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There is a desk with
two monitors.

The desk is messy. Replace the desk and
monitors.

...

Fig. 1. Our modeling tool uses compact and natural language to generate and edit 3D indoor scenes. Each language command triggers a scene evolution
where the user can choose a scene (marked by a box) from a list of suggested outcomes to alleviate ambiguities in natural language. One or groups of objects
can be inserted, replaced, or re-arranged based on attributes or relations (e.g., “desk is messy”) specified in the command.

We introduce a novel framework for using natural language to generate and
edit 3D indoor scenes, harnessing scene semantics and text-scene grounding
knowledge learned from large annotated 3D scene databases. The advantage
of natural language editing interfaces is strongest when performing semantic
operations at the sub-scene level, acting on groups of objects. We learn how
to manipulate these sub-scenes by analyzing existing 3D scenes. We perform
edits by first parsing a natural language command from the user and trans-
forming it into a semantic scene graph that is used to retrieve corresponding
sub-scenes from the databases that match the command. We then augment
this retrieved sub-scene by incorporating other objects that may be implied
by the scene context. Finally, a new 3D scene is synthesized by aligning the
augmented sub-scene with the user’s current scene, where new objects are
spliced into the environment, possibly triggering appropriate adjustments
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to the existing scene arrangement. A suggestive modeling interface with
multiple interpretations of user commands is used to alleviate ambiguities in
natural language. We conduct studies comparing our approach against both
prior text-to-scene work and artist-made scenes and find that our method
significantly outperforms prior work and is comparable to handmade scenes
even when complex and varied natural sentences are used.
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1 INTRODUCTION
Recent advances in computational design, VR/AR, and robotics are
placing an increasing demand for rich 3D content, especially those
in indoor environments [Hua et al. 2016; Silberman et al. 2012;
Song et al. 2015, 2017]. While most efforts on 3D indoor scene
modeling have been devoted to high-quality and interactive scene
reconstruction from photographs or depth scans, there has also been
a push for more open-ended, and often user-centric, approaches
to synthesize and edit 3D scenes [Chang et al. 2014b; Fisher et al.
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Scene Database There is a TV in 
front of the sofa
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…
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is in front of the sofa
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Object node

Relationship node

Semantic Scene Graph

Fig. 2. An overview of our language-driven scene synthesis.

2012; Ma et al. 2016; Savva et al. 2016; Wang et al. 2018], aiming for
improved richness and creativity of the generated content.

Natural language is arguably the most accessible input for content
creation. With no modeling skills or training required, language- or
text-drivenmodeling is fun, open-ended, and stimulates the imagina-
tion. Directly converting languages to 3D scenes has been a long and
on-going pursuit since the pioneering work on WordsEye [Coyne
and Sproat 2001]. To date, most research has emerged from the
natural language processing (NLP) community, e.g., [Chang et al.
2014b; Coyne et al. 2012; Seversky and Yin 2006], where the focus
has been on mapping explicit scene arrangement languages, e.g.,
“a bed with three pillows and a bedside table next to it”, to object
arrangements. Clearly, such explicit commands can be tedious and
unnatural. Moreover, one may argue that precise, object-level con-
trols are more effectively achieved by direct object manipulation
using a mouse, e.g., to rotate a cup for its logo to face front. On
the other hand, scene modifications at a semi-global or sub-scene
scale or those involving changes in group relations (e.g., “make the
tabletop arrangement messy or formal”) represent situations where
a language-based modeling interface can excel.

In this paper, we introduce a framework for language-driven mod-
eling of 3D indoor scenes, which is designed with two objectives in
mind. Our foremost objective is to provide novice users the freedom
to use compact natural language commands to generate and edit a
3D indoor scene. A key to reducing language redundancy and im-
proving the efficiency of scene modeling is to relieve the user from
having to provide explicit commands to affect every single object,
like in most previous works. By strengthening the role of implicit
or common-sense knowledge extracted from scene databases, our
method supports generic user language expressions which drive the
scene modeling at the sub-scene, rather than object, scale.

The second objective is to improve both the complexity and real-
ism of the generated 3D scenes. As a scene increases in complexity,
it provides increasingly richer spatial and semantic contexts be-
yond pairwise object relations [Chang et al. 2014b]. To account for
these, we need to encode and learn more complex object relations,
particularly those involving groups of objects. With this in mind,
we enhance existing 3D scene datasets such as SUNCG [Song et al.
2017] and SceneNN [Hua et al. 2016] with both finer-scale objects
and annotations of group relations, e.g., “around”, “aligned”, “messy”,
“work”, etc., to support our modeling task.

To accomplish the goals set above, our key idea is to treat language-
driven 3D scene modeling primarily as a combination of two tasks
operating at the sub-scene level: language-driven sub-scene retrieval
from a 3D scene database, and scene accommodation which merges
an appropriately retrieved sub-scene with the current 3D environ-
ment to synthesize a new 3D scene. Playing a central role in our
modeling framework is a semantic scene graph representation, which
encodes geometric and semantic scene information and serves as
the bridge between user language commands and scene modeling
operations that directly modify a 3D indoor scene. Specifically, a
semantic scene graph is defined by object instances along with
object-level attributes and pairwise, as well as group-wise, object
relations. Both annotated 3D scene data and natural language com-
mands are converted into semantic scene graphs.

We develop an interactive scene modeling tool which allows the
creation of an initial 3D indoor scene followed by progressive edit-
ing to evolve the scene, where all the scene generation and editing
commands are given in natural languages; see Figure 1 and Figure 2.
Specifically, at each editing iteration, an input language statement is
turned into a semantic scene graph to retrieve a suitable sub-scene
via graph alignment from the 3D scene database. Once a sub-scene
is retrieved, it is augmented with additional objects based on the
input text and scene context. Next, this augmented sub-scene is
semantically aligned with the current scene. Finally, a new scene is
synthesized by splicing the augmented sub-scene into the current
scene, possibly triggering appropriate adjustments to the existing
scene arrangement. In addition, our tool supports scene edits with
verb commands, which may trigger, e.g., an object replacement, as
shown in Figure 1. Overall, the accommodation of the sub-scene
into the current scene is guided by object co-occurrences and rela-
tions learned from 3D scene databases. Since natural language is
inherently imprecise, we develop a suggestive interface to provide
multiple interpretations of user commands for the user to select one
or more scene options during modeling.

Compared to the holistic example-based scene synthesis via prob-
abilistic sampling [Fisher et al. 2012], the fine-grained progressive
synthesis by sampling human actions [Jiang et al. 2012; Ma et al.
2016], and executing texts on precise object-level controls [Chang
et al. 2014b; Coyne and Sproat 2001; Seversky and Yin 2006], our
method makes the following contributions:
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• 3D indoor scene synthesis which operates at the sub-scene
level and accentuate the power and utility of language-driven
scene modeling on collections of objects.

• A novel semantic scene graph for unifying natural languages
and 3D scenes. This common representation is used for edit-
ing 3D scenes by incorporating knowledge about object com-
positions present in a 3D scene database.

• Annotation, learning, and application of a relational model,
which describes pairwise and group-wise object relations, for
3D scene analysis and synthesis.

The key advantages of our sub-scene-level “retrieve ’n’ accom-
modate” approach to data-driven scene modeling are two-fold. First,
it improves the efficiency of scene modeling, reducing language re-
dundancy and allowing scene complexity to increase more quickly.
Second, since the retrieved sub-scenes are from realistically captured
or modeled 3D scenes, the common-sense knowledge and semantics
that are reflected by the object co-occurrences and arrangements
within these scenes would directly go into the new scene. They do
not need to be reproduced or re-sampled from scratch.
Our text-to-scene modeling framework is realized on a dataset

consisting of thousands of annotated 3D scenes from SUNCG [Song
et al. 2017], among others. We show results of our language-driven
scene synthesis and evolution, leading to the generation of plausible
3D indoor scenes with much improved versatility and complexity
than previous methods. We conduct studies evaluating our method’s
ability to generate plausible 3D scenes and robustness against vari-
ations in scene description languages. We compare our approach
to both prior text-to-scene work and artist-made scenes in terms of
scene plausibility. The results show that our method significantly
outperforms prior work and is comparable to handmade scenes even
when complex and varied natural sentences are used.

2 RELATED WORK
There has been a great deal of work in computer graphics and vision
on 3D indoor scene modeling, and so far, most efforts have been
invested into reconstruction. 3D scene reconstruction takes one or
more images or depth scans and aims to reproduce the captured
scene geometry and even semantics. There are surveys on the topic,
e.g., [Seitz et al. 2006; Slabaugh et al. 2001; Xiao 2012], to name just
a few, and most recent works are taking a data-driven approach,
e.g., [Kim et al. 2012; Shao et al. 2012; Xu et al. 2016]. In this section,
we mainly focus on works most closely related to ours, i.e., those
on 3D scene synthesis where textual inputs are used.

3D indoor scene synthesis. One line of work for 3D scene synthesis
focuses on furniture layout optimization [Merrell et al. 2011; Yu et al.
2011] for a given room with a given set of furniture. Example-based
approaches rely on probabilistic reasoning from 3D exemplars and
scene databases to drive the synthesis [Fisher et al. 2015, 2012; Jiang
et al. 2012; Sadeghipour et al. 2016; Savva et al. 2016]. A few recent
works aim to populate a 3D scene with small objects to increase its
realism. Majerowicz et al. [2014] develop a method to fill a shelf-like
environment based on styles learned from a photograph or a 3D
exemplar. The ClutterPalette by Yu et al. [2016] offers an interactive
tool to allow a user to insert and position one object at a time to
mess up an otherwise clean scene. As the user clicks on a region of

the scene, the tool suggests a set of suitable objects to insert, which
are based on support and co-occurrence relations learned from data.
The first deep convolutional neural network for scene synthesis has
been introduced by Wang et al. [2018], whereby top-down views of
scene layouts can be automatically and progressively synthesized
from a room architecture based on learned convolutional object
placement priors. In contrast to these works, our scene generation
framework is language-driven and it follows a pipeline of interpret
(from texts), retrieve and synthesize (from scene databases), and
disambiguate (via a suggestive interface).

Recently, Ma et al. [2016] introduce a framework for action-driven
3D scene evolution which progressively alters a scene by object
placements necessitated by human actions. They learn action mod-
els from annotated photographs and probabilistically sample a se-
quence of actions conditioned on scene contexts to evolve a scene.
While the actions applied in their work are labeled textually, e.g.,
“group dining” or “use laptop”, and the texts may not explicitly de-
scribe object presence or placement, the action texts themselves are
pre-determined (only 8 action types in the paper) with each manu-
ally bound to an appropriate class of scene contexts retrieved from
the photos. In contrast, our work must learn a mapping between
an immensely richer text corpus to object perturbation. Further-
more, none of existing works have considered learning, applying,
or adjusting object group relations, e.g., “messy”, “aligned”, etc.
There is a slight resemblance between the group actions sup-

ported by [Ma et al. 2016] and our group relation model. For exam-
ple, applying the action “group dining on table while sitting” would
trigger the insertion of a group of objects into a scene, while in
our framework, the object relations and placements would have to
be more explicitly specified by a language command. On the other
hand, all scene affections in their work must be executed through
human actions. For example, “making the table clean” and “moving
the chairs apart from table” are well-supported by our synthesis
tool through group relations, but would be quite involved to realize
by the action-driven approach; it would have to capture and learn
actions involving humans tidying up a table or moving chairs.

Text2Scene. One of the earliest systems for text-driven 3D scene
synthesis is WordsEye [Coyne and Sproat 2001]. This work, along
with other follow-ups [Coyne et al. 2012; Seversky and Yin 2006], is
capable of generating 3D scenes directly from natural language, but
relies on manual mapping between language and object placements
in a scene. The rigidity of the mapping forces the users to issue
unnatural commands, e.g., “the chair is three feet to the north of
the window”. More recently, Zitnick et al. [2013] learn visual inter-
pretation of sentences by focusing on mapping visual features to
semantic phrases extracted from the sentences, where the phrases
describe binary relations that are either spatial (e.g., “Mike is after
Jen”) or semantic (e.g., “Alice wants the ball”). However, the gen-
erated scenes are 2D, composed of clip art elements. Also relevant
is the recent work by Savva et al. [2016], which is able to convert
single-sentence descriptions (e.g., “He is lying on the couch” or “He
is sitting in bed and using a laptop”) into scene prototypes which
depict simple human-object interactions.
A series of papers by Chang et al. have provided improvements

over the early systems. The key improvement in [Chang et al.
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2014a,b] is the utilization of spatial knowledge, learned from 3D
scene data, to better constrain scene generations by unstated facts
or common sense. The first work [Chang et al. 2014a] also allows
interactivity, but with object movements directly controlled by the
user. The more recent improvement [Chang et al. 2015b] is on lexical
grouding of textual terms to 3D model references, i.e., on selecting
more appropriate objects, by combining a rule-based model [Chang
et al. 2014b] and lexical grounding learned from user annotation of
3D scenes. In their latest paper [Chang et al. 2017], they extend the
pipeline in [Chang et al. 2014b] with interactive text-based scene
editing operations and improve the UI. The languages supported by
all of these systems are explicit about object presence, but possibly
implicit about object spatial relations. In our work, we allow both
to be implicit and enable scene annotation, retrieval, and synthesis
at the sub-scene level, with the additional consideration of group re-
lations. Moreover, in previous works, the learned spatial knowledge
is quite basic, e.g., only binary object relations [Chang et al. 2014a,b;
Zitnick et al. 2013]. In our work, we learn and employ richer scene
contexts for scene synthesis by utilizing a richer data source.

Robotics. Controlling a robot with textual commands is one of
the central problems in robotics, e.g., [Guadarrama et al. 2013; Misra
et al. 2014; Tenorth and Beetz 2013]. Rather than learning to map
language to object/scene arrangements, as for Text2Scene, the key
problem in robotics is to map texts to robot motions, as well as robot-
object interactions. However, both problems and their solutions
share commonalities, including the need to utilize both rule-based
models and data-driven learning of spatial and semantic relations,
as well as the exploitation of common sense knowledge [Tenorth
and Beetz 2013] to incorporate unstated facts.

Scene graphs. Fisher et al. [2011] represent 3D scenes as object
graphs with edges denoting pairwise semantic relationships, then
use graph kernels to estimate scene similarity. Xu et al. [2014] rep-
resent a 3D indoor scene by a graph of its constituent objects and
detect focal points over a heterogeneous collection of 3D indoor
scenes as representative sub-scenes. These focal points enable part-
in-whole sub-scene retrievals and scene exploration, which could
be adapted for our task. However, the object relations encoded
in their scene graphs only include binary support, proximity, and
symmetry groups. We convert natural language into a semantic
scene graph representation that uses both pairwise relationships
and multi-object relation annotations.

3 OVERVIEW
Our overall framework for language-driven 3D scene synthesis is
composed of several components: 3D scene datasets serving as the
knowledge base for scene processing, natural language processing
which turns language commands to scene-related descriptions, and
scene editing via language-driven synthesis. All of these components
are strongly tied to a Semantic Scene Graph (SSG), the core data
structure in our framework, as shown in Figure 3.

Semantic scene graph. The semantic scene graph (SSG) encodes
the objects, as well as their attributes and relationships in a graph
(Section 4). By modeling both 3D scenes and text commands as
semantic scene graphs, this uniform representation enables us to

Fig. 3. The semantic scene graph for the sentence “The round dining table
is surrounded by three chairs and there is a flower vase on top of the table.”

apply the edit specified by the command to the input 3D scene and
update the scene with the help of the database.

3D scene dataset processing. We collect thousands of annotated 3D
scenes as the exemplars for scene editing (Section 5). We construct
the semantic scene graph for each 3D scene in the dataset. For later
scene editing, we also learn relational models from all 3D scenes
in the dataset by modeling the object co-occurrence and relative
distribution. This database preprocessing step is executed only once.

Natural language processing. Our system evolves the scene with a
sequence of natural language commands. Each command sentence
can either specify a scene edit operation (e.g., "put plates on the
table.") or passively describe the evolution of the scene (e.g. "there
are two plates on the table."). The language processing module
transforms each sentence into a canonical semantic scene graph
representation (Section 6). For this purpose, we first extract the
command and associated scene entities (i.e., objects, their attributes,
and their relationships) from the sentence and then convert the
command and entities into a semantic scene graph.

Language-driven scene synthesis. We edit the input scene accord-
ing to the SSG parsed from natural language (Section 7). If the
language refers to a scene edit, we directly manipulate the target
objects with the specified edit operations. Otherwise, we use the
SSG of the input text to search from the scene database, a set of 3D
sub-scene exemplars that best match the scene described in the text.
We then augment the SSG of the retrieved scene with the SSG of
the input text as well as the scene context, and align the result to
the SSG of the current scene. We then insert new objects from the
augmented SSG into the current scene. The location of the inserted
objects is determined by the surrounding objects in the scene and
the relational model learned from the scene database.

4 SEMANTIC SCENE REPRESENTATION
To enable matching between a text description and a 3D indoor
scene, we employ a Semantic Scene Graph (SSG), a semantic scene
representation which contains rich information about objects, as
well as their attributes and relationships. Both 3D scenes and natu-
ral language descriptions of scenes are converted into this uniform
scene representation through scene processing (Section 5) and nat-
ural language processing (Section 6).

SSG’s are udirected graphs with labeled edges and two node types:
object nodes and relationship nodes. Object nodes represent objects
in the scene and may be annotated with a list of per-object attributes
(e.g. “antique”, “wooden”). Relationship nodes represent a specific
instance of a relationship between two or more objects (e.g., “to
the left of”, “on each side of”, “around”). Each edge connects an
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object node to a relationship node and is labeled with the type of
connection between the object and relationship. Figure 3 shows
an example of a SSG. Each relationship type has a pre-defined set
of possible edge labels, e.g., surrounded and surrounding. Each
instance of a relationship has its own relationship node. In the rest
of the paper, edge labels are not shown for simplicity.
Group relations may represent both spatial abstractions (“sur-

rounded by”) as well as abstractions over the object arrangement
or composition (“messy”, “organized”). This allows the SSG repre-
sentation to capture many different ways that language encodes
information about 3D environments and facilitates comparisons
between scenes and natural language sentences.

5 3D SCENE PROCESSING
Our scene database includes 2984 3D scenes from SUNCG dataset
[Song et al. 2017], 133 scenes from SceneSynth [Fisher et al. 2012]
and 80 scenes modeled from the real-world SceneNN dataset [Hua
et al. 2016]. For each scene, we build a semantic scene graph to
encode the object relationships. For each type of pairwise or group
relationship, a relational model encoding object co-occurrences and
relative distributions is learned from the database.

5.1 Database preparation
To enable semantic matching of objects between natural language
and 3Dmodels, consistent andmeaningful semantic labels need to be
associated with each model from the database. We use annotations
from ShapeNetSem [Chang et al. 2015a; Savva et al. 2015] for object
labels such as category, attributes, and front orientation. To facilitate
learning, each real-world scan from the SceneNN dataset is also
converted into a synthetic scene, by retrieving the best match 3D
model from SceneSynth using the object tag in SceneNN.

Unlike previous methods which focus on pairwise relationships,
we also consider group relationships, which enable more complex
text to scene processing. We augment the scenes with high-level
group relationships by annotating sub-scenes with semantic labels
on corresponding objects, for scenes in all three datasets. In our
current work, a total of eleven relationships are handled - nine high-
level group relationship types including messy, clean, organized,
disorganized, formal, casual, study, work, dining, and two spatial
group relationships, around, aligned are considered (see Figure 4).
These group relationships are extracted from a set of sentences
that people use to describe the indoor environments (Section 6).
As some relationships such as messy and disorganized have simi-
lar arrangements in a scene, we annotate such object groups with
multiple labels to provide more instances for each group relation
type. As our group relational models characterize the spatial ar-
rangements relating to high-level semantic relations and that they
are mostly subjective, we have tried to be as consistent as possible
when annotating the scenes.

5.2 Semantic graph from a scene
To build a semantic graph, we first build an object node for each ob-
ject in the scene and save its category as a node label. We also encode
enriched object annotations from ShapeNetSem as node attributes
to describe the refined properties of an object. Attributes may refer

Fig. 4. A database scene annotated with group relationships. Each object in
blue corresponds to the anchor object in one relation group; other objects
in other color are the active objects annotated for the corresponding group:
yellow, orange - organized ; red - messy, disorganized ; magenta - casual. Note
that yellow and orange objects belong to two independent organized groups;
the group of red objects are annotated with two group relationship types.

to many different properties of an object, including shape (“round”,
“square”), color, material, or usage (“dining”, “study”), which could
increase the accuracy and control for retrieval of specific object
instances as studied in Chang et al. [2015b].
Next, we extract the relationships between objects and encode

them into the graph. We use a similar approach as in [Chang et al.
2014b] to extract a set of pre-defined spatial relations by examining
arrangements of the bounding boxes of two objects. The list of
spatial relations include: on (vertical support), on left, on right, on
center, under, left side, right side, front, back and near.

As spatial relations (such as “left side” and “front”) are ambiguous
when using different reference frames, previous works [Chang et al.
2014a,b] use a view-centric coordinate frame to extract and apply
such relationships. Unlike them, we employ an object-centric ref-
erence frame to extract spatial relationships between objects. This
allows us to directly extract and retrieve view-oblivious object rela-
tionships from database scenes for future language-driven object
layout. For each object type, we first define a coordinate frame based
on its front facing direction. Then, we adjust this object-centric
frame based on how humans would perceive and interact with the
object (Figure 5(a)). Given a pair of objects, we define one object
as the anchor object and the other as the active object, and record
the relative position and orientation of the active object in anchor’s
frame for future learning (Figure 5(b)).
For each relation (pairwise or group), we create a relation node

and connect it with the related objects. Labels are added to the edges
based on whether the connected object is an anchor or active object.
Unlike previous approaches that encode relations as edge labels be-
tween the object nodes, we add relation nodes to the semantic graph,
which facilitates representing group relationships more clearly, as
all involved objects in a group relation will be linked to just one
relation node (e.g., see the “Surrounded by” node in Figure 3).

5.3 Relational model
Given the scene database, we learn a relational model to encode
object relationships (pairwise or group) for a given text description.
The relational model contains an arrangement model A, which
records the spatial distribution of objects w.r.t the anchor object,
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(a) (b)

(-0.1, 0.8, -0.5, 0.9)

(0, -0.3, 0.5, 0.1)

X (right)

 Y (front)

Z (up)

Fig. 5. (a) A scene with two desks and a sofa annotated with adjusted
object-centric frame: front (green), right (cyan; note that the sofa and desk
have different handed frames); up is the same as the scene’s up and is not
shown here; (b) Position (red dot) and Orientation (green arrow) of active
objects - chair and monitor in the frame originated at the center of the desk
(anchor object); relative position is normalized by desk’s bounding box size
and orientation is normalized by pi, and together they are represented as
(x , y, z, θ ).

and an object occurrence model O, which describes the occurrence of
individual objects and the co-occurrence of object pairs in a group
relationship.

Pairwise relationships. Given an object pair, we define the score
of the pairwise arrangement model as

A(oact,oanchor, r ) = P(x,y, z, θ ), (1)

where oact is the active object, oanchor the anchor object, and r the
relationship between them. P(x,y, z, θ ) is the probability distribu-
tion of relative position [x,y, z] and orientation θ between the active
object and the anchor object. We first assume each arrangement
model to be a Gaussian Mixture Model (GMM) and learn the param-
eters from observations in the database scenes, similar to Fisher et
al. [2012].
As for some relations, observations of certain object categories

may be limited and cannot be fit with reliable Gaussian distributions
(e.g., a stapler on the desk does not have many instances in the entire
database, including SUNCG dataset). Based on our experiments, we
set a threshold of 15 on the observation count, for fitting a GMM . If
the observations are less than the threshold, we directly record all
observed (x,y, z, θ ) tuples for the corresponding arrangement model
and fit a discrete probability distribution. This discrete arrangement
probability is defined as: P = 1 if a new object placement is close to
any saved observation within a certain spatial threshold (5 cm for
the position and 15° for the orientation), otherwise P = 0. Such an
arrangement model definition will allow objects to be placed based
on all observed locations and orientations, even if the observations
of particular object relationships are limited.

Group relationships. For a group relationship, we first define the
occurrence model characterizing the occurrence probability of an
object in a group as:

O(omi , r ) = C(o
m
i , r )/C(s, r ), (2)

whereC(omi , r ) is the number of scenes annotated with relationship
r that are observed withm instances of oi .C(s, r ) is the total number

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 6. An example of learned group relational model (desk, messy): (a)
Occurrence probability of active objects; (b) Arrangement of cellphone on a
desk; as the observation number is not enough to fit a good distribution, we
store all observations and use the discrete arrangement model for placing
the cellphone.

(a) (b)

(c) (d)

Query Sim
0.85

Sim
0.81

Sim
0.78

Fig. 7. A query pairwise relational model (a) A(bowl , desk , on) and three
retrieved models (b) A(bowl , table , on) (c) A(bowl , counter , on) (d)
A(bottle , desk , on) ranked by the relation similarity.

of scenes s annotated with r . We also compute the co-occurrence
probability of an object pair in a group using

O(omi ,o
n
j , r ) =

C(omi ,o
n
j , r )

max{C(omi , r ),C(o
n
i , r )}

, (3)

whereC(omi ,o
n
j , r ) is the observation count of two objects with spec-

ified instance numbers co-occurring in a group with relationship
r .

The arrangement model for a group relationship is represented
as the sum of weighted pairwise arrangement scores:

A(O, r ) =
∑

oi ,oj ∈O
ωA(oi ,oj , r ), (4)

where O is the set of objects in the group; ω is the weight for the
corresponding pairwise model A(oi ,oj , r ), which equals to 1, if one
object in the pair is the anchor; otherwise ω is set to O(oi ,oj , r ),
i.e., the co-occurrence probability of object instance oi and oj in the
group. Figure 6 shows a learned model for a group relationship.

Relational model similarity. To further harness the knowledge
from the scene databases, we define the similarity between relational
models and allow to retrieve and sample from similar relational
models to find additional placements for an object, when needed.
For any two pairwise relational models with the same relation r ,
their similarity is defined analogously to that of graph kernel in
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Fisher et al. [2011]. Specifically, we define

Sim(Ao,Ao′) = k(oanchor,o
′
anchor, r )k(oact,o

′
act, r ), (5)

where Ao is short for A(oact,oanchor, r ) and Ao′ is defined simi-
larly; k(·, ·, r ) is the node kernel of object pair with relationship r :

k(o,o′, r ) = 0.5δcat(o,o′) + 0.5kgeo(o,o′, r ), (6)

here δcat(o,o′) is a Dirac delta function which returns 1 if object
o and o′ are in the same category and 0 otherwise; kgeo(o,o′, r )
encodes the similarity of their geometry features including elevation
from the floor, bounding box height and volume. Figure 7 shows an
example of relational model retrieval.

Relative relation priors. When editing scenes based on language,
object placements must satisfy the explicit relations that are spec-
ified by the input sentence. At the same time, implicit relations
imposed by existing objects must also be satisfied when placing a
new object, as there might be objects already in the scene. Therefore,
in addition to the specific pairwise or group relations, we also learn
the relative relations, which encode arrangements between all pairs
of objects in the database to provide prior knowledge of implicit
constraints for object placements. The relative relation model is
represented as AI and defined similar to Equation 1, but without
the specific relationship constraint r . The relative relation priors and
the specified relational models are jointly used to provide plausible
constraints when placing new objects (Section 7.2).

6 NATURAL LANGUAGE PROCESSING
People use many types of language to interact with scenes. Sen-
tences such as “there are three plates on the table” are descriptive,
indicating the way the user desires the scene to be. On the other
hand, a sentence such as “put three plates on the table” are com-
mands, indicating changes the program should make to the scene.
In both cases, we attempt to transform the natural language input
into an equivalent semantic scene graph as detailed in Section 4.
Sometimes it may not be possible to represent a command as a scene
graph; e.g., “remove the plates from the table”. We represent such
sentences as scene graphs with verb annotations that connect to
entities in the graph.

6.1 Text parsing
We use the Stanford CoreNLP framework [Manning et al. 2014] to
perform part-of-speech tagging and convert input statements into a
dependency tree. This dependency tree assigns a parent token and
annotation label to each token in the sentence; an example is shown
in Figure 8. We use the Universal Dependencies representation1 for
our dependency relationships.

6.2 Entity-command representation
We seek to convert the low-level dependency representation shown
in Figure 8 into a list of entities annotated with attributes and re-
lationships, as well as a list of command verbs which operate over
these entities. We call this the entity-command representation (ECR)
of the sentence; see Figure 10 for an example.
A scene entity consists of the following:

1http://universaldependencies.org/

Fig. 8. An example dependency parse using “Enhanced++ Dependen-
cies” from Stanford CoreNLP. VB=verb, JJ=adjective, NN(S)=(plural) noun,
IN=preposition, DT=determiner. Edges represent directed dependencies
between tokens, such as dobj=direct object and nmod=nominal modifier.

Fig. 9. A pattern matching example using spatial nouns. The “in center
of:table” relationship will be recorded for the vase entity.

• Category — the base noun used to describe the object(s). Ex.
“table”, “plate”, “arrangement”.

• Attributes — a list of attributes, each of which may have a
set of modifier words. Ex. “modern”, “blue (very, dark)”.

• Count — either an integer representing the number of enti-
ties in a group, or a qualitative descriptor. Ex. “many”, “some”.

• Relationships — a set of (string, entity) pairs that describe
a connection to another specific entity in the sentence. Ex.
“on:desk”, “left-of:keyboard”.

• Determiners — a list of determiners such as “a”, “another”,
“the”, “each”. These are useful for estimating object binding
(Section 7.2).

A command verb is defined by the following:
• Base verb — the base verb used to describe the command.
Ex. “move”, “rearrange”.

• Attributes — a list of attributes, each of which may have a
set of modifier words. Ex. “closer”, “dirty (more)”.

• Targets — a list of (string, entity) pairs that represent dif-
ferent types of connections to specific entities. Ex. “direct
object:laptop”, “onto:table”.

Entity and command extraction. We take all nouns in the sentence
to be entities unless one of the following conditions is met: the noun
is in a compound dependency relationship with another noun (ex.
“computer” in “computer desk”); the noun is an abstract concept
(ex. “addition”, “appeal”); the noun represents a spatial region (ex.
“right”, “side”). We take all verbs in base form to be commands.

Coreference. To dereference pronouns, we use the coreference
information obtained from the CoreNLP framework. This assists
with sentences such as “Add a dining room table and put plates on
top of it”, where we will not create a new entity called “it”. However,

ACM Trans. Graph., Vol. 37, No. 6, Article 212. Publication date: November 2018.



212:8 • Ma, R. et al

Fig. 10. The sentence “Move the chairs around the dining table further
apart and transfer some of the books on the desk to a table” in our entity-
command representation.

we do not use coreference for non-pronoun scenarios such as the
two table entities in Figure 10. In this case, it is possible that the
two tables refer to different tables in the scene, and we will resolve
this ambiguity when we align entities to objects in the user’s scene
(Section 7.2).

6.3 Pattern matching
After determining the seed tokens for all scene entities and com-
mands, we use pattern matching over the dependency parse to
assign all the other properties enumerated in Section 6.2. For some
dependencies, this pattern matching is very simple; for example,
amod(noun : A, adjective : B) assigns token B as either an attribute
or a count of the entity seeded at A, if one exists (see Figure 8 for an
example). When pattern matching, we augment the standard parts
of the input text used by our dependency parser with four special
classes that are important for scene understanding:

• Spatial nouns— Spatial regions relative to entities. Ex. “right”,
“center”, “side”.

• Counting adjectives—Adjectives representing object count
or general qualifiers. Ex. ‘all”, “many”.

• Group nouns — Nouns that embody special meaning over a
collection of objects. Ex. “stack”, “arrangement”.

• Adjectival verbs — Verbs whose effect can be modeled as
an attribute modification over the direct object. Ex. “clean”,
“brighten”.

An example of a more complicated pattern involving spatial nouns
is shown in Figure 9.

6.4 Canonical entity-command representation
The same scene editing concept can be expressed in many different
ways, resulting in different representations; see Figure 11 for an ex-
ample. We define the descriptive form, where base nouns are objects
that have sets of attributes that describe them, to be canonical and
when possible transform our input entity-command representation
into the descriptive form. These transforms are also executed via a
set of pattern matching rules, which transform forms such as Figure
11(b) and (c) into the descriptive form. We detail the patterns used

Fig. 11. Entity-command representation of three sentences representing
the same underlying concept. We define the descriptive form, (a), to be
canonical and transform (b) and (c) into (a) by group noun transformation
and verb application, respectively.

in our system for both dependency tree parsing and conversion to
a canonical form as supplemental materials.

Not all commands can be applied as a graph transform. For com-
mands such as “delete all the chairs around the table” or “rotate the
monitor 90 degrees”, we leave these commands unchanged and use
specialized functions to execute them on the scene (or inform the
user that the command was not understood.)

6.5 Conversion to a semantic scene graph
Our entity-command representation transforms easily into a seman-
tic scene graph as defined in Section 4.

Base noun to object category. Our model database uses a fixed set
of object categories, and we start by mapping the base noun for each
entity into a corresponding object category. We use equivalence
sets derived from WordNet2. We discard entities that do not map to
a category in our model database. Attributes and determiners are
added as annotations to the corresponding object nodes.

Entity counts. When the ECR indicates multiple copies of an ob-
ject exist, we instantiate a new object node in the SSG for each object
instance. For integer counts, this is straightforward. For imprecise
counts such as “some” and “many”, we first obtain a frequency his-
togram for each object category by examining the scene database
and counting the number of occurrences of 2 or more instance of
the category. For each counting modifier, we use this distribution
to obtain a lower and upper bound on the count implied by this
modifier-category pair, then sample uniformly from this distribution.
For example, “few” samples between the 0th and 25th percentiles,
“some” between the 10th and 50th percentiles, and “many” between
the 50th and 100th percentiles. Plural nouns without a modifier
(ex. “there are chairs around the table”) are taken to have an im-
plied “some” modifier. Relationships, attributes, and determiners are
duplicated across each new instance of an object.

Qualifiers. Some qualifiers such as “each” and “all” imply the
presence of multiple object nodes, but are left as qualifiers over a
single object node until the SSG is grounded (Section 7.2).

Relationships. Relationships in the ECR transfer directly into re-
lationship nodes in the SSG. The edge label is determined by the
directionality of the relationship in the ECR. Relationships that sup-
port multiple objects are grouped together into a single relationship
node in the SSG; for example “the table is surrounded by two benches
and some chairs” will create one “surrounded by” relationship node
with appropriate edge labels shown in Figure 3.
2http://wordnet.princeton.edu
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Fig. 12. (a) An input scene and its graph Uд ; (b) an input text and its graph Tд ; (c) a retrieved database scene and Dд using the text with aligned nodes
shown in blue; (d) a sub-scene Sд extracted from Dд with synthesized nodes (in orange) and nodes enriched by context (in yellow); desk is in red since it is
aligned to the desk in (a); (d) updated scene by transforming objects from the sub-scene to current scene using desk as the anchor object.

7 LANGUAGE-DRIVEN SCENE EDITING
Given a semantic scene graph constructed from an input sentence
(Text-SSG, noted as Tд ), our system has two modes for evolving the
user-engaged scene (User-SSG, noted as Uд ). For graphs without
a verb node (Figure 12(b)), our system starts by aligning Tд with
semantic scene graphs of the database scenes (DB-SSG, noted asDд )
and finds a subgraph (Sub-SSG, noted as Sд ) that best matches the
given sentence (Figure 12(c)). Unaligned nodes from the sentence
are added to Sд as synthesized nodes. Furthermore, we enrich this
Sд with scene context. For each updated Sд , we align and merge
it to Uд and insert unaligned objects to current scene, based on
their relationship to the aligned objects (Figure 12(d, e)). Whereas
for graphs with verb nodes, we directly align their object nodes to
objects in the current scene, and execute the scene editing functions
specified by the verb. By repeating this process, complex and realistic
scenes can be generated by using a sequence of sentences.

7.1 Sub-scene retrieval and augmentation
Our goal is to extend the current scene by the obtained set of sub-
scenes as well as the specified relationships in the text. One way
to generate a candidate sub-scene is to synthesize it with object
distributions learned from a 3D scene database (e.g., as proposed in
Text2Scene [Chang et al. 2014b]). However, synthesizing complex
scenes by explicitly specifying each object is tedious due to the num-
ber of objects and the inherent ambiguity of language. To overcome
these limitations, we employ the scene context from already existing
scenes. We retrieve related sub-scenes by aligning Tд to each Dд
from our scene database. The output is a list of Sд ordered by the
matching score to Tд .

Text-scene graph alignment. A node in Tд represents an object
or a relationship that the user explicitly wants to be present in the
intended scene. We align these nodes with the nodes of everyDд to
find the matches that best correspond to the candidate sub-scenes
(blue nodes in Figure 12(c)). A node in Dд can only be aligned with
one node in Tд . An object node is aligned when its category and
associated attribute labels are all matched, and a pairwise relation
node is aligned when its type and two connected object nodes as
well as the edge labels are matched. For a group relation node, since

the text may only mention the anchor object to represent a group,
e.g., a messy table, we set the node to be aligned when its type and
connected anchor object are matched. To find the best matched
sub-scene from Dд for a given Tд , we rank the alignment based on
following metric:

M(Tд,Dд) =
∑

Ni ∈Tд ,Nj ∈Dд

M(Ni ,Nj ). (7)

HereNi andNj are the nodes fromTд andDд , respectively;M(Ni ,Nj )

equals to 1 if Ni and Nj are aligned, and 0 otherwise.

Language-driven scene graph augmentation. As the database is
unlikely to store a Sд exactly as specified by the given text, some
nodes in Tд may be unaligned because an object instance is missing,
or some relationships are not satisfied by the database scenes. Since
every node from the input text is crucial in producing the desired
scene, we synthesize missing nodes in the subgraph to ensure exact
alignment with the given text. New object or relation nodes are
added to the retrieved Sд so that each of them is matched with
an unaligned node in Tд . Next, we link the synthesized nodes to
existing ones according to the edge connections specified in Tд . By
now, we get a Sд (the graph without the yellow nodes and related
edges in Figure 12(d)) with all nodes and edges exactly aligned to
Tд . Moreover, as the group relation node is only aligned based on
the anchor object, we further synthesize nodes for active objects in
the group based on the occurrence (Equation 2) and co-occurrence
model (Equation 3), and add their connections to the anchor object.
Since a synthesized object node does not correspond to a fixed
object instance, we use the same object model if an object with same
category appears in current scene; otherwise we randomly sample
an object model from the database according to its category.

Enriching Sд with scene context. Natural language does not con-
clusively describe objects and their relationships. Moreover, it is
challenging to produce complex scenes and evolved object relation-
ships by only specifying them with text. To enable the generation
of scenes with a high level of detail and complexity, we exploit
the stored scene context from the scene database to enrich the
sub-scenes obtained from the previous step. Similar to Chang et
al. [2014b], we use the scenes in the database to learn the support
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hierarchy of objects. If the most likely support parent of an object
node is not present in a retrieved Sд , we find its parent node in the
original Dд and add related nodes to the subgraph. Moreover, we
incorporate more scene context to enrich sub-scenes by introducing
relevant objects based on their co-occurrence probability w.r.t the
initial objects encoded in Sд . The co-occurrence probability of two
object categories is computed using Equation 3, while the relation-
ship r is restricted to sibling, i.e., we only consider objects supported
by the same parent object when introducing the scene context by
object co-occurrence. Objects with co-occurrence probability larger
than the context control parameter α will be added to the subgraph.

7.2 Sub-scene accommodation
A Sub-SSG, Sд , represents a sub-scene retrieved and augmented
based on the input text. To edit a given scene, we further accom-
modate Sд to Uд (the scene the user is currently editing) by first
merging the two graphs and then updating the scene layout accord-
ingly.

Scene graph alignment and merging. During scene evolution, sen-
tences specified by the user commonly contain objects that already
exist in the scene. For example, given the input “There is a desk
to the right of the bed”, a bed might already be in the scene. Such
objects could be used as anchors for graph merging. Specifically, we
first align Sд and Uд using the similar way of aligning Tд and Dд
(Section 7.1), but with consideration of determiners extracted from
Tд of an object. Besides the category, two object nodes are aligned
when the corresponding determiner of the object is “the”, with 50%
likelihood if the determiner is absent or “a”, and are never aligned
if the determiner is “another”. Moreover, if the aligned object nodes
have qualifiers such as “each” or there are multiple aligned objects
in Uд , we also duplicate their connected edges and nodes in Sд
based on the number of aligned objects in Uд . For example, “put
a lamp on each nightstand” will bring two lamps into the scene if
there are two nightstands inUд . Then, we mergeSд toUд by using
the aligned object node in Uд as anchor and add all non-aligned
nodes and related edges from Sд toUд . In the 3D scene, objects cor-
responding to newly added nodes are inserted and their placements
are resolved by layout adjustment in next stage.

Layout adjustment. Newly inserted objects come with positions
as they are stored in the original database scenes. Therefore, we need
to adjust their location to satisfy all relationships encoded in the
updated Uд . We compute a transformation matrix to align position
and orientation of the anchor object in Sд and its correspondent in
Uд , and set it as the initial transformation matrix for objects from
retrieved sub-scene. Since the aligned anchor objects may have
different geometric features, applying the initial transformation to
these objects is likely to cause artifacts, e.g., intersections, floating
objects and wrong orientations. Also, the objects introduced by
graph augmentation from Tд do not have an initial location w.r.t
the retrieved sub-scene. Therefore, we refine the placement of each
new inserted object based on its specified relationship to the anchor
object, as well as its implicit relations to other existing objects in
the scene.

For an object o involved in a pairwise relationship, we define the
layout score as follows:

Score(o) = L(o) · H(o) · R(o). (8)

Here L(o) is the collision penalty term which returns 0 if o intersects
any object in the scene and 1 otherwise;H(o) is the overhang penalty
term defined analogous to that in [Fisher et al. 2012] to prevent o
from hanging off of the edge of a supporting surface. R(o) includes
all explicit and implicit relation constraints for o:

R(o) = ω
∑

oi ∈OE,r ∈E
A(o,oi , r ) + (1 − ω)

∑
oi ∈OU

AI (o,oi ), (9)

where E contains the explicit relationships from the text and OE
is the set of objects involved in E, and A(o,oi , r ) represents the
pairwise arrangement score for o; OU is the set of objects in current
scene and AI (o,oi ) is relative relation prior between o and oi ;
ω is set to 0.7 in our current implementation to weight more on
the explicit constraints. Layout scores for group relationships are
extended by considering the collision and overhang penalty for each
object in the group, and replacing pairwise arrangement model for
explicit relations in Equation 9 with the group arrangement model
A(O, r ) (Equation 4).
Ideally, the placement of an object retrieved from a sub-scene

would immediately produce the maximum layout score. In practice,
the object arrangement may already violate the relation constraints
after being aligned to the scene. Therefore, we define a layout qual-
ity threshold for an object based on the observed distribution for
the explicit relation and its relative relations to existing objects.
When the initial alignment causes an intersection or fails to pass
the threshold, we optimize the above layout score by hill climbing,
i.e., adjusting the layout of the object using the placement that pro-
duces the maximum score. New candidate locations are sampled
depending on the distribution learned by the relational model. A
location is blocked from future sampling if the layout score returns
0. In the case that there is no distribution learned and points near
all observations in the current relational model have been tested,
we find more candidate positions by sampling from the most similar
relational models which are retrieved using Equation 5.

For the placement of a group, object positions are adjusted in an
order based on their level of support hierarchy and bounding box
sizes. Thus, larger objects which support other objects will be placed
first. As the object number increases during the scene evolution,
there might be no position to place a new object. Similar to [Ma
et al. 2016], when the placement of an object fails to be within a
prescribed threshold, we allow the layout algorithm to roll back to
the previously placed object, modifying its placement in seeking a
relaxed solution. If an object still cannot be placed after one roll-back
step, we will skip placing this object and return a failure message
to the user.

Scene editing by verb commands. If Tд contains a verb node, we di-
rectly align its related nodes with the currentUд to find anchor and
target objects. We define a set of functions based on commonly used
verbs for scene modification: Replace(A), Move_to(A,B), Move_on(A,
B), Move_closer(A, B), Move_apart(A, B), Delete(A), Rotate(A, degree),
Scale(A, value), where A is the target object or objects for the verb
command, and B is the anchor object. The effect of these functions
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is the same as indicated by their names. Although some of these
editing functions can also be performed through a click-and-drag
UI, defining these operations through verb commands allows a more
efficient way of editing groups of objects. For example, replacing the
chairs around a table using a normal 3D UI may involve inserting
new instance of chairs, aligning them with each existing chair and
deleting the original chairs, which would need a larger number of
operations than using text commands for editing.

7.3 Suggestive interface
Our system provides a suggestive interface to support two-way
communication with the users (as shown in Figure 1). For each input
sentence, our system produces a set of suggestions (set to 5 when
producing all results in the paper). Users can interactively explore
all suggested scenes and choose the one they favor the most for the
next iteration of text to scene generation. When ambiguities exist
in the input text, the system returns possible scene arrangements as
suggestions. For example, when there are two desks in the current
scene, and the textual command is “put a monitor on the desk”, our
system will return two possible results with the monitor on either
one of the desks.
The suggested scenes satisfy the constraints in Tд , while they

also show possible variations in terms of objects as well as their
arrangement. To rank the scenes shown in the suggestion list, we
define a simple screen space visual similarity metric that compares
pixel-wise color difference among the images rendered from 6 views
of the resulting scenes. We sort the scenes in the order of their visual
dissimilarity from high to low and show the suggestions to the user.
To further improve the variation of the synthesis results, the user
can always use the verb command Replace to change the instance
of an existing object. The layout of all related objects, e.g., children
or neighbors of the changed objects will be automatically updated
using our layout adjustment algorithm.

8 RESULTS AND EVALUATIONS
Wepresent the results of our language-driven scene synthesismethod,
evaluate its performance, and compare the results to those created
by artists and those obtained by the state-of-the-art text-to-scene
generation method of Chang et al. [2014b]. We demonstrate various
aspects of our modeling tool in the supplementary video. Further-
more, the code and data are available on our project page.

Scene synthesis results. Figure 21 shows a gallery of 3D scenes
generated by our method. Taking advantage of sub-scene level scene
synthesis, group relational models and adding contexts from scene
databases, we are able to achieve a higher level of language efficiency
for scene modeling than previous attempts at text to scene genera-
tion. For example, a scene with 20 to 30 objects can be synthesized
with only three sentences (Figure 21, last column). More synthesis
results can be found in Figure 1 and supplementary materials.

Parameter and timing. Themain tunable parameter in our method
is α , which controls the level of introducing context objects into the
scene. The conversion of input language to semantic scene graphs is
instantaneous. For scenes of 15-20 objects, sub-scene retrieval and
synthesis take 1-5 seconds, excluding the 3D model loading time, on

(a) (b) (c)

Fig. 13. Verb commands applied to refine the current scene (a). (b) scene
after “move the chairs apart from the table”. (c) scene after applying the
command “replace the table”; note that the elevation of all objects on the
table are increased since a taller table is inserted.

a Windows PC with a 2.7 GHz i7 CPU, 16 GB RAM and a NVIDIA
GTX 750 Ti.
Verb commands. Verb commands serve as secondary editing op-

tions in our modeling tool to complement synthesis commands.
They are realized via pre-defined scene editing operations and po-
tential layout adjustment. Verb commands are useful when a scene
needs to be refined, but no object or sub-scene retrieval is required
(Figure 13(b)). Another use case is object replacement, as shown in
Figure 1 and Figure 13(c), allowing the user to refine scenes more
quickly.

Comparison to [Chang et al. 2014b]. The key evaluation for our
method is whether the generated scenes are plausible and natural.
Similar to previous works [Fisher et al. 2015; Ma et al. 2016], we leave
such judgments to human participants. Additionally, we compare
our results to those generated by Chang et al.[2014b]. Unlike their
work, our system supports group relations. For the comparison,
we used the implementation provided by the authors and ran our
method using relational models trained from SceneSynth [Fisher
et al. 2012], on which Chang’s is trained.
We set up 10 editing scenarios, each described by three input

sentences, with α set to 0 (i.e., no scene contexts). The editing com-
mands cover bedroom, dining room, living room, and office scenes,
with both pairwise and group relations were accounted for. However,
since Chang et al. [2014b] only model pairwise relations, we split
specifications of group relations into sets of pairwise constraints.
Further, we chose the best result from Chang et al. out of five in-
stances run through their implementation.
When applying our method, the first sentence in each editing

scenario was used to generate five suggestions. For the next two
sentences, two options are considered when selecting scenes from
suggestions: Our-random corresponds to a random selection and
Our-user corresponds to a user’s selection as the most favourable
result. To mitigate possible ambiguities caused by scene description
sentences, we generate two scene variants independently for each
editing scenario and each method/option: Our-user, Our-random,
and Chang. Hence, there are a total of 20 scenes per method/option.
Our first user study is the Plausibility Test against Chang et

al. (PTC). We split the total of 60 scenes generated for this study
into two sets. Each subject is shown three scenes from the three
methods/options at a time. The subjects were asked to give a score
from 1 (least favoured) to 5 (most favoured) to each scene based
on two criteria: plausibility – whether the scene is plausible with
respect to the given editing command, and naturalness – whether
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Fig. 14. PTC study results: average plausibility-naturalness scores by sub-
jects for all 10 scene editing scenarios.

Ours Chang2014b

There are four chairs around a round 
dining table. On the table, there is a vase,
a teapot, and dinner plates.
The table is messy

Generate a room with a round dining table.
Add four chairs around the table.
Add a vase to the table. Add a teapot to the 
table. Add four plates to the table.
Add food to the plate. Add food to the plate.
Add food to the plate. Add food to the plate.

Fig. 15. Qualitative Comparison: The figure shows the generated scenes
using ourmethod and that of Chang et al. [2014b]. Since Chang et al. [2014b]
do not use group relations like messy, group relations are fragmented into
pairwise relations and fed to their system.

the scene and its object arrangement appear natural. We collected
feedback from 23 participants, resulting in 46 scores per test scenario
per method/option and 460 scores per method/option. All the user
study materials are provided as supplementary materials.

Figure 14 plots the average subject scores and variances for each
test scenario. Figure 16(a) shows the outcome of the user study. Our
method outperforms Chang et al. [2014b] with average scores of
4.14 (Our-random) and 4.48 (Our-user), compared to 1.56 for Chang.
We attribute this to a number of improvements, including the ability
to handle group relations (Section 5.3), the transformation into a
canonical graph representation (Section 6.4), and the sub-scene
retrieval and accommodation pipeline (Figure 12). Interestingly,
Our-random is rated only slightly lower than Our-user, suggesting
that our method has a good average performance. In Figure 15,
we present one case where Chang et al. [2014b] fails whereas our
system succeeds.

Comparison to artist creations. Our second user study is the Plau-
sibility Test against Artist (PTA), where we replaced the method
of Chang et al. [2014b] by a professional artist and repeated the
PTC study. When the artist created the scenes, she was given the
natural language prompt, the same object database used by our tool,
and was not limited by modeling time. The artist spent at least five
minutes for modeling each scene. Importantly, the artist had total
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Fig. 16. Average PTC scores and PTA and PTX percentages.

freedom in choosing which objects to add to the scene, based on the
language input, and how to place them using a modeling software.
Therefore, the comparison covers the full spectrum of our scene
synthesis method.
Instead of asking the subjects to score scenes, we asked them to

vote between a pair of scenes, one created by the artist and the other
an Our-user scene from PTC. The subjects were asked to vote based
on their judgment of plausibility and naturalness of the scenes. We
received feedback from 20 subjects, resulting in 400 subject votes
over the 10 editing scenarios since the artist also generated two
scene variants per scenario. Figure 16(b) (first column) plots the
average percentages of the artist and Our-user results being voted on
by the subjects, respectively. Per test scenario results from the study
can be found in the supplementary material. Overall, our method
received 48.25% of the votes. Based on Wilson score confidence
interval for Bernoulli trials [Agresti and Coull 1998], there is a 95%
chance that human users would prefer our method at least 43.3% of
the time.
Effect of adding context. Our third user study is the Plausibility

Test with Context (PTX), where we aim to evaluate the effect of
adding scene contexts to the generated scenes. In this study, we
set the context control parameter α to 0.5. For each query, two
scenes were presented to the subjects, one generated with context
added (Our-context) and the other is an Our-user result from the
previous studies, without adding context. Feedback was received
from 25 subjects, who selected for each editing scenario (from the
previous two studies), which of the two scenes was preferred based
on plausibility and naturalness, as before. As shown in Figure 16(b)
(second column), Our-context scenes received 54% of the total votes
over all 10 editing scenarios, suggesting that there is a 95% chance
that our method is preferred by the users at least 47.8% of the time
and adding context does improve favourability of our results.

Reproducing a photographed scene. In our fourth user study, we
essentially repeat the PTA but under a realistic modeling scenario
with available ground truth. Specifically, we test the efficacy of our
text parsing and scene generation modules in reproducing a 3D
scene when shown a photograph of it, where the photograph serves
as the ground truth. Given a photograph of a 3D scene, users are
asked to describe the scene in natural language and then apply the
language description to interactively synthesize a 3D scene using
our tool under the “Our-user” setting. That is, at each step, users
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A. Scores for Plausibility 

B. Scores for Similarity 

Fig. 17. Results from the user study on reproducing photographed scenes:
user plausibility ratings of generated scenes (top) and user similarity ratings
(on a scale of 1 to 5) of the scenes to reference photographs (bottom).

select the best suggestion from among the five options our tool
offers. On average, a user spent 4-5 minutes to generate one scene.
The photographed scenes cover multiple categories as shown in
Figure 17. To distinguish between 3D scenes in PTC and this study,
the scene names here have been appended with ’i’(interactive scene
synthesis from photographs). The study employed 10 participants,
all graduate students in visual computing, each describing 10 scenes,
resulting in a total of 10 × 10 = 100 distinct text descriptions.

A separate group of participants were asked to rate the plausibil-
ity of the generated scenes (with respect to the given descriptions)
and their similarity (in terms of object layout) to the original pho-
tographs. We then pass the same set of scene descriptions to an
artist to create 3D scenes accordingly, where the available objects
are the same as those from the corresponding user-generated scenes.
Note that the artist was not shown the reference photograph. On
average, the artist spent 10-12 minutes to create one scene. Then
the same group of raters were asked to score the artist creations. All
data and results for this study are provided in the supplementary
material.
Figure 17 shows the plausibility and similarity ratings for this

study. We can see that the average ratings from Our-user scenes are
comparable to those of artist’s creations. Some factors that could
have affected the scores are: (1) There was no time constraint on
the artist. (2) Sometimes the users did not notice an object while
describing a photographed scene. When it comes to similarity w.r.t
the reference photograph, the overall scores go down for both Our-
user and artist created scenes. This is likely due to natural languauge
being ambiguous and the measure of similarity being subjective.
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Fig. 18. User ratings (on a scale of 1 to 5) for two user-generated scenes (S1,
S2) and the reference scene (GT) based on howwell they match a description
of GT that is different from those that generated S1 and S2. A Score of 3 is
for "Overall matches the description", 4 for "Matches the description closely"
and 5 is a "Perfect Match".

Robustness against language variations. In our final user study, we
test the robustness of our scene modeling tool against language vari-
ations. This study reuses the user descriptions of the photographed
scenes from the previous (fourth) study; these descriptions are ex-
pected to contain varying degrees of variations. We selected two
best user-generated scenes (S1, S2) resulting from the previous user
study and grouped them with the corresponding reference photo-
graph (designated as GT). Both S1 and S2 were rendered to images
from the same view point as for the reference (GT) photograph.
Then, among the remaining 8 user descriptions for GT (i.e., those
not corresponding to S1 or S2), we selected the best description D*.
A survey records scores from 15 users for the 10 groups of scene
triplets, presented in random order, on the basis of how closely each
rendered scene (S1, S2, or GT) matches the description D*.
Figure 18 shows the average scores for the three scenes. As ex-

pected, GT holds the highest score since the description D* is meant
for it. Scenes S1 and S2, which were generated by our tool based
on descriptions that are different from D*, also obtained reasonable,
above-average scores, reflecting a certain degree of robustness of
our tool amid language variations. Figure 19 shows two examples
of S1 and S2 where the corresponding scene descriptions vary in
sentence order and details. Note that the raters saw all three scenes
including the GT, whose presence can serve as a good reference but
may also compromise the scores received by S1 and S2.

Failure cases. Two representative failure cases from our scene
modeling method are illustrated in Figure 20. First, our method
cannot guarantee global plausibility of the generated scenes, since
it processes the input sentences sequentially and can only produce
results based on the relations encoded in each individual sentence.
As shown in Figure 20(a), while correct scene accommodation is
executed for each sentence, the final generated scene has a globally
implausible layout. Second, our scene synthesis is shape-unaware,
as shown in Figure 20(b). Currently, when learning our relational
model, we extract the relative positions with respect to the object
bounding boxes (see Section 5.3) and do not account for the geo-
metric shapes of the 3D objects. Thus, when the learned model is
applied to the objects that are not tightly enclosed in their bounding
boxes, the generated scene may be implausible as shown.
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There is a queen size bed with two nightstands on 
each side. Near the bed, there is a dresser with a mirror
on top. Next to the dresser, there is a tv on a tvstand.
There is a co�ee table in front of the tvstand.
There is a sofa in front of the co�ee table.

Ours

There is a tv on a tvstand, with two speakers on each side
To the left of the tv, there is a dresser with a mirror
Next to the dresser, there is a queen size bed with two 
nightstands on each side. There is a lamp on each 
nightstand. There is a sofa in front of the tvstand.
There is a co�ee table in front of the sofa.

User-generated scene S1 User-generated scene S2

Fig. 19. Two user-generated scenes for the same reference photograph, but
based on different scene descriptions. As shown, the descriptions vary in
sentence order and details, while the corresponding scenes are both plausible
with similar layout, except for a symmetric flip and some object details (e.g.,
the speaker and the lamps were missed in the description on the left).

There is a co�ee table in front of a sofa. Behind the co�ee 
table, there is a tv with two speakers on each side. To the 
right of the tv, there is a dresser with a mirror on top.  In 
front of the dresser, there is a bed with two nightstands on
each side.

         (a) Implausible Layout (b) Shape Unaware

There is a desk with a moitor on top. There is a chair in 
front of the desk. Put a lamp, a holder and a printer on 
the desk. There is a �le and a clock on top of the desk.

Fig. 20. Two representative failure cases of our method.

9 DISCUSSION, LIMITATION, AND FUTURE WORK
In this paper, we present a tool that uses annotated 3D scene databases
to support synthesis and editing of 3D indoor scenes using natu-
ral language. In designing such a tool, we contrast selection versus
affection of scene objects, object-level versus patch-level scene ma-
nipulation, and emphasize that in each case, it is the latter option
that accentuates the usefulness of language-driven scene modeling.
With direct manipulation over a 3D scene, e.g., through the use of a
mouse, attribute changes typically require more interactions than
object selection, while affection on a group of objects is even more
laborious. Language commands, if interpreted and realized properly,
can go a long way in saving user effort in these situations.
Our tool has been developed with the above thinking in mind

and it separates itself from previous attempts at text-driven scene
synthesis in several aspects. First, our tool supports scene editing at
the sub-scene level which both accelerates scene evolution and im-
proves the alignment and unification of natural language commands
with 3D scenes. Second, we learn a relational model which enables
change of relations between two or a group of objects during scene
synthesis. Finally, the semantic scene graphs used in our text-driven
scene retrieval and synthesis not only provide a grounding between
text and 3D scenes, but also incorporate information about object
arrangements and occurrence from 3D scene databases.

Limitations. We still regard our method only as a preliminary
prototype for data-driven 3D scene modeling with natural language
inputs. In addition to the failure cases shown, there are several other
limitations arising out of our current execution:

• Generality of the learned model. Our current implementation only
supports a limited set of group relations and limited classes of
commands for language-scene grounding. Enriching both would
require expanded data annotation and natural language process-
ing capabilities beyond what our current implementation can
support. Also, with a strict reliance on object co-occurrences and
arrangements in the scene dataset for scene accommodation, our
current relation model does not generalize well to learning of
concepts or abstractions. For example, it cannot learn to generate
messy rooms based only on messy tabletops from available data.
Learning the intrinsic meaning of “messiness” and other group
relations would be an interesting direction for future work.

• Object geometry, symmetry, style, and functionality. Our current
scene synthesis algorithm is not symmetry-aware — there is no
guarantee of symmetry between the lamps around a bed, even
though the scene data would hint so. Also, our current descrip-
tors for object-object relations are still quite rudimentary. As
a result, the system does not take into account finer-scale ob-
ject geometries, style, functionality, or human-object interactions.
Incorporating style compatibility metrics [Liu et al. 2015] and
functionality encodings, e.g., via the ICON descriptor [Hu et al.
2015], into the mix are both worth exploring.

• Creative modeling. For text-to-scene applications, creative mod-
eling depends on both the user input and the richness of the
database. User input can facilitate creativity while knowledge
from the database helps in plausibility. Unrealistic or unobserved
object arrangements and scene layout could be explicitly specified
by the user, like placing a vase on a plate. Our method can gener-
ate such object arrangements, to a reasonable extent, depending
on the input. However, truly creative modeling may be explored
with the use of deep generative models in the future.

Future work. Aside from learning and retrieving everything from
available 3D scene databases, we could also extend knowledge ac-
quisition to other sources such as ImageNet or KnowledgeNet. We
are also interested in applying techniques developed in our work
to other contexts. For example, our scene alignment algorithm may
hold the potential to enrich a set of synthetic scenes by aligning
them with real scenes as a way to produce variations. Ultimately,
an intelligent language-to-scene modeling tool should be able to
learn and adapt on-the-fly. Examples of such intelligence include
automatic requests for new or additional scene exemplars, anno-
tations for unknown attributes, or ungrounded textual commands.
With the additional data, the semantic scene graphs and underlying
learning mechanism can be adjusted and enhanced on the fly.

Using natural language to assist creative tasks is a growing field.
Many techniques explored in the context of scene editing using
languages have applications to other creative media such as images
and video. These systems must all answer challenging questions.
How should voice or text input interleave with other input modali-
ties? How do we deal with uncertainty in understanding the user’s
intent or the system’s inability to fully execute the request? Our
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work has explored some of these issues in the context of 3D scenes
and believe that language-powered interactive systems will soon be
able to significantly lower the entry barrier for creative tools.
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There is a desk with two monitors, a 
keyboard, and a mouse. 
A cellphone, a headphone and a 
lamp are on the desk. 
Under the desk there is a PC, a 
speaker, and a power socket.

There is an organized computer 
desk.
Next to the desk, there is a file 
cabinet with a printer on top.
A bookshelf with books is to the 
right of the desk. 

There is a couch and two sofa chairs 
in the room.
In front of the couch is a messy 
coffee table. 
In front of the couch, there is a tv 
with two speakers on each side.

There are four chairs around a 
round dining table.
On the table, there is a vase, a 
teapot, and dinner plates.
The table is messy.

There are two desks aligned along 
the wall.
On the desks, there are monitors 
and keyboards.
In front of the desks, there is a sofa 
with two pillows on it.

There is a work desk next to a bed.
Make the bed messy. 
The desk is messy. 

 

There is a queen size bed with two 
nightstands on each side.
On each nightstand, there is a lamp.
There is a dresser to the left of the 
bed, and a sofa chair is near the 
dresser.

α = 0 α = 0 α = 0.5

Fig. 21. A gallery of our language-driven scene synthesis results. In each row, we show from left to right: input sentences; an output scene selected from 5
results (α = 0); another output scene selected from 5 results (α = 0); an output scene with context added (α = 0.5). In the sentences, highlighted are words
that map to group relations (green) and some key determiners (red) that affect scene binding.
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