p : Relaxed Hierarchical ORAM

Chandrasekhar Nagarajan
University of Utah
Salt Lake City, Utah
chandrunaga94@gmail.com

Rajeev Balasubramonian
University of Utah
Salt Lake City, Utah
rajeev@cs.utah.edu

Abstract

Applications in the cloud are vulnerable to several attack
scenarios. In one possibility, an untrusted cloud operator
can examine addresses on the memory bus and use this in-
formation leak to violate privacy guarantees, even if data is
encrypted. The Oblivious RAM (ORAM) construct was in-
troduced to eliminate such information leak and these frame-
works have seen many innovations in recent years. In spite
of these innovations, the overhead associated with ORAM
is very significant.

This paper takes a step forward in reducing ORAM mem-
ory bandwidth overheads. We make the case that, similar
to a cache hierarchy, a lightweight ORAM that fronts the
full-fledged ORAM provides a boost in efficiency. The light-
weight ORAM has a smaller capacity and smaller depth, and
it can relax some of the many constraints imposed on the
full-fledged ORAM. This yields a 2-level hierarchy with a re-
laxed ORAM and a full ORAM. The relaxed ORAM adopts
design parameters that are optimized for efficiency and not
capacity. We introduce a novel metadata management tech-
nique to further reduce the bandwidth for relaxed ORAM ac-
cess. Relaxed ORAM accesses preserve the indistinguishabil-
ity property and are equipped with an integrity verification
system. Finally, to eliminate information leakage through
LLC and relaxed ORAM hit rates, we introduce a deter-
ministic memory scheduling policy. On a suite of memory-
intensive applications, we show that the best Relaxed Hi-
erarchical ORAM (p) model yields a performance improve-
ment of 50%, relative to a Freecursive ORAM baseline.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ASPLOS °19, April 13-17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. .. $15.00
https://doi.org/10.1145/3297858.3304045

Ali Shafiee
University of Utah
Salt Lake City, Utah
shafiee@cs.utah.edu

Mohit Tiwari
University of Texas, Austin
Austin, Texas
tiwari@austin.utexas.edu

CCS Concepts «Security and privacy — Hardware-based
security protocols; - Computer systems organization
— Processors and memory architectures.

Keywords Memory Systems; Privacy; Oblivious RAM.

ACM Reference Format:

Chandrasekhar Nagarajan, Ali Shafiee, Rajeev Balasubramonian,
and Mohit Tiwari. 2019. p : Relaxed Hierarchical ORAM. In 2019
Architectural Support for Programming Languages and Operating
Systems (ASPLOS °19), April 13-17, 2019, Providence, RI, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3297858.3304045

1 Introduction

A growing amount of data storage and computation is mi-
grating to the cloud. As a result, many different applications
belonging to different entities are now executing together
on an infrastructure that is controlled by yet another en-
tity. This poses a number of concerns regarding security
and privacy. Several attack models exist in such settings and
various solutions have been designed to withstand these at-
tacks [3, 5, 21, 23, 30, 32, 36, 37, 41]. For example, attacks can
be launched by an untrusted cloud operator that has physi-
cal access to cloud servers. Such a cloud operator can swap
commodity memory modules with custom memory mod-
ules that can snoop or modify data and addresses. A body
of work [12, 42] even assumes that a client always sends
data to the cloud in encrypted format, and builds protocols
to enable cloud-based computations on encrypted data, i.e.,
the cloud never sees the user’s data in unencrypted form.
This highlights the potential paranoia associated with some
cloud-based infrastructures.

Building a secure cloud infrastructure requires advances
on several fronts, each targeting specific attack models. Here,
we focus on attacks that are based on observable memory ac-
cess patterns, and that have received attention from many
prior works [10, 11, 26, 29, 34, 37, 45].

While a processor may offer high levels of security within
the chip, exchanging data with entities outside the chip can
pose vulnerabilities. As a baseline security measure, we as-
sume that data will be encrypted before it is sent out of the
processor. However, even though data is encrypted, mem-
ory addresses are typically not encrypted. This is because

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

traditional commodity memory systems are not equipped
to perform decryption on memory devices. The plaintext
addresses on the memory bus are therefore visible to an un-
trusted cloud operator. By examining the application’s mem-
ory access patterns, an attacker with knowledge of the do-
main can decipher large amounts of information [14, 18, 45];
for example, it may be possible to reverse engineer a propri-
etary algorithm, or identify if a certain genomic population
is more prone to certain diseases. It may even be possible to
manipulate an application into revealing its secrets through
its memory access pattern.

Indeed, interest in the above attack model dates back to
the 1980s, when the notion of Oblivious RAM (ORAM) was
formulated [10, 11]. In an Oblivious RAM model, an applica-
tion’s memory access pattern is buried within a larger mem-
ory access pattern such that an attacker cannot isolate the
application’s memory accesses, and any two access patterns
are indistinguishable to an observer. The ORAM concept has
been refined over many years [29, 34, 37, 45], primarily to
reduce its bandwidth overheads. As a demonstration of the
feasibility of ORAM, the Path-ORAM algorithm [37] was im-
plemented with modest performance overheads on an FPGA
system with high memory bandwidth and parallelism [26].

In spite of these advances, ORAM continues to impose or-
ders of magnitude bandwidth penalties, which impacts per-
formance in servers that are already memory-constrained.
To reduce these overheads, we introduce a hierarchical
ORAM composed of a relaxed smaller ORAM and a conven-
tional full ORAM. The relaxed hierarchical ORAM (p) bor-
rows principles from the full ORAM to guarantee privacy,
but makes a number of design choices that lower capac-
ity and reduce bandwidth overheads. We observe that these
choices are not easily applicable to a regular full ORAM. We
also discuss the effects of p as a potential timing channel
leak and provide a solution to mitigate that concern.

We discuss the specifics of the p design in the following
sections. To give a brief overview, our baseline full ORAM
(Freecursive ORAM) has a capacity of 32 GB and requires
RX(Z+1)xLx2memory blocks per access, where R = 1.55
is the average number of recursive accesses, Z = 4 is the
bucket size (the +1 with Z is for fetching metadata), and L =
28 is the depth of the ORAM tree. Meanwhile, p augments
the LLC by offering relatively fast access to 2 MB of data (or
more) per core, while requiring Z X L X 2 memory blocks per
access, where parameters Z = 2 and L = 17 are determined
empirically. Note that a p access eliminates any recursive
look-ups and the overhead of fetching a separate metadata
block per bucket (compact access).

While the paper focuses on a hardware implementation
of ORAM in DDR memory, the general concept of a 2-level
ORAM, where the first level can leverage a variety of effi-
ciency techniques, can apply to other incarnations of ORAM
as well. The ideas (e.g., compact metadata placement) and

C. Nagarajan et al.

observations (e.g., trade-offs in tree depth and stash over-
flow) in this paper may therefore be broadly applicable.

2 ORAM Background
2.1 Attack Model

We examine potential attack scenarios where an untrusted
cloud operator has access to the physical server. While sig-
nals within each package on the board are not observable, an
adversary can observe signals being placed on various buses
on the board. Each entity on the board can exchange data
in encrypted form, but in the particular case of the mem-
ory system, a portion of the message (the address) has to be
sent in unencrypted form. This is because commodity mem-
ory chips are heavily optimized for low cost. There is no
decryption logic on commodity memory chips and they are
essentially passive devices. On a write, they simply receive
address and data on their pins and move the received data
to the specified address (and vice versa for a read).

The side channel introduced by an exposed memory bus
can be exploited in many ways. Prior work [18, 45] has
demonstrated attacks based on memory address leakage. An
adversary can snoop the access patterns on the memory bus
to identify the control flow of the program [45]. These sta-
tistics can be potentially used to expose security related at-
tributes like encryption keys (by following branching deci-
sions) or to identify a propreitary algorithm (by matching
the control flow graph against known algorithms). Similarly,
the data access pattern can be compared to other known
data access patterns to determine the nature of queries cur-
rently being processed [18]. For example, during genomic
analysis, the distribution of accesses may reveal the chro-
mosome being analyzed and hence the likelihood of certain
ailments [38]. A third possible attack may employ variants
of the Spectre attack [22]. In Spectre, a program was ma-
nipulated such that its internal secrets were converted into
cache indices, which were then extracted with cache timing
channels. Future attacks may extend the Spectre approach
and instead manipulate the program such that internal se-
crets are converted into specific memory addresses, which
are then observed on the memory bus.

In addition to the above vulnerability (an exposed mem-
ory bus), other hardware/software side channels may reveal
an application’s access pattern at various granularities. For
example, in many systems, it is straightforward for a mali-
cious OS to track the pages touched by an application. The
side channel mitigation techniques being introduced here
may apply broadly, but we will only focus on fine-grain leak-
age through cache block access patterns on a commodity
DDRx memory bus.

The above vulnerabilities have fueled a large amount of
research activity in the area of Oblivious RAM [10, 11, 37].
While our focus here is on ORAM approaches, we recog-
nize that there may be other ways to guarantee address trace

p : Relaxed Hierarchical ORAM

LO L1 L2 L3

NS NS

«=Block B

\/

Root bucket

|

LT T T T T T T T OTTTTTI
(a) Old (empty) stash

N -~

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

LO L1 L2 L3

NS N\
\/

Root bucket

[T T T T T TTTTTTTT]
(c) New stash

<Block D

[
Block B to Processof—

(b) Intermediate stash

$Block D evicted by LLC
New leaf-ID L2 assigned

Figure 1. ORAM access protocol — Block B, associated with leaf-ID L1 is being accessed. (a) The path from root to L1 is
fetched. (b) B is sent to the processor, while other valid blocks are kept in stash. Block D is evicted from LLC and placed in
stash with new random leaf-ID L2. (c) The stash is drained and blocks (including block D) are written to the path from root

to L1 while preserving the ORAM invariant.

confidentiality [1, 2]. Emerging active memory devices, e.g.,
Micron’s Hybrid Memory Cube [20], may incorporate en-
cryption/decryption units so that memory addresses can
also be encrypted. Such approaches may open up other vul-
nerabilities (key management, leakage through power pro-
files, etc.), so this remains an open area of research. Fur-
ther, such active memory devices are expected to be signifi-
cantly more expensive [15] and may find limited use in large
cloud/datacenter installations that manage large data sets —
for example, a 2GB HMC device currently retails for over
a thousand US dollars [15]. Current trends indicate that de-
vices like the HMC will be used to implement a few-gigabyte
DRAM cache [35], while the remaining hundreds of giga-
bytes of required memory capacity will be provided with
low-cost commodity (passive) memory devices. The larger
commodity memory system will require ORAM for privacy.

To summarize, we assume that the processor is the only
trusted component and last level cache (LLC) misses are ser-
viced on an untrusted DRAM memory system. We assume
that an attacker is capable of eavesdropping on the mem-
ory bus and can also tamper with data stored in the un-
trusted memory. We incorporate the definitions of privacy
and integrity of ORAM systems as defined in prior work [7].
Privacy is guaranteed if for any two sequences of requests
from the CPU, the two resulting ORAM memory address se-
quences are computationally indistinguishable. Integrity is
guaranteed if data returned by the memory system always
matches the last block written to that location by the pro-
Cessor.

2.2 ORAM Basics

ORAM was conceived by Goldreich [10] and steady im-
provements have been made in the past few decades. At
CCS 2013, Stefanov et al. [37] introduced the Path-ORAM
algorithm and demonstrated an implementation of Path-
ORAM on a Convey HC-2ex FPGA-based platform (PHAN-
TOM [26]). While implementable, the design has a band-
width requirement that is significantly higher than that of
the native application without ORAM support.
ORAM Access Protocol

A Path-ORAM system organizes its memory blocks (cache
lines) in the form of a full binary tree. Every node in this tree
is a ‘bucket’ that can hold one or more blocks. The number
of blocks per bucket and the number of levels in the tree
are denoted by Z and L respectively. Each bucket also has a
block that stores metadata for the data blocks in that bucket.

When the processor requests a block B, a Position Map
(PosMap) table is accessed to determine the leaf-ID corre-
sponding to that block. The example in Figure 1a shows that
block B is associated with leaf-ID L1. Next, blocks in all the
buckets from the root to leaf-ID L1 are fetched from memory.
This brings block B, a number of ‘dummy’ blocks, and sev-
eral other valid blocks from memory to processor. Block B
is sent to the processor and LLC, while all other valid blocks
are placed in a ‘stash’ on the processor (Figure 1b). This is
followed by a stash drain, where many blocks from the stash
are written to blocks in the path from root to leaf-ID L1,
while preserving the invariant that every block lie on the
path from root to its own leaf-ID (Figure 1c). When blocks
fulfilling this condition are not present in the stash, dummy
blocks are written instead.

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

When the LLC evicts a block, it is placed in the stash
and assigned a random leaf-ID (in the example in Figure 1b,
block D is assigned to leaf-ID L2). This allows a block ac-
cessed by the processor to later move to a new location in
memory. This shuffle is vital in realizing an indistinguish-
able memory access pattern. When the processor makes a
request for block B, the attacker sees blocks being read from
many locations and then re-encrypted blocks being writ-
ten back to the same locations. When B is accessed again,
blocks are fetched from a different set of locations (since
B is now associated with a different leaf vertex). From the
attacker’s perspective, it is impossible to detect that B has
been touched again.

Design Details

Path-ORAM organizes the memory into data buckets, each
with Z data blocks. While early work assumed large block
sizes in the kilo-byte range [26], design space explorations [7,
29] have shown that performance is optimized with 64-byte
blocks and Z = 4, i.e., each bucket has 4 64-byte data blocks
and 1 metadata block. This helps balance the probability of
stash overflow and the number of blocks fetched on every
ORAM access. When the stash does overflow, a few dummy
reads/writes are performed to drain the stash [29].

The PosMap has an entry for every block in memory, i.e.,
it is a large structure that may not fit in the processor’s LLC.
Fletcher et al. [7] designed a recursive ORAM where the
PosMap is itself placed in an off-chip ORAM which is ref-
erenced by a cached table called a PosMap Lookaside Buffer
(PLB). This recursion based Path-ORAM design is the state-
of-the-art baseline assumed in this study. We assume a 64 GB
memory system (effectively 32 GB capacity because half the
blocks are dummies), implemented with block size of 64B,
bucket size Z of 4, and 28 levels in the binary Path-ORAM
tree. We refer readers to the Path-ORAM and Freecursive
ORAM papers for more details [7, 37].

3 Proposal

The previous section describes our baseline Full ORAM struc-
ture that adopts most of the innovations from recent work [7,
26, 29, 37]. This Full ORAM uses recursion to store large

PosMaps in ORAM, while avoiding some of these recursive

look-ups with a PosMap Lookaside Buffer (PLB). As is com-
mon in large-scale installations, we assume an ECC mem-
ory [16], i.e.,, every 64-byte data block is accompanied by 8

bytes that are used for error detection and correction.

3.1 p Overview

We are effectively implementing a large cache before the
Full ORAM, thus reducing the overheads imposed by a Full
ORAM. This large cache augments the on-chip LLC (an ex-
clusive hierarchy), but has to be placed in memory because it

C. Nagarajan et al.

No recursive
look-ups; R=1

-

p Tags

Bucket = Z=2

CPU

LLC

Bucket = Z+1=5

Figure 2. Memory hierarchy overview of p.

is too large to fit on the processor. To avoid information leak-
age through the memory system, this cache must be imple-
mented as an ORAM. We will refer to this in-memory cache
as p, the Relaxed Hierarchical ORAM. Given its small size,
relative to the Full ORAM, it can be designed for bandwidth-
efficiency, thus making it significantly cheaper to access than
the Full ORAM. Figure 2 provides a high-level overview of
the proposed design.

When accessing p, an on-chip set-associative tag look-up
is first performed to detect a hit. On a hit, given the leaf-ID
associated with the tag, the entire path from root to leaf-ID
is fetched from p’s off-chip data array.

We first allocate a portion of the processor chip’s real es-
tate to implement tags for p. A p tag look-up indicates if the
processor should look up p or the Full ORAM. As shown in
Figure 3, a portion of the processor’s LLC tag and data ar-
rays are allocated for p tag storage. For example, the base-
line processor’s LLC is adjusted from 2 MB to 1.75 MB (sizes
representative of what may be required per core). This allo-
cates 256 KB for p on-chip tags, that can support a p capac-
ity of 2.5 MB in off-chip memory, assuming that each tag is
50+ bits wide and supports a 64-byte block (more details in
Section 3.2).

The data blocks of the 2.5 MB p are implemented as an
ORAM with Z = 2 and L = 17. Since a small Z increases the
probability of stash overflow, we balance it out by assuming
low block utilization U [29], i.e., for every data block, there
will be more dummy blocks. Including the metadata block
per bucket, the total space occupied by p may be 24 MB (a
small fraction of off-chip physical memory), of which only
2.5 MB is useful and has corresponding entries in the p tags.

As mentioned in Section 2, there are 3 major causes of
bandwidth overhead in ORAM: blocks in a bucket Z + 1,
depth of the tree L, and number of recursive look-ups R.
Thus, for p, as shown in Figure 2, we have reduced the val-
ues of all four elements that lead to high ORAM overheads.

p : Relaxed Hierarchical ORAM

L has been reduced because of the smaller capacity, and Z
has been reduced based on empirical tests for stash overflow.
R has been reduced from a number greater than 1 (function
of PLB miss rate) to exactly 1 (since we have on-chip tags
for p). The fourth remaining overhead is the “+1”, the meta-
data block that must be fetched from every level of the tree.
As described subsequently, we introduce a p-compact lay-
out, that leverages the ECC fields in every block to capture
metadata, thus targeting this fourth overhead as well.

3.2 Design Details - p implementation

p Tag Array

We assume that the LLC and p form an exclusive hierar-
chy. Figure 3 shows the partition of the LLC into a smaller
LLC and a tag array for p. In modern CPUs, each LLC data
block is 64B. This 64B space, including the corresponding
32b tag array counterpart, is re-purposed as tag entries for
one set in p. Each tag entry has the following fields: (a) 32
bits for address tag, (b) 1 bit for NRU replacement policy,
and (c) n bits for leaf ID in p.

The data array of p is organized as an ORAM tree, includ-
ing many dummy blocks. Each tag entry points to a valid
block stored in p. During a p look-up, the tags in a set are
accessed. If no match is found, a Full ORAM access is per-
formed. If a match is found, we use the leaf ID to fetch an
entire path in the p ORAM tree. The tag array essentially
serves as the PosMap structure for p.

A single p set can contain (512+32)/(334+n) ways. For n <
20, a 10-way p set can be implemented. As another example
configuration, consider an LLC with capacity of 2 MB, of
which, 1 MB is allocated for p tags. The p tags (10 ways, 16K
sets) can point to data blocks that have a total capacity of
10 MB. To reduce stash overflow rate in p, we assume low
block utilization U, i.e., the 10 MB of data is accompanied
by a large number of dummy blocks. The total capacity of
the p data array may therefore be 64 MB; with Z = 2, this
corresponds to 256K leaf buckets and a value of n = 18. Note
that the 64 MB occupied by p is only 0.1% of a 64 GB physical
memory, i.e., it has a negligible impact on physical memory
capacity.

p Data Array

The data array of p maintains the following fields per
block: (a) 64B for the data block, (b) L—1 bits for leaf ID, (c) 4B
for address tag, (d) 4B plaintext counter for encrypting other
fields, (e) 1 bit valid flag, and (f) 56-bit VMAC for integrity
verification [13]. Assuming that L is in the neighborhood of
20, and Z = 2, each 64B data block requires nearly 18 bytes
of metadata. Since commodity memory systems must fetch
blocks at 64B block granularity, each bucket contains Z 64B
data blocks, plus one 64B metadata block. The 18-byte over-
head can be reduced, e.g., by having one VMAC per bucket,
but because of the granularity constraint, it doesn’t reduce
the amount of data that must be fetched.

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

TAG ARRAY DATA ARRAY

L2

p tag
array

K 10-WAY p tag array

ptag | ptag | ptag p tag

.’ S~

~
. ~
P ~

TAG LEAF

Figure 3. Partitioning of Last Level Cache.

Accessing p

p and the Full ORAM are exclusive with respect to each
other. We assume that there is enough space to hold 200
elements in p’s stash. Whenever a block is not found in p’s
stash or in p, it is fetched from the Full ORAM. The fetched
block is removed from the Full ORAM’s stash and placed in
the LLC. The block evicted out of the LLC is written into
p’s stash. In parallel, p performs a full path access of its
own to fetch a victim block for eviction. The victim block
is placed in the ORAM stash. In other words, the use of p
does not impact stash overflows in the Full ORAM. If the re-
quested block is a p hit, the leaf ID found in the p tag array
is used to initiate a full path access in p from leaf to root.
The requested block is found among these fetched blocks
by checking the accompanying metadata and tags. The re-
quested block is sent to the LLC and the block evicted by
the LLC is placed in p’s stash.

3.3 Design Details - p-Compact Access

While the lower Z, L, and R are conceptually easy to under-
stand, the reduction in metadata fetches is more complex.
The extra metadata block fetched from every bucket is a
significant overhead when Z is small. To avoid fetching a
separate metadata block, we propose a memory layout that
places the ORAM metadata in the space used for ECC. We
must first solve two challenges. First, we must preserve the
same level of error tolerance. Second, we must reduce the
size of the metadata field. For the rest of this discussion, we
assume a bucket size of Z = 2.

3.3.1 A Distributed ECC Layout.

To address the first challenge, we use a two-level ECC tech-
nique that separates the error detection code (EDC) from the
error correction code (ECC). Error detection is performed
with a 24-bit CRC code that is placed in the 64-bit ECC field
associated with each block in the baseline. This EDC code is
strong enough to detect errors with a very high probability.
When an error is detected, a separate error correction step

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

must be performed. Error correction is performed with the
standard 64b Hamming SECDED (Single Error Correct, Dou-
ble Error Detect) code per block. These codes are placed else-
where though. We place the SECDED code for all blocks in a
p path alongside the leaf bucket (see Figure 4). For example,
in a 17-level p, we would have to store 17 X 64b X Z, i.e., 272
bytes. These codes therefore occupy 5 cache blocks. These 5
blocks need not be fetched when reading the path. They are
accessed only if the EDC indicates an error. However, when
the path is written back, the 5 ECC blocks would have to be
updated. In basic p, a p access (with Z = 2, L = 17) involves
51 block reads and 51 block writes; with the compact layout,
a p access involves 34 block reads and 39 block writes.

C. Nagarajan et al.

3.3.2 Metadata Compaction.

Next, we address the second challenge. In the baseline, each
block has an attached 64-bit SECDED code. Thus, in one
bucket with Z = 2, 128 bits that were used for the SECDED
code can be now used for ORAM metadata. We have con-
sumed 24 of those bits for the EDC (see Figure 5). We now
need to squeeze the ORAM metadata into the remaining 104
bits. Recall from the earlier discussion in Section 3.2 that ev-
ery baseline block has nearly 18 bytes of metadata associ-
ated with it, so we use the following techniques to engineer
a more compact metadata organization.

DATA S |[W(VI|L
(512b) (140) | @b) |@B)|B)| & [EpCMAC
DATA s |w/|v|L [@2)] 24b) | 36b)
(512b) (14b) | (ab) |(1b)[(9b)

DATA EDC METADATA

Compact meta-data placement

DATA | ECC | METADATA

Normal meta-data placement

Figure 4. Compact layout to reduce metadata fetch over-
head.

As seen in Figure 4, the ECC codes for a block are asso-
ciated with all descendant leaf nodes. For example, the root
node 1 has its ECC code (ECC 1 in Figure 4) attached to
all leaf nodes. Each ECC code is updated when that leaf is
updated, i.e., only the most recently updated ECC code for
a block is correct and the other copies are stale codes for
earlier versions of that block. For error recovery, we must
find the most recent code for a block. To facilitate this, ev-
ery written path includes a 64-bit version number that is
included in its 5 ECC blocks, increasing the storage require-
ment from 272B to 280B. The CPU maintains this 64-bit
global counter and increments it on every path write. This
version number is large enough that it will not overflow dur-
ing the system’s lifetime. When a block error is detected,
the version numbers of all descendant leaves for that block
are read. The SECDED code associated with the largest ver-
sion number is then used for error recovery. While this er-
ror recovery is expensive, it is invoked rarely, given today’s
DRAM error rates [24]. This distributed ECC layout does
not introduce new information leakage — the access patterns
remain deterministic and indistinguishable. Error recovery
steps betray the location of an error, not the properties of
an application.

Figure 5. Organization of two blocks in a bucket (Z = 2).

1. We replace the 4-byte tag per block with two fields:
set number and way number in the p tag array (rep-
resented by S and W in Figure 5). These occupy 14b
and 4b respectively for the example p we’ve been dis-
cussing. This is enough to identify the block that we’re
looking for. There is also a valid bit per block to dis-
tinguish a valid block from a dummy block.

2. We reduce the leaf ID bits from L — 1 to 9 bits. When a
block resides in level K of the ORAM tree, the K most
significant bits of its leaf are known. Therefore, for
the last 9 levels (close to the leaves), 9 bits are enough
to represent the rest of the leaf ID. For levels close to
the root, we store the additional required leaf ID bits
in an on-chip table. Even for a larger 19-level p, this
translates to 10 x 21, which is a small 1.25 KB table.

3. Instead of a 4B counter per bucket, we now use a 12-
bit local counter. This 12-bit local counter is concate-
nated with a larger global counter on the processor to
produce the final counter that is used during encryp-
tion. Every time a local counter overflows, we must
increment the global counter, and conseqeuntly re-
encrypt the entire contents of p. Such a re-encryption
would be very expensive for a Full ORAM, but is a
much smaller overhead for p given its much smaller
size. Since buckets near the root see more accesses and
more local counter increments, they tend to overflow
more often. To alleviate this effect, the top 10 levels
of the tree are provided 10 extra bits for each local
counter. Similar to the leaf-ID bits, these additional
local counter bits are stored in a 1.25 KB table on the
processor. The number of accesses between two over-
flow events is typically well over a million (given 22-
bit local counters for top levels). That is, in the worst

p : Relaxed Hierarchical ORAM

case, after every million p accesses (73 million block
accesses), we have to read and write the entire con-
tents of p (288K block accesses). This is a negligible
overhead in terms of overall execution time, but it
does introduce occasional latency hiccups.

4. With the above techniques in place, we only have room
for 36 bits of VMAC per bucket (the baseline has 56
bits, similar to SGX). The remaining 20 bits must there-
fore be included in the p tag array. We must therefore
reduce the associativity of p from 10 to 8.

5. The VMAC, EDC, and counter can be shared by both
blocks in the bucket since they are always accessed
together. Figure 5 shows that these 3 fields are shared,
while the other fields are private to each data block.

We have thus engineered a solution that packs ORAM

metadata into the space typically occupied by SECDED codes.

This reduces the bandwidth requirement per bucket from 3
to 2 blocks, a significant reduction.

3.4 Why do Similar Ideas Not Apply to the Full
ORAM?

p has been designed so that each of the four terms in the
ORAM bandwidth equation have been reduced. It is natu-
ral to wonder why similar reductions cannot be directly ap-
plied to the full ORAM. Clearly, the full ORAM inherently
has higher depth L than p. The full ORAM also has a large
PosMap that does not fit on chip; so it has a recursion factor
R > 1. While the full ORAM could have used bucket size
Z = 2, it would have to use low utilization U to keep stash
overflow under check. This large drop in effective memory
capacity is likely not palatable. Finally, the optimizations
used in Section 3.3 to create a compact layout do not scale
and would lead to very high overheads if applied to a full
ORAM, e.g., we were able to compact the metadata because
some of it could be moved into 1.25 KB on-chip tables.

3.5 Security Analysis

In the baseline ORAM, the misses emerging from the LLC
exhibit the indistinguishability property. With the proposed
hierarchy of p and a Full ORAM, the misses emerging from
the LLC and the misses emerging from p, both separately ex-
hibit the indistinguishability property since they both sepa-
rately employ the Path ORAM algorithm. However, it is well
known that the baseline ORAM is vulnerable to a couple of
information leaks; those leaks are amplified by a deeper hier-
archy, and we must show that known mitigation techniques
are equally effective for the p hierarchy.

Timing Channels.

In a baseline ORAM implementation, there is a potential
threat of leaking information about application memory in-
tensity and cache miss rates through the ORAM access rate.
The deeper hierarchy introduced here exacerbates that in-
formation leakage by exposing cache miss rates for both

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

the last level cache and for p. For applications that are sen-
sitive to such timing channel leaks, we demonstrate that
such leaks can be easily eliminated. The ORAM controller
can issue alternating requests to either p or the Full ORAM
based on a per-application frequency setting that is input-
independent. If one of the ORAMs does not have a pending
operation, a dummy access is issued. We discuss the effects
of this policy in Section 5.7.

In the timing-channel sensitive implementation, we em-
pirically determine (and preset) the schedule of accesses be-
tween the Full ORAM and p . If the access rate for the Full
ORAM and p is set to m and n respectively, the trace ob-
served on the memory bus would appear as a repeating pat-
tern of [n * access(p),m * access(FullORAM)]. Note that
access() denotes the series of memory accesses performed
for either p or the Full ORAM.

This leads to a deterministic sequence of accesses by the
memory controller, with zero information leakage about the
input-dependent miss rate at either the LLC or at p. A simi-
lar deterministic schedule of ORAM accesses has also been
used in other ORAM protocols to protect against timing
channels [1, 2, 8]. We observe that a similar approach (stat-
ically defining the access rate for ORAM) can be effectively
extrapolated to a 2-level hierarchy. It is possible that a poor
choice of n and m may yield worse performance than the
baseline ORAM - this is analyzed later in Section 5.7.
Stash Overflow.

A second potential problem in the baseline ORAM pro-
tocol is stash overflow because it can leak information and
cause inefficiencies. We must answer if this problem is po-
tentially amplified in the proposed architecture because both
p and the Full ORAM have separate stashes.

We will first address the efficiency issue. Prior work [7-9,
29] has shown that a background stash overflow mechanism
can dramatically lower the stash overflow rate. We adopt a
similar mechanism here for both p and the Full ORAM, of-
fering the same worst-case stash overflow rate guarantees
as prior work for each level of our hierarchy. When an over-
flow is imminent, as determined by a stash high/low wa-
ter mark, we start writing back blocks from the stash into
the ORAM. Instead of a randomized leaf selection, we use a
deterministic path selection to flush out stash elements [9],
where leafIDs are selected in a reverse lexicographic order.
While stash overflows tend to be more frequent in p because
of its lower Z, stash overflows in p are also alleviated by
the periodic re-encryption process when a p local counter
overflows. During this re-encryption, all blocks are placed
in leaf nodes. Different applications exhibit different stash
overflow rates and overheads. We empirically observed that
for all our benchmark programs, such stash overflow man-
agement has a negligible performance impact in p.

Stash overflows can also leak information since different
applications and access patterns exhibit different stash over-
flow rates. This leakage can be easily eliminated because

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

the stash overflow mechanism appears exactly like a reg-
ular ORAM access and further, we employ a deterministic
schedule of accesses to p and the Full ORAM (introduced
to eliminate timing channels). Thus, high or low stash over-
flow rates are indistinguishable.

Summary.

The observable memory access pattern is:
[n * access(p),m = access(FullORAM)]. The access to
each ORAM follows a deterministic sequence, revealing
nothing about the application’s cache locality or its stash
overflow rate. Each individual ORAM access is a path to
a random leaf node in that ORAM, thus preserving the
indistinguishability guarantee of the baseline ORAM.

4 Methodology

We use trace-based simulation for our evaluation. Our traces
are obtained by running benchmarks from SPEC2006 us-
ing the Simics [6] full system simulator. These traces are
generated after fast-forwarding to the region of interest
and warming up the caches. These traces are then fed into
USIMM [4] for cycle-accurate simulations of the DRAM
memory. The DRAM device model and timing parameters
have been obtained from Micron datasheets and are sum-
marized in Table 1 with other Simics simulation parameters.
We adopt the open-page address mapping policy that places
consecutive cache lines in the same row [19]. The mem-
ory controller scheduler employs the FR-FCFS policy [31].
It uses high/low water marks in the write queue to drain
writes in batches [4].

|| Processor ||
ISA UltraSPARC III ISA
CMP size and Core Freq. 1-core, 1.6 GHz
Re-Order-Buffer 128 entry
Fetch, Dispatch, Maximum
Execute, and Retire 1 per cycle
|| Cache Hierarchy ||
L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
|| DRAM Parameters ||
DDR3 MT41J256M4 DDR3-1600 [17],
Baseline 2 72-bit Channels
DRAM 1 DIMM/Channel
Configuration (unbuffered, ECC)
4 Ranks/DIMM,9 devices/Rank
DRAM Bus Frequency 800MHz
DRAM Read Queue 48 entries per channel
DRAM Write Queue Size 48 entries per channel
High/Low Watermarks 32/16

Table 1. Simulator parameters

We model the L2 cache (LLC) in USIMM with 2 MB for a
single core as a baseline for all simulations. The L2 sizes are
varied to accommodate the p tag structure. We experiment
with different sizes for the LLC and the p tags to find the
optimal allocation. The LLC is warmed up with 3 million L1

C. Nagarajan et al.

misses before starting performance measurements. All sim-
ulation results are obtained for one million L1 miss requests,
which is long enough to measure many millions of DRAM
accesses to the two ORAMs.

|| Full ORAM parameters ||
Data Block Size 64B
Levels 28
PLB Size 64 KB

Cache lines per bucket (Z) 4

|| p parameters ||
Data Block Size 64B
Levels 17-19

Table 2. ORAM Configuration

Our baseline Full ORAM is a Freecursive model with 28
levels and 4 64-byte data blocks per bucket. For p, we as-
sume 64B blocks, and explore the design space for L, Z, U.

We modified the USIMM DRAM simulator to implement
Freecursive ORAM and p. To decrease the latency per ORAM
access, the binary tree is laid out as multiple k-ary subtrees
which appear as contiguous locations in DRAM rows. These
subtree based layouts ensure that the number of rows opened
per ORAM access is reduced. The bucket size decides the ar-
ity and the subtree heights for this configuration. We adopt
a mapping scheme as suggested in [29] with bit addressing
in the sequence of - channel : column : rank : bank : row.

Our stash eviction process is similar to that of Path
ORAM. When blocks are brought in, the block specifically
requested by the processor is placed in the upper level cache;
when evicted by the upper level cache, it is placed in the
stash along with a randomly selected new leafID. Other
blocks not specifically requested by the processor are placed
directly in stash with no update to their leafID. Note that all
blocks are re-encrypted before being written back.

5 Results

Slowdow:

R L S Y
L & F L 9
S & §
ARG A
§

Figure 6. Slowdown of Freecursive ORAM against non-
secure baseline.

5.1 Comparison with Non-Secure Baseline

We simulated a Freecursive ORAM design with a 2 MB LLC,
while caching the first 10 levels of the ORAM tree. Against
a non-secure baseline, the slowdown due to the Freecursive

p : Relaxed Hierarchical ORAM

L6 mL5 mL4 OL3 0OL2 HL1

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

My

lbp,
o’hnetpp
eqyyy
bz,'p 2
Iesli e3g
Mife
sje,,g

< S Q
g g £
$5fd
K < N
g

e"lsltb 1S
A4 VER4 e

(Y

Average Recursion per layer of ORAM

w

Ind
o

N

[
o

[

4
2

o

Figure 7. (a) Ratio of requests to every level of PLB (b) Recursion factor for every benchmark

ORAM implementation is reported in Figure 6. This slow-
down is caused by the many memory accesses required by
the ORAM protocol instead of a non-secure single memory
access. While most of the benchmarks suffer from a signif-
icant performance loss, some show only a slight reduction
(e.g., hmmer) due to a high L2 hit rate. Freecursive ORAM
with 2 channels shows an average slowdown of 6.2X.

Figure 7 shows the hit rate in different levels of PLB in
Freecursive ORAM. Some applications require more than
one access to the PLB (e.g., mcf, omnetpp, milc, and sjeng),
while others do not need recursive lookups for most of their
requests. We observe that the first three levels of the PLB are
accessed the most. As shown in Figure 7b, each request re-
quires an average of 1.55 recursive ORAM accesses to fetch
the requested block.

5.2 Optimal Cache Partition Selection

We have identified three parameters that define the best de-
sign point: on-chip capacity, optimal bucket size, and in-
memory capacity. The on-chip capacity captures the per-
formance of the last level cache for different applications.
The bucket size affects the overflow handling overhead of p.
The last parameter is dependent on the levels L and bucket
size configuration of p. If the in-memory capacity of p is
C = (ZL) %X Z, and the number of valid blocks in p is X,
we can define utilization to be U = X/C. Once the on-chip
cache capacity is determined, X is fixed; the utilization (U)
is then controlled by the levels L in the p tree. We will pro-
gressively freeze each of these parameters in our analysis.

The first step is to find the optimal cache partitioning for
LLC and p. The next set of experiments are performed us-
ing the default p configuration, i.e., a 10-way p organization
and without the compact layout. In this experiment, we fix
the bucket size to Z = 4 and the tree depth to 18 levels. This
is an effort to finalize an optimal L2 cache partition with a
good hit rate and without any chances of overflow (guar-
anteed with Z = 4). We then varied p’s tag array partition
sizes to 256KB, 512KB, 1MB, and 1.5MB while allocating the
remaining (of 2MB) for the LLC.

Figure 8 shows the speedup over Freecursive ORAM
for different partitions. The improvement varies, based on
benchmark working set size. Benchmarks like xalancbmk
show around 50% improvement with these configurations.
However, benchmarks like bzip2 and h264ref suffer for all
of our partition choices. The configuration that allocates
256 KB for p tags yields the best average performance and
is often the best design point for each benchmark. For the
rest of our analysis, we fix the LLC partition at 1.75 MB and
the p tag partition at 256 KB. This fixes the value of X, the
number of valid blocks in p.

1.8

L/ M128K (256K M512K H1M [1MS5 |

6‘0\ (\z‘QQ &;b\ ‘oi\& &

&

Gt @ o
N \a
K & &
¢

Nl R 4

a“&b & Q‘o”« 9(«0<
5

o

S
&
O
D

Figure 8. Speedup for different tag array sizes for p (Z=4,
L=18), relative to Freecursive ORAM. The LLC is 2MB.

5.3 Impact of Depth/Utilization

Having fixed X, we are next going to evaluate the impact of
the number of levels L on the performance of p. Note that
while L increases the memory overhead of p, this is still a
negligible fraction of the overall off-chip memory capacity.
As the number of levels is increased, the bandwidth over-
head per p fetch increases, but the rate of stash overflow
decreases (since utilization U reduces). Figure 9 shows this
analysis for Z = 1, i.e., the highest sensitivity to stash over-
flow. The baseline in this analysis is the best p organization
(Z = 4 and 256 KB for p tags) shown in Figure 8. We ob-
serve that L = 19 yields the best balance between overflow
and bandwidth overheads.

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

. [WZ1-L17 ©Z1-L18 0Z1-L19 0Z1-L.20 |

Figure 9. Impact of number of levels on p (Z=1).

5.4 Impact of Bucket Size

Next, we evaluate the impact of the bucket size on p’s per-
formance. For these experiments, we retain p’s on-chip tag
space of 256 KB, and keep utilization U constant as well;
the values of L and Z are changed in tandem to keep U
constant. The analysis is shown in Figure 10, normalized to
the Freecursive baseline. We observe that Z = 1 is highly
sub-optimal because of frequent stash overflows and that
Z = 2 is able to bring these overflows down to a tolerable
rate. Additional increases to Z have a minor impact on over-
flows, but reduce performance by increasing the bandwidth
demands for every p access. Thus, Figures 8 and 10 show
two different views of the overflow/bandwidth trade-off in
our design space exploration; the former graph also factors
in the impact of utilization U. The low value of the optimal
Z is the motivation for the compact layout; it helps bring
down the fetch overhead of a bucket from 3 to 2 blocks.

1_; WZ1-.19 0Z2-L.18 (1Z3-L18 01Z4-L17

167
141

2 osg
0 o061
0.41
0.21

0

& N
9 N A g & o >
& o& ¥ & ¥ & é\@

Figure 10. Effect of Z for a 256 KB p, normalized against
Freecursive baseline.

5.5 Impact of Utilization

As an added sensitivity analysis, Figure 11 repeats the analy-
sis of Figure 9, but with Z = 2. This figure is again exploring
the trade-off between number of blocks being fetched per p
access and the impact of utilization on stash overflow rate.
Similar to the earlier analysis, the optimal design point has
a depth L = 19. The fluctuations in this graph are more mi-
nor because Z = 2 has already brought the overflow rate
to tolerable levels. After this design space exploration, we

C. Nagarajan et al.

|Bz2-L170z2-L18mZ2- L1190 Z2-L20]

“ Q 3> a9 3 > & { Q & & &
TSP I TS SL T
& < S & & F £ IS\
& g ¥ & F <~ &
g & ¢

Figure 11. Varying utilization (in-memory capacity) for Z =
2, speedup relative to Freecursive.

identify the optimal design point with on-chip tag space of
256 KB, Z =2,and L = 19.

5.6 Improvement from the Compact p Layout

We next evaluate the impact of the compactlayout. Figure 12
shows a comparison of the best non-compact design point
(Z = 2, L = 19) and compact layouts (indicated by pC), as
tree depth L is varied. We observe that highest performance
is observed when tree depth is 17; this design point is 50%
better than Freecursive ORAM and 20% better than the best
non-compact p layout.

[Wp-L19 OpC-L17 OpC-L18 MpC-L19]

N > N
$ N & & P & L & & 2
T FT IS ST FTFE
& < S & & L& £ & &
& s ¥ g v N
+ %4 A

Figure 12. Speedup due to the compact p layout, relative to
Freecursive.

Figure 13 shows the memory accesses in p for both
the non-compact and compact layouts, normalized to the
baseline Freecursive ORAM with a 2MB LLC. Benchmark
h264re f has a memory access ratio higher than one because
it is penalized by the smaller 1.75 MB LLC in p. The average
reduction in memory accesses is 19% for the non-compact
layout and 30% for the compact p layout. The reduction in
memory traffic and the higher performance should also re-
sult in lower power and energy profiles for p (not evaluated
here).

5.7 Security from Timing Channels

As discussed earlier, the access rate for the Full ORAM and
for p can reveal the locality behavior of the application. This

p : Relaxed Hierarchical ORAM

[

[mp_z2 119 OpC z2 L19]

Memory access ratio
o o o ©
B L © = N

4
i

o

Figure 13. Memory accesses for non-compact and compact
layouts, relative to the Freecursive baseline.

information leakage can be eliminated by constantly keep-
ing the memory bus busy, ie., every time a request is ser-
viced, a new request is immediately processed. This new
request may be a dummy if there is no pending request in
the memory controller. Since the Full ORAM and p accesses
have varying tree depths and can be distinguished, the mem-
ory controller must deterministically process n p requests
before processing one Full ORAM request. Figure 14 shows
speedup, relative to the Freecursive baseline, as n is varied
from 1 to 4 for the p with compact layout. The optimal de-
sign point varies across the workloads based on their hit
rates in p. On average, we see that n = 2 yields the highest
speedup of 1.25. A poor choice of n, or the use of p can occa-
sionally cause slowdowns, e.g., in bzip2, p does worse than
the baseline for all non-zero values of n. This deterministic
schedule is maintained even when dealing with stash over-
flows. Stash overflow handling is therefore indistinguish-
able from a regular ORAM access, thus eliminating another
source of information leakage. An additional firmware layer
that implements an epoch (and dynamic rate learning) based
issue control [8] can be deployed on top of this technique to
further improve throughput, while not allowing any input-
dependent leakage.

[m11 D12 D13 m14

& > > &~ R
s‘" .&Q $'° Q'P\ 'é‘!\' S & & é‘Q 0&0 \‘Z-“. ‘,&q’ $ é/
& & ¥ I § 5§ LS &&
& L & ¥ ¢ 72 ¢ & K
Qo S & & N
& g <

Figure 14. Varying access ratio for Full ORAM and p;
speedup relative to Freecursive.

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

5.8 Sensitivity Analysis

Finally, as a sensitivity analysis, we evaluate our best p de-
sign point while varying the available memory bandwidth
and LLC size. Figure 15 shows the impact of the best de-
sign point with a compact layout for 1 and 4 channel mem-
ory system configurations, relative to the Freecursive base-
lines with the same channel configurations. The trends are
similar, primarily because ORAM systems almost always op-
erate at saturated bandwidths. Figures 16 and 17 show the
speedups for p with smaller (1MB) and larger (4MB) LLCs.
We show results for three configurations, P1, P2, and P3,
where 1/3, 1/2, and 2/3 of LLC capacity is allocated for p
tags. With the small LLC, p benefits from a larger LLC al-
location, while for the large LLC, p benefits from a smaller
LLC allocation. Not surprisingly, the benefits with p are in-
versely proportional to the size of the total LLC.

25
[O1 CHANNEL 4 CHANNEL |
2
o
=]
Bus
[
-3
LU
0.5
0 & > 3V > & &
& R > & > N R F &
TFTEF Y F & &F
& g ¥ & ¥ &£ R
+© % v

[W1MB-P1 D1MB-P2 O1MB-P3]

& R N & & 23 > & XSy Q & & <&
L F K ¢ A S A RS o
cE&EY &Y F P A S &
& y ¥ & ¥ & g
g & ¥

Figure 16. Performance of p with a 1 MB LLC.

18| |D4MB-P1 D4MB-P2 H4MB-P3 |

R N N
& F TS
S

Figure 17. Performance of p with a 4 MB LLC.

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

6 Related Work

The concept of ORAM was first introduced by Goldreich
and Ostrovsky for address obfuscation [11]. Since then, nu-
merous works have proposed a variety of ORAM models to
reduce the bandwidth and capacity overhead, and exploit
memory parallelism [10, 11, 26, 29, 34, 37, 45].

There are many other proposals to improve ORAM per-
formance. Ren et al. [29] explore the design space of ORAM,
and propose background eviction and optimized data layout
in memory. Yu et al. [43] take advantage of spatial locality in
data and prefetching. Freecursive ORAM uses a PLB to avoid
most of the recursive accesses to ORAM [7]. Fletcher et
al. [8] eliminate side channels in ORAM-based systems and
trade off performance for security. ForkPath [44] merges
ORAM paths to avoid fetching redundant data blocks. They
also introduce an on-chip caching of the ORAM subtrees
that are repeatedly accessed in consecutive requests.

The idea of PrORAM [43] is to maximize locality in ev-
ery ORAM tree access, essentially emulating a prefetching
scheme and arguing that locality and obliviousness can co-
exist. While we do not currently take advantage of locality,
future work can explore if the on-chip cache can be used to
house metadata for a relaxed ORAM super-block scheme.

In Ring ORAM [28], Ren et al. reduce the bandwidth over-
head of ORAM access by fetching a single block instead
of the entire path from the tree. They employ a frequency
based decision system to evict the elements in the stash
which were populated using this type of access. Their pro-
tocol scans the tree for metadata to find the valid position
of the block of interest. There is a potential to incorporate
this design choice in p as well. The on-chip p tags could
potentially hold an index pointer for every block’s valid lo-
cation in the tree’s buckets. This can eliminate the need for
a redundant path read for identifying the valid block of in-
terest.

Ghostrider [25] is a compiler assisted hardware imple-
mentation for ORAM that assists in preserving Memory
Trace Obliviousness. Since software managed codes can
control the size of data in the secure region, they can lever-
age p to optimize their bandwidth.

Active memory components, such as HMC [20, 27],
can provide address obfuscation if they have encryp-
tion/decryption logic in their logic layer [1, 2, 40]. However,
leveraging active memory components requires trusting the
memory vendor. This approach also offers limited memory
capacity at a high cost that is incurred by every applica-
tion that executes on the server, regardless of their secu-
rity/privacy requirements. The work of Shafiee et al. [33]
avoids active memory components, but uses logic chips on
DIMMs to push parts of the ORAM protocol closer to mem-
ory and shelter the processor from a large fraction of the
data movement required by ORAM.

C. Nagarajan et al.

Our work here is the first to propose a hierarchical ORAM
structure, unlike the recursive PosMap structures seen in
prior work. A key novelty in our work is the use of on-
chip cache space to implement tags for an in-memory small
ORAM. Another key innovation is the compact layout that
reduces the overheads of metadata management. Similar to
Ren et al. [29], we too perform a design space exploration
to understand the impact of bandwidth, stash overflows, uti-
lization, etc. on overall ORAM performance. We also ob-
serve that a hierarchical ORAM may be compatible with
other secure systems like SGX [13, 39], where hierarchy is
used to manage the overheads of integrity verification.

7 Conclusions

Attacks like Spectre have shown that secrets can be con-
verted into cache footprints, and possibly other system foot-
prints that can be exploited through side channels. One such
side channel is an exposed memory bus. While an ORAM
can close such a side channel, it imposes a significant per-
formance penalty of over 6X. Therefore, it is important to
advance the state-of-the-art in ORAM. This paper focuses
on improving a hardware ORAM baseline by introducing
another level to the hierarchy. We show that with the use
of hierarchy, the first-level ORAM can introduce a number
of relaxations and optimizations that would not be appli-
cable to a second-level full ORAM. The relaxed first-level
ORAM offers the same indistinguishability properties as the
Full ORAM, but has data structures and metadata that of-
fer lower bandwidth overheads and can tolerate occasional
overflows in the stash and counters. For applications that
exhibit a certain degree of locality, it is better to employ the
proposed 2-level hierarchy than implement a single-level
deep ORAM. In our evaluated benchmark suite, this was
true for all but one application (bzip2). Our optimal design
point offers performance that is 50% higher on average than
that of the Freecursive ORAM baseline. With a deterministic
scheduler that eliminates timing channels, the performance
improvement is 25%. With hierarchical ORAMs and a de-
terministic scheduling policy, we not only preserve the in-
distinguishability property of the baseline ORAM, we also
eliminate other leakage sources (cache hit rates and stash
overflow rates). We believe that p represents a framework
where additional future optimizations and approximations
can be safely applied without violating the strong guaran-
tees of a Full ORAM.

Acknowledgment

We thank the anonymous reviewers for many helpful sug-
gestions. This work was supported in parts by NSF grant
CNS-1718834 and Intel. Chandrasekhar Nagarajan is cur-
rently affiliated with Micron and Ali Shafiee is currently af-
filiated with Samsung; this work was performed while they
were graduate students at the University of Utah.

p : Relaxed Hierarchical ORAM

References

(1]

(10]
[11]
[12]
[13]

[14]

[19]

[20]

[21]

[22]

(23]

[24]

S. Aga and S. Narayanasamy. 2017. InvisiMem: Smart Memory for
Trusted Computing. In International Symposium on Computer Archi-
tecture.

A. Awad, Y. Wang, D. Shands, and Y. Solihin. 2017. ObfusMem: A Low-
Overhead Access Obfuscation for Trusted Memories. In International
Symposium on Computer Architecture.

Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding
Applications from an Untrusted Cloud with Haven. ACM Transactions
on Computer Systems (TOCS) 33, 3 (2015), 8.

N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti. 2012. USIMM: the
Utah SImulated Memory Module. Technical Report. University of Utah.
UUCS-12-002.

Claire Cain Miller. [n. d.]. Revelations of N.S.A. Spying Cost U.S. Tech
Companies. https://tinyurl.com/y9syuvwg.

Wind Company. 2007. Wind River Simics Full System Simulator.
http://www.windriver.com/products/simics/

C. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas. 2015.
Freecursive ORAM: [Nearly] Free Recursion and Integrity Verifica-
tion for Position-based Oblivious RAM. In Proceedings of ASPLOS.

C. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas. 2014.
Suppressing the Oblivious RAM Timing Channel While Making In-
formation Leakage and Program Efficiency Trade-Offs. In HPCA.

C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and D.
Wichs. 2013. Optimizing oram and using it efficiently for secure com-
putation. In Proceedings of PET.

O. Goldreich. 1987. Towards a Theory of Software Protection and
Simulation by Oblivious RAMs. In Proceedings of STOC.

O. Goldreich and R. Ostrovsky. 1996. Software Protection and Simu-
lation on Oblivious RAMs. J. ACM (1996).

V. Goyal and A. Jain. 2013. On Concurrently Secure Computation in
the Multiple Ideal Query Model. In Proceedings of EUROCRYPT.

S. Gueron. 2016. A Memory Encryption Engine Suitable for General
Purpose Processors. In Proceedings of IACR.

Zecheng He and Ruby B Lee. 2017. How secure is your cache against
side-channel attacks?. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 341-353.

Hi Tech Global. 2018. Hybrid Memory Cube Module.

http://www.hitechglobal.com/Accessories/HybridMemoryCube-HMC.htm.

M. Y. Hsiao. 1970. A Class of Optimal Minimum Odd-weight-column
SEC-DED Codes. IBM Journal of Research and Development 14 (1970).
Issue 4.

Micron Technology Inc. 2006. DDR3 SDRAM Part MT41J256M8.

M. Islam, M. Kuzu, and M. Kantarcioglu. 2012. Access Pattern Disclo-
sure on Searchable Encryption: Ramification, Attack, and Mitigation.
In Proceedings of NDSS.

B. Jacob, S. W. Ng, and D. T. Wang. 2008. Memory Systems - Cache,
DRAM, Disk. Elsevier.

J. Jeddeloh and B. Keeth. 2012. Hybrid Memory Cube - New DRAM
Architecture Increases Density and Performance. In Symposium on
VLSI Technology.

Jordan Robertson and Michael Riley. [n. d.]. The Big Hack:
How China Used a Tiny Chip to Infiltrate U.S. Companies.
https://tinyurl.com/ycywjdmo.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution.
https://spectreattack.com/spectre.pdf.

T. S. Lehman, A. D. Hilton, and B. C. Lee. 2016. Poisonlvy: Safe Spec-
ulation for Secure Memory. In Proceedings of MICRO.

S.Li, K. Chen, M. Y. Hsieh, N. Muralimanohar, C. D. Kersey, D. Chad,
J. B. Brockman, A. F. Rodrigues, and N. P. Jouppi. 2011. System Impli-
cations of Memory Reliability in Exascale Computing. In SC.

ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

[25] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. 2015. GhostRider: A Hardware-Software System for
Memory Trace Oblivious Computation. In Proceedings of the Twenti-
eth International Conference on Architectural Support for Programming
Languages and Operating Systems.

[26] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubia-
towic, and D. Song. 2013. PHANTOM: Practical Oblivious Computa-
tion in a Secure Processor. In Proceedings of CCS.

[27] J. T. Pawlowski. 2011. Hybrid memory cube (HMC). In Hotchips.

[28] LingRen, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten van Dijk, and Srinivas Devadas. 2014. Ring ORAM: Clos-
ing the Gap Between Small and Large Client Storage Oblivious RAM.
IACR Cryptology ePrint Archive (2014).

[29] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas. 2013. Design

Space Exploration and Optimization of Path Oblivious RAM in Secure

Processors. In Proceedings of ISCA.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.

2009. Hey, You, Get Off of My Cloud: Exploring Information Leakage

in Third-party Compute Clouds. In Proceedings of the 16th ACM con-

ference on Computer and Communications Security. 199-212.

[31] S.Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens. 2000. Memory
Access Scheduling. In Proceedings of ISCA.

[32] Brian Rogers, Siddhartha Chhabra, Yan Solihin, and Milos Prvulovic.
2007. Using Address Independent Seed Encryption and Bonsai Merkle
Trees to Make Secure Processors OS- and Performance-Friendly. In
Proceedings of MICRO.

[33] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li. 2018. Secure
DIMM: Moving ORAM Primitives Closer to Memory. In Proceedings
of HPCA.

(30

[t

[34] E. Shi, T. Chan, E. Stefanov, and M. Li. 2011. Oblivious RAM with
O((logN)*) Worst-Case Cost. In Proceedings of ASIACRYPT.

[35] A. Sodani. 2016. Knights Landing (KNL):
2nd Generation Intel Xeon Phi Processor.

https://www.alcf.anl.gov/files/HC27.25.710-Knights-Landing-Sodani-Intel.pdf.

E. Stefanov and E. Shi. 2013. ObliviStore: High Performance Oblivious

Cloud Storage. In Proceedings of IEEE S&P.

E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-

vadas. 2013. Path ORAM: An Extremely Simple Oblivious RAM Pro-

tocol. In Proceedings of CCS.

[38] M. Taassori, A. Nag, K. Hodgson, A. Shafiee, and R. Balasubramonian.
2018. Memory: The Dominant Bottleneck in Genomic Workloads. In
Proceedings of AACBB Workshop, in conjunction with HPCA-24.

[39] M. Taassori, A. Shafiee, and R. Balasubramonian. 2018. VAULT: Re-

ducing Paging Overheads in SGX with Efficient Integrity Verification

Structures. In Proceedings of ASPLOS.

Rujia Wang, Youtao Zhang, and Jun Yang. 2018. D-ORAM: Path-

ORAM Delegation for Low Execution Interference on Cloud Servers

with Untrusted Memory. In High Performance Computer Architecture

(HPCA), 2018 IEEE International Symposium on. IEEE, 416-427.

Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. 2014. Timing

Channel Protection for a Shared Memory Controller. In HPCA.

A.C. Yao. 1986. How to Generate and Exchange Secrets. In FOCS.

Xiangyao Yu, Syed Kamran Haider, Ling Ren, Christopher W. Fletcher,

Albert Kwon, Marten van Dijk, and Srinivas Devadas. 2015. PrORAM:

dynamic prefetcher for oblivious RAM. In Proceedings of the 42nd An-

nual International Symposium on Computer Architecture, Portland, OR,

USA, June 13-17, 2015.

Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao

Wang, Yiran Chen, and Jia Di. 2015. Fork Path: Improving Efficiency

of ORAM by Removing Redundant Memory Accesses. In Proceedings

of the 48th International Symposium on Microarchitecture.

X. Zhuang, T. Zhang, and S. Pande. 2004. HIDE: An Infrastructure

for Efficiently Protecting Information Leakage on the Address Bus. In

Proceedings of ASPLOS.

(36

[l

(37

[

(40

[t

(41

—

(42

—
S
S

e/

(44

=

(45

[

	Abstract
	1 Introduction
	2 ORAM Background
	2.1 Attack Model
	2.2 ORAM Basics

	3 Proposal
	3.1 Overview
	3.2 Design Details - implementation
	3.3 Design Details - -Compact Access
	3.4 Why do Similar Ideas Not Apply to the Full ORAM?
	3.5 Security Analysis

	4 Methodology
	5 Results
	5.1 Comparison with Non-Secure Baseline
	5.2 Optimal Cache Partition Selection
	5.3 Impact of Depth/Utilization
	5.4 Impact of Bucket Size
	5.5 Impact of Utilization
	5.6 Improvement from the Compact Layout
	5.7 Security from Timing Channels
	5.8 Sensitivity Analysis

	6 Related Work
	7 Conclusions
	References

