, we consider a system of 50 uncertain input parameters. The original system mapping
g(x1, x2, . . . ,x50) =

∑ 50
i=1 xi +

∑ 50
i=1 x2

i +
∑ 50

i=1 x3
i , where each parameter x i follows a uniform distribution of

fX i (xi ) = 1, 0 ≤ xi ≤ 1. The output mean is E[g(x 1, x2, . . . ,x50)] = 55.1667.
To obtain the accurate output mean, M-PCM requires 2 50 simulations. Assuming that τ = 1, we have γ∗ =

m−⌈ log2(1+ 50)⌉ = 44 andR = 3 ≥ 2τ +1, and we can further use the 250−44
I I I OFFD to reduce the size of simulation

set from 250 to 64. The reduced-order polynomial mapping estimated using M-PCM–OFFD is  g∗(x1, x2, . . . ,x50) =
−15.6667 + 2.8333

∑ 50
i=1 xi , which correctly estimates the output mean E[g ∗(x1, x2, . . . ,x50)] = 55.1667. This

example further shows the effectiveness of M-PCM–OFFD in evaluating statistical system performance, especially
for systems of high-dimensional uncertain input parameters.
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Table 1
Comparison results.

xi follows N (1, 0.52) xi follows U (0, 1) No. of

Value Error Value Error Simulations

True Output Mean 23.8047 * 2.9306 * *

M-PCM 23.8047 0 2.9306 0 64

M-PCM–OFFD
Cross-product power τ = 3 23.8047 0 2.9306 0 64
Cross-product power τ = 2 23.8047 0 2.9306 0 32
Cross-product power τ = 1 23.8047 0 2.9306 0 8

SRSM
PCE of order 3 NaN NaN NaN NaN 168
PCE of order 2 24.2423 0.4376 3.0972 0.1666 56
PCE of order 1 15.3269 8.4778 2.5570 0.3736 13

PCE-MCR
Formula IV, PCE of order 3 23.5210 0.2867 2.8771 0.0535 137
Formula I, PCE of order 2 23.8047 0 3.1500 0.2194 44

PCE-SG (Gaussian)
Level n = 4, PCE of order 1,2,3 23.8047 0 2.9306 0 389
Level n = 3, PCE of order 1,2,3 23.7813 0.0234 2.9301 0.0005 85
Level n = 2, PCE of order 1,2,3 22.6250 1.1797 2.8646 0.0660 13

PCE-SG (KP)
Level n = 4, PCE of order 1,2,3 23.8047 0 2.9306 0 257
Level n = 3, PCE of order 1,2,3 23.7813 0.0234 2.9301 0.0005 73
Level n = 2, PCE of order 1,2,3 22.6250 1.1797 2.8646 0.0660 13

UDR
4 points for each parameter 22.6250 1.1797 2.8646 0.066 25
3 points for each parameter 22.6250 1.1797 2.8646 0.066 19
2 points for each parameter 22.6250 1.1797 2.8646 0.066 13

Coherence-Optimal
Sampling

PCE of order 3 23.7273 0.0774 2.9319 0.0013 168
PCE of order 2 25.3835 1.5788 2.8905 0.0401 56
PCE of order 1 31.9276 8.1229 3.0750 0.1444 13

4.3. Comparative studies

In this section, we compare the performance of M-PCM–OFFD with some existing approaches reviewed in
Section 1, including M-PCM, SRSM [32], PCE-MCR [63], PCE-SG [29,40,46], UDR [37], and coherence-optimal
sampling [14,25,26].

Consider a 6-parameter system of the mapping g(x 1, x2, . . . ,x6) = 1.5 + x5 − 0.5x 2
1 − 2x 3

6 + 5x 3
1 x2 + 4x 2

2 x3
4 +

3x 2
5 x2

6 + 2x3x2
5 + 0.5x 2

1 x2
2 x3

5 −0.5x2x2
3 x4, where all uncertain input parameters xi follow either the normal distribution

N (1, 0.52) or the uniform distribution U (0, 1). We aim to accurately estimate the output mean E [g(x 1, x2, . . . ,x6)]
by running only a small number of simulations. Note that the original system mapping g(x 1, x2, . . . ,x6) is treated
as a black box, with only inputs and outputs accessible. Table 1 summarizes the estimation results obtained using
each uncertainty evaluation approach. The results are also compared to the true output mean E [g(x 1, x2, . . . ,x6)]
calculated through integration using the explicit expression of  g(x1, x2, . . . ,x6).

M-PCM accurately estimates the output mean with n i = 2 for i ∈ {1, 2, . . . ,6}, as proved in Theorem 1. The
number of simulations is 26 = 64. M-PCM–OFFD also estimates the output mean accurately by setting the maximal
cross-product power τ = 3. In this case, M-PCM–OFFD is equivalent to M-PCM as τ = 3 >

⌈
6
2

⌉
− 1 (see Step 1

of Algorithm 3) and no further reduction can be achieved by OFFDs. If we setτ = 2, a 26−1
V I OFFD can be applied to

reduce the size of simulation set to 32. Furthermore, if we setτ = 1, a 26−3
V OFFD can be used to further reduce the size

of simulation set to 8. Of interest, in these two latter cases, despite that τ is smaller than what is needed to guarantee
estimation correctness, the simulations still show excellent output-mean estimation performance. The special structure
of OFFD reflected in the balance and orthogonality properties tends to minimize the impact of high-order cross-terms.
Due to space limitation, we will investigate the performance bounds of M-PCM–OFFD for nonlinear, high-order
systems, and high-order cross-terms in the future. Here τ can be determined through an iterative procedure. A larger
value of τ results in better estimation accuracy but more simulation points. In cases when the computational cost is of
little concern, τ can be determined by gradually increasing its value (starting from τ = 1) until the estimated output



J. Xie, Y. Wan, K. Mills et al. / Mathematics and Computers in Simulation 159 (2019) 93–118 107

mean converges. The use of M-PCM–OFFD in the application of air traffic flow management and its capability in
facilitating stochastic optimal control can be found in [65,66,71].

For PCE based approaches including SRSM, PCE-MCR, PCE-SG and coherence-optimal sampling, transfor-
mations are sometimes needed to first represent uncertain input parameters as standardized random variables. For
instance, for SRSM and PCE-MCR that adopt PCE with variables following standard normal distributions, the
uncertain input parameters can be converted to standard normal random variablesαi of the distribution N (0, 1) using
the following operations [32]:

xi =

{
1 + 0.5αi if xi follows N (1, 0.52)
1
2 + 1

2 erf
(

αi√
2

)
if xi follows U (0, 1)

(14)

where erf(x ) is defined as erf(x ) = 2√
π

∫x
0 e−t2

d t .Then PCEs of order 3 have cross-terms containing up to 3
parameters to approximate the original mapping. We also tried lower-order PCEs for the comparison purpose. In
our study of SRSM, a set of simulation points with size twice the number of PCE coefficients is selected, if enough
points are available. The simulations show that the performance of SRSM decays significantly with the decrease of
PCE order. When the applied PCE has an order of 3, SRSM often fails to calculate the output mean, as it randomly
selects simulation points when no more points can be further eliminated after filtering.

For PCE-MCR, different formulas of MCR lead to different numbers of simulations. We here follow the simulation
studies conducted in [63], and evaluate two formulas of MCR: (1) Formula I for PCE of order 2, and (2) Formula IV
for PCE of order 3. The simulations imply that PCE-MCR has smaller estimation error compared to SRSM, but still
cannot achieve accurate estimation of the output mean.

The PCE-SG provides a systematic procedure to generate a set of quadrature points to estimate each mapping
coefficient. As the output mean of a PCE mapping equals the coefficient associated with the constant term, the
accuracy level of the applied SG determines the accuracy of output mean estimation, rather than the order of PCE.
Note that an SG of accuracy level n can correctly estimate the integral of a polynomial with the total order 2n − 1.
In this example, as the total order of the system mapping is 7, the SG of accuracy level  n = 4 is capable of correctly
estimating the output mean. In the simulation, we use PCE with Hermite polynomials and apply SG with Gauss–
Hermite quadrature rules when uncertain input parameters xi follow normal distributions. We use PCE with Legendre
polynomials and apply the SG with the Gauss–Legendre quadrature rules when  x i follow uniform distributions [29].
Other than the standard Gaussian rules based SG, we also evaluate the Kronrod–Patternson (KP) rules based SG,
which generates a nested set of points and is more efficient in high dimensions [10,29,46]. The simulations show
that both Gaussian rules based and KP rules based SG have good estimation performance, but require many more
simulation points compared to M-PCM–OFFD. The estimation performance decays with the decrease of the accuracy
level n. Furthermore, we vary the order of PCE and verify the conclusion that the order of PCE does not have an
impact on the estimation accuracy.

For UDR, the idea to calculate output mean is to obtain the output mean of each univariate function constructed for
each uncertain input parameter. For fair comparison with M-PCM–OFFD, we here follow the procedures of Algorithm
1 (with m = 1) to select simulation points, construct the univariate functions, and calculate the output means. Note
that n simulation points can accurately approximate the output mean of a univariate function of order up to 2 n − 1.
Therefore, in this example, 2 simulation points are enough to accurately approximate a univariate function with the
highest order up to 3. For verification, we also tested the performance of UDR when more simulation points are used
to construct higher-order univariate functions. The simulations show that this approach does not perform well no
matter how many points are used, as it ignores all cross-terms. In addition, the constant output means estimated for all
three cases verify our statement on the number of simulation points that are sufficient for the output mean estimation.

For coherence-optimal sampling, we use the Matlab code available at www.github.com/CU-UQ to generate
samples. The number of samples can be customized. We here adopt the same settings as the SRSM, as we found the
estimation performance of the coherence-optimal sampling is not satisfactory when the number of samples is equal or
slightly larger than the number of PCE coefficients. The simulations show that the performance of coherence-optimal
sampling also degrades with the decrease of PCE order, but it outperforms SRSM. Besides, by adopting higher-order
PCEs and using more samples, the output mean estimated by the coherence-optimal sampling is expected to converge
to the accurate value.
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Overall, among all these uncertainty evaluation approaches, M-PCM–OFFD performs the best in estimating the
output mean in this example. It also requires fewer simulation points than all other approaches. Compared to PCE-
based approaches, the UDR generally requires fewer simulations, but it does not perform well when cross-terms are
not negligible. We also compare estimation errors for methods of similar number of simulations. In particular, we
select M-PCM–OFFD of τ = 1, SRSM and coherence-optimal sampling when the PCE is of order 1, UDR with 2
points selected for each parameter, and SG with accuracy level n = 2. As we can see in Table 1, M-PCM–OFFD
performs the best, while SRSM produces the largest error.

5. Conclusions

The real-time decision-making of large-scale complex systems requires an effective method to evaluate statistical
performance for systems of high-dimensional uncertainties. In this paper, we integrate M-PCM with OFFD, and
show that the integrated method maintains the good estimation performance of M-PCM, while significantly reduces
the number of simulations. In particular, we found that under the conditions that the original system mapping of  m
parameters has the degree of each parameter up to 3 and the maximal cross-product power satisfiesτ ≤ ⌈m2 ⌉ −1, the
reduced-order polynomial mapping constructed using the M-PCM–OFFD method has the following features: (1) it
precisely estimates the output mean of original system mapping; (2) it reduces the number of simulations from 22m to
the range of [2⌈ log2(m+ 1)⌉ , 2m−1], breaking the curse of dimensionality; (3) it is the most robust to numerical truncation
errors of simulators among all subsets of the same size in the M-PCM simulation set to meet parameter resolution
requirements; and (4) it correctly estimates main and significant interaction effects. The theoretical analysis developed
in this paper on the estimation correctness, computational scalability, and robustness to numerical truncation errors
of simulators demonstrate appealing properties of M-PCM–OFFD for its practical use in developing fast decision-
making solutions for large-scale system applications. The development in this paper also provides new insights into
the optimality of OFFDs, and gives rise to its broad new usage for real-time uncertainty evaluation applications. In our
future work, we will generalize the degrees of uncertain input parameters by exploring multi-level OFFDs and exploit
parameter correlations to further reduce the number of simulations [1,7,9,38,53]. We will also investigate performance
bounds for general systems of nonlinear mappings and high-order cross-terms.
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Appendix

A.1. Proof of Lemma 1

According to Step 1 in Algorithm 2, any m − γ factors are determined according to the full factorial design. The
values of all other factors are determined using a subset of these  m − γ factors according to the generators. As the
resolution R equals the shortest length of all these generators, m− γ ≥R − 1 holds.

A.2. Proof of Lemma 2

According to the proofs for Theorems 1 and 2 in [71], M-PCM recursively reduces the degree of each input
parameter to produce a reduced-order mapping of the same output mean. As this procedure does not introduce new
parameters to each cross-term, the numbers of parameters in all cross-terms in the reduced-order mapping do not
increase.
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A.3. Proof of Lemma 3

We first prove that an OFFD design can further reduce the number of simulations if 1 ≤ τ ≤ ⌈ m
2 ⌉ − 1 and

m > 2. Step 2 of Algorithm 3 suggests that the number of M-PCM–OFFD coefficients for a mapping of maximal
cross-product power τ is

∑ τ
i=0

(
m
i

)
. As OFFDs reduce the number of simulations at least by half, the number of

coefficients
∑ τ

i=0

(
m
i

)
in g∗(x1, x2, . . . ,xm ) must be less than or equal to 2m−1 to ensure correct estimation. Note that

2m−1 =
∑ m−1

2
i=0

(
m
i

)
when m is odd and

∑ m
2 −1

i=0

(
m
i

)
< 2m−1 <

∑ m
2

i=0

(
m
i

)
when m is even. The maximum of τ thus

satisfies max τ =

{
m−1

2 if m mod 2 ≡ 1
m
2 − 1 if m mod 2 ≡ 0

= ⌈ m
2 ⌉ − 1. As the maximal cross-product power τ is an integer

greater than or equal to 1, it needs to be in the range of 1≤ τ ≤ ⌈m2 ⌉ −1.
We next prove that the maximal reduction of simulations can be achieved using the 2 m−γmax OFFD, where

γmax = m − ⌈log2

(∑ τ
i=0

(
m
i

))
⌉ . This is straightforward, as the number of simulations 2 m−γ must be larger than or

equal to the number of M-PCM–OFFD coefficients
∑ τ

i=0

( m
i

)
to ensure the correct estimation of mapping coefficients

in g+ (x1, x2, . . . ,xm) or g∗(x1, x2, . . . ,xm ). Therefore,γmax = max
{
γ |2m−γ ≥

∑ τ
i=0

(
m
i

)}
= m−⌈ log2(

∑ τ
i=0

(
m
i

)
)⌉ .

A.4. Proof of Lemma 4

The first column of L′offd is 1, and hence v1 = 1. For 1 < i ≤ m + 1, vi contains the coded values of parameter xi−1,
xci−1 . According to Step 5 of Algorithm 3, all rows in L ′

offd that are not in the OFFD design table are eliminated. It is
thus clear that vi = di−1 for 1 < i ≤ m + 1. The construction of L′

offd in Algorithm 3 also indicates that its i th column,
where i > m + 1, is an element-wise vector multiplication of a subset of its first m+ 1 columns. vi =

∏̊
k∈Si

vk is thus
derived.

A.5. Proof of Lemma 5

According to Lemma 4 and the orthogonality and balance properties of OFFD design table stated in Section
2.2, it is straightforward that vi · v j = 0, when i , j ∈ {1, 2, . . . ,m + 1}. For arbitrary i and j where i ̸= j ,

vi · v j =
(
vi ◦v j

)
· v1 =

( ∏̊
k∈Si

vk+ 1 ◦
∏̊

k∈S j
vk+ 1

)
· v1 =

( ∏̊
k∈Svk+ 1

)
· v1, where S = Si ∪S j . According to

Lemma 3, the sizes of Si and S j produced from V for the reduced-order mapping are both less than τ , and hence the
size of S must be smaller than or equal to 2 τ . Note that in a 2 m−γ

R OFFD, any m − γ factors form a full factorial

design (Step 1 of Algorithm 2). Hence,
( ∏̊

k∈S ′vk+ 1

)
· v1 = 0 for an arbitrary S′ whose size is less than or equal to

m − γ, according to the orthogonality property of full factorial design discussed in Section 2.2. Therefore, to prove
this lemma, we only need to show that 2 τ ≤ m − γ. According to Lemma 2, m − γ ≥R − 1. When R ≥ 2τ + 1
(Step 2 of Algorithm 3), m − γ ≥R − 1 ≥ 2τ holds.

A.6. Proof of Lemma 6

Note that for each parameter x k , its PCM points can be expressed as x k(1) = 1
2

(
xk(1) + xk(2)

)
− 1

2

(
xk(2) − xk(1)

)
,

and x k(2) = 1
2

(
xk(1) + xk(2)

)
+ 1

2

(
xk(2) − xk(1)

)
. Define 1

2

(
xk(1) + xk(2)

)
= xk,0 and y k = xk − xk,0. We have

xk(1) = xk,0−
1
2
∆ xk , xk(2) = xk,0+

1
2
∆ xk , and yk(1) = −1

2
∆ xk , yk(2) =

1
2
∆ xk . The element in the r th row and i th column

of matrix L′
offd can then be represented as

∏
k∈Si

xk(rk ) =
∏

k∈Si

(
yk(rk ) + xk,0

)
=

∏
k∈Si

yk(rk )+
∑

S j⊂Si
c j

∏
k∈S j

yk(rk ),

where rk ∈ {1, 2} and c j are some constants. Construct a matrix K ′
offd ∈ Rloffd×l from L ′

offd, with x k(1) and xk(2) in L ′
offd

replaced by y k(1) = −1
2
∆ xk and y k(2) = 1

2
∆ xk , respectively. The expression above about

∏
k∈Si

xk(rk ) suggests that
there exists an upper triangular connection matrix U1 ∈ Rl×l of unity diagonal terms (and off-diagonal elements given
by the c j constants above) that satisfies L′

offd = K ′
offdU1.

According to the definitions of the K ′
offd and V matrices, we have K ′

offd = V U2, where U2 ∈ Rl×l is a diagonal



110 J. Xie, Y. Wan, K. Mills et al. / Mathematics and Computers in Simulation 159 (2019) 93–118

matrix with the i th diagonal element equal to 1 if i= 1 and 1
2ξi

∏
k∈Si

∆ xk otherwise. We then have L′offd = V U , where
U = U1U2 is an upper triangular matrix with the same diagonal elements as matrix  U 2. Matrix V has orthogonal
columns according to Lemma 5, and it satisfies 1

loffd
V T V = I . Therefore, both matrices V and U have full column

ranks, and hence matrix L′
offd also has full column rank.

A.7. Proof of Theorem 2

Theorem 1 states that the reduced-order M-PCM mapping g + (x1, x2, . . . ,xm) correctly estimates the output
mean of g(x 1, x2, . . . ,xm ), with a reduction of simulations from 2 2m to 2m . Lemma 2 states that M-PCM mapping
g+ (x1, x2, . . . ,xm ) has the same maximal cross-product power τ as the M-PCM–OFFD mapping g∗(x1, x2, . . . ,xm).
Lemma 3 states that there exists an OFFD to further reduce the number of simulations, when 1 ≤ τ ≤ ⌈ m

2 ⌉ − 1

and m > 2 (Step 1 of Algorithm 3). Lemma 6 states that when R ≥ 2τ + 1, the 2 m−γ∗

R OFFD results in a
full-column-rank matrix L ′

offd, and hence the calculation in Step 5 of Algorithm 3 is feasible. We note that when
1 ≤ τ ≤ ⌈m2 ⌉ −1 and m > 2, such a 2m−γ∗

R OFFD always exists, whereγ∗ satisfies 1 ≤ γ∗≤ m − ⌈log2

(∑ τ
i=0

(
m
i

))
⌉ ,

and R ≥ 2τ + 1. In particular, the 2m−1
m OFFD produced using the generators I = ±xc1 xc2   · · ·xcm always exists,

and meets the conditions, as γ = 1 and R = m ≥ 2⌈ m
2 ⌉ − 1 ≥ 2τ + 1. In all, the M-PCM–OFFD mapping

g∗(x1, x2, . . . ,xm ) is the same as the M-PCM mapping g+ (x1, x2, . . . ,xm), despite the reduction of simulation points,
as all the M-PCM points are precisely on the mapping g ∗. The correct output mean estimation naturally follows.
Furthermore, according to Lemma 3–6, the number of simulations is reduced to 2 m−γ∗, where γ∗ = max

{
γ | 1 ≤

γ ≤m − ⌈log2

(∑ τ
i=0

(
m
i

))
⌉, and 2 m−γ

R O F F D exists , wi t hR ≥ 2τ + 1
}
. The lower bound of 2m−γ∗ is achieved

when τ = 1, and the upper bound holds as an OFFD at least halves the number of simulations.

A.8. Proof of Lemma 7

According to Lemma 6, L ′
offd is of full column rank and L ′

offd = V U .Now we find the minimum ∥e∥F to make
L ′

offd + e lose rank, according to the definition of full-column-rank margin in (11). We use e xi (ri ) to represent the
perturbation to x i (ri ) and x̂i (ri ) = xi (ri ) + exi (ri ) to represent the corrupted parameter value, where i = {1, 2, . . . ,m},

and ri = {1, 2}. Similar to L ′
offd, L ′

offd + e can also be expressed as L ′
offd + e = V Û , where Û is an upper triangular

matrix with the determinant det ( Û ) =
∏ l

i=2( 1
2ξi

∏
k∈Si

∆ x̂k), where ∆ x̂k = x̂k(2) − x̂k(1) . Clearly, the rank of L ′
offd

is solely determined by Û . Therefore, L ′
offd + e loses rank if and only if there exists an i ∈ {1, 2, . . . ,m} such that

∆ x̂i = 0. In the case of ∆ x̂1 = 0, we have ∆ x̂1 = x̂1(2) − x̂1(1) = (x1(2) + ex1(2)) − (x1(1) + ex1(1)) = 0 and therefore
ex1(1) = ex1(2) + x1(2) − x1(1) = ex1(2) +

∆ x1. Consequently,

∥e∥F =

√
loffd

2

(
e2

x1(1)
+ e2

x1(2)
+ e2

x2(1)
+ e2

x2(2)
+    +· · · e2

xm(1)
+ e2

xm(2)

)

≥

√
loffd

2

(
e2

x1(1)
+ e2

x1(2)

)
=

√
loffd

2

[
(ex1(2) +

∆ x1)2 + e2
x1(2)

]
≥

√
loffd

2
∆ x1

The equality holds when e x1(1) =
1
2
∆ x1, ex1(2) = −1

2
∆ x1, and ex j (1) = ex j (2) = 0 for all j ̸= 1. Similarly, we obtain

∥e∥F ≥
√

loffd

2
∆ xi , i ∈ {2, 3, . . . ,m}. As such, M(L ′

offd) =
√

loffd

2 min{∆ x1, ∆ x2, . . . ,∆ xm}, and the minimum
√

loffd

2
∆ xi

is achieved when ∆ xi ≤ ∆ x j for all j ̸= i , exi (1) =
1
2
∆ xi , exi (2) = −1

2
∆ xi , and ex j (1) = ex j (2) = 0 for all j ̸= i .

A.9. Proof of Theorem 3

Before showing the proof of Theorem 3, we first present a lemma, which will be used to prove this theorem.

Lemma 9. Consider an original system mapping g(x1, x2, . . . ,xm ), (7), with m> 2 andτ = 1. Matrix L′ constructed
from an arbitrary subset of size 2 ⌈ log2(m+ 1)⌉ in the M-PCM simulation set can be transformed to an upper triangular
matrix of the same column rank, where the first diagonal entry is 1, and the (k + 1)th diagonal entry is an integer
multiple of ∆ xk .



J. Xie, Y. Wan, K. Mills et al. / Mathematics and Computers in Simulation 159 (2019) 93–118 111

Proof. Denote the entry of matrix L ′ at the i th row and j th column as L′
i, j . In cases when τ = 1, matrix L ′ consists

of m + 1 columns arranged in the following order: {1, x1, x2, . . . ,xm} (see Remark 2 of Algorithm 3 for the ordering
criteria). As the (k + 1)th column of matrix L ′ contains only two possible values, x k(1) and x k(2) , k ∈ {1, 2, . . . ,m},
matrix L ′ can be transformed to an upper triangular form, with diagonal entries being integer multiples of ∆ xk ,
through a sequence of elementary row operations: for i = 1 to m − 1 do the following; (1) make L ′

j,i = 0 by
subtracting the j th row with a multiple of the i th row, for j = i + 1, . . . ,m; (2) if L ′

i+ 1,i+ 1 = 0, find a non-zero
element L ′

k,i+ 1, k = i + 2, . . . ,m, and switch row k with row i + 1. Note that the elementary row operations do not
change the column rank of matrix L′ [56].

Now let us find the minimum∥e∥F to make L′+ e lose rank. The case that L′ is not of full column rank is trivial, as
in this case the minimum ∥e∥F = 0 and M(L ′) = 0, where e is a null matrix. When L′ is full rank, we can transform,
through elementary row operations described in the proof of Lemma 9, L′ + e to an upper triangular matrix, in which
the first diagonal entry is 1, and the (k+ 1)th diagonal entry is an integer multiple of∆ x̂k , i.e., λk∆ x̂k , where λk ∈ Z
and Z denotes the set of integers. Matrix L ′ being of full column rank implies that λk ̸= 0, for all k ∈ {1, 2, . . . ,m}.
As such, L ′ + e loses column rank if and only if ∆ x̂k = 0.

Procedures similar to those used to calculate M (L′
offd) in the proof of Lemma 7 lead to

M(L ′) =min

{ √ [
c1e2

x1(1)
+ (loffd − c1)e2

x1(2)

]
+    +· · ·

[
cme2

xm(1)
+ (loffd − cm)e2

xm(2)

] }

=min

{ √
c1(loffd − c1)

loffd

∆ x1, . . . ,

√
cm(loffd − cm )

loffd

∆ xm

}

(15)

where c i is the number of x i (1) in the (i + 1)th column of L ′. The minimum at
√

ci (loffd−ci )
loffd

∆ xi is achieved, when

exi (1) =
(loffd−ci )∆ xi

loffd
, exi (2) = −

ci∆ xi
loffd

, and for all j ̸= i, j ∈ {1, 2, . . . ,m}, we have
√

ci (loffd−ci )
loffd

∆ xi ≤

√
c j (loffd−c j )

loffd
∆ x j ,

and ex j (1) = ex j (2) = 0.

Since
√

ci (loffd−ci )
loffd

=
√
− 1

loffd
(ci −

loffd
2 )2 + loffd

4 ≤
√

loffd

2 , we have
√

ci (loffd−ci )
loffd

∆ xi ≤
√

loffd

2
∆ xi . (15) can then be further

simplified to M(L ′) ≤
√

loffd

2 min{∆ x1, ∆ x2, . . . ,∆ xm} =M(L ′
offd). The equality is achieved by an OFFD.

A.10. Proof of Lemma 8

To prove Lemma 8, we first construct∥e∥F and then find its minimum to make L′offd lose rank. Note that the L′offd+ e
matrix has the same structure as that of L ′

offd, with its i th column
∏

k∈Si
x̂k =

∏
k∈Si

(
xk + exk

)
. Simple algebra leads

to

∥e∥F =




√ loffd

2

m∑

k=1

2∑

rk=1

e2
xk(rk )

+
loffd

22

{ 2∑

r1=1

2∑

r2=1

[(
ex1(r1) + x1(r1)

) (
ex2(r2) + x2(r2)

)

−x1(r1)x2(r2)
] 2
}

+    +· · ·
loffd

2τ

{ 2∑

r1=1

  · · ·
2∑

rτ=1

[
τ∏

k=1

(
exk(rk ) + xk(rk )

)
−

τ∏

k=1

xk(rk )

] 2

+   · · ·
}

(16)

Similar to the proof of Lemma 7, L′
offd + e loses rank if and only if at least one of∆ x̂i = 0, i ∈A . We assume WLOG

∆ x̂1 = 0, and thus ex1(1) + x1(1) = ex1(2) + x1(2), and ex1(1) = ex1(2) +
∆ x1.

In this case, to find the minimum ∥e∥F for L ′
offd to lose rank, we show that the minimum of each error summation

term corresponding to each column of L′+ e in (16) and hence the minimum of∥e∥F is achieved when ex1(1) =
1
2
∆ x1,

ex1(2) = −1
2
∆ x1, and ex j (1) = ex j (2) = 0 for all j ̸= 1, j ∈ A .

First, for columns of L ′ + e that contain only one input parameter, we have
∑ m

k=1

∑ 2
rk=1 e2

xk(rk )
≥

∑ 2
r1=1 e2

x1(r1)
≥

∆ x2
1

2 . The minimum value is achieved when e x1(1) = 1
2
∆ x1, ex1(2) = −1

2
∆ x1, and e x j (1) = ex j (2) = 0 for all j ̸= 1,

j ∈A .
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Next, for columns that contain two input parameters (τ ≥ 2), we consider two cases. In the first case, the column
does not contain the input parameter x 1. The minimum of corresponding error summation term is achieved when no
error is introduced. That is,

2∑

ri=1

2∑

r j=1

[
(exi (ri ) + xi (ri ))(ex j (rj ) + x j (rj )) − xi (ri )x j (rj )

] 2
≥ 0

where i, j ̸= 1, and the minimum is achieved when exi (1) = exi (2) = ex j (1) = ex j (2) = 0. For columns that contain input
parameter x1, we have

2∑

r1=1

2∑

ri=1

[(
ex1(r1) + x1(r1)

) (
exi (ri ) + xi (ri )

)
− x1(r1)xi (ri )

] 2 [(
ex1(1) + x1(1)

) (
exi (1) + xi (1)

)
− x1(1)xi (1)

] 2

+
[(

ex1(2) + x1(2)
) (

exi (1) + xi (1)
)
− x1(2)xi (1)

] 2
+

[(
ex1(1) + x1(1)

) (
exi (2) + xi (2)

)
− x1(1)xi (2)

] 2

+
[(

ex1(2) + x1(2)
) (

exi (2) + xi (2)
)
− x1(2)xi (2)

] 2

= 2

[
(
ex1(1) + x1(1)

) (
exi (1) + xi (1)

)
−

1

2

(
x1(1) + x1(2)

)
xi (1)

] 2

+
1

2
x2

i (1)
∆ x2

1

+ 2

[
(
ex1(1) + x1(1)

) (
exi (2) + xi (2)

)
−

1

2

(
x1(1) + x1(2)

)
xi (2)

] 2

+
1

2
x2

i (2)
∆ x2

1

≥
1

2
∆ x2

1

(
x2

i (1)+ x2
i (2)

)
=

1

2
∆ x2

1

∏

a∈A 1,1,i−1

(
x2

a(1) + x2
a(2)

)

where A 1,1,i−1 = {i}. The minimum value can be achieved when ex1(1) =
1
2
∆ x1, ex1(2) = −1

2
∆ x1, and exi (1) = exi (2) =

0, where i ̸= 1, i ∈ A .
For terms that contain s number of input parameters, s∈ {3, 4, . . . , τ }(τ ≥3), the same conclusion can be obtained

by following similar procedures. In particular, for columns that do not contain  x1, it is clear that the minimum of error
summation is 0, which is achieved when no error is introduced. For columns that contain  x 1, the minimum of error
summation is achieved when input parameters except x 1 in this column is free of error. We here show, WLOG, the
calculation for the column that contains input parameters {x1, x2, . . . ,xs},

2∑

r1=1

  · · ·
2∑

rs=1

[
s∏

k=1

(
exk(rk ) + xk(rk )

)
−

s∏

k=1

xk(rk )

] 2

= 2
(
ex1(1) + x1(1)

)2 (
ex2(1) + x2(1)

)2
s∏

k=3

⎡
⎣

2∑

rk=1

(
exk(rk ) + xk(rk )

) 2

⎤
⎦

− 2
(
ex1(1) + x1(1)

) (
ex2(1) + x2(1)

) (
x1(1) + x1(2)

)
x2(1)

s∏

k=3

⎡
⎣

2∑

rk=1

xk(rk )

(
exk(rk ) + xk(rk )

)
⎤
⎦

+
(
x2

1(1) + x2
1(2)

)
x2

2(1)

s∏

k=3

(
x2

k(1) + x2
k(2)

)
+ 2

(
ex1(1) + x1(1)

)2 (
ex2(2) + x2(2)

)2
s∏

k=3

⎡
⎣

2∑

rk=1

(
exk(rk ) + xk(rk )

) 2

⎤
⎦

− 2
(
ex1(1) + x1(1)

) (
ex2(2) + x2(2)

) (
x1(1) + x1(2)

)
x2(2)

s∏

k=3

⎡
⎣

2∑

rk=1

xk(rk )

(
exk(rk ) + xk(rk )

)
⎤
⎦



J. Xie, Y. Wan, K. Mills et al. / Mathematics and Computers in Simulation 159 (2019) 93–118 113

+
(
x2

1(1) + x2
1(2)

)
x2

2(2)

s∏

k=3

(
x2

k(1) + x2
k(2)

)

= 2
s∏

k=3

⎡
⎣

2∑

rk=1

(
exk(rk ) + xk(rk )

) 2

⎤
⎦

⎧
⎪⎪⎨
⎪⎪⎩

(
ex1(1) + x1(1)

) (
ex2(1) + x2(1)

)

−
1

2
x2(1)

(
x1(1) + x1(2)

)
∏s

k=3

[ ∑ 2
rk=1 xk(rk )

(
exk(rk ) + xk(rk )

)]

∏s
k=3

[
∑ 2

rk=1

(
exk(rk ) + xk(rk )

) 2
]

⎫
⎪⎪⎬
⎪⎪⎭

2

−
1

2
x2

2(1)

(
x1(1) + x1(2)

)2

∏s
k=3

[ ∑ 2
rk=1 xk(rk )

(
exk(rk ) + xk(rk )

)] 2

∏s
k=3

[
∑ 2

rk=1

(
exk(rk ) + xk(rk )

) 2
] +

(
x2

1(1) + x2
1(2)

)
x2

2(1)

s∏

k=3

2∑

rk=1

x2
k(rk ) +   · · ·

≥
(
x2

2(1) + x2
2(2)

)

⎧
⎪⎪⎨
⎪⎪⎩

(
x2

1(1) + x2
1(2)

)
s∏

k=3

2∑

rk=1

x2
k(rk ) −

1

2

(
x1(1) + x1(2)

)2

∏s
k=3

[ ∑ 2
rk=1 xk(rk )

(
exk(rk ) + xk(rk )

)] 2

∏s
k=3

[
∑ 2

rk=1

(
exk(rk ) + xk(rk )

) 2
]

⎫
⎪⎪⎬
⎪⎪⎭

By using the Cauchy–Schwarz Inequality [57], we have

(
x2

2(1) + x2
2(2)

)

⎧
⎨
⎩
(
x2

1(1) + x2
1(2)

)
s∏

k=3

2∑

rk=1

x2
k(rk )

−
1

2

(
x1(1) + x1(2)

)2

∏s
k=3

[ ∑ 2
rk=1 xk(rk )

(
exk(rk ) + xk(rk )

)] 2

∏s
k=3

[
∑ 2

rk=1

(
exk(rk ) + xk(rk )

) 2
]

⎫
⎪⎪⎬
⎪⎪⎭

≥
(
x2

2(1) + x2
2(2)

)

⎧
⎨
⎩
(
x2

1(1) + x2
1(2)

)
s∏

k=3

2∑

rk=1

x2
k(rk ) −

1

2

(
x1(1) + x1(2)

)2

∏s
k=3

( ∑ 2
rk=1 x2

k(rk )

) ∏s
k=3

[
∑ 2

rk=1

(
exk(rk ) + xk(rk )

) 2
]

∏s
k=3

[
∑ 2

rk=1

(
exk(rk ) + xk(rk )

) 2
]

⎫
⎪⎪⎬
⎪⎪⎭

=
(
x2

2(1) + x2
2(2)

)
s∏

k=3

2∑

rk=1

x2
k(rk )

[
(
x2

1(1) + x2
1(2)

)
−

1

2

(
x1(1) + x1(2)

)2
]

=
1

2
∆ x2

1

s∏

k=2

(
x2

k(1) + x2
k(2)

)
=

1

2
∆ x2

1

∏

a∈A 1,s−1,1

(
x2

a(1) + x2
a(2)

)
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where A 1,s−1,1 = {2, 3, . . . ,s}. The minimum value is achieved when e x1(1) = 1
2
∆ x1, ex1(2) = − 1

2
∆ x1, and

ex j (1) = ex j (2) = 0 for all j ∈ {2, . . . ,s}. Based on all above analyses, we see that the minimum value of each
error summation term in (16) in the case of ∆ x̂1 = 0 is achieved at the same condition, i.e., ex1(1) = 1

2
∆ x1,

ex1(2) = − 1
2
∆ x1, and e x j (1) = ex j (2) = 0 for all j ̸= 1, j ∈ A . Therefore, we have ∥e∥F ≥

√
loffd

2
∆ x1√

1 +
∑ τ−1

i=1

[
1
2i

∑
(

m−1
i

)

j=1

∏
a∈A 1,i, j

(
x2

a(1) + x2
a(2)

) ]

, when ∆ x̂1 = 0. Similarly, we can obtain

∥e∥F ≥

√
loffd

2
∆ xk






√ 1 +

τ−1∑

i=1

[ 1

2i

(
m−1

i

)

∑

j=1

∏

a∈A k,i, j

(x 2
a(1) + x2

a(2) )
]

when ∆ x̂k = 0. The minimum is achieved when e xk(1) = 1
2
∆ xk , exk(2) = −1

2
∆ xk , and e x j (1) = ex j (2) = 0 for all

j ̸= k, j ∈ A . The result naturally follows, similar to the proof of the first part for Lemma 7.

A.11. Proof of Theorem 4

To prove that M(L′) ≤ M(L ′
offd), it suffices to show the existence of a perturbation matrix  e which makes L′+ e lose

rank and has a norm smaller than or equal to M(L ′
offd

). To find such a perturbation matrix, we first study the structure
of L ′. Note that matrix L ′ can be partitioned into two matrices L ′ =

[
L ′

1 L ′
2

]
, where L ′

1 ∈ Rloffd×(m+ 1) contains the
first m + 1 columns, each of which has at most one input parameter. L ′

2 ∈ Rlo f f d×(l−m−1) that contains the rest of the
columns is not needed in the analysis that follows. Applying the elementary row operations described in the proof of
Lemma 9 to the first m+ 1 columns of L′, we can transform L′

1 to an upper triangular form, with its (k+ 1)th diagonal
entry λk∆ xk , where λk ∈ Z and k ∈A . Clearly, any λk = 0 or ∆ xk will lead to M(L ′) = 0.

Now let us study some forms of perturbation matrices e for L′ + e to lose rank. The case that L ′ is not full rank is
trivial, as M (L ′) = 0. When L ′ is full rank, L ′ + e will lose rank if there exists any ∆ x̂i = 0. Assume WLOG that
∆ x̂1 = 0, ex j (1) = ex j (2) = 0, for all j ̸= 1, j ∈ A . Let us calculate ∥e∥F . Clearly, ex1(1) = ex1(2) +

∆ x1, and

∥e∥F =




√ c1e2

x1(1)
+ (loffd − c1) e2

x1(2)
+

m∑

k=2

{[
bk(1) x2

k(1) +
(
c1 − bk(1)

)
x2

k(2)

]
e2

x1(1)

+
[
bk(2) x2

k(1) +
(
loffd − c1 − bk(2)

)
x2

k(2)

]
e2

x1(2)

}
+   · · ·

=




√
(
ex1(2) +

∆ x1
)2

{

c1 +

m∑

k=2

[
bk(1) x2

k(1) +
(
c1 − bk(1)

)
x2

k(2)

]
+   · · ·

}

+ e2
x1(2)

{

(loffd − c1) +

m∑

k=2

[
bk(2) x2

k(1) +
(
loffd − c1 − bk(2)

)
x2

k(2)

]
+   · · ·

}

=




√ e2

x1(2)

{

loffd +

m∑

k=2

[ (
bk(1) + bk(2)

)
x2

k(1) +
(
loffd − bk(1) − bk(2)

)
x2

k(2)

]
+   · · ·

}

+
(
2ex1(2)

∆ x1 + ∆ x2
1

)
{

c1 +

m∑

k=2

[
bk(1) x2

k(1) +
(
c1 − bk(1)

)
x2

k(2)

]
+   · · ·

}
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where bk(1) and bk(2) are respectively the numbers of x k(1) x1(1) and x k(1) x1(2) in the column that corresponds to x k x1

in L ′. For simplicity, we denote
{

loffd +
∑ m

k=2

[ (
bk(1) + bk(2)

)
x2

k(1) +
(
loffd − bk(1) − bk(2)

)
x2

k(2)

]
+   · · ·

}
as B 1,1, and

{
c1 +

∑ m
k=2

[
bk(1) x2

k(1) +
(
c1 − bk(1)

)
x2

k(2)

]
+   · · ·

}
as B 1,2, B1,1, B1,2 > 0. Note that B1,1 − B1,2 = (loffd − c1) +

∑ m
k=2

[
bk(2) x2

k(1) +
(
loffd − c1 − bk(2)

)
x2

k(2)

]
+   · · · >0. Then,

∥e∥F =
√

e2
x1(2)

B1,1 +
(
2ex1(2)

∆ x1 + ∆ x2
1

)
B1,2

=




√ B1,1

(

ex1(2) +
B1,2

B1,1

∆ x1

) 2

+ ∆ x2
1

(

B1,2 −
B2

1,2

B1,1

)

=

√

B1,1

(

ex1(2) +
B1,2

B1,1

∆ x1

) 2

+ ∆ x2
1

(
B1,2(B1,1 − B1,2)

B1,1

)

≥∆ x1

√
B1,2

(
B1,1 − B1,2

)

B1,1

The equality holds when e x1(1) =
B1,1−B1,2

B1,1
∆ x1 and e x1(2) = −

B1,2
B1,1
∆ x1. Note that ∆ x1

√
B1,2(B1,1−B1,2)

B1,1
= ∆ x1

√

− 1
B1,1

(
B1,2 −

B1,1
2

) 2
+

B1,1
4 ≤ ∆ x1

√
B1,1

2 , and the equality holds when B1,2 =
B1,1

2 , indicating that

B1,1 = loffd +
loffd

2

m∑

k=2

(
x2

k(1) + x2
k(2)

)
+    +· · ·

loffd

2τ−1

[
τ∏

k=2

(
x2

k(1) + x2
k(2)

)
+   · · ·

]

= loffd +
loffd

2

(
m−1

1

)

∑

j=1

∏

a∈A 1,1, j

(
x2

a(1) + x2
a(2)

)
+    +· · ·

loffd

2τ−1

(
m−1
τ−1

)

∑

j=1

∏

a∈A 1,τ −1, j

(
x2

a(1) + x2
a(2)

)

= loffd + loffd

τ−1∑

i=1

⎡
⎢⎣1

2i

(
m−1

i

)

∑

j=1

∏

a∈A 1,i, j

(
x2

a(1) + x2
a(2)

)

⎤
⎥⎦.

Therefore,

∆ x1

√
B1,2

(
B1,1 − B1,2

)

B1,1
≤

√
loffd

2
∆ x1






√ 1 +

τ−1∑

i=1

⎡
⎢⎣1

2i

(
m−1

i

)

∑

j=1

∏

a∈A 1, i, j

(
x2

a(1) + x2
a(2)

)

⎤
⎥⎦

In cases when ∆ x̂k = 0, k ̸= 1, we define Bk,1 and Bk,2 in a similar way as B1,1 and B1,2. Then similar results can be

obtained, which lead to

M(L ′) ≤ min

⎧
⎨
⎩
∆ xk

√
Bk,2

(
Bk,1 − Bk,2

)

Bk,1

⎫
⎬
⎭
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≤

√
loffd

2
min

⎧
⎪⎪⎨
⎪⎪⎩
∆ xk






√ 1 +

τ−1∑

i=1

⎡
⎢⎣1

2i

(
m−1

i

)

∑

j=1

∏

a∈A k,i, j

(
x2

a(1) + x2
a(2)

)

⎤
⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭
, k ∈A

=M(L ′
offd)

The equality is achieved by an OFFD.

A.12. Proof of Corollary 1

Assume WLOG that the two input parameters x 1 and x2 in the second and third columns of L ′ have k out of four
combinations of levels, where k ∈ {1, 2}. The elementary row operations shown in the proof of Lemma 9 lead to
non-zero diagonal entries in the first k rows. After subtraction of all the other 2 m−γ∗ − k rows by one of these first k
rows, the first three elements in all these other rows become zeros, leading toλ2 = 0. M(L ′) = 0 then follows.

A.13. Proof of Corollary 2

Assume WLOG that x1 and x2 are the two input parameters which have k out of four combinations of levels, where
k ∈ {1, 2, 3}. Through switching the column of xi x j to the 4th column, the first k rows contain different combinations.
After subtraction of the other 2 m−γ∗ − k rows by one of the first k rows, the first four elements in these other rows
become zeros, leading to λ3 = 0. M(L ′) = 0 then follows.

A.14. Proof of Theorem 5

When m ≤ 2 or τ > ⌈ m
2 ⌉ − 1, no further reduction is possible. The M-PCM simulation set forms a full factorial

design, which correctly estimates all effects of input parameters. When m > 2, 1 < τ ≤ ⌈ m
2 ⌉ − 1, and OFFDs

are applied to further reduce the size of simulation set. According to the property of OFFDs discussed in Section
2.2 [4,48], a k-factor interaction effect is only confounded with interaction effects of at least ( R − k)-factors. The
conditions 1 ≤ k ≤ τand R ≥ 2τ + 1 simply lead to R − k ≥ R − τ ≥ τ +1 > τ . As interaction effects involving
more than τ factors do not exist, neither the main effects nor any interaction effect is confounded.
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