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Abstract— Hybrid systems, such as bipedal walkers, are chal-
lenging to control because of discontinuities in their nonlinear
dynamics. Little can be predicted about the systems’ evolution
without modeling the guard conditions that govern transitions
between hybrid modes, so even systems with reliable state
sensing can be difficult to control. We propose an algorithm
that allows for determining the hybrid mode of a system in
real-time using data-driven analysis. The algorithm is used with
data-driven dynamics identification to enable model predictive
control based entirely on data. Two examples—a simulated
hopper and experimental data from a bipedal walker—are
used. In the context of the first example, we are able to closely
approximate the dynamics of a hybrid SLIP model and then
successfully use them for control in simulation. In the second
example, we demonstrate gait partitioning of human walking
data, accurately differentiating between stance and swing, as
well as selected subphases of swing. We identify contact events,
such as heel strike and toe-off, without a contact sensor using
only kinematics data from the knee and hip joints, which could
be particularly useful in providing online assistance during
walking. Our algorithm does not assume a predefined gait
structure or gait phase transitions, lending itself to segmentation
of both healthy and pathological gaits. With this flexibility,
impairment-specific rehabilitation strategies or assistance could
be designed.

I. INTRODUCTION

In order to implement predictive control on an autonomous
system or to provide robotic assistance to a human, we
require the ability to identify system dynamics. Lots of
work has been done in this area, allowing one to learn the
dynamics of an autonomous robot [1-5] or a joint human-
machine system [6] from collected state data.

Hybrid systems are more challenging. Even if we have
reliable sensors to real-time detect the switching times of the
system dynamics, we require a closed-form mapping from
states to hybrid mode to implement any form of predictive
control. And, oftentimes, one would prefer to avoid installing
supplementary sensors altogether, because of the cost, unre-
liability or inconvenience of additional hardware.

Much work in this domain has been done in the context of
gait analysis and gait phase identification. Real-time, closed-
form expressions for distinguishing between hybrid dynamic
modes can be obtained using supervised machine learning
techniques, such as neural networks [7], [8], Hidden Markov
Models [9], or Gaussian Mixture Models [10] from selected
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sensory information, such as ground contact forces, joint
positions, inertial data, or muscle signals. Most of these
studies rely heavily on ankle data for phase identification,
which is often not present in lower-limb assistive devices,
such as the one used in this study. Moreover, work in this area
often requires assumptions to be made about the number of
dynamic modes, phase transition times, or phase durations,
limiting the algorithms’ ability to adequately partition ab-
normal gait. Finally, to the authors’ best knowledge, no gait
partitioning strategies have been shown to have the potential
to generate control for assistance using a model predictive
controller in real-time.

Here, we propose a novel algorithm that synthesizes a
closed-form expression for hybrid mode switching condi-
tions, allowing for real-time switching time predictions. For
a simple system—a simulated one-legged hopper—we show
that the data-derived guard conditions can be employed
for control. For a bipedal walker (a human in an Ekso
Bionics® exoskeleton), we demonstrate accurate gait seg-
mentation using data only from knee and hip joints. We
validate our gait partitioning by comparing it to pressure data
from heel and toe contact sensors and demonstrate the ability
to reliably predict heel strike and toe-off events without use
of impact sensors. We do not pre-label transitions in our
training data or pre-define the expected number of phases,
which allows us to identify a range of recurring movement
patterns in the gait cycle and shows promise for meaningful
partitioning of abnormal walking.

This paper lays the groundwork for applications of real-
time assistance. In Section II, we give a detailed description
of our algorithmic approach and methods used. In Sections
IIT and IV, we validate our methodology through two ex-
amples: control of a simulated hopper without any a priori
knowledge of its dynamics or guard conditions and gait
partitioning of experimental data from a bipedal walker.
Finally, we conclude with a discussion of the results and
opportunities for future work.

II. METHODS

Our procedure for approximating the dynamics of a hybrid
system for control is divided into two parts: synthesizing
switching conditions between dynamically distinct modes,
and estimating the continuous dynamics of each mode from
data. For the first part, we use Nonparametric Clustering
of Dynamics (NCD), where we locally approximate system
dynamics at each point in time, apply a nonparametric
clustering algorithm onto those dynamical models, and train
a classifier to obtain a mapping from system states to



dynamically distinct modes. We later use this mapping to
identify a system’s hybrid mode in real-time. For the second
part, we use Koopman operators [1], which allow us to
generate an approximation of the within-mode continuous
dynamics. Both of these approaches are described in more
detail in the subsections below.

A. Nonparametric Clustering of Dynamics

Hybrid dynamical systems evolve according to distinct
dynamics in different regions of the state-space manifold
and as a result are often represented as finite automata
with discrete nodes [11]. Here we propose NCD—a system
identification algorithm that allows us to synthesize finite
representations of dynamical systems from data. Since hy-
brid systems express distinct dynamics based on state-space
dependencies, local estimates of the dynamics differ about
the boundaries specified by the system’s guard equations.
NCD generates partitions in the state-space manifold, where
local estimates of the system dynamics differ. It numerically
approximates boundaries on the manifold that delineate
which mode governs the system at a given point and,
as a result, identifies transitions between modes in hybrid
systems, otherwise defined by guard equations.

Given a dataset representative of all dynamic modes in a
hybrid system, NCD first segments the dataset into subsets
and then generates local estimates of the system dynam-
ics from each subset. Subsets can have various temporal
lengths, they can be independent or overlap; however, they
should always be continuous in time and have the same
dimensionality. While any function approximation technique
that produces a numerical closed-form model of the system
dynamics can be used, we use generalized linear regression
to generate Koopman operators (see Section II-B), because
their representation makes them easy to use in control
settings [12]. In Koopman operators, states x € R" are
lifted into a higher dimensional space through a nonlinear
transformation of the original state-space by basis functions
U(z) = [W1(2), ..., vn(2)]T € RY s.t. o;(x) €R.

The collection of local dynamic models is then made into
a list, where we apply unsupervised learning techniques to
divide the list into classes of distinct dynamic models based
on a distance metric. For models generated by generalized
regression, the list contains the weight matrices from each
local model, L = [Wy,..,Wg_41] from S subsets of data.
For other kinds of parametrized models, the list may consist
of parameter vectors. If the number of hybrid modes is
known ahead of time, one can apply parametric clustering
techniques and prespecify the expected number of clusters
to form. Nonparametric clustering techniques are useful for
analyzing systems where the partitions are not as well-
defined. We apply Hierarchical Density-Based Clustering for
Applications with Noise (HDBSCAN) to perform nonpara-
metric clustering [13].

Once all dynamic models in the list have been assigned a
class label by the clustering algorithm, one can extend the
class labels to each model’s corresponding subset of data. To
map the class labels onto the state-space, we train a Support

Algorithm 1 Nonparametric Clustering of Dynamics (NCD)

Input: Dataset X = [zo,..., 2], function approximation
technique with closed-form model*.
Procedure:

1: Split X into S subsets

2: Estimate system dynamics locally for each subset of
the dataset X, = {Xla],...,X[b]} using W =
FunctionApprox(Xa.p)

3: Construct list of dynamic models L = [Wy, ..., Ws_1]

4: Apply nonparametric clustering to L and label all W;’s
with one of B discerned classes {Cy,...,Cp_1}

5: Label all points in X with the label [ € {0,...,B — 1}
of the subset they were applied to

6: Train an SVM, ®(z), to project class labels directly onto
the state-space

Return: Trained SVM indicator function ®(z)

*Here, we use generalized linear regression to generate Koopman operators,
described in Section II-B.

Vector Machine (SVM) on the labeled data to generate an
indicator function ®(x) [14]. In particular, we generate an
indicator function based on nonlinear transformations of the
data, ®(¥(x)) = 4, where i € {0, ..., B—1} of B discerned
dynamic modes. The indicator function specifies what mode
the system is currently in, similar to the guard equations in
hybrid systems. Algorithm 1 summarizes the NCD procedure
for generating data-driven hybrid mode transition boundaries.

The indicator function gives a closed-form estimate of
the regions drawn by the guard equation boundaries, which
allows one to predict switching times in hybrid systems via
model predictive control. If the hybrid mode dynamics are
not known a priori, one can generate data-driven models of
each hybrid mode by segmenting the dataset according to
the partitions designated by NCD and learning a model for
each dynamic subsystem.

B. Koopman Operators

Koopman operators have been shown to be effective
in modeling observable dynamical systems [1]. Formally,
Koopman operators describe the time-evolution of dynamical
systems in an infinite-dimensional function space [15], [16].
While the infinite-dimensional Koopman operator is valuable
as a theoretical construct, it is impractical for numerical
applications. Through generalized linear regression, one can
synthesize finite-dimensional approximations of the Koop-
man operator by considering nonlinear basis functions of
state U(x) = [¢1(x),...,¥n(x)]T and their evolution in
time [12]. The regression generates an operator K that
minimizes the residual () in U(zgy1) = KU (ag)+r(zk)
through the least-squares optimization

M-1
o1
min =Y [[W(aki) - KW (an)] )
k=1
The optimization has closed-form solution K = AGH,



where t denotes the Moore-Penrose pseudoinverse, and the
matrix components A and G are

1 M—1
G = — > W) W(x)"
Mk::l
1 M—-1
A = MZ\IJ(%H)W(%)T. )
k=1

We can apply NCD in conjunction with finite-dimensional
Koopman operators to generate data-driven estimates of the
state-space boundaries designated by the guard equations and
to synthesize the dynamical models of each hybrid mode.

III. EXAMPLE 1: CONTROL OF A SIMULATED SLIP

The spring-loaded inverted pendulum (SLIP), often used
as a simplified model of human running, is an example of a
hybrid system with known dynamics. Although governed by
relatively simple equations, it is unstable if left unassisted.
Here, we use a simulated SLIP to demonstrate the joint
capabilities of NCD and Koopman operators for predicting
hybrid mode switching and identifying bimodal dynamics for
control. In simulation, we successfully use the data-derived
approximation of the SLIP’s hybrid dynamics to generate
forward motion using model predictive control.

A. Switching Time and Dynamics Identification

For all simulations, we use a 2D SLIP model described
by a state vector & = [y, Ly Zm, Zm, Tt), Where x,, and
zm are the coordinates of the mass, and x; is the coordinate
of the toe, and a control vector u = [Ustance, Ufiight], Where
Ustance 18 the leg thrust applied during stance and u f;;gp¢ 1S
the toe velocity control applied during flight. SLIP dynamics
as described in [17] are used. We begin by generating 30
seconds of training data using a simulation of the SLIP
hopper controlled by a model predictive controller with
knowledge of the correct SLIP dynamics.

We proceed with system identification by employing NCD,
described in Section II-A. The algorithm generates an indica-
tor function that maps from states to SLIP hybrid modes. We
verify the mapping by directly comparing against the solution
of the analytical guard equation [17] and find that the data-
driven indicator function is able to detect hybrid modes
with near-perfect accuracy for two tested trajectories—it is
100% accurate for constant-velocity forward hopping and
99.5% accurate for varying-velocity hopping with directional
changes. A fragment of the constant-velocity trajectory color-
coded according to the SLIP’s current hybrid mode is shown
in Fig. 1.

Finally, using the NCD-generated mapping, we synthesize
two separate Koopman operators for the SLIP’s flight and
stance modes. This obtained, entirely data-derived represen-
tation of the SLIP dynamics is then used for control.

B. Model Predictive Control

A model predictive controller (MPC) similar to [18] is
used. However, any model predictive controller that is capa-
ble of completing the task can be used. For the MPC, we
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Fig. 1. SLIP trajectory segmented according to an NCD-generated
mapping. The data-driven indicator function is able to detect the SLIP’s
hybrid mode with > 99% accuracy for hopping on flat ground.
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Fig. 2. State trajectories and control history from a SLIP model
simulation—the guard equation and system dynamics used in the simulation
were learned solely from data. Note that the controller is able to keep the
SLIP upright and moving forward at an average speed of 0.37m/s, close
to the desired 0.4m/s.

define an objective function of the form

1
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7= 3 [ )~y + B e,

o

with @ > 0 and R > 0 being cost metrics on state error
and control effort, respectively, and x4(t) being the desired

trajectory.
We define the system as
Kstance\ll(xk) (b(xk;) =0
\I/ =
(@) { Kriignt¥(z)  O(zy) =1,

where K iqnce and Kyjigne are the two learned Koopman
operators and ®(z) is the learned indicator function that
can take values {0,1} corresponding to stance and flight,
respectively.

For an example trial, we run a simulation with a desired
trajectory x4(t) = [0,0.4,1.6,0, 0], and a diagonal ) matrix
with Qgiag = [0,50,100,0,0]. As such, the controller tries
to maintain the SLIP center of mass at a height of 1.6m and
a forward velocity of 0.4m/s. In this trial, the SLIP starts at
a height z,,, = 2m and no forward velocity (&,, = 0m/s).
As shown in Fig. 2, the controller is able to keep the SLIP
upright and moving forward at a velocity of 0.37m/s, close



Fig. 3. Ekso Bionics exoskeleton, EksoGT™, used for data collection. We
use two sets of its sensors in this study: hip and knee encoders to generate
kinematics-based dynamical models using the NCD algorithm, and foot-
mounted pressure sensors at the heel and toe to validate our models against
ground-contact events after partitioning.

to the desired 0.4m /s, while having knowledge solely of the
data-driven dynamics.

IV. EXAMPLE 2: GAIT PARTITIONING FOR A BIPED

Gait partitioning is an area of interest due to its promising
applications in improving control of lower-limb assistive
devices as well as in generating individually tailored physical
therapies. Here, we segment the gait cycle into phases using
the NCD algorithm, described in Section II-A, and interpret
obtained mode transitions based on established gait events.
With control generation in mind, we are particularly inter-
ested in determining impact events, such as heel strike and
toe-off, because they mark transitions between dynamically
distinct modes. We validate the accuracy and latency of
our predictions against external pressure sensors. Our results
demonstrate successful gait partitioning for healthy flat-
ground walking.

A. Walking Data Acquisition

Data was collected using EksoGT™—a robotic exoskele-
ton from Ekso Bionics, Richmond, CA, USA, visible in
Fig. 3. When not actively in assistance mode, the device
offers freedom to move in the sagittal plane, and to a limited
extent in the frontal plane. It provides assistance solely in
the sagittal plane. Both knee and hip joints can be used for
assistance, where angular position and angular velocity can
be measured at 500H z by encoders in all four joints. The
ankle joints are passive and no sensory data is available.

For the purposes of this study, 1.5 minutes of data were
collected of straight flat-ground walking from one healthy
subject with previous experience walking in the exoskeleton
(the third author of this paper). No assistance or resistance
was provided to the wearer through motor activity; any per-
ceptible resistance was passive from the mechanical structure
of the device. A total of sixteen variables were recorded.
Twelve of them (right/left knee angles, right/left knee an-
gular velocities, right/left hip angles, right/left hip angular
velocities, right/left knee motor currents, and right/left hip
motor currents) were used for analysis. The additional four
variables (right/left toe sensors and right/left heel sensors)
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Fig. 4. Example signals from two foot-mounted pressure sensors of the
exoskeleton in Fig. 3. The top plot shows raw signals from the left heel and
left toe sensors for several gait cyclces. These raw signals are thresholded to
generate binary digital signals visible underneath, which allow us to detect
gait events such as heel strikes and toe-offs on rising edges of the heel
signal and falling edges of the toe signal, respectively.

were excluded from analysis and used solely for validation
and verification of NCD-generated gait partitions.

During our data analysis, we use 1.33 out of the recorded
1.5 minutes of straight overground walking—we discard
the first 10 seconds due to irregularities introduced by gait
initiation. We train our data on a randomly selected 20-
second sample from the trimmed 1.33-minute window and
test the segmentations on the whole trimmed dataset.

B. Ground Truth for Gait Partitions

Gait cycles are generally defined from one foot strike
to the subsequent foot strike on the same side. Clinically,
they are often partitioned separately for each leg based on
functionally critical events for that leg [19]. For this study,
we are interested in generating gait partitions that capture
critical changes in the behavior of both legs. We do not
impose symmetry, but we choose states and basis functions
symmetrically for right and left legs to allow the algorithm
to remain equally sensitive to recurring patterns on both
sides. Moreover, we look for gait events representing contact
with the ground, specifically heel strike and toe-off, because
these impact events indicate transitions between dynamically
distinct modes that are important for generating control in
a robotic assistive device. As a tertiary objective, we are
interested in sub-dividing swing, because the majority of
active assistance during walking takes place during the swing
phase. To generate data-driven approximations for transitions
between the described dynamically distinct gait phases, we
use the proposed algorithm—NCD.

In order to validate NCD-generated gait partitions, we
utilize foot-mounted pressure sensors at the heel and toe.
We collect analog signals from the pressure sensors and
threshold them to obtain binary readings of whether the heel
and toe are in contact with the ground. These processed
sensor readings allow us to directly record heel strikes and
toe-offs, establishing a notion of ground truth for transitions
between stance and swing phases, as demonstrated in Fig. 4.
As a result, for each gait decomposition, we can find mode
transitions that correspond to these ground-contact events,



TABLE I
GAIT DECOMPOSITIONS

2-mode decomposition 4-mode decomposition 6-mode decomposition
Phases right/left step right/left pre-swing+swing and stance right/left initial swing, terminal swing, and stance
Events heel strike heel strike and onset of knee buckling | heel strike, toe-off, and foot clearance at peak swing
False positives* 0% 2% 8%
False negatives* 0% 4% 1%
Average offset™ 6.1ms + 5.2ms 13.0ms + 8.0ms 20.0ms £ 9.8ms

*Classification rate and average offsets were calculated only for predictions of impact events, specifically heel strikes and toe-offs. These events were verified against
signal from external pressure sensors not used in generating the data-driven gait partitions. A total of 220 such events were recorded during the tested 1.33-minute time

window. Average offset was calculated only based on correctly identified transitions.
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Fig. 5. Two-phase segmentation of the gait cycle plotted against heel

pressure sensors. Dotted gray lines depict NCD predictions of heel strikes,
while bold black segments show ground truth. Identified phases are super-
imposed onto knee trajectories depicting their relationship to the gait cycle.
We detect heel strikes without misclassifications and an average offset of
6.1ms + 5.2ms.

and measure the offset between the prediction of the event
and the ground truth from the pressure sensors. The offset
measurement is dependent on NCD reliably recognizing
specific mode transitions and thus conveys both the precision
and accuracy of event detection. We report the offset, or
latency, as our validation statistic for each of the obtained
gait decompositions.

C. Multi-Phase Gait Partitions Using NCD

Using NCD, we can segment gait into a range of de-
compositions from kinematic information, where each de-
composition is determined by a set of distinct transition
conditions that are recurrent throughout the gait cycle. In
this subsection, we report gait partitions obtained from
the same data using NCD with different basis functions.
Specifically, we use 20-second fragments of the collected
walking data (refer to Section IV-A for details) for training
our model and test the trained classifier on the trimmed
dataset (a 1.33-minute time window). For each partitioning,
we expand the state space through quadratic, cubic, and/or
trigonometric functions of the original 12 states. Depending
on the choice of basis functions, and consequently the
recognized transition events, we segment gaits into 2, 4, and
6 phases, where in each case the phase transitions correspond
to easily interpretable gait events. We test the segmentations
on the collected dataset as explained in Section IV-A. We
summarize our findings in Table L.

In the 2-phase segmentation, we identify transitions that
correspond to heel strikes. The gait cycle gets split into a
right and left step, as shown in Fig. 5. We verify the accuracy
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Fig. 6. Four-phase segmentation of the gait cycle plotted against under-
the-heel pressure sensors. Here, we are able to detect heel strike and the
onset of knee buckling. We identify heel strikes with 5% misclassifications
and an average offset of 13.0ms 4 8.0ms. Note that pressure signals are
not used in training for any decomposition.

of heel strike against pressure sensor signal and observe no
misclassifications with a ~ 6.1ms offset. It is worth noting
that all offsets were anticipatory, meaning that the predicted
transitions occurred before the actual impact events.

In the 4-phase partitioning, we identify transitions that
correspond to heel strike and the onset of knee buckling,
when the knee is ready to start bending but toe-off has not
yet occurred. This decomposition, visible in Fig. 6, combines
pre-swing and swing into one mode with a shortened stance
as the second mode. Interestingly, this decomposition could
be particularly relevant for control, because transition out
of stance and into pre-swing can be interpreted as the cue
for assistance, while heel strike (transition out of swing into
stance) can be a signal for assistance to pause. Again, we
verify the accuracy of heel strike predictions against heel
strikes recorded via pressure sensors—results are reported in
Table 1.

The 6-phase partitioning is the most complex of the ones
reported here; we visualize it in Fig. 7. This partitioning
allows us to identify both heel strikes and toe-offs, splitting
the gait into right/left swing and stance. In addition, it divides
swing into two segments of initial and terminal swing.
Transition from initial into terminal swing corresponds to
the clinically recognized foot clearance—when the swing leg
passes the stance leg—and near-maximal knee flexion. This
segmentation could also be extremely useful for assistance,
because it allows us to detect the start of swing. In situations
when we want the subject to independently initiate a step, we
might want them to complete pre-swing without assistance
and wait for toe-off to apply control. As before, we verify
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Fig. 7.

Six-phase segmentation of the gait cycle against foot-mounted pressure sensors. Dotted gray lines indicate NDC predictions of heel strikes and

toe-offs, while the bold black segments indicate ground truth measurements. NCD reliably generated predictions of phase-transition events, misclassifying
9% of the transitions and achieving an average absolute prediction offset of 20.0ms 4+ 9.8ms.

the toe-offs and heel strikes against pressure sensors—results
are reported in Table 1.

The list of possible gait partitions presented here is not
exhaustive and is meant to illustrate the capabilities of the
algorithm. Additional gait segmentations can be obtained,
depending on what gait phase transitions are important in a
particular application.

V. DISCUSSION AND FUTURE WORK

We demonstrate that NCD in combination with a data-
driven dynamics identification technique, such as the Koop-
man operator, can be used to infer mode transitions and
hybrid dynamics of a system. We learn a data-driven model
of a SLIP hopper and successfully use it in simulation to
generate control. We further show the ability to complete gait
partitioning for normal walking, where switching times for
gait phases correspond to gait events measured independently
through ground-reaction forces.

In future work, the learned partitioning of human gait
could be used for closed-loop control of a lower-limb
exoskeleton, similarily to how the learned model of the
simulated SLIP hopper was used for control in Section III.
Specifically, the learned dynamics could be used to predict
the system’s forward evolution over time and to then cal-
culate a stabilizing control signal using model predictive
control to e.g., assist a person in an exoskeleton with balance.
As mentioned in our results section, the classifier for human
walking is imperfect—it experiences misclassifications and a
6-20 ms offset from ground truth during runtime. However,
for a hardware implementation with closed-loop control, this
performance could be further optimized. For instance, false
positives are often caused by two or three mode transitions
identified sequentially within 0.002 ms of each other—
these could possibly be eliminated or lessened through the
implementation of a high-pass filter. The reported offsets
are always anticipatory, meaning that they consistently occur
before the measured event, giving us the option to incorpo-
rate the average offset into our prediction of the timing of
an impact event. Finally, the obtained gait event detection
latencies are lower than those reported for human reaction
times [20]. Thus, as is, the expected latencies should not be
a limiting factor in safely controlling a dynamical system,

e.g., an exoskeleton to avoid falling.

What is worth noting is that our method could be particu-
larly well-suited for modeling abnormal gaits. For one, we do
not parametrize the gait partitioning prior to application of
NCD—we do not make assumptions about either the number
of dynamic modes or phase durations. Using an unsupervised
learning technique, we have the flexibility to identify any
recurrent movement pattern and, as a result, partition gaits
with varying granularity. We can identify motion patterns
in individuals, even when the movements are not part of
the “correct” mode sequence in a specified task. Secondly,
we do not require pre-labeling of phase transitions in the
training data, which much prior work has relied on [8],
[21], and are able to train our segmentation algorithm on
small amounts of data (experiments in this study used 20-
second sets of walking data sampled at 500H z). This means
that gait partitions could be generated for individual patients
and updated continually as their impairment changes over
time. Personalized gait partitions from impaired individuals
could then be used to generate tailored therapies or to create
personalized control patterns for assistive devices.

Finally, the algorithm could further be used to identify
higher level behaviors, such as stair climbing, marching, or
walking down an incline. Through real-time identification of
a person’s activities based on kinematic data, NCD could
facilitate providing task-relevant assistance without the need
for manual task specification. Future work will seek experi-
mental validation of our algorithms for generating assistance
in lower-limb exoskeletons—both for flat-ground walking
and for task-varying movement.

VI. CONCLUSION

The presented data-driven methods are a step towards
generating real-time model predictive controllers for hybrid
systems, such as lower-limb exoskeletons. We show the
ability to model and control a hybrid system—a 2D SLIP
hopper—with no a priori knowledge of the transition condi-
tions or mode dynamics. We further show the ability to gen-
erate control-consistent gait partitions in a healthy individual.
Long-term, our approach can lead to developing personalized
models of gait for targeted assistance and/or rehabilitation in
individuals with a range of walking impairments.
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