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Abstract— Motions carry information about the underlying
task being executed. Previous work in human motion analysis
suggests that complex motions may result from the composition
of fundamental submovements called movemes. The existence
of finite structure in motion motivates information-theoretic
approaches to motion analysis. We define task embodiment as
the amount of task information encoded in an agent’s motions.
By decoding task-specific information embedded in motion,
we can use task embodiment to create detailed performance
assessments. We extract an alphabet of behaviors comprising a
motion without a priori knowledge using a novel algorithm,
which we call dynamical system segmentation. For a given
task, we specify an optimal agent, and compute an alphabet
of behaviors representative of the task. We identify these
behaviors in data from agent executions, and compare their
relative frequencies against that of the optimal agent using the
Kullback-Leibler divergence. We validate this approach using
a dataset of human subjects (n =53) performing a dynamic
task, and under this measure find that individuals receiving
assistance better embody the task. Moreover, we find that task
embodiment is a better predictor of assistance than integrated
mean-squared-error (MSE).

I. INTRODUCTION

Motion signals encode information about the underlying
task being executed, yet the form this information takes may
vary. Typically, we represent motion using continuous real-
valued signals. While this representation can provide detailed
descriptions of an agent’s motion, it can be cumbersome.
However, based on our choice of representation, we can
compress motion signals while preserving task information
[1].

In [2], the authors propose that human motions are the
result of the composition of a finite set of premotor signals
emanating from the spinal cord. As a consequence, the
neurological feasibility of motion decomposition forms the
basis for action in motion primitives, also known as movemes
[3]. Movemes are fundamental units of motion. Thus, all
smooth human motions may be comprised of symbolic
sequences drawn from an alphabet of movemes. Movemes
motivate the application of information measures in human
motion analysis, because they provide evidence of finite
structure in otherwise continuous motion signals. Moreover,
the existence of movemes indicates that under some choice
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of representation human motion can be discretized without
loss of information.

In the human motion analysis literature, movemes are
often characterized using causal dynamical systems [3], [4],
or hybrid system identification methods, such as autoregres-
sive models [5]. Most motor signal segmentation methods
demand prior specification of the moveme alphabet, which
limits their use in exploratory analyses where the alphabet
may not be known a priori. Techniques in symbolic dynamic
filtering can generate symbolic alphabets by creating parti-
tions of the state-space using methods such as maximum
entropy partitioning [6]. Additionally, state-space partition
techniques can be applied to nonlinear transformations of the
space via methods such as wavelet transforms [7]. However,
these symbols are quasi-static, and cannot directly describe
the dynamic nature of movemes. Motivated by movemes, we
define behaviors as moveme analogues in general systems,
and specify them using finite-dimensional nonlinear causal
dynamical systems. Making a choice of representation for be-
haviors is very important. While there exist many data-driven
function approximation methods, we choose the Koopman
operator to represent behaviors [8].

We are interested in synthesizing finite sets of behaviors
from agents’ motions without a priori system knowledge,
while preserving information about the underlying task. By
identifying features from motion signals and constructing
an alphabet of behaviors, we directly encode task-specific
information into the symbolic representation. We define task
embodiment as a measure of the amount of task-specific
information encoded in an agent’s trajectories.

The primary contributions of this paper are as follows.
First, we develop a methodology for data-driven partitioning
of dynamical systems. These partitions are projections onto
the state-space that can be used to extract an alphabet
of system behaviors, and can be represented by a graph.
Second, we demonstrate that by tracking relative frequencies
of behaviors we can discern relationships in human motion,
such as whether an individual is receiving task assistance. We
use task embodiment as an information measure that quan-
tifies task-specifc information in an agent’s motions. This
formalism is important because it is agnostic to specification
of the system dynamics or representation of information,
which allows us to analyze motion signals generally.

We validate our information-theoretic approach by apply-
ing these methods to a dataset of human subjects (n = 53)
performing a dynamic task where assistance is sometimes
provided, and extract an alphabet of optimal behaviors based
on a synthesized exemplar agent. By tracking the relative
frequencies of finite behaviors in human subjects and com-
paring to those of the optimal agent, we are able to quantify



the degree of task embodiment, and determine whether a
subject received assistance. We found that task embodiment
outperforms integrated MSE as a predictor of assistance.

This paper is organized as follows. In Section 2, we
present an overview of dynamical system segmentation
(DSS). In Sections 3 and 4, we apply DSS to a dataset of
human subjects, and detect the presence of assistance by
calculating each subject’s task embodiment. In Section 5,
we discuss conclusions and future work.

II. METHODS

An agent’s state trajectories simultaneously encode infor-
mation about the system dynamics and the task it executes.
By examining system trajectories, one can uncover patterns
in how it traverses the underlying state-space manifold.
We propose DSS: a nonparametric, data-driven algorithm
for creating low-dimensional, graphical representations of
system behaviors by generating partitions of the state-space
manifold sensitive to the underlying distribution of task
information.

A. Koopman Operators

We use Koopman operators as our choice of representation
for system behaviors. The Koopman operator is an infinite-
dimensional linear operator capable of describing the evolu-
tion of any system [8]. Recently developed methods such as
DMD and EDMD have enabled the identification of nonlin-
ear dynamics through finite-dimensional approximations of
the Koopman operator [9], [10].

The Koopman operator describes the evolution of a set
of nonlinear basis functions of state, and generates a linear
mapping in this function space. Given a choice of basis
functions, ¥(x) = [ (x),...,yn(x)]7, and a dataset, X =
[X0,...,xm], we want to develop a mapping Wy = PxK +
r(X) where the Koopman operator K evolves the transformed
dataset Wx = [¥(x0),..., P(xar_1)]7 to its next iterate Wy =
[¥(x1),...,¥(xp)]". By minimizing the residual r(X) over
the squared-error loss functional, we can synthesize a closed-
form solution for the approximated Koopman operator

K=G'A (1)

where 1 denotes the Moore-Penrose pseudoinverse and the
individual matrix components are

1 M—1

G = M;)W(xk)w(xk>T )
1M—1

A= =Y W)Wl 3)
M=

We obtain a matrix K € RV*V that is an estimate of the
system dynamics over the observed domain of the data
[11]. We will use Koopman operators to describe individual
behaviors expressed in data.

B. Dynamical System Segmentation

DSS characterizes all system behaviors over the state-
space by synthesizing a non-redundant set of local estimates
of the true system dynamics using a collection of Koopman
operators. Given a dataset X = [xo, ...,xp], and a set of basis
functions ¥(x) € R, we can apply the basis functions to the
dataset X in order to generate a transformed dataset Wy =
[¥(x0),..., ¥(xsr)]T. We then split the transformed dataset
WPy into a set of W overlapping rectangular windows, and
calculate a Koopman operator for each, thereby generating a
set of symbols K= {Kj, ..., Ky }. However, depending on the
system under study, the size of the dataset, choice of window
size, and overlap percentage, some of these symbols may be
redundant.

We are interested in creating a minimal alphabet of
Koopman operators with which to span all system behaviors.
Unsupervised learning methods such as clustering algorithms
that specialize in the identification of classes within datasets
are well-suited for this task. By considering each RV*V
Koopman operator as a point in RY" space, we can di-
vide the set K into subsets using a clustering algorithm.
In particular, we use Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN), which
is a nonparametric, clustering algorithm that performs well in
large spatial databases subject to noise [12]. The algorithm
groups the operators into B+ 1 classes {Cy,...,Cp} using
only the minimum of number of points required to make up
a cluster as a parameter. We compose a set K = {Kj, ...,Kp}
of class exemplars by taking a weighted-average of all
K; € Cj, Vje€{0,...,B}, according to the class-membership
probability p(K;|K; € C;). The class-membership probability
function is provided by the HDBSCAN software package
[13].

Although we have created a minimal alphabet K of system
behaviors, it is of interest to project these behaviors onto
the state-space manifold from this abstract operator space.
We label all points in the transformed dataset Wy with
a label [ € {0,...,B} according to the class label of the
Koopman operator each point was used to generate. Then, we
train a support vector machine (SVM) classifier, ®(¥(x)) to
project the class labels onto the state-space manifold, thereby
generating partitions of the state-space [14].

Figure 1 depicts a cart-pendulum system used for an
example application of DSS in Figs. 2(a) & 2(b), where

Fig. 1. Cart-pendulum system actuated about the x-axis with the unstable
equilibrium defined at 6 = 0.



5[ T T T m M
4tk ) H2
3h. § =
= S | lg
=
1r 1 Ho
(S 3, i i LN S| i
4f 1 H2
21 |
L
OFf s F e B B P e B =
= [l 1 13
4L i ~
-6 b 0
10 ‘ " — 2 1
5| 1 Hz
L)
=
3 0t g l&
I : : : 1 HO
-10 L L Le 1 L L
0 5 10 15 20 25 30
Time (s)

(a) Segmentation of (8,6,u) trajectories of an optimal control solution to the

cart-pendulum inversion problem shown in time-domain.

Fig. 2.
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(b) Segmentation of the (8, ) phase portrait of an optimal control solution
to the cart-pendulum inversion problem.

Example of dynamical system segmentation applied to an optimal model predictive control solution to the cart-pendulum inversion problem,

specified by the goal state of (9,x79'7x) = (0,0,0,0). Despite the fact that the behavioral modes are not determined a priori we can still have some
principled understanding of what the modes are. The identified behaviors encode negative velocities, positive velocities, and low velocity motion in modes

0, 1 and 2 respectively.

we segment an optimal control solution to the pendulum
inversion task. Often the partitions generated by dynamical
system segmentation may be intuitively related to the ex-
amined task. In Fig. 2(a), one can see that modes 0 and
1 represent trajectories with negative and positive velocities
respectively, while mode 2 represents lower velocity motion
and stabilization. Since the state-space trajectories used to
train the model encode task-specific information, the behav-
ioral modes do as well. Once a dynamical system has been
segmented, the SVM’s partitions of the state-space are set,
and new data points will be classified according to which
partition they fall into. Figure 3 shows a cross-section of
the partitioned state-space manifold of the optimal controller
solution to the cart-pendulum inversion shown in Fig. 2(a).

C. Graphical Representation

The product of DSS is best represented by a graph. We
can define a graph G = (K, E) where the node set K
contains the exemplar Koopman operators synthesized from
the clustering procedure. The set of edges E is determined by
directly observing the sequences of class labels in the dataset,
and tracking all unique transitions. Figure 4 illustrates how
DSS relates to the resulting graph. Each node in the graph
represents a distinct dynamical system over its respective
partition of the state-space manifold. By traversing the graph
symbolically from one node to another, traversal of the state
manifold is implied. The DSS algorithm is summarized in
Algorithm 1.

The graph itself encodes task-specific information em-
bedded in the state trajectories of the training dataset. In
particular, the graph’s state distribution is an information-
rich object that can be used for data analysis purposes. Given

Algorithm 1 Dynamical System Segmentation (DSS)

Input: Dataset X = [xp,...,xy], basis functions
{$(x)|¥(x) € RV}, window size S,, overlap %
P,,, minimum # of points required to form a cluster N,

Procedure:

1: Transform the X dataset into Wy = [¥(xo), ..., ¥(xu)]?
using the selected basis functions

2: Split Wy into W windows of size S,, overlapping by P,

3: Calculate a Koopman operator for each window, gener-
ating the set K = {Kp,...,Kw}

4: Construct a feature array Ky, by flattening all K; €
RN XN

in K into points in RV ? and appending them

5: Cluster using HDBSCAN(K 4, N.), and label all K;’s
from one of B+ 1 discerned classes {Cy,...,Cp}

6: Construct a set K = {Kj,...,Kp} of class exemplars by
taking a weighted-average of all K; € C;, Vj € {0,...,B},
according to the membership probability p(K;|K; € C;)

7: Label all points in Wy with the label / € {0,...,B} of the
Koopman operator they were used to generate

8: Train an SVM, ®(¥(x)), for projecting class labels
directly onto the state-space

9: Construct a set of unique transitions E by tracking all
sequential labels in the dataset

10: Consider K as a set of nodes, and E as a set of edges,
and construct a graph G = (K, E)
Return: Graphical model G, and trained SVM ®(¥(x))
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Fig. 3.  State-space manifold partitions generated by an SVM trained on
an optimal controller’s solution for a cart-pendulum system. DSS identified
3 modes, and the SVM partitions are shown at the (x,%) = (1,—1) cross-
section of the manifold.

an optimal agent’s graph G,, constructed with DSS, we
can use the trained SVM classifier ®,,;(¥(x)) to identify
behaviors from the optimal agent in data from other agents.
By tracking the relative frequencies of behaviors Bj from
the optimal agent in another agent’s trajectories, we can
calculate a distribution g(By), and directly compare it to
Gopi’s optimal state distribution p(By) using the Kullback-
Leibler divergence (Dgyr) [15]

- oo 1BX)
Dk1(p(Bk)||q(Bx)) = Xk‘rp(Bk)l g(P(Bk)) @

The state distributions encode coarse-grained informa-
tion about the task, and their comparison can be used for
performance assessment. Since an optimal agent’s distribu-
tion is the most representative state distribution of a task,
Dx1.(p(By)|lq(By)) represents the amount of task information
embedded in an agent’s motions, which we refer to as rask
embodiment.

III. EXPERIMENTS

The proposed assessment of task embodiment was applied
to data collected from human subjects performing a cart-
pendulum inversion task!. Data was collected using the
NACT-3D—an admittance-controlled haptic robot, similar
to that described in [16] and [17]. We synthesize a dataset
representative of an optimal user using an optimal controller.
Data from the expert is segmented by applying the DSS
algorithm proposed in Section 2 in order to generate a
graphical model G,,, and a set of optimal behaviors to
track. G,p;’s state distribution is then used as a reference
to compare against the human subjects, and assess their task
embodiment.

IThe authors utilized de-identified data from a study approved by the
Northwestern Institutional Review Board.

Fig. 4. Output of the Dynamical System Segmentation algorithm: each
node in the graph is a distinct dynamical system that governs its partition
of the state-space manifold generated by the SVM ®(¥(x)).

A. Human Subjects Dataset

A filter-based assistance algorithm proposed in [18] for
pure noise inputs, and adapted for user input in [19] and [20]
was applied to a virtual cart-pendulum inversion task on
the NACT-3D. The assistance physically filters the users
inputs—accelerations in this case—such that their actions
are always in the direction of an optimal control policy cal-
culated in real time. All subjects were instructed to attempt
to invert a virtual cart-pendulum with the goal of spending
as much time as possible in the unstable equilibrium during
a thirty second trial, where the cart-pendulum states were
sampled at 60Hz. Subjects repeated this task for 30 trials in
each of two sessions. Forty subjects completed this task with
assistance in one session and without assistance in the other
session. The order in which the subjects received assistance
was counterbalanced to account for learning effects. An
additional thirteen subjects were placed in a control group
which completed both sessions without assistance.

B. Training Dataset

To assess task embodiment using our dynamical system
segmentation technique, we synthesized an optimal baseline
to compare subjects against. We generated optimal control
solutions to the pendulum inversion problem using Sequen-
tial Action Control (SAC) [21], a receding-horizon model
predictive optimal controller for nonlinear and nonsmooth
systems, over a randomized set of initial conditions. The
controller’s objective was (8,x,8,%) = (0,1,0,0), with linear
quadratic cost parameters of Q = diag([200,80,0.01,0.2]).
Thirty optimal control trials of thirty seconds each were
generated so as to mirror the amount of data collected from
human subjects.

C. Optimal Graph

We apply the DSS algorithm to the synthesized trials
to generate an optimal graphical model. The choice of
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(a) Time-domain segmentation of a selected optimal control solution of
the pendulum inversion task. Mode O corresponds to energy pumping
and swing-up, mode 1 corresponds to energy removal and slow-down,
and mode 2 correponds to stabilization.

Fig. 5.
segmentation of the pendulum inversion task.

basis functions has the greatest effect on the algorithm’s
performance because of how they reshape the state-space
boundaries. The set of basis functions selected for this task
were

W(x)=[0, x, 8, x, u, u cos(8), u cos(9),

b/
um,|00s2<|5t|>, %2, 1 )
Sa,

where |ugy| is the optimal controller’s saturation limit on
the control effort. The basis functions were selected from
the set of linear combinations of second order polynomial
and sinusoidal functions. Since clustering occurs in RN
space, where N is the number of basis functions, we chose a
low-dimensional set of representative basis functions from
the larger set of linear combinations of polynomial and
sinusoidal functions. This dimensionality reduction can be
achieved via multiple methods, such as principal component
analysis [15].

Figure 5(a) depicts the behaviors identified from the
exemplar trial. The identified modes 0, 1 and 2 correspond
to energy pumping and swing-up, energy removal and slow-
down, and stabilization, respectively. These modes represent
a set of behaviors that an expert user should exhibit in
succeeding at the task.

We synthesize the optimal graph G,,, using the identified
behaviors, and then use the graph’s state distribution p(By),
shown in Fig. 6, as the optimal baseline with which to
assess the subjects’ task embodiment. The graph G, and the
segmented behaviors projected onto the (6, 0) phase portrait
by the trained SVM ®,,,,(¥(x)) is shown in Fig. 5(b).

0

(b) Graph G, resulting from the the dynamical system segmentation of a
dataset of 30 optimal control solutions to the cart-pendulum inversion task.
The set of segmented behaviors are shown projected onto the system’s phase
portrait over the domain {(8,0) : (—m,x) x (—2x,27)}.

Data-driven identification of exemplar behaviors through the use of dynamical system segmentation and the resulting graphical model from the

The human data is analyzed by using the trained SVM
D, (¥(x)) to detect the identified behaviors in each sub-
ject’s trials with and without the presence of assistance. By
tracking the relative frequencies of behaviors B; we can
generate a distribution ¢(By) with which to compare to G,,;’s
state distribution p(By). We compare the distributions using
task embodiment quantified by Dk (p(By)||q(By)), where a
lower Dk indicates greater embodiment of the task. This
same procedure is applied to the two sets of data from the
control group subjects.

IV. RESULTS

We analyzed the human subjects dataset, and found that
task embodiment is a reliable predictor of physical assis-
tance. All subjects better embodied the task in their assisted
trials, whereas there was no observed difference in the
control group. In addition to comparing the groups using

1.0

0.8

0.6

p(Br)

0.2

0.0

Mode 0 Mode 1 Mode 2

Fig. 6. Optimal behavior mode distribution p(By) determined by 30 optimal
control solutions to the pendulum inversion task over randomized initial
conditions. p(By) = (0.2437, 0.1275, 0.6288).
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Summary of experimental results: subjects in the experimental group who received assistance (blue) were compared to their own unassisted

trials. The control group subjects (red) were compared from their initial session to their final session. The pair of plots to the left show the difference in
task embodiment between the sessions of the experimental and control groups. The plots to the right show the difference between the same groups using
the integrated MSE instead. We note that task embodiment is a better predictor of whether or not a subject received assistance than integrated MSE.

task embodiment, we also evaluated a standard metric for
assessing task performance, the integrated MSE. Specifically,
we calculated the integrated MSE with respect to a goal state
of (6,0) = (0,0). We found that integrated MSE is also a
good predictor of assistance, but at a lower significance level,
and lower effect size than task embodiment.

A paired two-sample t-test on the task embodiment of
each subject with and without assistance showed that the
subjects’ sessions with assistance (i =0.0756, ¢ = 0.0436)
significantly outperformed the sessions without assistance
(u =0.2084, o =0.0560), with p = 2.8633e-16, 1(39) =
13.4876, and an effect size of d = 2.1326. In contrast,
there was no significant difference between the first session
(u =0.2039, o =0.0406) and the second session (U =
0.1943, 6 =0.0400) of the control group when a paired two-
sample t-test was performed p = 0.5564, ¢(12) = —0.6051.
These results indicate that task embodiment reliably captures
assistance and lack thereof.

We also performed a paired two-sample t-test on the MSE
of each subject with and without assistance, and found that
the session with assistance (U = 124.66, o = 119.96) sig-
nificantly outperformed the session without assistance (1 =
428.88, 0 =307.46), but with a lower significance and effect
size than task embodiment, with p = 1.2195e-7, 1(39) =
6.4526 and an effect size of d = 1.0202. Again, we applied
the paired two-sample t-test to the control group and found
that the first session (i =352.83, o =217.67) did not sig-
nificantly outperform the second (it = 546.31, 0 =446.10),
had p =0.0649, #(12) = 2.0320. These results indicate that
MSE can also predict the presence of assistance, but not as
reliably as task embodiment. The task embodiment measure
has both a significance level several orders of magnitude
greater than that of integrated MSE, and showed an effect
size that was twice as large as integrated MSE. This demon-
strates that task embodiment captures the large difference

between the assisted and unassisted trials. These results are
summarized in Fig. 7.

The experimental methodology presented in this study
analyzed subject data by means of comparison to an optimal
baseline. While the methodology is informative, it cannot
detail subject performance without comparison to the opti-
mal agent. Given the same choice of basis functions and
algorithm parameters, we can use DSS to generate graphs
of each subject with and without assistance, and analyze the
identified behaviors in each graph directly. This alternative
methodology allows us to take human motion data and repre-
sent it graphically, which creates the opportunity for analyz-
ing human motion using graph-theoretic principles. Figures
8(a) & 8(b) illustrate the graphical models constructed from
the assisted and unassisted trials of a representative subject.
We note that the extracted behaviors from the unassisted
trials in Fig. 8(b) lack structure, and more closely resemble
noise-driven behaviors. In contrast, by inspecting the graph
from the subject’s assisted trials in Fig. 8(a), we observe the
emergence of finite structure in the identified behaviors.

V. CONCLUSIONS

In this study, we proposed an information-theoretic ap-
proach to human motion analysis. The DSS algorithm for-
mulated in Section 2 produces graphical models that encode
task-specific information. By tracking the degree of task
embodiment, we are able to decode complex relationships
in human motion. We validated our approach through an
analysis of data from human subjects performing a virtual
cart-pendulum inversion task with and without assistance.
We determined that task embodiment is a better predictor
of the presence of assistance than integrated MSE. Task
embodiment identified the presence of task assistance at
a higher significance level and with a larger effect size
than integrated MSE. Thus, the experimental results provide
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segmentation of subject 16’s assisted trials of the pendulum inversion task.
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(b) Resulting graph and state-space projections from the dynamical system
segmentation of subject 16’s unassisted trials of the pendulum inversion
task.

Constructed graphical models from the dynamical system segmentation of a representative experimental subject with and without assistance. The

graph’s nodes project onto the system’s (6,0) phase portrait over the domain {(6,6) : (—m,m) x (—2m,27)} of the state-space manifold according to the
phase portraits shown alongside the nodes. We note that the behaviors of the unassisted subject’s phase portraits are noise-driven and show no discernible
structure.

strong support for the use of information measures in human
motion analysis.
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