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Abstract

We propose a novel construction for extracting a central or limit shape in a shape collection, connected via a functional map
network. Our approach is based on enriching the latent space induced by a functional map network with an additional natural
metric structure. We call this shape-like dual object the limit shape and show that its construction avoids many of the biases
introduced by selecting a fixed base shape or template. We also show that shape differences between real shapes and the limit
shape can be computed and characterize the unique properties of each shape in a collection — leading to a compact and rich
shape representation. We demonstrate the utility of this representation in a range of shape analysis tasks, including improving
functional maps in difficult situations through the mediation of limit shapes, understanding and visualizing the variability
within and across different shape classes, and several others. In this way, our analysis sheds light on the missing geometric
structure in previously used latent functional spaces, demonstrates how these can be addressed and finally enables a compact
and meaningful shape representation useful in a variety of practical applications.

CCS Concepts

o Computing methodologies — Spectral methods; Shape analysis;

1. Introduction

Detecting, quantifying and analyzing variability in shape collec-
tions is a fundamental task in computer graphics and geometry
processing, with applications across multiple domains, including
in statistical shape analysis [ASK*05, BRLB14, HSS*09], shape
exploration [KLM*12,ROA* 13, KvKSHCO15], shape correspon-
dences [HWG14] and co-segmentation [WAVK™12]. A key ques-
tion that arises in all techniques for extracting variability is the
choice of right shape representation, which can reveal the struc-
ture of each shape in the context of the collection while also being
compact and easy to manipulate, enabling efficient shape analysis
and processing. The majority of existing techniques dedicated to
extracting variability in a collection are based on first selecting a
template (or base) shape and considering the changes on all other
shapes with respect to this template — this is the standard practice
in medical domains where the reference shape is often referred to
as an “atlas” (e.g., in brain anatomy) [GM98]. In computer graph-
ics this approach is common both in shape reconstruction and in
statistical shape analysis [ASK*05, BRLB14, HSS*09, KSKL13],
but also in shape exploration (e.g., [KLM*12,0LGM11,KLM*13,
ROA*13] among many others) where the template is often con-
structed by either simplifying some fixed base shape or by using
shape abstractions derived from collections of parts and their rela-
tions.

Although easy and intuitive, template-based shape exploration
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Figure 1: Cross-collection variability between a set of cats and
lions, as detected by our algorithm. Different distinctive regions
are detected for different clusterings: when animals are clustered
regarding their species, the paws, snouts and tails are highlighted
(left column); when the animals are clustered according to their
poses, the hips and abdomens are highlighted (top row).
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and analysis has obvious limitations when shape variability is large
and no single prototype adequately models all given shapes. But
even in settings of more modest variation, there are significant is-
sues: first, the choice of the template can significantly affect the
results in terms of the types of variability that is detected and high-
lighted. Second, considering the variability with respect to a fixed
base shape can make it difficult to reveal cross-class variability
that becomes apparent only when comparing all pairs of shapes
in the collection. Third, even when the base shape is given, the
exact choice of encoding for the variability remains crucial. For ex-
ample, while simple techniques based on the displacement of each
template vertex might be relevant for reconstruction and statistical
shape analysis, their use is very limited in the context of learning,
as they are not invariant to even basic rigid motions.

In this paper we present a novel approach to encoding shapes in
the context of a collection that helps overcome many of the above
limitations. Specifically, starting from a collection of shapes with
some soft (functional) maps between them, we show how consis-
tent latent spaces that have previously been used for improving map
quality can also be exploited to reveal the geometric variability in
the collection, without relying on a base or template shape (Figure 1
gives an example of how our approach highlights the regions that
are distinctive between the cats and lions), or assuming a particu-
lar (e.g., star-shaped) topology of the functional map network. The
proposed approach is based on a novel analysis of latent spaces,
which demonstrates that after proper regularization they can be en-
dowed with natural, unbiased geometric structure. This constructs
a dual object that need not correspond to a real shape in 3D, but it
has shape-like properties.

We call this dual latent shape the limit shape of the collection,
both because it is the limit of a diffusion process implicit in Theo-
rem 4.1 below and because it is defined in the spirit of the notion
of limits and co-limits in homological algebra and category the-
ory. Namely, limits are are categorical constructions that factorize
morphisms (maps) from an object to each member of a class, by
passing through a universal intermediate limit object that is then
itself mapped to all individual objects in the class. In co-limits,
morphism directions are reversed and maps emanating from the
class objects to another object are factorized through the co-limit
[Rot08, BW90]. Furthermore, limit shapes can be used together
with the notion of shape differences introduced in [ROA*13] to
construct a representation for each shape in the collection. We call
the shape difference between a real shape and the limit shape the
characteristic difference of the shape, as it captures what is unique
and special about that particular shape in the context of the col-
lection. Moreover, we show how the algebraic nature of this limit
shape construction can be exploited to detect characteristic features
not only for individual shapes but also to highlight features that dif-
ferentiate two shape collections.

Contributions. To summarize, our main contributions are:

e We describe how latent functional spaces can be endowed with
natural geometric (metric and measure) structure, giving rise, for
the first time, to a well-defined notion of a “limit shape” that
abstracts an entire shape collection.

e We define characteristic shape differences between real and limit

shapes and show how such differences capture the individuality
of each shape and provide a shape representation that can be
used for detailed shape analysis, without assuming a particular
topology of the map network.

e We provide tools for a nuanced understanding of shape viabil-
ity, including the separation of the different types of variability
present within and across shape sub-collections.

e We demonstrate how limit shapes can mediate the construction
of improved functional maps between non-isometric shapes.

2. Related Work

Template-based Shape Analysis and Exploration. Analyzing
shape collections by variability around a template shape has a
rich and vast history going back to D’Arcy Thompson’s classic
“On growth and form” [T*17], which has inspired Kendall’s shape
space theory [Ken89]. In computer graphics, apart from those men-
tioned in the introduction, shape spaces based on template varia-
tion are ubiquitous in statistical shape analysis, e.g., for defining
3D morphable models [BV99, ACP03]. Although in most cases
the presence of a shape template is assumed to be given a priori
[GSDP*18], simultaneous template construction and fitting tech-
niques have been used for both reconstruction [WJH*07, WAO* 09,
TZL*12] and exploration [KLM*13], among many others. While
pervasive, template-based methods also have a well-known limita-
tion in that the choice of the template model can introduce bias in
the kinds of variability that are revealed. Common selection tech-
niques include using a particular (median) shape in a collection that
is as close as possible to a centroid, or constructing a new template
shape by point-wise averaging (e.g., [JDJG04]).

Our approach avoids the construction of an explicit template
shape, and replaces it with an implicit template obtained via the
analysis of latent functional space, which removes the bias in the
template shape selection and avoids the expensive geometric (em-
bedded 3D shape) template construction that can require non-linear
optimizations in Riemannian manifolds, such as Kircher means.

Shape Analysis with Functional Maps. Our approach takes as
input a collection of shapes with soft (functional) maps between
them. In this, we follow the recent line of work on shape analysis
with soft maps, similar to [SNB*12, KLM* 12, ROA*13]. Namely,
we use the formalism of functional maps introduced originally in
[OBCS*12] and extended significantly in follow-up works, includ-
ing [KBB* 13, HWG14] among others (see [OCB*17] for a recent
overview).

Although originally proposed as a computational tool for shape
matching, follow-up works have also shown its utility in shape anal-
ysis and exploration, starting with map visualization [OBCCG13],
detection and encoding of shape differences [ROA*13], and co-
segmentation and co-analysis [HWG14] among others. The ad-
vantage of these techniques is that they only require approximate
functional maps, which are much easier to compute than precise
(point-to-point) correspondences. Nevertheless, existing methods
such as [OBCCG13,ROA*13] also follow the spirit of template-
based techniques and assume the presence of a single base shape
with respect to which variability is captured. A recent method in-
troduced in [HO17] has tried to lift this assumption but is still re-
stricted to revealing global variability within a single collection.
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We extend these techniques first by proposing a template-free anal-
ysis and exploration framework using functional maps and sec-
ond by proposing techniques for detecting and highlighting cross-
collection variability.

Latent Functional Spaces. A key building block in our approach
is the use of so-called latent functional spaces, which are closely
related to map synchronization [WS13] and which have been used
for computing consistent functional maps in shape and image col-
lections [HWG14,WHG13, WHOG14]. On the other hand, a recent
approach [GSDGI18] also takes the idea of constructing latent ob-
jects in the functional space, which is proposed for transporting de-
scriptors across shapes in collections. One of our key contributions
is to show that in addition to providing a powerful computational
method for map inference, latent functional spaces also allow to
reveal variability in shape collections and also to define a compact
and informative shape representation.

3. Preliminaries, Notation and Problem Setup

Throughout our work, we assume to be given a collection of related
3D shapes and a set of functional maps among some shape pairs.
Our main goal is to develop a theoretical foundation for a novel
representation for the shapes in the collection, and to show how
this representation can be effectively used in practical applications.

Specifically, we assume as input a set of shapes S = {S;}1,,
typically represented as triangle meshes. To each shape S; we asso-
ciate a Laplacian matrix £; discretized using the standard cotangent
weight scheme [PP93, MDSBO03], s.t. £; = MFIL,-, where L; is the
cotangent weight (also called a stiffness) matrix and M; is the diag-
onal lumped area (mass) matrix. These can be seen to encode the
metric and measure structure of each shape respectively. We de-
note by A; the diagonal matrix of the first k eigenvalues and by ®;
the matrix of eigenfunctions of £;, such that L;®; = M;®;A;. Typ-
ically, k is fairly small (60 in most of our experiments), giving rise
to compact functional representations of shapes as detailed below.

We also assume to be given a set of functional maps C;; between
some pairs of shapes S;,S;. In the simplest case, if we are given
a point-to-point map between e.g. points on S; and S;, we can set
Cij= cI>jTM iI1;j®@;, where IT;; is the binary matrix encoding the
map T using: I1;;(p,q) = 1 if T(p) = g and O otherwise. Alterna-
tively the functional maps C;; can be estimated automatically using
existing mapping techniques (see, e.g. [OCB*17] for an overview).
The key feature of functional maps C;; is that they allow to transfer
real-valued functions defined on different shapes, by “translating”
coefficients expressed in different bases. Thus if f is a vector rep-
resenting the coefficients of a function on shape i in the basis ®;,
then the coefficients of the corresponding function on shape j in the
basis ®; are given simply as C;; f.

Using the input maps C;; we build a functional map network
(FMN) on the collection S, by constructing a graph G = (V, &),
where the i vertex in V corresponds to the functional space on
S;, and the edge (i, j) € £ if we are given a functional map C;;.
We assume that this network is symmetric ((i, j) € £ if and only
if (j,i) € €) and is connected so that there exists at least one path
consisting of the edges in £ between any pair of vertices in V.
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Shape Differences Our shape representation is based on the shape
differences introduced in [ROA*13], which characterize shape de-
formations by encoding the changes in inner products of functions.
Namely, given shapes S;,S; and a functional map C;; in the reduced
basis, the authors introduce the area-based and the conformal shape
differences DA , D€, which using our notation can be expressed as:

T
Djj = CjjCij, (1)
Df; = A CliA Gy, )

where T is the Moore-Penrose pseudo-inverse. Intuitively D; jisa
linear operator, which once again, can be represented as a matrix of
size k X k, and which encodes the difference or distortion induced
by a map C;; (see Figure 2 and Eq.(4) in [ROA™13]).

The key limitation of shape difference operators for shape col-
lection analysis, is that they require a choice of a base shape S; and
consider only directional changes, from shape S; to other shapes,
making it impossible to use them given an arbitrary (non star-
shaped) FMN. Thus, one of our goals is to extend this construc-
tion to the case of shape collections without assuming a fixed base
shape. We achieve this by exploiting the formalism of latent func-
tional spaces [WHG13], which has been proposed for improving
the consistency of functional maps.

Latent Spaces In [WHG13], the consistency of a FMN G is
defined as the deviation of the compositions of the functional
maps along cycles from the identity: ideally one would expect
Ci,iiCiix_, -+ Cipiy =1, where (iy,ip---ix,i1) is any cycle in G.
The authors further propose to extract a set of consistent latent
bases Y; on §; such that C;;Y; ~ Y;,V i, j (since exact consistency is
rare in the reduced basis), and use them to refine the quality (con-
sistency) of functional maps. The latent bases Y; can be thought of
either as functions on §;, or as functional maps from some latent
shape to each shape S;. Then, a map from §; to S; can be factored
into a map from i to the latent shape and then to j via: C;; ~ YjYi_1 .
The exact factorizations then implies the exact consistency. While
useful as a tool for improving functional maps, the exact structure
of latent shapes is still not fully understood, and they have so far not
been used for representing and analyzing shapes in a collection.We
refer readers to Appendix B for more details.

4. Latent Representation

In this section, we first show how latent shapes can be endowed
with geometric structure, and be made more stable, through an extra
regularization, and then define a latent space shape representation.

4.1. Canonical Latent Basis and the Limit Shape

Our first key observation is that the latent shape plays the role of
an “average shape” in analyzing shape collections — a shape-like
object that represents the entire collection, and which can be en-
dowed with a natural geometric structure. Crucially, unlike existing
approaches, for example in computational anatomy [YoulO] that
consider building templates or average shapes, we characterize the
latent shape directly in the functional domain, without attempting
to embed it in the ambient space.

The following theorem establishes the connection between the
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ALGORITHM 1: Computing the Limit Shape by Con-
structing a Canonical Consistent Latent Basis (CCLB)

input : A set of consistent latent basis {¥;}'_; obtained
from a shape collection S and associated FMN G.
The eigenbasis ®;, eigenvalues A; on each S;.
output: A set of canonical consistent latent basis {¥;}7_;,
the eigenbasis ®( and the spectrum Ay, for the
limit shape.
(1) Compute the eigen-decomposition of E =} ; YiTA,-Yi so that
EU =UAandletY; =Y;U.
(2) Let ®y = @;¥; for an arbitrary i, and Ag = A from the
previous step.

consistent latent basis (CLB) and the geometry of the latent shape,
while at the same time highlighting the limitations of the previously
used approaches for constructing latent bases:

Theorem 4.1 Given a collection of discrete 3D shapes in 1-1 ver-
tex correspondence and sharing the same mesh connectivity, and
a consistent FMN G, in which the functional maps are represented
in the eigenbasis ®; on each S;. Let Y; be the consistent latent ba-
sis satisfying the conditions: C;;Y; =Y; V(i,j) € G,s.t.}; YiTYi =1,
andy; YiTAiYi = A, where A is a diagonal matrix. Then, the eigen-
basis ®g of the latent shape whose metric and measure are given
by L= %):iL,-,M = %ZiM,', i.e. Loy = MPyAg, can be recovered
as &g = ;Y; for any i.

This theorem (proved in Appendix A) suggests that the CLB car-
ries information about the “average” geometry in the collection,
given, in the full basis, by the average metric and measure matrices.
We stress that Theorem 4.1 is primarily of theoretical interest: the
assumption of the identical triangulations and of the exact consis-
tency presented in the full basis are for the explicit characterization
(i.e., L, M) of the theoretical averaging shape.

Role of Proper Regularization. As detailed in Appendix B,
[WHG13] proposes to compute CLB by solving the optimization
problem miny ||C;;Y; — Yj||s.t.X; ¥ ¥; = I. Geometrically, and in
light of Theorem 4.1, this corresponds to only averaging the mea-
sure of the shapes, which leads to metric ambiguity. This can result
in significant instabilities in the extracted latent basis. We demon-
strate this effect in Figure 2. Namely, we compute the CLB on S
Y1(4)
computed from {Si}?zl. Figure 2(b) shows the change of basis ma-
trix between these two settings, which has noisy oft-diagonal en-
tries, suggesting significant perturbations of the latent shape.

using two shape collections: Y1(3) computed from {Si}?:l, and

To overcome such instability, we propose to construct a canoni-
cal consistent latent basis (CCLB) by introducing an extra normal-
ization which forces }; I/iTAiI/i to be a diagonal matrix, and which
corresponds in Theorem 4.1 to averaging the metric on the latent
shape. With this additional normalization, the change of basis ma-
trix between latent bases with and without shape S4 shown in Fig-
ure 2(c) is much closer to a diagonal one than in Figure 2(b). The
details of this construction are given in Algorithm 1. The extra nor-
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Figure 2: (a) Input shapes, where Sy is an additional shape; (b) the
transformation matrix between the standard latent basis S| com-
puted with and without Sy, (c) the same transformation matrix but
between canonical latent bases. (d) The transformation matrix be-
tween the computed latent basis and the theoretical ground-truth
stated in Theorem 4.1 when expressing functional maps in a re-
duced basis (e) the computed spectrum and the theoretical ground-
truth (see the text for details).

malization incorporates the metric information, yielding what we
call the limit shape of the collection.

Applicability and approximation of CCLB in practice We ar-
gue that Algorithm 1 is well-defined: first, as reviewed in Ap-
pendix B the CLB computed from [WHG13] is completely deter-
mined by the input FMN G; secondly, it follows from the compu-
tation of Y; that ) ; Y,~TY,' =1, and since U computed in Step (1) is
orthonormal, ¥'; ¥/ ¥; = I is guaranteed; lastly, the well-definedness
of ®( comes from the consistency, namely, ®;¥; ~ ® iCi jf/,- ~o jf/j.

It is worth noting that, though the theoretical assumptions of
Theorem 4.1 are typically not satisfied in practice, Algorithm 1
can be still implemented without assuming uniform triangulation
nor consistency in full basis. In Figure 2 (d), we also show the
proximity between the eigenbasis/spectrum of the limit shape re-
covered from functional maps in the reduced basis and the theoreti-
cal ground truth (computed using the identical triangulation shared
by the 4 shapes in Figure 2(a)) . Namely, Figure 2(d) shows the
transformation matrix between the first 50 computed eigenbasis,
when functional maps are represented in a reduced basis of size
400 and the theoretical ground-truth, given by the exact averaging
of the metric and measure. At the same time, Figure 2(e) shows the
eigenvalues in the two cases. Moreover, we show in Figure 12 in
Appendix B, that the eigenvalues and eigenfunctions are both well
approximated even in the case where the shapes do not share the
same triangulation.

Hereafter, we always use the canonical consistent latent basis in
all the following formulations and applications, and denote it by ¥;,
to simplify notation. This is our primary representation of the limit
shape of the collection. Though the limit shape itself may not be
embeddable (even under the ideal assumptions of Theorem 4.1), its
basis can be transported onto any individual shape S; of the collec-
tion via Y;, which can be thought of as functional maps from the
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ALGORITHM 2: Construction of the Area and Conformal
Characteristic Shape Difference Operators

input : Shape collection S and associated FMN G. The
eigenbasis ®; and spectrum A; on each S;.
output: A pair of latent shape differences for each shape i:
area-based {D}}_, and conformal {D§ }*_,.
(1) Compute the CLB {Y;}'_; with respect to S and G via the
framework of [WHG13].

(2) Compute the canonical CLB {¥;}?_, and diagonal matrix with

the spectrum of the limit shape, Ag, using Algorithm 1.
(3) Construct D} = ¥ ¥;, and respectively Df = AJ ¥/ A7,

limit shape to the S;. We exploit this interpretation in Section 5.
Moreover, given a new, previously unseen shape S; with a func-
tional map Cj;, from S; to Sy, where S; is from the collection used to
estimate the latent shape, the latent basis can be pushed to S; sim-
ply via ¥y = C;Y;. We use this property to improve the scalability
of latent basis construction.

4.2. Shapes as Characteristic Shape Differences

Although the CCLB used in the construction of the limit shape re-
duces the instability present in CLB, it still can not directly be used
to represent each shape S; in the collection. The main reason is that
each Y; is expressed in the eigenbasis ®; of shape S;, and there-
fore, one can not simply compare, for example ¥; with Y;, which is
fundamental in both shape analysis and learning applications.

Instead, we build our shape representation by defining the char-
acteristic shape differences (sometimes shortened to characteristic
differences or abbreviated as CSD), which are linear operators act-
ing on the function space of the limit shape, and which, as such, are
independent of the basis on each shape.

Let us denote by Ag the spectrum of the limit shape, arising from
step 2. of the procedure described in Algorithm 1. Then, following
the formulation of [ROA*13], we define the area-based and confor-
mal characteristic shape differences as:

bt =Yy, 3)
Df = AJY AY,. )

The final procedure for extracting these operators from a given
collection is summarized in Algorithm 2.

Properties of CSD Given a shape collection with an associated
FMN, the characteristic shape differences (CSDs) provide a repre-
sentation of each shape as a pair of matrices of size k X k, where k
is the size of the latent basis, independent of the number of points
on the shape. In this work, we argue that CSDs inherit some of the
most attractive properties of shape differences, such as their com-
pactness and informativeness, while avoiding their shortcomings.
Below we summarize the main properties of this representation.

Invariance: CSDs provide a representation that is invariant to rigid
(and more generally isometric) shape transformations.

(© 2019 The Author(s)
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Flexibility: computing CSDs only requires the knowledge of func-
tional maps and places no restriction on the shape discretization.
For example, they can accommodate collections of shapes with dif-
ferent number of vertices, or even with different modalities such as
point-clouds and meshes.

Informativeness: CSDs fully encode the intrinsic geometry of each
shape in the collection in a compact way. Indeed, it follows from
Theorem 4.1 that in the presence of full information, given the
FMN of a collection of shapes S, the spectrum Ag of the limit
shape, and D’?,Dic for each shape in S, one can recover the intrin-
sic geometry for each §;, i.e., the area and stiffness matrices M;, L;,
which, in turn, fully determines the edge lengths [ZGLG12].

Functoriality: if we interpret each ¥; as the functional map associ-
ating the limit shape to §;, it follows from the functoriality property
in [ROA*13] that

Dy =YD "Dy,

where D;; is the shape difference between S; and S;. Thus, CSDs
not only encode the difference of each shape to the limit shape but
also allow to factor the difference between each pair of shapes.

Algebraic nature: CSDs are linear functional operators on the limit
shape. As such, they can be represented as small matrices and ma-
nipulated using standard numerical linear algebraic tools, in prac-
tice. Moreover, they provide detailed (localized) information about
the shape geometry. As we show in Section 6, this allows us to
extract partial information to compare shape parts, in contrast to
purely global shape descriptors.

Independence of base shape and of FMN with particular topol-
ogy: The original shape difference construction [ROA™ 13] relies on
the choice of a specific base shape, which in turn restricts the input
FMN to be of star-shape topology, i.e., it requires to relate the base
shape to each of the shapes in the collection. The base shape depen-
dence can lead to biased results, especially in the practical scenarios
where functional maps are represented in a reduced basis and are
not perfectly consistent. On the other hand, as observed in previous
works [HWG14], functional maps between similar shapes are typ-
ically much easier to compute. Meanwhile, establishing functional
maps from a fixed base shape to all other shapes in the collection
can lead to significant errors.

In contrast, our formulation overcomes both of the limitations
above — we can construct the limit shape from an FMN of arbitrary
topology, as long as it is connected.

To illustrate this, we consider a sequence of 23 frames of gal-
loping horses shown in Figure 3(a), and assume that only func-
tional maps between consecutive frames are given, resulting in a
sparse FMN with chain topology. Figure 3(b) demonstrates that,
even when extracted from the sparse FMN, the CSDs recover the
cyclical structure of the collection, while using the shape differ-
ences from the base shape, S1,, computed by composing the given
functional maps, leads to an erroneous embedding, as shown in Fig-
ure 3(c). Furthermore, We provide another example of the original
shape differences leading to biased result in Appendix C.
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(b) PCA on latent
shape differences

(c) PCA on shape differences

(a) input shape collection to a fixed base shape

Figure 3: (a) 23 frames of a galloping horse. With a given FMN of
chain topology, we computed the characteristic and original orig-
inal shape differences as signatures of the shapes: (b) PCA layout
of the latent shape differences; (c¢) PCA layout of the original shape
differences.

5. Limit Shapes for Matching

As mentioned in the previous section, a key defining characteris-
tic of our limit shape construction is that it equips the latent shape
with metric and measure, which can thus be treated as a ‘real’ shape
from the viewpoint of spectral techniques. This allows for example
to match limit shapes to existing shapes or even match across dif-
ferent limit shapes. We demonstrate the utility of this construction
in the following problem: given two collections of heterogeneous
shapes SA,SB , where the maps within collection are known, our
goal is to merge S84 and SB, ie., to find correspondences for all
cross-collection shape pairs.

This problem of cross-collection merging has been considered in
previous works, including [WHG13, HWG14] using constructions
based on the latent basis. The key difficulty is that since the la-
tent shapes arising from the original latent basis construction lack
geometric structure and cannot be matched directly, previous ap-
proaches relied on estimating maps between shapes across sub-
collections, and using those maps to build connections between the
latent shapes via cycle consistency. This can be both error-prone
when matching shapes with significant variability, and moreover
requires estimating multiple correspondences between real shapes
to compute a reliable map between latent shapes (e.g. [HWG14]
used 60 shape pairs to merge two shape collections of size 30, while
building a hierarchical latent space representation).

Instead, our limit shape construction allows to address this prob-
lem by using the metric information of the latent shapes to compute
directly a single map across limit shapes. Since maps from the limit
shapes are known within each collection, this map then provides a
direct way to compute cross-collection correspondences between
any pair of real shapes. To apply this idea, we pick a real shape,
say S; € S4, and then simply replace the standard eigenbasis on
Sis (®i,Ai), by (®;Y;,Ag), where Y;, Ag are computed with Algo-
rithm 1. Effectively we transfer the spectral information from the
limit shape to S;. It is worth noting that since the maps within the
collection are known and are consistent, the eigenbasis of the limit
shape ®y = d;Y; is stable with respect to different choice of S;. In
the end, we pick two arbitrary shapes from each collection, trans-
fer the spectral information of the respective limit shapes to them,
and finally match them directly using existing spectral matching
techniques.

Once the functional maps between two limit shapes are esti-
mated, given any two shapes S; € ) € SB, again we can trans-
fer the eigenbasis and eigenvalues of the limit shapes to them re-
spectively. Since the functional maps between the limit shapes are
invariant to the choice of Sy, S/, we can directly recover point-wise
maps between the real shape pair using the single pair of estimated
functional maps.

6. Shape Collection Comparison

Several approaches have been proposed for detecting geometric
variability that exists within a given collection of shapes connected
by functional maps, e.g., [ROA*13,HO17]. In this section, we
show how our characteristic shape differences can be used for de-
tecting and analyzing and distinciveness across different shape col-
lections, or two subsets of a larger collection. Namely, given a set of
shapes S, an FMN @ and a partition S = SAUSE, we aim to cap-
ture the difference between S* and S, while not being sensitive
to the global variability that exists within S. This problem arises
especially when trying to detect the detailed geometric properties
that are responsible for the differences between shape classes (e.g.,
healthy vs unhealthy organs), while factoring out the “normal” or
“common” variability within the collection.

To give a quantitative measure of variability that manifests
within or across shape collections, we introduce first the projected
characteristic differences as follows.

Projected Characteristic Shape Differences Let {D;}!_; be the
CSDs computed using Algorithm 2 with respect to each S; € S.
Now let us be given a set of functions F = [0t1,0l, - - , 0], where
the Oc,{s are k orthonormal basis functions on the latent shape, i.e.,
FTF= I;.. We construct a projected characteristic shape difference
using F and D; as follows:

Pi(F)=D;(I—FF")+FF". 5)

It is easy to verify that P;(F)a = D;a if o is orthogonal to
the subspace spanned by functions in F, and P;(F)o. = o if o is
spanned by the functions in F'. Intuitively, if F contains the full ba-
sis on the latent shape, then P;(F) = I, which forces the CSD to
correspond to an area-preserving or conformal map, depending on
the type of Djs. We refer readers to Appendix B for Figure 13 as an
illustration of the projected shape difference.

Global Variability With the projected CSDs, we first formulate an
energy functional for measuring how a given function is relevant to
the global variability within a shape collection. Our observation is
that, suppressing global variability should lead to projected CSDs
that are indistinguishable from each other. Namely, we would like
to find a basis F such that the latent shape differences projected
onto F' are as close as possible. For this, we introduce a term that
measures the difference of the norms between the original and pro-
jected latent shape differences:

8(51,8;,F) = |Di = Djllfro — IPAF) = Pi(F)llfro~ (6)

According to the following lemma, the change is always non-
negative and can be written as a quadratic form.
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Figure 4: The global variability of four deformed spheres (in the
blue box) and the cross-collection variability regarding the parti-
tion S and S® (in the red boxes ) detected by our algorithms. Note
that the horizontal bump (global variability) is of twice the magni-
tude of the vertical one (cross-collection variability).

Lemma 6.1 If FTF = Id, then

8(S;,S;,F) = Trace(FT (D; — D;)*F) > 0.

*
global’
of a single function, which maximizes the global change of norms

within the collection, i.e.,

It is natural to optimize for a function o i.e., F' consists

* _ o) or o oy —
ocglobal—argmo%x;jS(S,,Sj,(x),s.t.ococ 1. (7)

In other words, after suppressing the functional deformation related
to a*, the shapes are maximally brought together. According to
Lemma 6.1, o* is given by the ei%enfunction associated with the
largest eigenvalues of Z(Di —Dj)".

]

Cross-collection Variability Following the same idea above, we
formulate the cross-collection variability to be such that after sup-
pressing it, the clusters S* and S® should become closer to each
other, while maintaining their inner structure. In other words, we
aim to simultaneously maximize the changes of distances across
shapes in different clusters, and minimize those within the same
cluster.

Putting these two goals together, we construct:

o =arg max 3(S;,8;,0)—
alo=1,. .

(i,j) across clusters

Z S(Si,Sj,(X).

(i,j) within same cluster

*
cross-collection

®

As an illustration, in Figure 4, we demonstrate the optimizers
aglobal’azross-collection respectively. Since the horizontal bump
is of twice the size of the vertical one, to maximally reduce the
global variability, one should suppress the former deformation.
Meanwhile, it is intuitive that cluster A and B are distinguished
by magnitudes of the vertical bumps, which should be detected as

cross-collection variability.
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7. Main Experimental Results
7.1. Merging Shape Collections

In this section, we demonstrate the utility of limit shape formula-
tion in merging shape collections. In particular, we compare the
quality of the results when merging the collection using maps be-
tween either real or latent shapes.

We assume that two input collections, SA,SB , where the maps
within the same collection are given, and our goal is to map the
pairs across collections by using a single seed cross-collection pair.
Namely, given a seed pair §% € SA,S? € 8B, we can either match

S‘,-“,S? directly or match the respective limit shapes by transfer-

ring the eigenbasis and eigenvalues to S‘?,S? , as described in Sec-
tion 5. In both cases and all the experiments, we use the standard
functional map estimation pipeline [OCB*17] and refine the initial
maps with a recent spectral method [MRR™19]. A small number of
landmarks (3 for the first two examples, and 4 for the last one) are

added to help the initialization.

Once the limit shapes are matched, we can efficiently compute
the maps between any pair of real shapes across collections, with-
out extra estimation, as mentioned in Section 5. On the other hand,
in order to merge the collections with the estimated maps between
the real shapes, we follow the procedure proposed in [WHG13] —
note that the two FMNs within the collections are connected by the
computed functional maps between the seed pair, thus we can com-
pute the CLB with the connected FMN on sS4 USB, and use it to
estimate the functional maps between all the other pairs.

We also compare our framework to the recent work of
Ganapathi-Subramanian et al. [GSDGI18], in which the authors
construct a modular latent space for transporting functions across
shapes (thus, indirectly putting shapes in correspondence), given a
set of corresponding descriptors on each shape. Since their work
constructs a single modular latent space for the shapes of interest,
for this baseline we estimate all cross-collection maps without a
merging step. For a fair comparison, we apply the same refinement
on the results.

In Figure 5, we merge a set of cats and lions. In order to show
the influence of the seed pair selection, we run the above merging
procedures independently five times: each time we select the pair in
one of the columns in Figure 5(a). The plots in Figure 5(b) demon-
strate the accumulated geodesic errors, which shows the fraction
(y-axis) of points that are mapped within a given geodesic error (x-
axis) to the ground-truth. with respect to matching the real shapes
and the limit shapes over the five runs, and that of directly matching
shapes across collections with [GSDG18]. Figure 5(c) shows fur-
ther the error distribution of the merging process with respect to 5
different seed pairs. Here, each column corresponds to a particular
choice of seed pair and the points in the column show the accuracy
of all 25 cross-collection maps after computing the map between
the seed pair. The plots in Figure 5(b) suggest that matching limit
shapes is on average easier than matching real shapes and as a result
the cross-collection maps are more accurate and, as shown in Fig-
ure 5(c) more stable, across different choices of seed pairs. On the
other hand, since the main goal of [GSDG18] is to transfer smooth
(diffused) descriptors across shapes, it can only produce suboptimal
results in estimating point-wise maps.
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Figure 5: (a) Heterogeneous shape collections, each pair of shapes
in the same column are matched as initialization; (b) The quanti-
tative results of matching the selected pairs and of merging col-
lections via the single pairs using our approach and CLB, and of
merging collections via [GSDG18]; (c) Error distributions of merg-
ing pairs across collections.

Another similar example is to merge a set of men and women.
Similar trend takes place in this case, especially, as shown in Fig-
ure 6(c), when the initialized maps are less accurate, the variance of
error with respect to merging collections with CLB is significantly
higher than that of our approach. A final example is to merge a set
of camels and horses, as shown in Figure 7. Note that for some
specific seed real shape pairs, merging the collections can give a
satisfactory result. However, these are rare and unknown a-priori,
while merging using other real shape pairs can lead to very signifi-
cant errors. On the other hand, our approach is stable and produces
accurate results to a large extent regardless of the shape pair used.
In these two cases, the modular latent space approach also behaves
similarly to that in Figure 5.

Timing The experiments are conducted in a machine with 3.3 GHz
CPU and 32 GB memory. Across all three sets of experiments, it
takes on average 11.0 seconds to estimate functional maps between
each seed pair in both the real shape and the limit shape setting.
For propagating the maps between the seed pair to whole collec-
tion, another 3.2 seconds is consumed for estimating the functional
maps between each pair of real shapes using CLB, while our ap-
proach is free of estimating any functional maps in this stage. Fi-
nally, for [GSDG18], estimating a pair of maps takes 11.2 seconds
on average.

7.2. Geometric Exploration of Shape Collections

In the following experiments we demonstrate the utility of our
method for capturing cross-collection variability in shape collec-
tions, as suggested in Section 6. In particular, we demonstrate that
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Figure 6: (a) Heterogeneous shape collections, each pair of shapes
in the same column are matched as initialization; (b) The quanti-
tative results of matching the selected pairs and of merging col-
lections via the single pairs using our approach and CLB, and of
merging collections via [GSDG18]; (c) Error distributions of merg-
ing pairs across collections.

/ n ( my
(S - J
N o o
& - 'y
- 2
. -
( ) s Match camels and horses Error distribution of merging collections
+ Merging collections with limit shapes
09 + Merging collections vith CLB
025
208
2 el
§or -
2 5 02
2os 5 Ay
g r Lo
Eos 7015 e
S 3
504 g
|5 8 o4 wrnperrres
£os s —
g Merging collections via CCLB: 0.087239
£o2 Matching latent shapes: 0.087082 j— rr o
—Merging collections via CLB: 0.13266 005 IV,
0.1 -~ ~Matching real shapes: 0.14719
—Matching via [GSDG18]: 0.19922
o )
0 005 o1 015 02 025 03 035 o 20 r ) o 10 120
Geodesic Error Pair Index

Figure 7: (a) Heterogeneous shape collections, each pair of shapes
in the same column are matched as initialization; (b) The quanti-
tative results of matching the selected pairs and of merging col-
lections via the single pairs using our approach and CLB, and of
merging collections via [GSDG18]; (c) Error distributions of merg-
ing pairs across collections.
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our method can be applied to real-world data (Figure 10), and
also demonstrate that our method can extract informative signals
in a semi-supervised classification task (Figure 9). We stress that
in all applications, we have used computed functional maps be-
tween shapes that are in most cases not in 1-1 correspondence, es-
timated using the state-of-the-art functional map estimation frame-
work [RPWO18], unless stated otherwise.

Throughout the results below we use the area-based CSDs,
which are extracted from input functional maps of size 60 x 60.
To construct the FMN, we first compute distances among shapes
(using the shape-DNA descriptors [RWP06]), and form a minimum
spanning tree network using these distances. When considering two
clusters — we first form a spanning tree on each, and connect shapes
across clusters using nearest neighbour search. The methods de-
scribed in Section 6 optimize for functions o on the limit shape,
which we map to functions on the actual shapes in the collection,
resulting in a consistent and informative visualization.

Since the energy functional defined in Eq. (8) is maximized at
the eigenvector associated with the largest eigenvalue of a matrix
related to the CSDs, we can further compute the eigenvectors of the
leading eigenvalues and obtain a set of functions on the limit shape,
each of which indicates some distinctive region. For compact visu-
alizations, we weight the o with the corresponding eigenvalues, and
plot the squared-value of resulting weighted sum on the shapes. In
all of our results, the color ranges from grey (zero) to red (large)
values, and the regions with high values are highlighted.

Verification of Results To start with, we provide both qualitative
and quantitative evaluations of our method in data where the dis-
tinctive regions are controlled by certain a priori information. In
particular, we compare our method to the distinctive region (DR)
detection technique presented in [SFQ7]. In this method, given a set
of shape clusters, and an individual shape, the goal is to detect the
regions that provide evidence or “justify” this shape as belonging
to its cluster.

We generate the data using the PCA model proposed
in [HSS*09], which provides shape deformations controlled by se-
mantic parameters such as girth of hip, waist size via PCA-based
model. To generate the data, we first sample 4 shapes of different
characters and different poses, and then deforme them uniformly
by: (1) enlarging the girth of hips by 10%; (2) shrinking the girth
of the calves by 20% on top of (1); (3) enlarging the girth of the hips
by 30%. As shown in Figure 8, the man in the rest pose is deformed
respectively to the three shapes shown in the column marked as GT.
The other shapes are deformed in the same way, giving rise to 3 de-
formations of the four shapes. We treat each deformation as a sep-
arate cluster and compare it to the cluster containing the original,
undeformed shapes, which we call cluster zero.

Our goal then is to compare each deformation cluster with cluster
zero and highlight the distinctive regions that give rise to that partic-
ular cluster. In order to obtain a quantitative evaluation of the high-
lighted area, since the shapes are in one-to-one correspondence, we
compute the absolute changes of edge length (metric) between ev-
ery pair of original and deformed shapes, and then accumulate this
per-edge function to a per-vertex function. The resulting “ground
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Figure 8: Left panel: Sampled shapes to be deformed; Right panel:
Sfrom left to right column: functions representing the ground-truth
deformed area regarding the three test cases; the highlighted func-
tions from our method; the highlighted functions from our method
with computed maps; the highlighted functions from [SFO7].

truth” functions and the respective deformed shapes are shown in
column marked GT of Figure 8.

We show the regions detected by our approach and that by
[SFO7] (DR) in Figure 8. From these qualitative results, it is evident
that our results are cleaner and more coherent to the ground-truth
in all 3 test sets, while the results from [SF07] are more diffused. In
addition, we also measure the correlation between the highlighted
functions and the ground-truth, i.e., the normalized inner product
between the ground truth and the highlighted functions. As shown
in Table 1, our results are significantly higher than those of [SF07]
across all test sets. Moreover, we test our algorithm with computed
functional maps and report both qualitative and quantitative results,
which both achieve similar results to the ones from ground-truth
maps.

methods \datasets Set(1) Set(2) Set(3)

DR,scale=1 0.3637 0.3678 0.4254

DR ,scale=2 0.3643 03663 0.4251
DR,scale=3 0.3645 03691 0.4141
DR,scale=4 0.3657 03691 0.4157

Ours 0.6308 0.5340 0.6219

Ours (computed maps)  0.6305  0.5224  0.5204

Table 1: Average correlation between the highlighted functions and
the ground-truth on each of the shapes of interest in the respective
test cases (DR is a multi-scale approach, thus we report the results
regarding all scales used in the pipeline).

Heterogeneous Shape Collection Comparison In Figure 1, we
show the computed distinctive functions highlighting the difference
between a set of cats (each consists of 7207 vertices) and a set of
lions (each consists of 5000 vertices), where the cross-collection
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maps were estimated using the original functional maps approach
[OBCS*12] given a sparse set of landmarks. Note that our method
correctly highlights the meaningful distinctive regions according to
different clustering criteria: when the animals are grouped accord-
ing to their species, the highlighted function shown on the left-most
row captures the snouts, the four paws and the tails, distinctive to
each class, despite the presence of the global poses variability in
the collection, while when the animals are grouped by the poses,
the highlighted functions on the top row detect the hips and the
abdomens.

Clustering with Visual Evidence We analyze two clusters of
shapes displayed in the two rows of Figure 9(a) that represent
different characters in two distinct poses. It is worth noting that
the shapes are from a remeshed version of the FAUST dataset,
which do not share the same triangulation, and that we estimate
maps using the state-of-the-art method [RPWO18]. In particu-
lar, we plot the first 3 significant distinctive functions in the left-
most 6 columns, which successively capture the bending knees and
the shoulders, intuitively distinguishing the two poses. The final
weighted functions are plotted from column 7 to 9. Interestingly,
we also observe that our formulation can be extended to detecting
extrinsic cross-collection variability, by defining a CSD using an
inner product capturing extrinsic informations (see details in Ap-
pendix C). The corresponding distinctive functions are plotted in
the right-most column of Figure 9(a), where the arms and right legs
are highlighted, due to the obvious changes in embeddings. Finally,
it is worth noting that our method allows errors in map estimation,
we refer readers to Figure 15 for an example of inaccurate esti-
mated maps.

We argue that the distinctive function helps to encode the shapes
in a way that the clusters are easier to separate. In Figure 9(b, c),
we respectively show the PCA plots of shapes represented by {D;}
and by {X;}, where X; = D;o* and a* is the most significant dis-
tinctive function. Note that the clusters are more pronounced in (c)
than in (b), suggesting that a* indicates the direction to which the
underlying variability is more prominent.

To quantify the separability of the representations with respect
to the given clustering, we run K-means algorithm for binary clus-
tering on the signals (e.g., the D; or X; above) independently 100
times, and compute the average error of separating the shape col-
lection with respect to the given clusters. Intuitively, the lower the
error is, the better the two clusters are separated.

We note that, once the CSDs are constructed, the distinctive
functions can be optimized for even with a partial set of labeled
data, which leads to a semi-supervised learning problem. In partic-
ular, we sample uniformly k shapes (k ranges from 1 to 10) from
each of the clusters as the labeled data, compute the most distinc-
tive function o with respect to the 2k shapes, and run the quanti-
tative evaluation above on D;0y to compute the average error rate
of clustering the whole 20 shapes. We report the average error in
Figure 9(d), where the green dashed line corresponds to the error
rate of randomly bisecting the shape collection (0.420), and the 0
labeled shape point corresponds to clustering with D;. This plot
indicates that the distinctive function is inherently relevant to the
cross-cluster difference — with more and more labeled data, the
clustering error with respect to X/s decreases. Remarkably, when

all the labeled shapes are considered, the error rate is 0, which also
verifies our observations about the PCA plots above.

Practical Application in Anatomy In this example, we compare
two sets of bones of two different populations of wild boars ac-
quired using 3D scanning techniques. In particular, as input we con-
sider 12 bone scans with 24 consistent handcrafted landmarks and
260 sliding landmarks on each of shape [GM13]. We then estimate
the FMN using only 6 out of the 24 handcrafted landmarks.

The corresponding shapes and distinctive functions are shown
in Figure 10(a). The domain experts verified our result and linked
these regions to a behavioural interpretation of the differences be-
tween animals that result in specific localized bone modifications.

Note that the clustering information is given by the geographic
locations where the bones were collected, and the differences are
not visually evident. We run the separability evaluation as in Fig-
ure 9(d), and achieve the plot in Figure 10(b). Obviously in this
case, the cross-collection variability is more subtle than the one
in Figure 9. However, as shown in Figure 10(b), the clustering er-
ror decreases with more and more labeled data, suggesting that the
relevance of the signals our method captures and the nuance cross-
collection variability.

7.3. Learning with CSDs

Our formulation of CSD provides a compact representation for
each shape in a collection as a matrix of size k X k, where k is
the size of the latent basis. The matrix form of the CSD, in particu-
lar, allows us to use a basic learning pipeline to learn properties of
shapes from the characteristic shape representation.

In this section, we use the area-based CSDs as input to a neural-
network that learns to predict parameters of a generative model of
3D shapes and compare the result to another widely used 3D rep-
resentation: point-clouds extracted from a 3D surface.

The dataset of interest consists of 400 human shape bodies
generated with the open-source implementation [WLS*16] of the
SCAPE method [ASK*05]. In particular, each shape is generated
with a 12-dimensional vector of parameters, which is our regression
target (see details about the data generalization in Appendix D).

In the experiment, we estimate the input functional maps (of size
50 x 50) within the collection using a recent unsupervised learn-
ing approach for shape matching [RO18]. On top of that, we test
CSDs that are extracted from FMN of varying topology (e.g., the
10-NN and 20-NN graph with respect to the spectral distances),
and truncated at different dimensions (we also report the results on
ground-truth maps in Appendix D). Besides, we consider two types
of architectures when the input is a CSD: Multi-Linear Perceptrons
(MLPs) and Convolutional Neural Networks (CNNs).

For the point-based learning baselines, we construct the input 3D
point-clouds by sampling 1024 points uniformly area-wise from the
surface of each mesh. In particular, we evaluate three PointNet-like
networks [QSMG16] that use encoding/decoding schemes similar
to those used in [ADMG18].

Figure 11 shows the MSE between the predicted vectors and the
ground-truth for the test shapes in a variety of conditions. And the
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dashed-line shows the performance of the best over-all point-based
architectures. Several interesting trends are revealed by Figure 11:
First, CNNs operating with CSDs perform better than MLPs and
both perform significantly better than PC-based nets for a wide
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variety of different configurations. Second, there seems to exist a
optimal range between 20 and 30 CSD dimensions, which consis-
tently produces better results across different network topologies.
Third, denser topologies give rise to better results. In Figure 17
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Figure 11: Regression-based comparison of different input modal-
ities and neural-nets. The y-axis depicts the Mean-Square-Error

(MSE) on the test split. The x-axis corresponds to the number of

CSD dimensions each shape is associated with. The dashed line is
the point-based baseline (best of 15 models). Models starting with
M (solid lines) are MLPs and starting with C (dashed lines) CNNs.
knn 10 / knn 20: sparse 10/20-nearest-neighbor FMN topologies.
The results are averages of 5 random seeds.

(Appendix) we show that when using ground truth functional maps,
similar qualitative behaviors occur e.g. CNNs are consistently bet-
ter than MLPs, and the lowest MSE is achieved with a CNN operat-
ing with CSDs extracted from the densest-possible FMN topology:
a clique, with MSE reaching ~ 0.01.

Indeed, CNNs rely and take advantage of the spatial proximities
found in regular-grid data such as images. Analogously, according
to our formulation for CSD, we have, e.g. in Eq. (3) , D;(k,l) = yZyl
, where yy. is the K" CCLB w.rt. S;. Thus, instead of spatial prox-
imity, the neighboring entries in our CSD encode and provide in-
teractions of function pairs that are close in the “spectral” domain.

8. Conclusions

We have presented a novel approach for representing and analyz-
ing 3D shapes in a context of one or multiple collections. Our con-
struction of the limit shape and the characteristic shape differences
is based on functional maps network connecting the shapes and a
novel analysis that demonstrates that previously used latent func-
tional spaces can both be endowed with a natural geometric struc-
ture and provide a basis for representing and comparing shapes in
an unbiased way. As a collection summary, the limit shape, though
not necessarily emebeddable, is shape-like in many ways and we
have demonstrated its use in computing better functional maps in
challenging situations. Our characteristic shape differences repre-
sent each shape in the collection as a pair of functional operators,
stored as small-sized matrices in practice. This representation has
many appealing properties, including invariance to rigid motions
as well as full intrinsic informativeness that permits reconstruc-
tion. We have demonstrated their use in extracting and highlight-
ing variability of interest in a set of shapes, while also suppress-
ing other variability that we regard as nuisance (and which may
in fact manifest in larger geometric deformations). We believe that
this highly nuanced understanding of shape distortions and vari-
ability is important for many applications in engineering, biology,
and medicine.

We also note that the matrix form of characteristic shape differ-
ences makes it an appealing representation for 3D deep learning
applications. Beyond that, the difference matrices also reflect the
internal structure of shapes, which renders its potential in building
3D generative model. We plan to explore this in the future work.
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Appendix A: Technical Details
Proof of Theorem 4.1

Proof First note that &, is well-defined since by consistency,
D;Y; = ®,C;;Y; = ®;Y;. The regularization constraint }; Yl-TY,- =1d
therefore implies ¥;(®;M;®g)T &;M;dy = ®L (¥;M;)Py = Id.
Now let E =Y ; YiTAiYi to be a diagonal matrix (implicitly corre-
sponds to the eigenvalues of the latent shape). Note that A; is a non-
negative diagonal matrix, thus E admits an eigen-decomposition
EU = UAg and we let ®y = &yU. Direct computation yields that
@} (Y;M;)®Py = Id, and D} (Y,;L;)®y = Ag. Thus it follows from
L MDGA) = Ag = DILD, that Ldy = MDyAg. On the other
hand, it is easy to verify that the eigenfunctions of (L, M) satisfies
the consistency constraint and the normalization, therefore they are
equivalent. []

Proof of Lemma 6.1

Proof We first prove that:
10 = Do = 12:(F) = Pi(F) o =
1(Di = D) = (Pi(F) = Pj(F)) |[Bro-
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It is easy to verify that (FFT)? = (FFT), since FTF = Id. In
other words, FFT is a projection operator, then so is /d — FFT.
For the sake of simplicity, we denote in the following D; — D; and

Id—FFT by A, K respectively. Obviously A, K are both symmet-
ric matrices, and K> = K. Then the above equivalence can be re-
rewritten as

Trace(AT A) — Trace (KT AT AK) = Trace[(A — AK)T (A— AK)),

which amounts to Trace(K” AT AK) = Trace(KT AT A).
Finally, the equivalence follows from

Trace(KTATAK) = Trace(AT AKKT)
= Trace(ATAKz) = Trace(AT AK).
Finally, the difference is equal to
2 2 T2 T oy T2
|AK ||fpo = Trace(KA“K) = Trace(F" A°F(F' F)) =Trace(F" A°F)
O

Appendix B: Details on CCLB

Consistent Latent Basis Extraction In [WHGI13], the authors
consider the minimizing the following energy with respect to in-
consistency of a given FMN:

2
E(Y): Z HCl'jYiinHF?Yv:(YlTaYZTf”
(i.j)eg

BB L)

where C;; are functional maps of size k x k. To avoid degenerate so-
lutions, the authors introduce a regularization term Y Ty =I. Under
this constraint, minimizing E(Y') reduces to finding the eigenfunc-
tions of a matrix W, whose (i, j)—th block is given as follows:

Y u+clicy) ifi=j,
(i.j")€g (10)

Wij=
—(Cji+cl) otherwise.

And we collect Y = [Y[, ¥ ... ¥]]T, the smallest (closest to 0)
ke < k eigenbasis of W, and let ¥; € R¥*k pe the consistent latent
basis on S;.

Limit Shape of Shapes with Different Triangulations In Sec-
tion 4, we compute the ground truth limit shape of the collection
in Figure 2(a) according to Theorem 4.1. Now we compare it to
the limit shape of the remeshed version (each of around 5000 ver-
tices) of those shapes, computed via Algorithm 1. In particular, the
maps between the remeshed shapes are obtained by mapping each
of them to a common template, which are neither injective nor sur-
jective. We plot the 11" to the 21% eigenfunctions of the ground-
truth limit shape, the computed limit shape, and one of the real
shape respectively on the top, middle and bottom row in the left
panel of Figure 12, and in the right panel we plot the respective
spectra. It is evident that, the computed eigenbasis and spectrum of
the limit shape approximate to the ground-truth, despite the basis
compression and noisy FMN.

Projected Shape Difference We show a simple illustration of the
projected shape difference in Figure 13. Given a sphere, we first
compute the shape difference, D, on it with respect to a deformed
sphere. We pick three function fi, f>, f3 on the sphere and map

them to the deformed one using the functional map. We define
do(A,B) = ||A — B||gro/ ||Bl|Fro» Which in turn indicates how far
D and the projected versions w.r.t. f; from the identity operator. In-
tuitively, projecting fi, which is supported by the most deformed
region, leads to the most significant shrink in operator distance,
while projecting out f3 leads to little change.

Appendix C: Supplementary Shape Analysis Results
Example of Biased Results of the Original Shape Differences

In this example, we align a collection of cats and dogs shown in
Figure 14 without any maps across them using the original and the
characteristic shape differences. For the former, we assume that a
pair of shapes, e.g., the boxed animals in Figure 14, to be used as
bases in each cluster, and compute the eigenvalues of the respec-
tive shape differences as descriptors. On the other hand, we also
use the eigenvalues of the CSDs as the descriptor for each shape
in the collection, without any a priori information. Note that, when
using the approach of [ROA™13] even after fixing the correspond-
ing base shapes, none of the base shape choices lead to the correct
result. We demonstrate one such result in the bottom row of Fig-
ure 14, obtained by fixing the base shapes to be the ones shown
in the blue boxes. In contrast, using the characteristic shape differ-
ences results in the ground-truth alignment (middle row). Note that
the same experiment has been conducted in [ROA*13] (see Fig-
ure 13 therein), however, to obtain the exact alignment, the authors
used all pairwise shape differences.

Details on the Experiment in Figure 9

First of all, to demonstrate the robustness of our method with re-
spect to noise in map estimations, we show one typical inaccurate
computed map in Figure 15, where exists symmetrical mismatched
parts. Indeed, 13 out of the 56 maps estimated in this experiment
contain visually evident mismatched parts.

For detecting the extrinsic cross-collection variability as shown
in the right-most column of Figure 9, we consider the following
inner product on shape S defined as follows:

o[BG it
E(l’]){2i¢jE(i,j) i= v

where E(i,j) = ||vi — ijzM(i,i)M(j,j), in which v;,v; are two
vertices on S and M (i, i) is the lumped area mass round v;. The we
define a ‘pseudo’ characteristic shape difference encoding the ex-
trinsic deformation on S as Y7 &7 E®Y , where Y is the CCLB with
respect to S, and P is the eigenbasis on S. We call it a pseudo CSD
because the limit shape is not embedded in R?, thus one can not
in general define such inner product on the limit shape. However,
as shown in Figure 9, such approach indeed captures the extrinsic
deformation, while being insensitive to the intrinsic deformation
captured by the area-based CSDs.

Appendix D: Neural Network Details
Data Preparation

In [WLS*16], body variations are controlled with 12 latent pa-
rameters € [0,1], which informally encode shape attributes such
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Figure 12: Left: the 12th to 21st eigenfunctions of the ground-truth limit (top); that of the computed limit shape (middle); that of the real
shape (bottom). The color goes from negative values (blue) to positive values (red), the signs of eigenfunctions are synced; Right: the spectra
comparison. It shows that in practice the computed limit shape well approximates the ground-truth one. .

c
do(D,T) = 0.499 (72)

do(P(f2),I) = 0.429

Figure 13: After projecting out the function f\, f», f3, the distances
from the corresponding projected shape differences to the identity
operator I varies (See text for details).
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Figure 14: Simultaneous analogies between a collection of cats
and dogs without maps across them. The ground-truth correspon-
dences are indicated by the color-coding. In the middle row, the
characteristic shape differences recover the ground-truth align-
ment. On the other hand, the shape differences fail to recover —
one failure example using the shape differences with the boxed base
shape are shown on the bottom.

Match via Latent
Shape Differences

Match via Shape
Differences

as height, leg-girth, belly protrusion, etc. To generate our meshes
we sample uniformly i.i.d. each of the latent parameters and con-
sider eight modifications of the standard T-pose. See Figure 16 for
a sample of the resulting meshes.

(© 2019 The Author(s)
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Figure 15: An example of the inaccurate maps presented in the in-
put FMN to our method, suggesting the robustness of our method.
Note also that the shapes are of different triangulations, and there-
fore no trivial bijective map is available.

Figure 16: Example synthetically generated meshes used within
the leaning-based pipeline of Section 7.3, displaying a randomly
selected mesh of each pose-class.

Point-Cloud Architectures

We used three configurations for making point-base architectures.
In a spirit similar to [QSMG16] we implemented all (3-layer deep)
encoders as 1-D convolutions with filter size 1, i.e., treating each
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point independently. The output of the last encoding layer was fur-
ther processed by a feature-wise max-pool which was further pro-
cessed by an FC-ReLU decoder. Table 2 shows the exact number of
parameters (columns) in each consecutive layer for the three con-
figurations (rows).

Version  Encoder (# filters)  Decoder (# Neurons)
A {32, 64, 64} {64, 12}
B {64, 128, 128} {64, 12}
C {64, 128, 128} {64, 128, 12}

Table 2: Size of layers in point-based architectures for the versions
that formed the baseline of the regression experiments. The further
right a parameter is displayed the deeper the underlying layer of
architecture is.

We trained each of these architectures with learning rates of
{0.001, 0.002, 0.005, 0.007, 0.01}. The learning rate of 0.005 gave
the best performance in the regression experiments..

MLPs

We used FC-ReLLU MLPS for which the last 3 layers had {50, 100,
12} neurons respectively. The number of neurons of the first layer
was calibrated according to the size of the input difference matrix.
Table 3 shows their correspondence.

# Latent-Bases 5 10 20 30 40 50
# Neurons 369 185 62 29 17 11

Table 3: Number of neurons in first layer of MLP-architectures
based on the size corresponding to the #Latent-Bases.

CNNs

The encoding part of our CNNs was comprised by two convolu-
tional layers leading to a single FC-ReLU layer with 12 neurons.
See Table 4 and Table 5 for the parameters of the convolutional
layers when the input was 20 x 20 difference matrices and 40 x 40,
respectively.

Layer | #Filters | Kernel-size | Stride
First 10 2,2) 1
Second 10 4.4 2

Table 4: CNN parameters with 20 x 20 input.
Training Details

Through all the experiments we use a 75%, 15%, 10% train-test-val
split of the resulting dataset.

For training we used stochastic gradient descent with Adam
[KB14] (B; = 0.9) and batch-size of 50 throughout all experiments.
Moreover we normalized the differences matrices by subtracting
their average wrt. the training split. For the regression task, the
networks operating with CSD were trained with a learning rate of
0.007.

The reported MSE is the average over five random data-splits and
weight initializations of the neural nets. The networks are trained
maximally for 500 epochs and the displayed MSE correspond to
the model (epoch) that optimized the validation split.

Layer | #Filters | Kernel-size | Stride
First 10 (3,3) 2
Second 10 4.4 2

Table 5: CNN parameters with 40 x 40 input.

Additional Results on Regression-based Learning

We present the result of training with the CSDs using the ground-
truth maps in Figure 17. See the caption for details
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Figure 17: Regression-based comparison of different input modal-
ities and neural-nets, when using ground-truth maps. On the top
plot the y-axis depicts the Mean-Square-Error (MSE) on the test
split. On the bottom plot the y-axis depicts the fraction of test
shapes for which their predicted parameter vector was the near-
est neighbor to their corresponding ground-truth parameter vec-
tor; among all ground-truth parameter vectors of the test split. For
both plots: the x-axis corresponds to the number of rows (equally,
columns) the underlying CSD of each shape has. The dashed line is
the point-based baseline (best of 15 such models). Models start-
ing with M (solid lines) are MLPs and starting with C (dashed
lines) CNNs. knn 10 / knn 20: sparse 10/20-nearest-neighbor FMN
topologies. Clique stands for the cliqgue FMN topology. The results
are averages of 5 random seeds.
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