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Abstract

Magnetic circular dichroism (MCD) experiments provide a sensitive tool for explor-

ing geometric, magnetic, and electronic properties of chemical complexes and condensed

matter systems. They are also challenging to simulate because of the need to simulta-

neously treat the perturbations of a finite magnetic field as well as an optical field. In

this work, we introduce an ab initio approach that treats external magnetic field non-

perturbatively with London orbitals for simulating the MCD spectra of closed-shell

systems. Effects of a magnetic field are included variationally in the spin-free non-

relativistic Hamiltonian, followed by a linear response formalism to directly calculate

the difference in absorption between the left and right circularly polarized light. In ad-

dition to the presentation of underlying mathematical formalism and implementation,

the method developed in this paper has been applied to simulations of MCD spec-

tra of the sodium anion, 2,2,6,6-tetramethylcyclohexanone, and 3-methyl-2-hexanone.

Results are discussed and compared to experiments.
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1 Introduction

Magnetic circular dichroism (MCD) is an important class of magneto-optical spectroscopy

in which the probing field is a circularly polarized optical light in the presence of a static

magnetic field.1 The application of a magnetic field couples the (spin and/or orbital) angular

momentum of the system to the field. This affects both the positions and intensities of peaks

in the electronic spectrum: the former due to an energy shift of each electronic state, and the

latter due to perturbations to the wavefunction. This often leads to a breaking of degeneracies

and allows for the in-depth spectroscopic study of the fine structure of material systems.

Excitingly, because optically active (“bright”) and inactive (“dark”) states can be coupled

together, spectroscopic methods performed in a magnetic field can probe quantum states

that are otherwise inaccessible at zero field. Because MCD experiments provide a sensitive

tool for exploring geometric, magnetic, and electronic properties of chemical complexes and

condensed matter systems, they are widely used in chemistry, biology, and materials research.

Interpreting and understanding MCD spectra has been traditionally based on the first-

order perturbative model,2–6

∆A′

E
= ΓµBB

∑
J

[
AJ

(
− ∂f(~ω − ~ω0J)

∂~ω

)
+

(
BJ +

CJ

kT

)
f(~ω − ~ω0J)

]
(1)

AJ term, which has a derivative band-shape, arises when the degenerate excited states are

split due to Zeeman effect. Perturbation of the transition dipole gives rise to BJ term,

which is the most common effect in MCD. The CJ term is modulated by the Boltzmann

distribution of the ground state when degenerate ground states are split by Zeeman effects.

The BJ term is relatively weak compared to the AJ and CJ terms, as such it will only be

obvious when there are no AJ and CJ term contributions, e.g., in a low symmetry closed

shell molecule.

Over the past two decades, there have been many successful developments to compute

MCD spectra in the perturbative regime, including single residue of the quadratic response
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function;7 the complex polarization propagator method;8–10 a sum-over-states expression us-

ing truncated configuration interaction, with perturbative treatment of the magnetic field

and spin-orbit coupling;11,12 magnetically perturbed time-dependent density functional the-

ory (TDDFT);13–15 and multi-configurational self-consistent-field with quasi-degenerate per-

turbation theory to include Zeeman effects with spin-couplings.16–18 In addition, solvent

effects on MCD spectra are also considered.19,20 Using London orbitals to remove the gauge-

dependence of finite atom-centered basis set has been applied in the perturbative calculations

of MCD at the level of coupled-cluster,21,22 Hartree-Fock, and DFT.23,24

To the best of our knowledge, there are only two approaches to compute the MCD

terms with variational treatment of magnetic field. Linderberg and coworkers used the

random-phase-approximation (RPA) in the presence of a static magnetic field with semi-

empirical evaluation of London orbital integrals to simulate the MCD B term.25 Bertsch

and coworkers included the orbital Zeeman effect in the local-density-approximation (LDA)

using RT–TDDFT integrated over a spatial grid to simulate A - and B-term contributions.26

For many-atom systems, electronic structure calculations in the presence of electromag-

netic fields become unphysically dependent on the choice of the arbitrary gauge-origin. This

is due to the use of atomic-centered orbitals, basis set incompleteness, and truncated ex-

pansion of the field-matter interaction, i.e, physical observables become dependent on the

origin of the electromagnetic field.27–34 Among various approaches to correct for the gauge-

origin problem, electronic structure methods using London type orbitals35,36 provide the

most satisfactory solution.37–42

In the perturbative treatment of magnetic field effects, explicit electron integrals of Lon-

don orbitals are not necessary. However, in the non-perturbative variational approach,

complex-valued London orbital integrals must be explicitly evaluated in order to remove

the gauge-origin dependence. General recursion relationships for one- and two-electron in-

tegrals using London orbitals were pioneered by Helgaker and were recently implemented in

the complex generalized Hartree-Fock framework.43–47
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In this work, we introduce an ab initio approach that treats external magnetic field non-

perturbatively with London orbitals for simulating MCD spectra of closed-shell systems.

This method can describe A and B term contributions to the MCD spectrum in a uniform

way. Effects of a magnetic field are included variationally in the spin-free non-relativistic

Hamiltonian, followed by a linear response theory to obtain the MCD spectrum using a for-

malism that directly computes the difference of absorption between left- and right-circularly

polarized light.

2 Methodology

2.1 MCD Hamiltonian of a Closed-Shell System

In order to simulate MCD spectra, the fundamental Hamiltonian needs to address perturba-

tions from both a static magnetic field and an oscillating optical field. In the non-relativistic

framework, the interaction of an electron with external fields in an MCD experiment can be

described by the following one-electron Hamiltonian. In this work, we focus on MCD spectra

of closed-shell molecular systems, therefore, the spin-Zeeman contributions do not enter the

Hamiltonian.

h =
1

2
(p + A)2 − U + V (2)

= −1

2
∇2 +

1

2
(−ir×∇) ·BM +

1

8
(BM × r)2 +

∑
A

ZA
|r−RA|

− UW + AW · p +
1

2
A2
W + AW ·AM (3)

where A and U are the total vector potential and scalar potential of the external fields,

respectively. p = −i∇ is the momentum operator and V is the nuclear attraction potential.

The total vector potential A includes an applied static magnetic field and a probing optical

field (or a plane wave), A = AM + AW . Since UM = 0 for a static magnetic field, only
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the scalar potential of the probing plane wave remains in Eq. (3). We used the relationship

between the vector potential and the static magnetic field (BM), AM = 1
2
BM × r.

Using the electric-dipole approximation in the length gauge for the interaction between

the system and the probing plane wave and the relationship EW (r, t) = −∇UW (r, t) −
∂
∂t
AW (r, t), the final working Hamiltonian for simulating MCD experiment is:

h = −1

2
∇2 +

1

2
(−ir×∇) ·BM +

1

8
(BM × r)2 +

∑
A

ZA
|r−RA|

− r · EW (4)

Note that in Eq. (4), higher order perturbations arising from interactions between the elec-

tronic system and the probing optical field, such as the electric-quadrupole and magnetic-

dipole terms, are ignored.

In the following discussion, we remove the subscript notations “M” and “W” for simplic-

ity, however, readers should keep in mind that B and E fields originate from two different

external perturbations.

The second term in Eq. (4) includes orbital Zeeman contributions, and the third term

is the diamagnetic contribution. The diamagnetic term is quadratic in the strength of the

magnetic field, which can be expanded as

(B× r)2 =(B2
y +B2

z )x
2 + (B2

x +B2
z )y

2 + (B2
x +B2

y)z
2

− 2BxByxy − 2ByBzyz − 2BxBzxz (5)

This B2 term plays an important role in molecular diamagnetism, especially in large magnetic

fields and in closed-shell systems.

The total one-electron Hamiltonian Eq. (4) can be separated as h(t) = h0 + V (t), where

the time-dependent perturbation, V (t) = −r ·E(t), is the electric-dipole interaction, and h0
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is the time-independent reference Hamiltonian,

h0 = −1

2
∇2 +

1

2
(−ir×∇) ·BM +

1

8
(BM × r)2 +

∑
A

ZA
|r−RA|

(6)

The separation of time-dependent and time-independent contributions to the total Hamil-

tonian allows different procedures to treat the separate external perturbations in an MCD

calculation. Instead of using perturbative treatments for both the static magnetic and oscil-

lating optical fields, we introduce a semi-variational approach in which the wave function is

variationally optimized in the presence of a static magnetic field (Sec. 2.2) and the response

to the oscillating circularly polarized optical field is taken at the weak-field limit (Sec. 2.3).

2.2 Ground State with Variational Treatment of Magnetic Field

using London Orbitals

In the numerical implementation developed in this work, the Hamiltonian is cast in an atomic

basis. In restricted Hartree-Fock, the molecular orbitals {φj(r)} are expanded in terms of a

set of complex London orbitals {χ̃µ(r,kA)},

φj(r) =
∑
µ

Cµjχ̃µ(r,kA) (7)

χ̃µ(r,kA) = χµ(r−RA)eikA·(r−RA) (8)

where {χµ(r−RA)} are real Gaussian type atomic orbital (AO) basis functions centered at

RA. The exponential form of the London orbital phase factor defines the local gauge origin

at each nuclear center in the presence of magnetic field with a plane wave vector described

by kA = RA×B
2

, where B is the external magnetic field.

The one-electron integral for any one-electron operator Ô1 with London orbitals can be
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defined as

O1,µν = (µ|O1|ν) =

∫
d3rχ̃∗µ(r,kA) Ô1 χ̃ν(r,kB) =

∫
d3rχ̃µ(r,−kA) Ô1 χ̃ν(r,kB) (9)

and the electron repulsion integrals (ERIs) are,

(µν|κλ) =

∫
d3r1

∫
d3r2

χ̃∗µ(r1,kA)χ̃ν(r1,kB)χ̃∗κ(r2,kC)χ̃λ(r2,kD)

|r1 − r2|
(10)

In a perturbative treatment of the static magnetic field, explicit electron integrals using

London orbitals with a finite field are not needed.21–24 However, for the variational approach,

complex-valued London orbital integrals must be evaluated. For details on integral evaluation

using London orbitals, we refer readers to Refs. 43,45,47. Integrals are evaluated in complex

arithmetic, implemented in the Chronus Quantum software package.48

Using the formalism of restricted Hartree-Fock for closed-shell systems, the time-independent

Fock matrix can be written as,

F0 = T + V + J[P0]−
1

2
K[P0]−

i

2
L ·B

+
1

8

{
(B2

y +B2
z )qxx + (B2

x +B2
z )qyy + (B2

x +B2
y)qzz

− 2BxByqxy − 2ByBzqyz − 2BxBzqxz
}

(11)

where Lµν = (χ̃µ|r × ∇|χ̃ν) is the orbital-angular momentum integral , and (qnm)µν =

(χ̃µ|r̂nr̂m|χ̃ν) is the electric quadrupole integral. The density matrix is defined as

P0,µν = 2

N/2∑
i

CµiC
∗
νi (12)

where N is the number of electrons.
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The Coulomb (J) and exchange (K) matrix elements are,

Jµν [P0] =
∑
λκ

(µν|κλ)P0,λκ (13)

Kµν [P0] =
∑
λκ

(µλ|κν)P0,λκ (14)

Because the fundamental electron integrals are complex-valued, in this work, we use

complex restricted Hartree-Fock (C-RHF) as our reference. Note that since ERIs using

London orbitals are complex-valued, they only have a four-fold symmetry instead of eight,

as in the case of real-valued ERIs,

(µν|κλ) =(κλ|µν) = (νµ|λκ)∗ = (λκ|νµ)∗ (15)

2.3 Perturbation of Left/Right Circularly Polarized Light

In this work, we only consider the electric-dipole contribution to the MCD spectrum (Eq. (4)).

Higher order multipole moment contributions, such as electric-quadrupole and magnetic-

dipole arising from the system-light interaction, are ignored.

In an MCD experiment, the direction of magnetic field is usually made parallel to the

propagation direction of incident light. Defining the direction of the incident light as γ,

where γ can be {x, y, z}, the circularly polarized dipoles are

µ−γ =
1√
2

(µα − iµβ) (16)

µ+
γ =

1√
2

(µα + iµβ) (17)

where {α, β, γ} ≡ {x, y, z}, {y, z, x} or {z, x, y}, following the right hand rule. The difference
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of absorbance between left- and right-polarized light per photon energy can be written as

∆A′

E
=
ε′− − ε′+

E
d l = Γ

∑
J

∑
γ

1

3
(|
〈
0
∣∣µ−γ ∣∣ J〉′ |2 − | 〈0 ∣∣µ+

γ

∣∣ J〉′ |2)f(~ω − ~ω′0J) (18)

where primed notations refer to quantities calculated in the presence of a static magnetic

field, E = ~ω is the energy per photon, d is concentration of solution in mol/L, l is the

length of the path through the sample in centimeters,4 γ is the direction of propagation of

incident photon, f(~ω− ~ω′0J) is the band shape function, and ~ω′0J is the excitation energy

from ground state to the excited state J in the presence of a static magnetic field. Note that

Eq. (18) takes on an isotropic average of all directions of incident light and applied magnetic

field where the summation of γ runs over x, y, z. The derivation of the rotational average

can be found in Reference 4.

Γ is the a collection of physical constants defined as4

Γ =
N0π

2α2d l log10e

250 ~ c n
(19)

where α is the permittivity and n is the index of refraction.

The difference between oscillator strengths of left- and right-circularly polarized light for

excited state J can be written as:4

∑
γ

(|
〈
0
∣∣µ−γ ∣∣ J〉′ |2 − | 〈0 ∣∣µ+

γ

∣∣ J〉′ |2) = i
∑
αβγ

εαβγ 〈0 |µα| J〉γ 〈J |µβ| 0〉γ (20)

where εαβγ is Levi-Civita symbol (εxyz = εyzx = εzxy = 1, εyxz = εxzy = εzyx = −1, otherwise

0). We use superscript γ to explicitly denote the direction of the applied magnetic field.

Substituting Eq. (20) in Eq. (18), we reach the working formalism for computing MCD

spectra,

∆A′

E
= Γ

∑
J

1

3

(
i
∑
αβγ

εαβγ 〈0 |µα| J〉γ 〈J |µβ| 0〉γ
)
f(~ω − ~ωγ0J) (21)
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Compared to the conventional definition of the B term in perturbation theory, one can

define the MCD strength of excited state |J〉 as

RJ =
i

3

∑
αβγ εαβγ 〈0 |µα| J〉

γ 〈J |µβ| 0〉γ

µB|B|
(22)

where µB is Bohr magneton. If the magnetic field does not split excited states of different

ML that belong to a same orbital angular momentum quantum number, the first order ap-

proximation of RJ becomes BJ in the perturbative treatment. The MCD strength (Eq. (22))

is written in atomic units, whereas the conventional experimentally reported unit is D2 · cm,

where D is Debye.4 The conversion for RJ from atomic units to the conventional unit of

D2 · cm is 1 a.u. = 2.944× 10−5D2 · cm.

The perturbative approach (Eq. (1)) is formulated in terms of the state-specific field-free

parameters AJ ,BJ ,CJ . In contrast, Eq. (21) directly computes MCD observables using a

variational treatment of the external finite magnetic field. Compared to the perturbative

approach, the expression in Eq. (21) contains AJ and BJ terms, and their higher order

contributions.

Without an applied magnetic field, the absorbance difference between left- and right-

circularly polarized light is zero for electric circular dichroism (ECD) inactive molecules (or

natural optical inactive molecules). In the presence of a static magnetic field, the imaginary

part of transition dipole (〈0 |µα| J〉γ and 〈0 |µα| J〉γ) has nonzero contribution to the MCD

strength,1 which can be understood directly from Eq. (21). Since the excitation energy ωγ

is computed in the presence of a magnetic field, the breaking of excited state degeneracies,

i.e. the AJ term, as a result of orbital Zeeman and diamagnetic effects are also included in

Eq. (21). For closed-shell molecules, there is no spin degeneracy in the unperturbed ground

state. In addition, the optical gap of a molecular system is usually larger than kBT , where

kB is the Boltzmann constant. As a result, almost all molecules are in the ground state in

experimental temperature, and thus the equivalent C term contribution can be ignored.
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The computational approach introduced here (Eq. (21)) has a unique advantage that

it only requires the computation of a single response to external optical perturbation due

to the variational treatment of a finite magnetic field in the reference state. In contrast,

perturbative approaches, such as the sum-over-states expression, require computations of all

excited states.9,49 Complex polarization propagator methods8,10 need to numerically resolve

quadratic response functions at different frequencies, but can be advantageous in the high

density-of-state region. Alternatively, AJ and BJ terms can be computed via the evalua-

tion of the derivatives of transition density and excitation energy with respect to magnetic

perturbation.14,15

2.4 Linear Response C-TDHF

In order to compute MCD spectra using Eq. (21), electronic optical excitations need to be

computed in the presence of a finite magnetic field. In this work, this is achieved using the

linear response complex time-dependent Hartree-Fock (C-TDHF) approach. The reference

of C-TDHF is the solution of C-HF with the finite magnetic field included variationally.

The working equation of TDHF is given as

Aγ Bγ

Bγ∗ Aγ∗


Xγ

Yγ

 = ωγ

I 0

0 −I


Xγ

Yγ

 (23)

Bai,bj = (ai||bj) (24)

Aai,bj = (ai||jb) + δabδij(εa − εi) (25)

where γ is the direction of the applied finite magnetic field in the ground state reference.

Note, since the GIAO integrals and C-HF are used, matrix elements in Eq. (23) are complex

valued.

Given the direction γ of the applied uniform magnetic field, the corresponding transition
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dipole can be assembled from the transition density.

〈0 |µα| J〉γ =
∑
i

∑
a

(
〈i |µα| a〉γ Xγ

J,ai + 〈a |µα| i〉γ Y γ
J,ai

)
, µα ∈ {µx, µy, µz} (26)

where i and a sum over occupied and virtual molecular orbitals (MOs), respectively, and

〈a |µα| i〉γ and 〈i |µα| a〉γ are the dipole integrals in MO basis.

3 Computational Detail

To obtain the transition dipoles required in Eq. (21), three separate linear response C-TDHF

calculations were carried out with a magnetic field applied in the x, y, and z directions. Gauge

including atomic orbitals (GIAO) were used to eliminate the gauge origin dependence in the

variational treatment of the finite magnetic field described in Sec. 2.2. The geometries of

molecules were optimized with the B3LYP functional50–52 with a 6-31G(d) basis set53,54 with-

out a magnetic field using the GAUSSIAN16 computational chemistry software package.55

C-TDHF calculations in magnetic field using the GIAO 6-31G(d) basis set were performed in

the CHRONUS QUANTUM open source package.48 Computed spectra are broadened with

a normalized Gaussian function.

fJ(ω) =
1√
πσJ

exp

[
−
(
ω − ω′J
σJ

)2]
(27)

where ω and ω′J are in atomic units. A major advantage of MCD over absorption spectra

of linear polarized light is that MCD can resolve Zeeman effects with a higher resolution.

This can be seen via a simple mathematical exercise using Gaussian broadening function, as

shown in the Appendix.
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4 Benchmark and Discussion

4.1 Sodium Anion

The existence of sodium anion was experimentally confirmed from an MCD measurement,

with an absorption peak at ∼600 nm resulting from the s → p orbital transition.56 An

external magnetic field introduces orbital Zeeman interactions that break the three-fold

degeneracy of the p orbitals, illustrated in Fig. 1. This gives rise to two peaks of opposite

sign which leads to a derivative shape, shown in Fig. 2. The effects of magnetic field on the

wave functions and properties of the ground and excited states are fully accounted for by

treating the magnetic field variationally. As a result, A and B terms as well as their higher-

order contributions are included in the simulated results. In comparison, it is required by

perturbation theory to include infinite orders of magnetic field perturbations to fully describe

the effects.

Computed excitation energies and associated MCD strengths are listed in Tab. 1. In

this calculation, a magnetic field of 5.0 × 10−5 a.u. (∼11.75 T) was applied and the MCD

spectrum was computed using the method introduced here. The relatively large magnitude

of the magnetic field is chosen in the calculation to avoid numerical noise and instability.

Note that we only present the MCD intensity in arbitrary unit because the concentration,

d, and length of the path of light, l, are not defined in the experimental literature. The

center of the computed MCD band is located at ∼720 nm. We do not expect a quantitative

agreement with the experiment as the experimental conditions are not modeled in this work.

Nevertheless, the derivative band-shape of the Na− MCD spectrum is obtained using the

variational method introduced here.

4.2 2,2,6,6-tetramethylcyclohexanone

In the absence of excited state splitting, the main effect of an external magnetic field comes

from the perturbed transition dipole moment, giving rise to the perturbation-theory equiv-
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Figure 1. Illustration of splitting of the Na− s → p transition. Without the
external magnetic field, the excited states have a three-fold degeneracy. In the
presence of a finite magnetic field, excited states of different ML values split.

Table 1. Excitation energies and MCD strengths of Na− s→ p transitions in a
5× 10−5 a.u. (∼11.75 T) magnetic field.

ω′0J/eV R/×105 a.u.

1.72587 −11.1937
1.72655 0.0000
1.72723 11.1937

alent BJ term contribution.

MCD calculation of 2,2,6,6-tetramethylcyclohexanone in a 2.106 × 10−5 a.u. (∼4.95 T)

magnetic field is carried out. In order to be consistent with experimental measurements,

the computed MCD spectrum is presented as the magnetic-field normalized molar ellipticity,

[θ]M . The calculation of [θ]M , in the conventional unit of Degree(mol/L)−1m−1Gauss−1, is

[θ]M = 0.0014802
∑

J RJωf(~ω−~ωγ0J) where RJ , ω, and f are computed in atomic units.14

The computed MCD spectrum of 2,2,6,6-tetramethylcyclohexanone is shown in Fig. 3,

and the associated excitation energy and MCD strength are reported in Tab. 2. The peak

at ∼4.8 eV is characterized as the n → π∗ transition. Although the computed result is of

the correct + sign, the center of the peak is blue-shifted compared to the experimental value

of 4.1 eV.57 In addition, the magnitude of peak intensity is higher than that measured in

experiment. This is likely due to the lack of solvent effects and electron correlation in the

current work.
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M
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850800750700650600
 nm

Figure 2. Simulated MCD spectra of Na− s → p transitions in a 5 × 10−5

a.u. (∼11.75 T) magnetic field. An arbitrary unit and Gaussian broadening with
σ = 0.035 are used.

Table 2. Excitation energies and MCD strengths of 2,2,6,6-
tetramethylcyclohexanone n → π∗ transition in a 2.106 × 10−5 a.u. (∼4.95 T)
magnetic field.

ω′0J/eV R/a.u.

4.79665719 0.038400153724942

4.3 3-methyl-2-hexanone

For natural optical active molecules, such as (R,S)-3-methyl-2-hexanone shown in Fig. 4.1

and Fig. 4.2,57 electronic circular dichroism (ECD) spectra can be obtained in the absence of

a magnetic field, however, ECD signals disappear if the ensemble consists of equal amounts

of R- and S-enantiomers. In this case, MCD spectra are particularly useful as the effect of

an external magnetic field can make the MCD signal visible.

Figure 5 shows the simulated MCD spectra of 3-methyl-2-hexanone in a 2.106 × 10−5

a.u. (∼4.95 T) magnetic field and the associated numerical values are reported in Tab. 3.

The strength of the magnetic field used is comparable to that used in the experiment.57

The calculated MCD spectra of (R)- and (S)-3-methyl-2-hexanone are of the same ‘−’ sign,

in agreement with experiment.57 As a result, even if the sample consists of equal amounts
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Figure 3. Simulated MCD spectrum of 2,2,6,6-tetramethylcyclohexanone in a
2.106× 10−5 a.u. (∼4.95 T) magnetic field. Gaussian broadening with σ = 0.011
is used.

Figure 4.1. Molecular struc-
ture of (R)-3-methyl-2-hexanone

Figure 4.2. Molecular struc-
ture of (S)-3-methyl-2-hexanone

of R- and S-enantiomers, one still can measure the MCD signal. The excitation at ∼4.97

eV (∼250 nm) arises from the excitation from the lone pair electron of oxygen to the π∗

anti-bonding orbital of the CO double bond. The peak position of the calculated spectrum

is about 20 nm blue-shifted compared to the experimental value,57 however, the height of

the peak is similar to experiment.

Table 3. Excitation energies and MCD strengths of 3-methyl-2-hexanone in a
2.106× 10−5 a.u. (∼4.95 T) magnetic field.

ω′0J/eV R/a.u.

4.96819 −0.002011
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Figure 5. Simulated MCD spectra of 3-methyl-2-hexanone in a 2.106×10−5 a.u.
(∼4.95 T) magnetic field. Gaussian broadening with σ = 0.011 is used.

5 Conclusion

In this paper, we presented a mathematical formalism and implementation of an ab initio

method with non-perturbative treatment of magnetic field for computing magnetic circular

dichoism spectra of closed-shell systems. The approach developed in this work utilizes a spin-

free non-relativistic Hamiltonian as the ground state reference that variationally includes

the effects of a finite magnetic field, including orbital Zeeman and diamagnetic terms. MCD

spectra are computed using the linear response formalism and direct calculation of left- and

right-circular polarizations. In order to remove the gauge-origin dependence, London orbitals

are used explicitly in the non-perturbative treatment of the finite magnetic field.

The method developed in this paper has been applied to simulations of MCD spectra

of sodium anion, 2,2,6,6-tetramethylcyclohexanone, and 3-methyl-2-hexanone. Results are

discussed and compared to experiments, and all computed benchmark spectra were able to

return spectra with the correct sign. Particularly, the derivative band-shape of Na− MCD

spectrum was obtained using the variational method developed here, however, due the lack

of electron correlation effect, the computed peak positions are not in good agreement with

experiment. Nevertheless, the electronic transition characteristics in an MCD measurement

can be correctly obtained at a low computational cost using the method developed in this

work.
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Appendix – MCD Peak Broadening

We use two peaks close in energy with opposite sign as an example to illustrate the derivative

peak profile in an MCD measurement. For example, when p orbitals of different ML quantum

numbers split due to the orbital Zeeman term, two excitations with opposite sign appear in

the MCD measurement (Fig. 1). The discussion herein can be extended to other types of

Zeeman splitting as well.

The separation of energy is 2∆ω, which is usually on the order of meV. Assuming a

Gaussian broadening, the band shape function of these two peaks can be written as

f(x) = Ce−
[

(x+∆ω)
σ

]2
− Ce−

[
(x−∆ω)

σ

]2
(28)

where C is normalization constant. The peak positions are the stationary points of function

18



f(x), where the first derivative of the band is zero:

df

dx
=

2C

σ2

(
(x−∆ω)e−

[
(x−∆ω)

σ

]2
− (x+ ∆ω)e−

[
(x+∆ω)

σ

]2)
= 0 (29)

The solution of Eq. (29) can be obtained by locating the intersects of the two functions

in the following equation, shown in Eq. (30),

−4x∆ω

σ2
= ln

x−∆ω

x+ ∆ω
(30)

Equation (30) shows that the separation between two stationary points are greater than

separation between the two excitations (2∆ω). A larger Gaussian width σ gives rise to a

larger peak separation and a broader profile.

∆ω

-∆ω

0

Figure 6. Green and red curves are y = − 4x∆ω
σ2 and y = ln x−∆ω

x+∆ω . Dotted

lines are located at x = +∆ω and x = −∆ω. Positions where − 4x∆ω
σ2 intersects,

ln x−∆ω
x+∆ω , are marked with an ×.
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