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Abstract

Real-life man-made objects often exhibit strong and
easily-identifiable structure, as a direct result of their de-
sign or their intended functionality. Structure typically ap-
pears in the form of individual parts and their arrangement.
Knowing about object structure can be an important cue
for object recognition and scene understanding - a key goal
for various AR and robotics applications. However, com-
modity RGB-D sensors used in these scenarios only pro-
duce raw, unorganized point clouds, without structural in-
formation about the captured scene. Moreover, the gener-
ated data is commonly partial and susceptible to artifacts
and noise, which makes inferring the structure of scanned
objects challenging. In this paper, we organize large shape
collections into parameterized shape templates to capture
the underlying structure of the objects. The templates allow
us to transfer the structural information onto new objects
and incomplete scans. We employ a deep neural network
that matches the partial scan with one of the shape tem-
plates, then match and fit it to complete and detailed mod-
els from the collection. This allows us to faithfully label its
parts and to guide the reconstruction of the scanned object.
We showcase the effectiveness of our method by comparing
it to other state-of-the-art approaches.

1. Introduction
In all their variability, real-life man-made objects are of-

ten designed with certain basic principles in mind, relating
to their target functionality, affordances, physical and mate-
rial constraints, or even aesthetics. As a result, most objects
can be described by common structural forms or patterns.
For example, chairs often follow a model of “four-legs”,
with/without armrests, “S-”shaped, or swivel. Object struc-
ture can be modeled by identifying the most common part
layouts, spatial interrelations and part symmetries.

Figure 1: Structure transfer with templates. Given a partial scan
(a), we detect and fit a matching structural template (b). A similar
complete shape from a collection, recovered and deformed to fit
the scan (c). (d) Semantic part labels transferred onto the scan.

Associating an unknown object with a particular struc-
tural pattern can help with understanding the object’s prop-
erties and purpose. In particular, structure can help in cases
where part of the object geometry is missing, due to the
object being only partially observed. This is a common sce-
nario in 3D sensing pipelines, e.g. those arising in aug-
mented reality (AR) and robotics, or used for data acquisi-
tion for graphics/visual effects applications, where a scene
is reconstructed for further editing. 3D sensing pipelines
typically rely on scanning a scene through RGB-D sensors,
which commonly produce incomplete, noisy, and unorga-
nized point scans. The resulting reconstructed geometry
often is difficult to parse and may fail to meet the require-
ments of applications that use more precise representations
of shapes, e.g. CAD models. Faithfully inferring object
structure and using it to recover a corresponding complete
surface mesh from partial sensor data remains one of the
fundamental problems in shape reconstruction research.

We introduce a pipeline for transferring structural infor-
mation from large shape collections onto unknown scanned
shapes. We model object structure via a small number of
hand-crafted templates, to capture the structural patterns ex-
hibited by shapes of a particular category. Our hand-crafted
templates are designed to represent an abstraction of the
shape. This is similar to how designers model shapes, of-
ten starting with a rough structure in mind and based on the
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desired utility – only afterwards are the details carved out.
Manually providing the templates is meant to emulate this
process. Our templates are abstract, lightweight, yet mean-
ingful enough to account for thousands of shapes in vari-
ous forms. Each template consists of axis-aligned boxes in
a specific spatial arrangement, providing knowledge about
the structural organization of the shape and the relationship
of its parts. We parameterize the templates so as to fit them,
via state-of-the-art optimization, to a particular shape.

We then leverage the structural information encoded by
the templates for the entire shape collection to learn their
structure. This allows us to identify partial shapes obtained
through scanning. To address this problem of inferring the
structure of a shape from its partial geometry, we employ
a deep neural network trained on partial views of shapes.
The network is able to detect shape structure. Using this,
one can identify the scanned object by retrieving the closest
shape from the collection and fitting it to the scan. Addi-
tional applications of the templates include part labels for
partial scans, and recovery of a fully meshed CAD model to
replace the scan in scene modeling scenarios (Fig. 1).

2. Related Work
Due to the complexity and variability of objects, efforts

on representing and understanding shapes focus on their
structure [21], their features and similarities [1], the seman-
tic meaning of individual parts [35], and even the creative
process of shape modeling [5].

Structure-aware Representations. It has been recog-
nized that the structural organization of shapes plays an em-
inent role in modeling and reconstructing shapes. Existing
approaches focus on identifying shape parameters [10], re-
lations [18, 16], symmetries [24, 36], correspondences [22],
combinatorial variations [9, 2], or co-variations [34]. More
recently, Schulz et al. [28] show that discrete and continu-
ous shape features can be represented as low-dimensional
manifolds and then used to retrieve individual shapes from
large shape collections. All these techniques identify and
represent shape structure, however, they do not aim at re-
constructing or replacing partial scans.

Shape Templates and Part-based Models. Shape tem-
plates have proven to be an effective tool for inferring
higher-level knowledge of shapes, not only in the context
of 3D geometry [23], but also for various image process-
ing tasks [8, 7, 20]. Kim et al. [19] employ part-based
templates to encode deformations and fit object labels to
scanned point clouds. Kalogerakis et al. [16] learn distribu-
tions of parts to encode part placements, Kim et al. [17] pro-
pose a fully automatic approach for inferring probabilistic
part-based templates to capture style and variation of shapes
in large model collections. Unlike the existing approaches,
we use shape templates to organize large shape repositories
and to learn the structure of shapes and their parts.
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Figure 2: Overview: we propose a two-stage framework for pars-
ing shapes with the end goal of retrieving structure from partial
point clouds. In the first stage (shape collection preprocessing -
left), we organize the shapes in our collection according to their
structure, using templates. In the second stage (structure transfer
to partial shapes - right), we train a deep neural network to retrieve
a proper geometry-based cluster and a suitable structure template.
We further refine the template parameters through optimization.

Shape Reconstruction. An especially difficult prob-
lem is the reconstruction of shapes from unstructured or
incomplete data, such as partial meshes or point clouds.
Symmetry-driven reconstruction leverages symmetric prop-
erties in the scanned data to complete occluded regions [24,
3]. Sipiran et al. [31] rely on local features and fit sur-
face functions to incomplete point clouds. Shen et al. [30]
propose a bottom up structure recovery pipeline that al-
lows to replace incomplete point scans of man-made objects
by aligning them to existing shapes in a repository.Sung et
al. [32] use 3D shape collections and exploit symmetry re-
lations to infer global structure and complete point clouds
with substantial occlusion. However, they concentrate on
learning the distributions of shape part features, and use the
collection to retrieve only individual shape parts, not entire
shapes to match the partial point cloud.

3. Overview
Our framework works in two stages (Fig. 2). In the first

step, we fit a set of pre-defined shape templates to shapes
of a shape collection. This is necessary, as shape reposito-
ries commonly do not provide information about the struc-
ture of shapes, but instead only store surface meshes of the
models. Fitting templates allows us to infer the structural
organization of the shape collection. Moreover, we cluster
shapes according to their template parameterization. This
provides a geometric organization of the shapes, which can
be leveraged to perform approximate shape retrieval from
the collection. In the second step, we employ the template
organization imposed on the collection above to infer shape
structure for unseen shapes with partial geometry. We use
the inferred structure to retrieve and fit known shapes from
the database to the partial scan, which can directly be used
as a proxy shape for scanned geometry. Additionally, the
structure allows to identify and annotate shape parts and to
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reconstruct the object in a structure-aware manner.

4. Shape Collection Preprocessing
In this section we describe the first stage of our pipeline,

which involves organizing the shapes in the collection S
using our primitive-based shape templates. They provide
a structure-aware shape representation. We assume that all
the models in S are pre-aligned, which makes defining a
common frame of reference possible.

4.1. Structure-Aware Templates

We first define a set of structural templates. Each tem-
plate captures a particular structural “mode” frequently
found among shapes in that family – in the “chair” exam-
ple, one template might capture the common four-legged
pattern, while another the swivel structure.We fit these tem-
plates to all shapes of that family in the collection, and
choose the most appropriate template for each shape.

Template Definition. A template is a collection of de-
formable axis-aligned box primitives and connectors, form-
ing a tree graph structure. Each box represents a structural
part of a shape. Specifically, a template consists of:

Nodes. Graph nodes (vertices) are associated with the
box primitives in the template. Each box is described by 6
parameters, namely its position and size in 3D.

Connectors. Template graph edges “glue” together ad-
jacent boxes, structurally attaching them and constraining
their dimensional parameters. Connectors also define the
relative positions of child boxes to parent boxes. We only
model attachment at right angles.

Groups. Symmetric relationships are often present
among structural parts of shapes, e.g. between the four legs
of a four-legged chair. In terms of our templates, symme-
tries are modeled by symmetric structural constraints be-
tween graph nodes, which require that the parts (in this ex-
ample, the four leg boxes) are identical. This symmetry
meta-information is encoded via groups in the graph.

We pre-design a set of NT = 21 templates in total. Each
shape family is associated with a subset of these templates,
but a single template can be shared by more than one shape
family. For example, tables and desks often have similar
structure, which is reflected by them sharing one of their
templates. The graph structure of the templates stays fixed
throughout our pipeline, but we can tune a template to a
particular shape by finding an optimal configuration of tem-
plate box parameters. The fitted template is then a structure-
aware representation of the shape, with semantic informa-
tion about the shape parts encoded as meta-information.

4.2. Template Selection and Fitting

We are now given a shape S of a particular family, in
the form of an unstructured point cloud sampled from a

Figure 3: (a) A shape template with semantic information em-
bedded in its parts (b) Top - various shapes from the collection: a
lamp, a chair with folding legs, and an airplane. Bottom - The fit-
ted templates, with parameters that best approximate those shapes.

database shape. The aim is to find which template struc-
ture T = T (S) best approximates the structure of S, and
compute values for its parameters P(S, T ) (box sizes and
locations) to fit the shape’s geometry. We proceed in two
stages: first, we fit all templates pertaining to the shape’s
family to the shape, e.g. chair templates to a chair shape.
Then, we select the best-fitting template from that set.

4.2.1 Template Fitting

We aim to fit a template structure T to an input point cloud
S. The template consists of boxes Bi, i = 1, 2, ..., N . For
simplicity, in the following discussion we denote both the
template and its shape-dependent parameters P(S, T ) as T .
The optimal parameter values are found by solving an opti-
mization problem T ∗ = argmin

T
Etotal(T ) =

∑
i λiEi(T )

where i ranges over individual energy terms. The various
terms in Etotal encourage a close match between the “box-
like” template shape and the input point cloud at the op-
timum. We used λproj = 0.3, λbbox = 1, λmin = 0.8,
λdis-ent = 0.4 in all our experiments. The individual energy
terms are detailed below. A qualitative evaluation of various
energy terms is discussed in the supplementary material.

Projection: The sum of distances from all points in
the point cloud S to the template geometry: Eproj(T ) =∑

p∈S minj=1,2,...,Nd(p, Bj), where d(p, Bj) is the mini-
mum projection distance from point p ∈ R3 to box Bj in
the template. The projection term ensures that the optimiza-
tion produces a well-fitting template.

Bounding Box: The difference in size (3D volumes) be-
tween the bounding box of the point cloud S and that of the
template T : Ebbox(T ) = |V ol(Tbbox)− V ol(Sbbox)|

Minimalism: The total volume of the template in space:
Emin(T ) =

∑
Bi∈T V ol(Bi) With this term, the thinnest

possible set of boxes is fitted to the point cloud, ensuring
that the template geometry is no bigger than need be. While
this term overlaps with the bounding-box energy, we found
that it promotes faster optimization convergence.

674



Disentanglement: The amount of overlap between
boxes: Edis-ent(T ) =

∑
Bi∈T

∑
Bj∈T,Bj 6=Bi

V ol(Bi ∩ Bj)
This term requires that template boxes don’t spatially ob-
struct each other, since they are meant to capture distinct
semantic shape parts.

4.2.2 Optimization and Template Selection

The energy Etotal(T ) is highly non-convex, requiring an op-
timization scheme that avoids local minima. Evolutionary
optimization strategies are particularly appropriate for this
task [13], since they continuously adapt the step size based
on previous observations and utilize a randomization factor
to probe large energy landscapes. In addition, they are more
easily parallelizable compared to classical gradient-based
techniques. We employ the Covariance Matrix Analysis -
Evolutionary Strategy (CMA-ES) [12], which uses correla-
tions between different variables to determine the step size.

Given the non-convexity and in order to aid convergence,
we initialize the optimization based on solutions of previ-
ously successful optimizations for other shapes of the same
family. We eventually choose the optimal set of parameter
values across all runs as the best fit for a given template.
Once all candidate templates have been fitted to a given
shape, we select the best-fitting one T ∗ as the one that min-
imizes Etotal(T ) over all candidate templates. A caveat to
performing template selection when two similar templates
are used and also various convergence timings are discussed
in the supplementary material.

4.3. Structural Shape Clustering

We further use the templates to cluster the shapes in the
collection into groups of similar structure and rough dimen-
sions. We first group the shapes in the collection accord-
ing to their best fitting template structure. Then, we use
the vectors of template parameters (box dimensions) to fur-
ther divide the shapes of each group into clusters of shapes
of similar part dimensions via k-means. We use 10 clus-
ters per template (NC = 210 clusters total). Each cluster
is then associated with a specific template, but can contain
shapes from different families, since the same template can
be shared by more than one family (e.g. tables and desks).
The clusters will be used to inform the structure identifica-
tion of partially scanned shapes.

5. Structure Transfer to Partial Shapes
Having used the templates to organize the data in our

shape collection in terms of their structure, we now transfer
structure to partial scans of objects not present in the shape
collection. We use the structural information to better un-
derstand the partial object’s shape, and structure it by as-
signing and fitting it to one of the known structural patterns
found in the collection.
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Figure 4: Classification Network, inspired by [27]. Multiple mlp-
conv layers, which are powerful local feature extractors, are fol-
lowed by a set of fully connected layers. This network learns and
shape cluster from the input signed distance field of a partial point
scan, and from that, the best structural template.

5.1. Inferring Structure from Partial Scans

The input to the structure inference stage is a partial point
scan Spartial. The output is one of the templates, fitted to
Spartial; this process imposes structure on the partial point
cloud. We train a deep neural network that (indirectly) as-
signs the partial shape to a particular shape template; it pre-
dicts structure from partial geometry. Trained with sim-
ulated partial views, the network learns to ignore various
artifacts and noise commonly found in real RGB-D scans.
Once the network selects the template pattern, we further
optimize template parameters to fit the scan ( Section 4.2.1).

Note that the template assignment, on its own, is not suf-
ficient to identify a shape, since a particular template graph
can be shared by multiple shape families. Not knowing the
shape family has the additional negative side-effect that we
cannot intelligently initialize the fitting CMA-ES optimiza-
tion as described in Section 4.2.2, which can adversely af-
fect performance both in terms of runtime and quality of
results. Thus, instead of having the network directly predict
the template structure, we train it to predict the shape clus-
ter instead; since each cluster is associated with a particular
template structure, the network also indirectly predicts the
template. The predicted cluster also provides, via its shapes,
a set of candidate template fits for that particular template
pattern, which can be used as initialization to get the opti-
mal fit of the template pattern to the partial scan. Thus, the
network predicts, from raw partial geometry, both a rough
structure pattern and part dimensions for the partial scan.

5.1.1 Classification Network

The input to the network is the signed distance field dpartial
of the partial point scan Spartial. The output is a vector
of length NC , encoding the probabilities with which each
shape cluster corresponds to the scan. The network archi-
tecture (Fig. 4) uses mlpconv layers[27], shown to be pow-
erful local patch feature extractors. They are followed by a
number of fully connected layers and dropout layers of fac-
tor 0.2. We use cross-entropy [11] as the loss function and
perform data augmentation [27] to reduce overfitting.

675



Figure 5: Structure-aware shape manipulation. Left to right:
source shape and fitted template, target shape and fitted template,
deformed version of the source shape to match the target. The
rightmost heat map indicates the normalized per-vertex magnitude
of deformation induced on the source shape.

5.1.2 Partial Shape Identification

The most likely shape clusters, as predicted by the net-
work, indicate the most likely template structures for the
partial point cloud Spartial. We fit templates corresponding
to the k = 3 most likely clusters to the partial shape (Sec-
tion 4.2.1) and pick the best-fitting template Tpartial based
on fitting error. This fully structures the partial shape and
identifies its family. We initialize the optimization for each
template by averaging the best-fitting parameter values for
the shapes in the cluster where the template came from. The
optimization also produces the optimal template parameters
P(Spartial, Tpartial) aligning the template to partial geometry.

5.2. Structure-Aware Partial Shape Recovery

The identification of a partial shape, via its fitted tem-
plate and family, enables shape recovery: we can retrieve,
among all shapes in the collection, one that fits the partial
point cloud. This is useful for scene understanding sce-
narios, in AR or robotics, where a partial point cloud can
be mapped to (and possibly replaced by) an already known
shape, or for editing a scanned scene for CG applications.
Since we cannot directly use shape geometry to detect the
most similar shape as our input is partial, we use fitted tem-
plates to provide a rough proxy for geometric and struc-
tural similarity, via their box dimensions and locations. We
thus look for a shape in the collection that matches Spartial in
terms of its parametric template fit. We search in the k = 3
most likely clusters as provided by the network. The out-
put of this stage is a shape from the collection Ssource, along
with the optimal parameter values P(Ssource, Tpartial) that fit
Ssource to the template of the partial shape, Tpartial.

5.2.1 Fitting the known shape to the scan

Our templates provide an intuitive way of simultaneously
manipulating all shapes sharing the template structure: in
this case, we can deform the collection shape Ssource to

Figure 6: Semantic labeling for airplanes, chairs, animals, lamps
and mugs, as produced by the box-template parameters. The parts
are color-coded based on their tags: airplanes-{(orange, body),
(red, wings), (blue, tail), (green, engine), (yellow, front wheel)},
chairs-{(orange, seat), (red, base), (yellow, swivel), (green, arm-
rests), (blue, backrest)}, animals-{(blue, head), (orange, torso),
(red, tail), (yellow, legs)}, lamps-{(orange, bulb), (yellow, stem),
(red, base)}, mugs-{(orange, cup),(green, handle)}.

Figure 7: Semantic labeling for partial point scans of shapes, us-
ing our pipeline for structure transfer.

match the partial scan Spartial. This will recover a complete
shape matching the scan. Since finding Ssource takes into
account the template fit, the amount of distortion that this
deformation process induces to Ssource is typically minimal.

Template-based Deformation Assume we are given two
shapes S1, S2 with compatible structure; namely, their best-
fitting templates (Section 4.2) have the same graph struc-
ture, but different parameter values. We denote the two pa-
rameterized fitted templates for the two models by B1 and
B2, both with n boxes. The goal now is to “morph” S1 to
S2. Our simple approach is inspired by traditional skinning
techniques [29, 14, 15]: since there is a box-to-box corre-
spondence between B1 and B2, we define the transforma-
tion of S1 to S2 via a weighted sum of the affine transfor-
mations {Ai(.)} that map each individual box B1,i to its
corresponding box B2,i, for i = 1, 2, ..., n. The parameters
of B1,i are its center c1 = [cx1 , c

y
1, c

z
1]

T and its dimensions
l1 = [lx1 , l

y
1 , l

z
1]

T – similarly for B2,i. Then, the affine trans-
formation mapping each point p1 on B1,i to its correspond-
ing point p2 on B2,i is given by p2 = c2 +R12(p1 − c1)

where R12 = diag
(

lx2
lx1
,
ly2
ly1
,
lz2
lz1

)
. Using the individual box
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Category #Shapes PointNet SyncSpecCNN Ours
Chair 3746 89.6 90.24 87.37
Table 4520 80.6 82.13 88.62
Cup 184 93.0 92.73 94.06

Lamp 1547 80.8 84.65 78.03
Airplane 2690 83.4 81.55 76.71

Table 1: Intersection-over-Union (IoU) percentages for our part
labeling, evaluated against the ground truth and compared to [26]
and [38]. The highest IoU value for each category is in bold.

Task Accuracy
Best Best 2 Best 3

Cluster Classification - Training 89% 94% 98%
Cluster Classification - Testing 73 % 83 % 92 %

Table 2: Performance of the dual-classification network for tem-
plate and cluster classification on partial virtual scans of ShapeNet
objects. The three columns report the percentage of cases where
the correct fit (cluster or template) was found among the 1, 2 or 3
most likely fits according to the net’s output.

transformations, any given point q1 on S1 is mapped to
a point q2 on S2 via: q2 = A(q1) =

∑
i wi(q1)Ai(q1)∑

i wi(q1)
.

This yields a continuous full shape transformation. We
choose the weights to be in inverse relation to the dis-
tance between the point and the boxes, to ensure that any
one box only locally affects the points inside and around
it. Additionally, we want the weights to be smooth, to
preserve smoothness of the underlying geometry. We use
wi(q) = exp

(
−d(q, i)2

)
, where d(q, i) denotes the dis-

tance between point q and the i-th box in the template. Af-
ter mapping all points on S1 using the process above, we
perform a global scaling so that the final deformed shape
S̃1 lies in the same global bounding box as B2 and thus
matches its proportions, but preserves the shape details from
S1. Note that S1 and S2 can be represented by either meshes
or point clouds at this stage. In the former case, we trans-
form the vertices of S1 and keep the connectivity the same.

Fitting source to partial In order to recover the best fit-
ting shape for our partial scan, we simply apply the process
above with S1 = Ssource and S2 = Spartial. The output S̃source
is the recovered model.

6. Results and Discussion

The pipeline has been implemented in C++ – we plan to
make the code freely available online. Our shape collection
is a subset of the ShapeNet repository [4]. We used shapes
from 10 different categories: monitors, cups, tables, chairs,
benches, desks, dressers, sofas, airplanes, and lamps.

Figure 8: The three most likely templates, as determined by the
neural network for given partial scans. Left to right: input partial
scan and possible structure templates (pre-parameter fitting), in
decreasing order of likelihood.

6.1. Template Fitting and Selection for Database
Shapes

We fit templates running the CMA-ES [12] algorithm for
four different initializations. Some examples of fitting tem-
plate parameters to shapes in the collection S (Section 4) are
shown in Fig. 3. The success of this process is critical for
various other results, eg. shape manipulation (Fig. 5) and
part labeling (Fig. 6), and thus fitting results are implicitly
showcased as an intermediate step in these figures.

6.2. Template-Based Deformation

To evaluate our template-based deformation (Sec-
tion 5.2.1), we show some results with complete shapes
in Fig. 5. We show the source S1 and target S̃1 shapes,
their fitted templates, and the deformed version of S1 that
aligns to S̃1. Since all shapes are scaled to fit the figure, we
measure the magnitude of induced deformation by via the
normalized Euclidean distance between each vertex in S1

and its mapped location in S̃1, and show it as a heat map.
The box-based transformations help individually adapt, and
globally align, the individual semantic parts, without dras-
tically losing their individuality (while the overall sizes of
seats in Fig. 5 match, they do not deform to align with one
another). This enables generating variations of shapes in
a structure-preserving way, which could be interesting for
editing or morphing applications; this is however not a fo-
cus of this paper.

6.3. Deep Network Training and Output

Table 2 shows the accuracy of cluster classification
achieved by the classification network for partial scans of
shapes. The network operates on 22051 signed distance
fields obtained from virtually generated partial scans of
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Figure 9: Partial shape recovery on the real-data reconstruction dataset [27], for 4 different categories, bench, monitor, mug, desk. Top
row: partial scans of entirely new objects (i.e. not present in the shape collection). Middle: optimization-based template fitting to the
partial scan, after classification to template structure and geometric cluster. Bottom: recovered shapes from the collection, deformed to fit
the partial scan.

shapes from the ShapeNet repository, across the 8 differ-
ent shape categories. We used 80% of this data for training
and the remaining for testing. As is also evident in Table
2, using the net to select the single best cluster for a par-
tially scanned shape may be a suboptimal strategy, since
the classification accuracy is not always high. Our strat-
egy of exploring the best three cluster predictions ensures
that we are operating at very high classification accuracy.
This, in return, ensures that the template fitting is initialized
with a much better estimate. The choice of a number of
top clusters thus provides a trade-off between quality of ini-
tialization and post-processing time needed to perform the
optimization rounds.

Qualitative results of the network output on new partial
shape scans are shown in Fig. 8. The figure shows the most
likely templates, as established by the clusters, which at this
stage encode the structure and also provide a rough initial-
ization for the template fitting. (Section 5.2).

6.4. Partial Shape Recovery

Recovering shapes from partial point scans, using the
network output and the identification/fitting process of Sec-
tions 5.1.2 and 5.2 is shown in Fig. 9. Our template fitting
optimization is robust to partiality as well as noise in the
point scans. This is highlighted in more detail in the sup-
plementary material. As can be observed in the last two
columns of Fig. 9, partial shape recovery on shapes that do
not fit the classical box-template structure can be done ef-
fectively. In case of the folding chair, the dimensions of
the template fit, with a thick backrest and thick legs, place
the partial scan into a cluster containing other folding chairs
that have the same dimensional properties on the back and

legs. Similarly, though the fit of the S-shaped partial scan
does not contain the legs, the dimensions of the remaining
parts aid in recovering a similarly shaped object from the
database to complete the partial scan. In addition to recon-
structing a point cloud by recovering a complete mesh from
the collection, we can also utilize the inferred structure to
augment the point cloud itself. Since this is not the main fo-
cus of the paper, we provide some point cloud completion
techniques in the supplementary material with some quali-
tative results.

Scene completion. In Fig. 10, we provide an example
of recovering shapes for real-life RGBD scanned indoor
scenes. We preprocess the scenes using [25], which de-
tects 3D objects in the scene and annotates the RGBD point
cloud with the objects’ 3D bounding boxes. We treat the
points in each of these bounding boxes as a partial scan,
recover a fitted CAD mesh using our structure-aware recov-
ery pipeline, and replace scanned points with the recovered
mesh. The retrieved shapes are fairly close to the input
shapes despite heavily intersecting bounding boxes. Re-
placing scanned points in the bounding boxes with retrieved
shapes makes the scene less cluttered and would allow for
further scene editing. Note that the failure to recover lamp
and sofa meshes in the first scene is due to their bounding
boxes not being detected by the aforementioned method.

6.5. Comparisons.

In Fig. 11(a), we qualitatively compare against the work
of Sung et al. [32], which also retrieves box-based parts
for an input partial point cloud. In their case, parts are re-
trieved individually via optimization – in comparison, our
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Figure 10: Scene completion with full mesh replacements for
identified objects in a partially generated scene. Left to right: RGB
images with bounding box annotations on objects, point cloud
generated using [25], scene completion provided by our fitting
method on the bounding boxes.

method tends to provide more realistic part layouts due to
the structure enforced by the templates. Fig. 11(b) provides
a qualitative comparison to the end-to-end technique of Dai
et al. [6]. Since no structure is available, this technique pro-
vides somewhat “blobby” completions ; while these results
could be used for object classification tasks or as training
datasets, the recovered shape is too rough to be used as as a
prototype e.g. in AR/CG scene editing applications. In con-
trast, our pipeline provides a full CAD mesh, fitted to match
the input scan, which can be directly be used in place of the
partially scanned shape e.g. for scene modeling purposes.

In the inset figure, we show a comparison to the fit pro-
duced by Tulsiani et al. [33]. Even though their result
is regressed
by a network
trained towards
box-based fit-
ting of chairs
specifically, the
lack of a clearly defined structure among the boxes makes
it difficult to correctly fit to the shape. In comparison,
our constrained templates recover the missing parts of the
shape more accurately. For fairness, we note that Tulsiani
et al. [33] do not aim to complete partial shapes.

6.6. Semantic Part Labeling

The box-primitives in our shape templates are, by design,
associated with real shape parts with a “semantic” meaning
– e.g. legs or armrests in a chair template. Fitting a template
transfers this information onto a shape and annotates it with
meaningful parts. We annotate each point on a source shape
S by assigning the index of the box closest to it (by projec-
tion distance) in its best-fitting template T ∗(S). This can be
done both for partial scans (Fig. 7) and for complete shapes,
e.g. from the shape collection (Fig. 6).

Table 1 discusses accuracy of part labeling on 5 cate-
gories. We consider the labeling by [37] as ground-truth,
where shape part labels are obtained in a semi-supervised

Figure 11: (a) Comparison to Sung et al.[32] Columns, left to
right: partial point clouds, our templates fit to the input, box fits
generated by Sung et al. to the input. (b) Comparison to Dai et
al. Columns, left to right: input partial scans, shape completion
obtained by applying the end-to-end technique proposed in Dai et
al., our shape retrieval and fitting method applied on the input.

way, using Mechanical Turk verification. We evaluate our
technique against the performance of [26] and [38] on the
same task. While both these methods use supervision on
70% of the category size in ShapeNet, with an additional
10% of the shapes used in the validation set, we use no ex-
ternal supervision to perform the part labeling.

7. Conclusion and Future Work
Obtaining structural information about an object,

scanned by commodity hardware into an unstructured par-
tial point cloud, can be key to identifying the object and
reasoning about its functionality. We represent structure by
a set of pre-designed structural templates, based on simple
box-like primitives. We leverage the obtained structural in-
formation using a neural network, and show applications of
recovering the shape of a partial scan, annotating its struc-
tural parts, and applying this to perform scene completion.
We provide a single lightweight pipeline that achieves good
performance in all these tasks. Our method is unique in that
it recovers a full mesh to account for a partial scan of an ob-
ject. This highlights the value of simple hand-crafted tem-
plates, which can abstract away significant geometric de-
tail. That said, automatically inferring the shape templates,
and even incorporating different primitives, is the ideal sce-
nario; it remains a difficult unsolved problem, especially
when both template parts and inter-part symmetries need to
be inferred providing an interesting avenue for future work.
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