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Abstract

In this work, we present a framework of an ab initio variational approach to effec-

tively explore electronic spin phase transitions in molecular systems inside a homoge-

nous magnetic field. In order to capture this phenomenon, the Complex generalized

Hartree-Fock (C-GHF) method is used in the spinor formalism with London orbitals.

Recursive algorithms for computing the one- and two-electron integrals of London or-

bitals are also provided. A Pauli matrix representation of the C-GHF method is intro-

duced to separate spin contributions from the scalar part of the Fock matrix. Next, spin

phase transitions in two different molecular systems are investigated in the presence of

a strong magnetic field. Non-collinear spin configurations are observed during the spin

phase transitions in H2 and a di-Chromium complex, [(H3N)4Cr(OH)2Cr(NH3)4]
4+,

with an increase in magnetic field strength. The competing driving forces of exchange

coupling and the spin Zeeman effect have been shown to govern the spin phase tran-

sition and its transition rate. Additionally, the energetic contributions of the spin
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Zeeman, orbital Zeeman, and diamagnetic terms to the potential energy surface are

also analyzed.

1 Introduction

Electron spin is a fundamental physical property that is important to a wide array of science

and technological applications such as energy storage, quantum computing, and chemical

catalysis. An atomic or molecular system has a spin-dependent many-electron response that

can be perturbed by an external electromagnetic field. Although effective model Hamiltoni-

ans with perturbative treatments of external fields1–4 have their merits, they are limited in

their description of spin-dependent processes in the strong perturbation limit. While molec-

ular response to external electric fields has been a subject of extensive theoretical work,

computational frameworks for modeling finite magnetic field effects have been lagging be-

hind mainly due to three challenges; the gauge-origin problem, spin non-collinearity, and

necessity of complex arithmetic.

For many-atom systems, electronic structure calculations in the presence of electromag-

netic fields become dependent on the choice of the gauge-origin, mainly due to the basis set

incompleteness of Gaussian type orbitals.5–12 Among various approaches to correct for the

gauge-origin problem, electronic structure methods using London type orbitals 13,14 provide

the most satisfactory solution.15–21 London orbitals are constructed from conventional atomic

orbitals dressed by a complex phase factor that depends on the external vector potential, and

are considered physically appropriate for modeling chemical systems in an external magnetic

field.5

In the non-perturbative limit, such as in the presence of a strong magnetic field, varia-

tional treatment of the electronic structure using London orbitals is required. 22–24 For this

purpose, Helgaker and coworkers have made algorithmic advances for evaluating one- and

two-electron integrals using London orbitals, and applied a variational approach to study
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molecules in strong magnetic fields within the spin collinear framework at the level of Hartree-

Fock,25,26 coupled cluster,27 configuration interaction,28 density functional theory, and cur-

rent density functional theory.29–31 While the electronic characteristics of spin states in a

magnetic field can be obtained using a variational spin-collinear method, the spin phase

transition process, e.g., from singlet to triplet, driven by a static magnetic field requires a

spin-noncollinear treatment.

It is well known that certain symmetry breaking, such as an external static magnetic field

breaking time reversal symmetry and geometric frustration breaking continuous translation

symmetry, will cause noncollinear spin configurations to arise.32–36 Thus, a proper description

of spin processes must come from a solution of the first-principles spin-dependent Hamilto-

nian that allows a variational treatment of non-collinear spin. The generalized Hartree-Fock

(GHF) method removes the spin collinear constraint from conventional restricted and un-

restricted Hartree-Fock (RHF and UHF) methods so that spins are allowed to rotate freely

in a non-collinear framework. A detailed history of the early GHF method can be found

in Reference 37 and we refer readers to a recent review36 on non-collinear spin. The GHF

approach has been shown to be a convenient and inexpensive computational platform to sim-

ulate spin dynamics of a single spin center in a static magnetic field38 and in a dissociated

reaction.39

In this work, we introduce a variational spin non-collinear approach using the complex

GHF (C-GHF) method with London orbitals in the presence of a strong magnetic field. The

method implemented herein is able to model both spin-collinear and noncollinear phenomena

as well as the processes underlying the magnetic field induced spin phase transition. Note

that during the preparation of this manuscript, a variational GHF approach has been applied

to studies of orbital and spin effects in molecules subject to non-uniform magnetic fields.40
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2 Methodology

2.1 Spinor Formalism of Generalized Hartree-Fock with London

Orbitals

In order to treat non-collinear spins in a non-perturbative magnetic field, one needs to

retain the full vector form of the magnetization m(r) and allow each spin quantization axis

to rotate. This is equivalent to writing the spin orbitals as a superposition of the spin-

up and spin-down manifolds. For Hartree-Fock, this leads to the generalized Hartree-Fock

(GHF) method,32,34,36–38,41–43 which is similar in structure to the wave function used in two-

component relativistic models.44–53

The spinor orbital is defined as

ψj(r) =

φαj (r)

φβj (r)

 (1)

The spatial functions {φαj (r,kA)}, {φβj (r,kA)} are expanded in terms of a common set of

complex London orbitals {χ̃µ(r,kA)},

φαj (r,kA) =
∑
µ

Cα
µjχ̃µ(r,kA) (2)

φβj (r,kA) =
∑
µ

Cβ
µjχ̃µ(r,kA) (3)

χ̃µ(r,kA) = χµ(r−RA)eikA·(r−RA) (4)

where {χµ(r−RA)} are real atomic orbital (AO) basis functions centered at RA. The

exponential form of the London orbital phase factor defines the local gauge origin at each

nuclear center in the presence of magnetic field with a plane wave vector described by kA =

RA×B
2

, where B is the external magnetic field.

In the spinor orbital basis defined in Eq. (1), the Fock matrix (F) and the density matrix
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(P with P σσ′
µν =

∑occ
j Cσ

µjC
σ′∗
νj ) have a spin-blocked form,38 shown in Eq. (5)

X =

Xαα Xαβ

Xβα Xββ

 , X ∈ {F,P} (5)

In the current implementation, we cast the rank-2 spin-blocked F and P matrices in the

Pauli matrix basis,53

F =
3∑

n=0

Fn ⊗ σn (6)

P =
3∑

n=0

Pn ⊗ σn (7)

σ0 =

1 0

0 1

 ,σ1 =

0 1

1 0

 ,σ2 =

0 −i

i 0

 ,σ3 =

1 0

0 −1


where the scalar (F0) and spin part (F1,F2,F3) of Fock matrix are defined as53

F0 = h0 + J[P0]−K[P0], (8)

Fn = hn −K[Pn], n = 1, 2, 3. (9)

The Coulomb (J) and exchange (K) matrices are,

Jµν [P0] =
∑
λκ

(µν|κλ)P0,λκ (10)

Kµν [Pn] =
∑
λκ

(µλ|κν)Pn,λκ, n = 0, 1, 2, 3 (11)

where

(µν|κλ) =

∫
d3r1

∫
d3r2

χ̃∗µ(r1,kA)χ̃ν(r1,kB)χ̃∗κ(r2,kC)χ̃λ(r2,kD)

|r1 − r2|
(12)
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are the electron repulsion integrals (ERIs). Note that since ERIs using London orbitals

are complex valued, they only have a four-fold symmetry instead of eight, as in the case of

real-valued ERIs,

(µν|κλ) =(κλ|µν) = (νµ|λκ)∗ = (λκ|νµ)∗ (13)

2.2 The Non-Relativistic Hamiltonian in the Presence of a Static

and Uniform Magnetic Field

In the non-relativistic framework, the interaction of an electron spin with external electro-

magnetic field is described by the Schrödinger-Pauli Hamiltonian:

ĥPauli =
1

2
[σ · (p + A)]2 − Û (14)

where A and Û are the vector potential and scalar potential of the electromagnetic field,

respectively. p = −i∇ is the momentum operator. Given the relationship between the

vector potential and the magnetic field, A = 1
2
B × r, the one-electron Pauli Hamiltonian

can be written as

hPauli = ĥ0(r) +
1

2
(σ − ir×∇) ·B +

1

8
(B× r)2 (15)

where ĥ0(r) is the field-free one-electron Hamiltonian. The second term includes spin and or-

bital Zeeman contributions. The third term is the diamagnetic contribution and is quadratic

in the strength of magnetic field, which can be expanded as

(B× r)2 =(B2
y +B2

z )x
2 + (B2

x +B2
z )y

2 + (B2
x +B2

y)z
2

− 2BxByxy − 2ByBzyz − 2BxBzxz (16)

The orbital Zeeman and the diamagnetic term do not directly contribute to the spin dy-

namics.38 Although these two terms are relatively small, they are important contributions
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in diamagnetism.54–57 In the presence of a strong magnetic field, these two terms account

for significant contributions to the interaction between the chemical system and the external

field.26

Using the formalism of generalized Hartree-Fock in the Pauli matrix basis (Eq. (6)), spin

contributions in Eq. (14) can be separated from the scalar part. The resulting scalar Fock

matrix is

F0 =h0 + J[P0]−K[P0]−
i

2
L ·B +

1

8

{
(B2

y +B2
z )qxx + (B2

x +B2
z )qyy + (B2

x +B2
y)qzz

− 2BxByqxy − 2ByBzqyz − 2BxBzqxz
}

(17)

where Lµν = 〈χ̃µ|r × ∇|χ̃ν〉 is the orbital-angular momentum integral , and (qnm)µν =

〈χ̃µ|r̂nr̂m|χ̃ν〉 is the electric quadrupole integral. After spin separation using the Pauli ma-

trices, spin components of the Fock matrix are

Fn =
1

2
BnS−K[Pn], n = 1, 2, 3. (18)

where S is the overlap matrix.

2.3 Electron Integrals using London Type Orbitals

The electronic structure method introduced in this work requires the computation of one- and

two-electron integrals of London orbitals. Integrals are evaluated in complex arithmetic, and

corresponding recursion relationships are presented in the Appendix. In the current work,

one- and two-electron integrals of London orbitals and the complex generalized Hartree-Fock

method are implemented in the Chronus Quantum software package.58
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3 Results and Discussion

The formalism of generalized Hartree-Fock in the spinor basis allows for calculations of non-

collinear spin states within the ab initio framework. With the atomic London orbitals and

associated one- and two-electron integrals, wave functions of chemical systems with multi-

spin-centers in the presence of a static magnetic field can be variationally optimized. In this

current work, we study the spin noncollinearity and magnetic phase transition of molecular

systems driven by static magnetic fields. All C-GHF calculations are done using the Chronus

Quantum software package.
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Figure 1. (a): The potential energy surface of an H2 molecule in a homogenous
magnetic field, |Bz| = 0.001 a.u. along the −z direction. (b): The expectation
value of Sz of the C-GHF solution.

The first test case is a H2 molecule in a uniform magnetic field. C-GHF solutions in the

presence of a static magnetic field were obtained with several different basis sets, including

6-31G, 6-31G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Although differences in the absolute

energy computed with different basis sets are noticeable, the expectation values of Sz at a

given magnetic field only differ by less than 3%. In the following discussion, we will only

present the results computed at the C-GHF/aug-cc-pVTZ level of theory.59 In this test

system, the static magnetic field (1 a.u. ≈ 2.35×105 T, based on SI units for magnetic field)

is aligned perpendicular to the molecular axis. Figure 1 plots the potential energy curve of an
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H2 molecule in a uniform magnetic field (|Bz| = 0.001 a.u. along the −z direction) computed

using the complex generalized Hartree-Fock (C-GHF), complex unrestricted Hartree-Fock

(C-UHF), and complex restricted Hartree-Fock (C-RHF) with London orbitals. C-UHF

and C-RHF calculations are restricted to spin triplet (Sz = 1) and singlet (Sz = 0) states,

respectively. The C-GHF solution is not spin restricted. As a result, at all bond distances,

the C-GHF solution is always the lowest in energy.

From the equilibrium bond length toward the asymptotic dissociation limit, the change in

〈Sz〉 of the C-GHF solution suggests that the system undergoes a spin phase transition from

〈Sz〉 = 0 to 1. This spin phase transition is a result of the competing driving forces of the

exchange coupling and paramagnetism. This can be understood from the perturbative and

phenomenological spin Hamiltonian including both the spin exchange coupling and Zeeman

effect,

H =− 1

2
J12S1 · S2 − gµBB · (S1 + S2) (19)

=− 1

2
J12|S1||S2| cos(θ)− gµBBz(S1z + S2z) (20)

where J12 is the exchange coupling strength, g is the spin g-factor, and µB is the Bohr

magneton. For a non-collinear spin alignment in the presence of a static magnetic field in

the z direction depicted in Fig. 2, the spin Hamiltonian can be written as in Eq. (20), with

the angle between the two spin vectors defined as θ. In the collinear spin electronic structure

framework, such as RHF and UHF, θ can only be 0◦ or 180◦. Without spin-orbit coupling,

the exchange coupling is isotropic.

At the equilibrium bond distance, the exchange coupling is much stronger than the

Zeeman term, giving rise to the antiparallel orientation of the two electrons, i.e., a closed-

shell configuration and θ = 180◦. As the bond length increases, the exchange coupling

decreases exponentially, whereas the strength of the Zeeman effect remains constant. At

certain bond lengths when the exchange coupling becomes weaker than the Zeeman term,
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Figure 2. Illustration of non-collinearity of two spin vectors.

the electronic system undergoes a spin phase transition. This spin phase transition is a non-

collinear process where θ can take on any value between 0◦ and 180◦, and the non-collinear

spin state has the lowest energy. In this regime, only the non-collinear C-GHF can describe

the electronic characteristics of the spin system.

Figure 3. Spin magnetization vector at different H-H bond lengths. (a): RHH =
2.6 Å, 〈Sz〉 =0.19428, (b): RHH = 2.9 Å, 〈Sz〉 =0.48588, and (c): RHH = 3.1 Å,
〈Sz〉 =0.88685. For all cases, the magnetic field strength is 0.001 a.u. along the
−z direction. The area enclosed by the mesh has a charge density > 0.002. The
size of the 3D box is 550pm(W) × 300pm(H)× 300pm(D).
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Figure 3 shows the progression of spin vectors during the spin phase transition when the

bond length is stretched from 2.6 to 3.1 Å, while keeping the magnetic field strength constant,

|Bz| = 0.001 a.u., along the −z direction. When a non-zero 〈Sz〉 moment is obtained in the

system, the overall spin vector is aligned opposite to the magnetic field arising from the spin

Zeeman effect. As the spins undergo a phase transition, the angle between local spin vectors

decreases from 180◦ to 0◦. At RHH ∼ 2.9 Å (Fig. 3b) the two local spin vectors are nearly

orthogonal, exhibiting a strong non-collinearity in the presence of a magnetic field. The

UHF and RHF solutions are restricted by collinear spin configuration, and therefore, can

not capture the progression of spin phase transition via the spin noncollinear configuration.

The framework of C-GHF with London orbitals also allows for a variational exploration of

critical magnetic field strengths that can induce a spin phase transition in molecular systems.

Figure 4 plots the spin magnetization vector at different field strengths while keeping the

bond length fixed at 2.6 Å. As the magnetic field gets stronger, the expectation value of Sz

becomes greater, and a non-collinear spin phase transition is observed. In contrast to the

phenomenon in Fig. 3 where bond stretching weakens the exchange coupling, the spin phase

transition in Fig. 4 arises from the increasing strength of the spin Zeeman effect, due to the

increase in magnetic field strength. At |Bz| = 0.005 a.u., the spin phase transition is already

complete, and the triplet spin-collinear configuration is the lowest energy state.

Figure 5 plots the expectation value of Sz as a function of H-H bond length and magnetic

field strength. Figure 5 suggests that the rate of the spin phase transition sensitively depends

on the strength of exchange coupling and spin Zeeman terms. At near the equilibrium

bond distance with the strongest magnetic field (|Bz| = 0.3 a.u.) considered here, the spin

configuration switches almost immediately. In the weak field or weak exchange coupling

regime, spins can be seen to undergo a much slower phase transition compared to those in

the strong field or strong exchange coupling regime.

Although the orbital Zeeman and diamagnetic terms in Eq. (15) do not directly modify

the spin interaction with the external magnetic field, they are important contributions to the
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Figure 4. Spin magnetization vectors for H2 at different field strengths. (a):
|Bz| = 0.001 a.u., 〈Sz〉 =0.19428, (b): |Bz| = 0.003 a.u., 〈Sz〉 =0.59040, and (c):
|Bz| = 0.005 a.u., 〈Sz〉 = 1.0000. The H-H bond length is RHH = 2.6 Å. The
area enclosed by the mesh has a charge density > 0.002. The size of the 3D box
is 550pm(W)× 300pm(H)× 300pm(D).
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Figure 5. 〈Sz〉 as a function of H-H bond length and magnetic field strength.

stability of molecular system in magnetic field and can indirectly influence spin dynamics

through perturbing the spatial extent and energetics of molecular orbitals.28 Figure 6 shows

the magnitudes of spin Zeeman, orbital Zeeman, and diamagnetic contributions to the total
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Figure 6. Energetic contributions of spin Zeeman, orbital Zeeman, and diamag-
netic terms. |Bz| = 0.01 a.u.

potential energy. In the strong exchange couple regime (RHH ∼ 0.4 − 0.6 Å), the diamag-

netic term has the largest contribution, followed by the orbital Zeeman term. These two

terms are different in sign with the diamagnetic term destabilizing the system energy with

respect to the field-free molecular system. In this regime, the system takes on a closed-shell

configuration. As a result, the spin Zeeman contribution is zero. As the system undergoes

a spin phase transition, the non-zero overall spin vector gives rise to an increasing spin

Zeeman contribution that significantly stabilizes the molecular system. Analysis of Fig. 6

suggests that in a closed-shell configuration, orbital Zeeman and diamagnetic contributions

are responsible for the interaction between the electronic system and the external magnetic

field. In an open-shell system, the spin Zeeman is the dominant driving force underlying the

system-magnetic-field interaction in the weak field regime. As the field strength increases,

the diamagnetic term becomes non-negligible as it increases quadratically with respect to

the field.

In order to probe the spin phase transition in a more complex magnetic molecular system,

we study the spin characteristics of a di-chromium molecular complex, [(H3N)4Cr(OH)2Cr(NH3)4]
4+,

in a uniform magnetic field. Figure 7 illustrates the molecular structure and computational

setup where the magnetic field is applied in +z direction, perpendicular to the Cr-O-Cr-O

plane. The molecular geometry was optimized60 with the GAUSSIAN16 software package61
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Figure 7. The molecular structure of a di-chromium molecular complex,
[(H3N)4Cr(OH)2Cr(NH3)4]4+ that has D2h symmetry. Each Cr atom is in a
distorted octahedral coordination environment. The magnetic field is applied in
the +z direction, perpendicular to the Cr-O-Cr-O plane.

at the B3LYP/6-31G level of theory.62–65 The electronic structures in a magnetic field were

calculated using C-GHF with 6-31G London atomic orbitals in the Chronus Quantum soft-

ware package.

In the di-Cr(III) molecular complex, the octahedral ligand field splits Cr d orbitals into

e and t2 sets where three unpaired electrons occupy the t2 manifold (Fig. 8b). In contrast

to the previous molecular H2 system where the ground state at equilibrium bond length is

in a non-magnetic closed-shell configuration, the ground state of the di-Cr(III) molecular

complex exhibits a magnetic C-GHF solution. Cr(III) cations in an octahedral coordination

environment bridged by oxygen atoms are known to have antiferromagnetic super-exchange

coupling.66–68 The J constant in Eq. (20) for super-exchange coupling is negative in sign,

favoring the antiferromagnetic spin alignment in the ground state (〈Sz〉 = 0, see Fig. 8b).

The lack of electron correlation in Hartree-Fock calculation gives rise to an overestimation of

the J constant magnitude because the correlation effect has an opposite contribution to the

magnetism.66 Nevertheless, qualitative characteristics and trends of spin phase transitions

can still be captured by C-GHF calculations with London atomic orbitals.

In the absence of an external magnetic field, the ground state wave function of the
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Figure 8. (a) Total energy of di-Cr(III) complex in a finite magnetic field. (b)
The expectation value of Sz of the C-GHF solution.

di-Cr(III) molecular complex obtained from the C-GHF calculation is antiferromagnetic.

Figure 8 plots the relative total energy compared to that in the absence of a magnetic field

and the expectation value of Sz as a function of applied magnetic field strength. When

the magnetic field is relatively weak, the system is in the antiferromagnetic state. In this

region, the super-exchange coupling is constant and the small energy change is solely due

to the orbital Zeeman and diamagnetic terms. As the magnetic field reaches a critical point

(∼ 60 × 10−6 a.u.) where a small change in spin alignment can give rise to a spin Zeeman

term strong enough to overcome the antiferromagnetic super-exchange coupling, the system

starts to undergo a spin phase transition. As the magnetic field strength increases, the

energy of the molecule decreases due to the increasing spin Zeeman contribution. The

change of expectation value of Sz indicates that the spin state gradually switches from

the antiferromagnetic 〈Sz〉 = 0 to ferromagnetic 〈Sz〉 = −3 configuration (Fig. 8b). This

case study suggests that C-GHF calculations with London atomic orbitals can be used to

investigate magnetic phase transitions in transition metal complexes.
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4 Conclusion

Presented in this article is a framework of ab initio variational approach using complex

generalized Hartree-Fock (C-GHF) with London orbitals to effectively explore the spin phase

space in the presence of a homogenous magnetic field. We introduced the implementation

of the C-GHF approach within the spinor formalism. In order to account for gauge origin-

independence in the self-consistent field, the C-GHF is represented in the London orbital

basis with a magnetic field complex phase factor. Recursive algorithms for computing one-

and two-electron integrals of London orbitals are provided in the Appendix. Additionally,

a Pauli matrix representation of the C-GHF is introduced in this work that allows for the

separation of spin contributions from the scalar part of the Fock matrix.

C-GHF with London orbitals in the presence of a homogenous magnetic field has been

applied to study the spin phase transition in a molecular H2 system. Non-collinear spin

configurations have been observed during the phase transition from a singlet to triplet state.

The competing driving forces of exchange coupling and the spin Zeeman effect have been

shown to govern the spin phase transition and its transition rate. In addition, energetic

analysis suggests that in the presence of a static magnetic field, orbital Zeeman and dia-

magnetic terms are important contributions in a closed-shell configuration, while the spin

Zeeman term is the dominant interaction driving force in an open-shell state.

The variational C-GHF method with London orbitals can also be used to compute mag-

netic phase transitions in molecular complexes driven by an external magnetic field. Results

show that there exists a critical point where the spin Zeeman is large enough to compete

with the super-exchange coupling so that the spin phase transition takes place and drives

the magnetic phase transition.

The method presented in this work is based on the single Slater determinant wave function

ansatz which lacks important electron correlation effects. Future developments will use the

variational C-GHF reference for correlated electronic structure methods which will provide

more accurate descriptions of spin and magnetic phase transitions.
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Appendix: Integral Evaluation

A London orbital is defined as

χ̃(r,kA) = χ(r−RA)eikA·(r−RA) (21)

where {χ} are primary atom-centered Gaussian type orbitals,

χa = (x− Ax)ax(y − Ay)ay(z − Az)aze−ζa|r−A| (22)

|r−A| =
√

(x− Ax)2 + (y − Ay)2 + (z − Az)2 (23)

A = {Ax, Ay, Az} is the coordinate of the atom center and a = {ax, ay, az} is the angular

momentum. ζa is the exponent of primary Gaussian type orbitals.

The London orbital defined in Eq. (21) has the following identity,

χ̃∗µ(r,kA) = χ̃µ(r,−kA) (24)

The one-electron integral for any one-electron operator Ô1 can be defined as

(a|Ô1|b) =

∫
d3rχ̃∗(r,kA) Ô1 χ̃(r,kB) =

∫
d3rχ̃(r,−kA) Ô1 χ̃(r,kB) (25)

and, for a two-electron operator Ô2, the integral is defined as

(ab|Ô2|cd) =

∫
d3r1

∫
d3r2 χ̃

∗(r1,kA)χ̃(r1,kB) Ô2 χ̃
∗(r2,kC)χ̃(r2,kD)

=

∫
d3r1

∫
d3r2 χ̃(r1,−kA)χ̃(r1,kB) Ô2 χ̃(r2,−kC)χ̃(r2,kD) (26)

General recursion relationships for one- and two-electron integrals using mixed plane-

wave/Gaussian type orbitals were presented by Obara and coworkers,69 and the application

to London orbitals was developed by Helgaker and Teale.25,70 In this work, we use a modified
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Obara-Saika algorithm to calculate one- and two-electron integrals using London orbitals.

As the derivations are similar to those in references 69 and 25, we only present the working

equations used in this work without going through the detailed mathematics. Note that

recursive algorithms presented herein can be used for evaluating integrals of mixed plane-

wave/Gaussian orbitals with an arbitrary wave vector.

The following intermediate quantities are defined for integral recursion relationships used

in this work,

ζ = ζa + ζb (27)

η = ζc + ζd (28)

ξ =
ζaζb
ζa + ζb

(29)

ρ =
ζη

ζ + η
(30)

P =
ζaA+ ζbB

ζa + ζb
(31)

Q =
ζcC + ζdD

ζc + ζd
(32)

W =
ζP + ηQ

ζ + η
(33)

kp = −ka + kb (34)

kq = −kc + kd (35)

A.1 Overlap Integral

The recursion for the overlap integral is

(a + 1µ||b) =

(
P +

i(−kA + kB)

2ζ
−A

)
µ

(a||b) +
1

2ζ

{
Nµ(a)(a− 1µ||b) +Nµ(b)(a||b− 1µ)

}
(36)

(0A||0B) =

(
π

ζ

)3/2

e−ξ(A−B)2e−
(−ka+kb)

2

4ζ ei{(−ka)·(P−A)+kb·(P−B)} (37)

19



where Nµ(a) is the µ component of the angular momentum a. a ± 1µ means that the µ

component of the angular momentum a is raised/lowered by one.

A.2 Kinetic Energy Integral

Kinetic integral is the second derivatives of overlap integrals,

(a|T |b) = −1

2

∑
ν=x,y,z

(a||∂2νb) (38)

The recursion relationship for the kinetic energy integral is

−1

2
(a||∂2νb) =− 2ζb

2(a||b + 2ν) + 2iζbkbµ(a||b + 1ν) +

(
2ζbNν(b)ζb +

1

2
k2
b

)
(a||b)

− iNν(b)kbν(a||b− 1ν)−
1

2
Nν(b)(Nν(b)− 1)(a||b− 2ν) (39)

where kbµ is the µ component of the wave vector kb.

4.1 Angular Momentum Integral

Angular momentum integral is defined as

(a|r×∇|b) = x̂ (a|ry∂z − rz∂y|b) + ŷ (a|rz∂x − rx∂z|b) + ẑ (a|rx∂y − ry∂x|b)

= −x̂ (a|ry∂Bz − rz∂By |b)− ŷ (a|rz∂Bx − rx∂Bz |b)− ẑ (a|rx∂By − ry∂Bx |b)

(40)

where x̂, ŷ, ẑ are unit vectors in the x, y, z directions. ∂Bµ is the partial derivative with

respect to nuclear coordinates at atom center B. The integral of the type (a|rµ∂ν |b) where
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µ, ν = x, y, z can be evaluated as linear combinations of overlap integrals:

(a|rµ∂ν |b) =−
{

2ζb(a + 1µ||b + 1ν)−Nν(b)(a + 1µ||b− 1ν)− ikbν(a + 1µ||b)
}

− Aµ
{

2ζb(a||b + 1ν)−Nν(b)(a||b− 1ν)− ikbν(a||b)
}

(41)

A.3 Electric Quadrupole Integral

The recursion relationship for the electric quadrupole integral is

(a|rµrν |b) = (a + 1µ||b + 1ν) + Aµ(a||b + 1ν) + Bν(a + 1µ||b) + AµBν(a||b) (42)

A.4 Nuclear Attraction Integral

Define the operator

V =
1

|r−C|
(43)

where C is the nuclear coordinate. The recursion for nuclear attraction integral is

(a + 1µ|V |b)(m) =(P +
ikpµ
2ζ
−A)µ(a|V |b)(m) − (P +

ikpµ
2ζ
−C)µ(a|V |b)(m+1)

+
1

2ζ
Nµ(a)

{
(a− 1µ|V |b)(m) − (a− 1µ|V |b)(m+1)

}
+

1

2ζ
Nµ(b)

{
(a|V |b− 1µ)(m) − (a|V |b− 1µ)(m+1)

}
(44)

(0A|V |0B)(m) =2

(
ζ

π

)1/2

(0A||0B) Fm(T ) (45)

T =ζ

(
P−C + i

ka + kb
2ζ

)2

(46)
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A.5 Electron Repulsion Integral

The recursion for electron repulsion integral is

((a + 1µ)b|cd)(m) =

(
P−A +

ikpµ
2ζ

)
µ

(ab|cd)(m)

+

(
W −P− iρ(ka + kb)µ

2ζ2
+
i(kc + kd)µ

2(ζ + η)

)
µ

(ab|cd)(m+1)

+
1

2ζ
Nµ(a)

{
((a− 1µ)b|cd)(m) − ρ

ζ
((a− 1µ)b|cd)(m+1)

}
+

1

2ζ
Nµ(b)

{
(a(b− 1µ)|cd)(m) − ρ

ζ
(a(b− 1µ)|cd)(m+1)

}
+

1

2(ζ + η)

{
Nµ(c)(ab|(c− 1µ)d)(m+1) +Nµ(d)(ab|c(d− 1µ))(m+1)

}
(47)

(00|00)(m) =2

(
ρ

π

)1/2

(0A||0B)(0C ||0D) Fm(T ) (48)

T =ρ

[(
P + i

k1

2ζ

)
−
(
Q + i

k2

2η

)]2
(49)

where Fm is the Boys function. The horizontal recursion can be derived from Eq. (47)

easily.71

(a(b + 1µ)|cd)(m) = ((a + 1µ)b|cd)(m) + (A−B)ν(ab|cd)(m) (50)
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the Kagomé Lattice With Arbitrary Spin: A Higher-order Coupled Cluster Treatment.

Phys. Rev. B 2011, 84, 224428.

(3) Messio, L.; Bernu, B.; Lhuillier, C. Kagomé Antiferromagnet: A Chiral Topological

Spin Liquid? Phys. Rev. Lett. 2012, 108, 207204.

(4) Mielke, A. Exact Ground States for the Hubbard Model on the Kagomé Lattice. J.
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