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ABSTRACT

Hierarchical clustering is typically performed using algorithmic-
based optimization searching over the discrete space of trees. While
these optimization methods are often effective, their discreteness
restricts them from many of the benefits of their continuous coun-
terparts, such as scalable stochastic optimization and the joint op-
timization of multiple objectives or components of a model (e.g.
end-to-end training). In this paper, we present an approach for hi-
erarchical clustering that searches over continuous representations
of trees in hyperbolic space by running gradient descent. We com-
pactly represent uncertainty over tree structures with vectors in the
Poincaré ball. We show how the vectors can be optimized using an
objective related to recently proposed cost functions for hierarchical
clustering [16, 49]. Using our method with a mini-batch stochastic
gradient descent inference procedure, we are able to outperform
prior work on clustering millions of ImageNet images by 15 points
of dendrogram purity. Further, our continuous tree representation
can be jointly optimized in multi-task learning applications offering
a 9 point improvement over baseline methods.
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1 INTRODUCTION

Hierarchical clustering is a ubiquitous and often-used tool for data
analysis [44, 57], visualization [23, 43] and mining of meaningful
representations of data [8]. In hierarchical clustering, data points
are arranged as the leaves of a multi-layered tree structure with
internal nodes representing meaningful and potentially overlapping
sub-clusters of the data.

Hierarchical clustering is often used downstream as a compo-
nent of larger systems [23, 37, 43]. It can discover tree structured
representations that are used in tasks such as personalization and
recommendation [55]. Moreover, it is also used on its own to solve
coreference and record linkage tasks [12, 15, 32, 50] in which a set
of entity mentions are clustered to discover entities.

Hierarchical clusterings are typically found using discrete algo-
rithmic methods that search over discrete tree structures [18, 27,
28, 30, 51, 54]. For example, hierarchical agglomerative clustering
greedily merges sub-trees to form a complete dendrogram. Hier-
archical clustering algorithms strive to optimize a particular cost,
objective, or probabilistic model that designates which hierarchical
partitions of the data are more favorable than others. For example,
Moseley and Wang [34] give a cost, which is akin to Dasgupta’s [16]
and is well approximated by hierarchical agglomerative clustering
with average linkage, and Adams et al. [1] give a MCMC-based
inference procedure for a nested stick-breaking objective.

While these algorithms are often highly effective in practice
[16, 28, 34], their discreteness inherently restricts them from sev-
eral key advantages of continuous optimization such as scalability
and joint optimization in down-stream applications. Continuous
models are typically amenable to stochastic / mini-batch optimiza-
tion, allowing for scalability to massive datasets. For example, flat
clustering using mini-batch K-means performs very well and scales
to massive amounts of data due to its use of stochastic optimization
[42] . Furthermore, these gradient-based methods can often be im-
plemented to efficiently run on specialized hardware such as GPUs.
Importantly, it is natural for gradient-based optimization methods
to be combined for the joint optimization of multiple objectives or
components of a model for end-to-end training [46, 52]. In these
joint optimization settings, signal from the underlying task can
help inform the clustering algorithm and vice-versa.

In this paper, we present a new approach for hierarchical cluster-
ing, utilizing a embedded representation of tree structures in hyper-
bolic space, specifically the Poincaré ball. Our approach, gradient-
based hyperbolic hierarchical clustering (gHHC), represents each
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node of a discrete tree structure using as a continuous vector. Child-
parent relationships in the tree structure are based on the relative
position and norms of the embedded node representations. The
negative curvature of the hyperbolic space is widely known to ac-
curately capture parent-child relationships [19, 35, 40]. We use the
norm of vectors to model depth in the tree, requiring child nodes to
have a larger norm than their parents. The root is near the origin
of the space and the leaves near the edge of the ball. We present
an objective function that is differentiable with respect to our tree
node embeddings and perform hierarchical clustering by optimiz-
ing this objective using stochastic gradient descent. This objective
has connections to recently proposed cost functions for hierarchi-
cal clustering [16, 49]. Note the distinction between this objective
and previous work on learning representations in hyperbolic space
[19, 35, 40], which are given a tree or graph structure to embed in
hyperbolic space, and our method that discovers a meaningful tree
structure using a hierarchical clustering objective.

A key feature of our approach is scalability to large datasets
using mini-batch optimization and we present an efficient opti-
mization algorithm that scales to datasets of millions of points. We
show that our method outperforms state-of-the-art approaches on
a clustering task of ImageNet ILSVRC images [28] by 15 points of
dendrogram purity. Further, we apply our method to a multi-task
learning application and jointly optimize the clustering of the tasks
and the task specific regressors, resulting in an improvement of 9
points over baseline methods.

2 HYPERBOLIC GEOMETRY

Hyperbolic geometry is a non-Euclidean geometry, which drops
the parallel line postulate while keeping the remaining four of the
five of the postulates of Euclidean geometry. The resulting space
has constant negative curvature. As a consequence, for a fixed
dimension, the volume of any ball in such hyperbolic space grows
exponentially with its radius rather than polynomially as in the
Euclidean space (Figure 1). Another ramification of dropping the
parallel line postulate is that a small perturbation of a point x by
a vector v in the space is no longer the simple linear map x + v
as is in the case of Euclidean space. Instead, one has to carefully
derive the perturbation map (formally known as the retraction map
or exponential map), which would be important when performing
optimization with gradient-descent over parameters lying in the
hyperbolic space.

The recent attention to hyperbolic spaces can be primarily attrib-
uted to the exponential growth of volume in a ball with its radius,
which allows for a parsimonious representation of hierarchical data.
To elaborate, consider a complete binary tree. At level /, the tree
would have 2! nodes, i.e. the number of nodes grows exponentially
with level, or, in other words, the distance to the root of the tree.
In hyperbolic geometry this kind of tree structure can be modeled
easily (with fixed dimensions) as nodes with increasing level can be
arranged radially in a ball in hyperbolic space. Moreover, a linear
time algorithm was proposed by Sarkar [41] for embedding the tree
into hyperbolic space, while approximately maintaining the tree
distance. This type of construction is feasible as hyperbolic annulus
volume (and even the circle length) grows exponentially with its
radius. This type of construction would be infeasible in Euclidean
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space where the volume growth is only polynomial. Such desirable
properties has led to use of hyperbolic space in many applications
[6, 26, 29, 31].

Formally, we consider the Poincaré ball model of hyperbolic
space, which corresponds to a Riemannian manifold with a particu-
lar metric tensor (for more details see [21, 45]). The Poincaré ball
model is defined on the set D = {x € R : ||x|| < 1}. The induced
distance between any two points x,y € D can be derived as [35]:

llx = ylI? )
(1= llxlH (@ = llyl®) )

Then it follows that the induced norm of a point x € D is:

dp(x,y) = cosh™! (1 +2 (1)

1+ x|

lxlls = do(x, 0) = cosh™! (
E

) = 2tanh ' (x]).  (2)
We will use these properties of Poincaré ball in developing our
proposed method.

3 GRADIENT-BASED HIERARCHICAL
CLUSTERING

In this section, we present our proposed approach for discover-
ing hierarchical clusterings using gradient descent. Our approach
consists of three components: (1) a collection of continuous vector
embeddings (in hyperbolic space) of the nodes of a discrete tree, (2)
a mapping from the continuous embeddings to discrete trees, and
(3) and objective and corresponding gradient-based optimization
produced to update the position of these vectors given a dataset.
We refer to our approach as gradient-based hyperbolic hierarchical
clustering (gHHC).

3.1 Continuous Tree Representation

A hierarchical clustering, 77, is a tree structured partitioning of a
dataset X = {x1,...,xn}. Each data point x; sits at a leaf node of
the hierarchy. Internal nodes are typically thought of as represent-
ing a (flat) cluster containing their descendant leaves. Formally,

DEFINITION 1. Hierarchical clustering [30]. A hierarchical clus-
tering, T, of a dataset {xi}fil, is a set of clusters Ty = {xi}f\il eT
and for each T;,Tj € T either T; C Tj, Tj C T; or T; N Tj = 0. For
any cluster T € T, if AT’ with T’ C T, then there exists a set {Ti}f:1

of disjoint clusters such that Uf:l T; =T.

The hierarchical clustering refers to a tree consisting of nodes N.
Each node corresponding to a cluster T; € 7. In a slight abuse of no-
tation, we will use Tjto refer to both the node and its corresponding
cluster.

gHHC embeds a discrete tree structure with a continuous one
as a set of vectors Z = {z1,...,2}, zj € D4 in the d dimensional
Poincaré ball. Each vector z; € Z corresponds to a particular inter-
nal node internal node T; € 7. Leaf nodes in 7~ are represented by
their corresponding data points and do not have parameters in Z. In
this paper, we primarily focus on data with unit norm that sits at the
edge of the ball. Data that does not sit in the ball can be embedded
into the space using a learned or random projection or by setting
the norm of the vectors to be 1. A discrete tree structure can be
defined in terms of its child-parent edges. Following previous work
[31, 35, 40, 41], we use the norm and relative positions of vectors to
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Poincare Ball:
The volume grows exponentially as we move away from
origin. As illustrated, the increase in hyperbolic distance
among points (x;, y;) with constant Euclidean distance

is shown on left. Likewise for constant hyperbolic
distance points (u;, v;), shrinkage of Euclidean
distance is shown on right.

Constant
Euclidean
distance

Constant
hyperbolic
distance
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Embedding of Tree:
Starting from the data points along the periphery in the

Poincare ball, the tree can be embedded as “coalescent”
events, representing the internal nodes.

Distribution over Parent Nodes:

Instead of hard assignments, in our embedded
tree we consider a distribution over parent
nodes.

2nd Jikely 0.
parent node
2 n2

‘1 Most likely
parent node

Figure 1: Unique features of gHHC: continuous representations of trees in the Poincaré ball and uncertainty over ancestors.

model the child-parent relationships in the tree structure. Vectors
near the origin of the space are meant to indicate nodes closer to
the root of the tree structure, while nodes closer to the edge of the
ball are meant to indicate nodes closer to the leaf level of the tree.
Section 2 reviewed a key property of the Poincaré ball, which is that
there is exponentially more space moving away from the origin
of the ball, just as how the number of descendants of a node in a
discrete tree can grow exponentially. Child-parent relationships
are modeled by the distance between two embedded nodes in the
space and by the norm of the nodes. Parent nodes are those that
are both nearby to their children in the space and have smaller
norms than their children. As in previous work [35, 40], a child to
parent dissimilarity function (not a distance metric) is used that
encourages children to have a smaller norm than their parent:

dep(Te, Tp) = dp(ze, 2p)(1 + max{||zp|Ip = [Izc|lp, 0})-  (3)

In words, if the parent has smaller norm than the child, the dis-
similarity between the child and parent nodes is their distance
in hyperbolic space. Otherwise, the dissimilarity is the distance
weighted by 1 plus the difference between the norm of the parent
and the child.

This child-parent dissimilarity function can be used to extract
a discrete tree from the embedded continuous representation of
nodes. A discrete tree is predicted by having each data point and
internal node select a parent under the condition that the parent
must have a smaller norm:

Parent(T¢) = argmin dcp(Te, Tp). (4)

Ty€eN,

lzpll<llzll
This allows gHHC to create trees with non-binary branching factor.
Binary trees are more expressive in that they represent a strictly
larger set of tree consistent partitions, which are a set of roots of
disjoint subtrees that give a valid flat clustering of the dataset
[5, 22, 28]. However, trees with n-ary or non-parametric branching
factors [5, 27, 54] have a lower memory/parameter footprint as they
contain fewer internal nodes and can provide more interpretable
trees than binary trees, which might contain needlessly complicated
structure, especially near the leaf level.
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The continuous embedding representation of a tree structure al-
lows for uncertainty to be represented in child-parent relationships.
A particular child node might have multiple candidate parents that
are nearby in the Poincaré ball. This powerful feature of our rep-
resentation allows for the embeddings to encode uncertainty over
alternative tree structures.

While our work focuses on the unnormalized child-parent dis-
similarity function d;p, we can use this to model a distribution over
tree structures by using dp to define a distribution over parent
nodes. The probability that a child node ¢ has a parent p is inversely
proportional to their child-parent dissimilarity.

Ppar(Tpch’Z) & exp(_dcp(TC’ TP))- (5)

The probability of a tree structure can then be computed by the
product of all of the parent-child relationships in the tree

PTIZ) e | | [T Pa®iTe.2).

TpeT Tcechldrn(Ty)

(6)

A minor point to note is that P(7|Z) would be computed in a
way that considers only parent nodes that must have at least two
children—effectively pruning any node that has a single child ac-
cording to the definition in Eq. 4.

In this paper, we use a fixed number of internal node embed-
dings, fixing the size of the set Z. Some of these embeddings will not
contribute meaningful tree structure, by either having no descen-
dant data points or having only a single child. the nodes could be
pruned in a post-processing step. In experiments, we use a number
of internal nodes that is less than that of a binary tree structure.

3.2 Hierarchical Clustering Objectives

Given a dataset X, we would like to devise a hierarchical cluster-
ing cost function, Cgnpc(X, Z), that we can use to optimize the
placement of the internal node embeddings, Z. The cost function
should be both faithful to the structure of the data and amenable to
stochastic optimization using gradient descent.

Our objective is inspired by recent work on cost functions for
hierarchical clustering [9-11, 13, 14, 16, 34, 49]. These objectives
measure the quality of a particular discrete tree structure arrange-
ment of a dataset given the pairwise similarities of the points. Our
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objective is aligned with the intuition of these recently proposed
cost functions— data points that are highly similar should be near
by one another in the tree structure and dissimilar points should be
placed in separate branches, only having common ancestors near
the root of the tree.

Given three data points x;, x;, and x, such that x; and x; are the
most similar (least dissimilar) pair among the three possible pairs,
our objective will encourage trees to represent a tree consistent
partition that keeps x; and x; separate from x. In other words, we
would like x; and x; to be merged closer to the leaves than xy, so
that, the least common ancestor of x; and x; is a descendant of the
least common ancestor of all three nodes.

We make a few mild assumptions about X. As mentioned in the
previous section, we assume that data point in X sits in D4 Second,
we will assume that our dataset has a pairwise measure of similarity
between data points: w : X X X — R¥. Such an assumption is
common throughout the clustering literature [3, 16, 28, 34]. For
notation convenience, we will refer to the similarity between x;
and x; as wjj and will use x;; to represent the pair x;, x;j and x;
to represent the triple x;, xj, x.

We will first review two hierarchical clustering cost functions in
the literature: Dasgupta’s cost [16] and its recent extension by Wang
and Wang [49]. Then we present the cost function we optimize for
our model, Cgnpc(X, 7).

Dasgupta [16] presents a well-motivated cost function for hi-
erarchical clustering that encourages similar points to be nearby
in the tree structure. This cost has garnered much recent interest
[9-11, 13, 14, 17, 34, 39, 49]. The cost function is:

Cp(T) = Z Wi, j

x;j€X?

lvs (lca (xij))l, (7)

where 1vs (n) gives a set of leaf node descendants of n, and 1ca (x;;) =
lca (xi, xj) gives the least common ancestor of x; and x; in the
discrete tree 7. In words, Dasgupta’s cost says that one pays, for
each pair of data points, the similarity of the pair times the num-
ber of leaves of the pair’s least common ancestor. This precisely
incentivizes the aforementioned intuition. However, this objective
is not amenable for stochastic gradient methods due to its discrete
nature.

Wang and Wang [49] recently proposed a related cost function
based on a ranking of candidate configurations of the tree. The cost
is defined over triples of data points x;, xj, x; and incentivizes the
most similar pair among the three to have a least common ancestor
closer to the leaf level than the least common ancestor of all three
points. The cost per triplet is

®)

Word(i, j, k, 7) is defined as the similarity of the pair of points that has
the deepest least common ancestor among the three possible pairs
or is zero if the three have the same least common ancestor. In words,
if all of tree points x;, xj, x; have the same least common ancestor,
the cost is the sum of all of the pairwise similarities between the
three points. Otherwise, if two points have a least common ancestor
that is deeper in the tree than the least common ancestor of all
three, then the cost is the sum of all of the pairwise similarities
between the three points except that of the pair with the deeper
least common ancestor. Formally, we write worq(;, j,k,7) as follows,

triCq(X;jr) = wi,j + Wik + Wj k — Word(i, j,k, 7)-
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letting desc(n, m) evaluate to true if n is an descendant of m in 7~
Word(i,j,k, 7) = Wi,jlldesc(1lca (x;5), 1ca (x;))]
+w; rI[desc(lca (x;x), 1ca (x45))]
+w; rI[desc(lca (xk), Lca (x¢))]-
The cost of a tree is the defined as:
2,y ex riCy(Xyjic)

Zirexs minC(xijx)

CWang(T, X) =

where minC represents the lowest cost possible for the triplet:
minC(x;jx) = min{w; j + w; g, Wi,j + Wj g, Wi g + W}

The cost represents the ratio between the cost of the given tree and
the cost of an optimistic tree that could correctly order every triple
of points. The authors show that the tree which optimizes Cp(7")
also optimizes Cywang(7"). Ideally, we would hope to optimize the
expected Cyang(7) under the distribution over discrete trees in-
duced by our embedded continuous tree representation, P(7|2).
Noticing that the denominator of Cywang(7") is constant for a given
dataset, consider:

(10)

=Ep(712) B [ W) + Wik + Wk =Wy )

Ep(712)Bxy0) [triCT(xij)]

Now, suppose wj;j > max(w;, wji). We would like x; and x; to
have a different least common ancestor of x;, xj, x and specifically
one that is the deepest among least common ancestors of any pair
of the three points. By the definition of werq(;, j, £, 7, We can up-
perbound Equation. 10 by only subtracting w;, ; from the cost of all
three pairwise similarities if x; and x; in fact have a least common
ancestor that is a descendant of the least common ancestor of all
three points, i.e.,:

(11)

Ep(712)B(xxi0 [ Wi + Wik + Wy k
- wijl[desc(lca (xi)), 1ca (x;x))]].

Unfortunately, optimizing this quantity directly is computation-
ally challenging with our model and so we design a related objective.
We use a geometric heuristic to provide an approximate distribution
over least common ancestors for both x; and x; and, similarly, a
distribution over least common ancestors for all three points x;, x;,
and xi.. The distribution over least common ancestors for both x;
and x; is:

Pica(nlxij) o< exp(— max{dcp(x;, n), dep(xj, n)}). (12)

We would like to encourage x;, xj, and xj to have a least common
ancestor that is different than the least common ancestor of x;, x;.
And so, in the distribution over least common ancestor for all three
points, we give 0 probability mass to the most likely least common
ancestor of x; and x;:

(13)

(14)

Piea(n|x;ji) oc exp(=£;jk, n)[n # argmax Picy(n’|x;;)]
”

,fijk,n = max{dcp(x,-, n), dcp(xj, n), dcp(xka n)}.

Our objective is to minimize the expected distance between x;
and the embeddings of the nodes that are likely to be a least com-
mon ancestor of x; and x; and increase the distance between x; and
nodes that are likely to be a least common ancestor of x;, x;j, and x.
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We model this by the ranking objective: dcp (x;, n)(Pica(nlxi, xj) —

Pica(nlxi, x;j, x.)). Similar to Bayesian Personalized Ranking [38],

we optimize the sigmoid of the aforementioned score. We optimize

the analogous value for x;. We minimize the distance between x

and nodes that are likely to be a least common ancestor of x;, x;, and

X and maximize the distance between xj. and the nodes likely to be

aleast common ancestor of x; and x;: o (dcp (xk, 1) (Pica(nlxi, Xj, X )—
Pica(nlxi, x;5))). Overall our cost is:

CgmcX. 2)= Z(a(dcp(x,-,n)(Plca<n\x,-j>—Plca<nlxijk>>)

Xijk ex3 neN

(15)

+ 0 (dep (s m(Pica(lxiy) = Prea(nlxzic))

5

+ 0 dep ks (Prea(lxsj10) = Pra(mlxiy)))

where o(y) = ﬁ is the sigmoid function. This objective encour-
ages trees that merge more similar points together closer to the
leaves and less similar things higher up in the tree. It encourages
at least one node to be an ancestor for x; and x; and not for xj
while encouraging another to serve as a possible ancestor for xx
as well as the other two. Furthermore, our objective is amenable to
stochastic gradient descent with respect to Z by sampling triples
of points (x;, xj, xi ).

3.3 Child-Parent Margin Objective

To encourage child-parent nodes to be well separated and not have
equal norms, we use a margin-based version of the objective at
inference time. We add a margin y in dc):

(16)
For each pair of child-parent nodes, we attempt to minimize the dis-
tance between children and parents while maintaining the margin
between their norms:

Ccp:marg(Z, y)= Z dcp(Tc, Parent(Tc);y).
T.eN

dep(Te, Tpsy) = dp(zes 2p)(1 + max{||zp|Ip — ||ze|lp + v 0}),

(17)

We alternate between optimizing this objective and the Cgrpc
objective in our gradient-based inference procedure.

4 GRADIENT-DESCENT BASED INFERENCE

Given the objective in Cgunc (Eq. 15), and a dataset X, we can
perform hierarchical clustering by optimizing the objective with
respect to the representation of the tree structure Z using gradient
descent. As the objective is an expectation over triples of data points
Xi, Xj, x} from X, it can be optimized using mini-batch stochastic
gradient descent. This allows the model to scale to massive datasets
that do not fit in memory and can even allow for distributed opti-
mization. Each gradient adjusts the placement of internal nodes by
adjusting the relative distances to the data points x;, x;j, x.

The internal node parameters of our model Z, sit in hyperbolic
space. And so, for this reason, they cannot be optimized with stan-
dard Euclidean methods, but rather can be optimized using Rie-
mannian gradient descent [7].

4.1 Gradient-Descent on Riemannian Manifold
Since the Poincaré ball has a Riemannian manifold structure, we
need employ stochastic Riemannian optimization methods such as
RSGD [7] or RSVRG [53]. Here we provide only a very basic intu-
ition of these methods and outline the final results that we use. In
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every step of gradient descent, we slightly perturb the current point
in the direction of steepest descent. Since our optimization vari-
ables lie in the Poincaré ball, we have to use the proper retraction
operator R(.), unlike Euclidean space where a simple subtraction
of scaled gradient would work, as pointed out in Section 2. That is,
the gradient update would be of the form:

Zr+1 = Rz, (-nVRrCgunc(Zy)), (18)
where 7 is the learning rate and VrCgrpuc(Z:) is the Riemannian
gradient. For the retraction operator, following [35], we use the
following first order approximation:

z+g,
(z+9)/llz+gll -,

if ||z +g¢|| <1,
if 1z + g1 (19)

Rz(9) = {
else.

Finally, the Riemannian gradient VRCgrnc(Z;) can be expressed

in terms of the Euclidean gradient by using the Riemannian metric

tensor for the Poincare ball. We directly state the result here:

VRCgruc(Z:) = (20)

(1= 1Z|I*)?
5 VCmnc(z,)
Figure 2 shows how gHHC trees progress through SGD inference
on a toy dataset.

4.2 Practical Considerations

Rather than sampling triples uniformly at random to optimize Cgppe
(Eq. 15), we sample triples x;, xj, x such that x; is one of the K
nearest neighbors of x; and x. is another point sampled at random.
To encourage exploration of the space of internal nodes during
optimization, we add Gumbel noise to distances so that nodes that
might not be the closest will sometimes be selected.

We also find having a good initialization of the model improves
performance as is the case with all clustering methods. We initialize
the models by first creating a set of leaf nodes. These leaf nodes
can either be selected at random from the data points or with an
approximate farthest first / k-means seeding method [2]. Then we
build an initial hierarchy over these leaf internal using hierarchical
agglomerative clustering. We heuristically embed the nodes discov-
ered by HAC back into the Poincaré ball by representing them as
the average of their descendants and scaling the representation by
a logarithmically decreasing factor based on the order of mergers
in HAC (i.e., the node that was merged in the j’ h of N rounds of

HAC has norm Iolgo(gil\_/)). This strategy is very efficient and should
not be confused with running HAC over the whole dataset, as the
number of leaf nodes in our method is fixed. To extract a discrete
tree structure, we use the parent assignment in Equation 4. We
assign an ordering to the nodes and in the case of a two nodes
having the same norm, we break a tie using the ordering. We also
perform an additional discrete tree extraction trick. If data points
X and internal nodes M select a particular internal node n as their
parent, we create a new node n’ and assign n’ to be a child of n
along with the internal nodes M and set X to be the children of n’.
We do this so that there is always a tree consistent partition that
matches the data point to parent node assignments.
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Tree structure discovered over steps of mini-batch SGD inference
Figure 2: Data points in two dimensions sit towards the edge of the disk and are shown with colored circles. Internal nodes are

shown with colored triangles. We show how gHHC over gradient steps moves internal nodes and rectifies incorrect clustering.
The dangling internal nodes correspond to nodes not used by the model and are pruned during post-processing.

5 END-TO-END OPTIMIZATION

In this section we demonstrate the efficacy of using our continuous
representation of tree structures to perform end-to-end optimiza-
tion in downstream applications. Recall that our optimization prob-
lem seeks to find an embedding of the internal tree nodes Z4 in
the hyperbolic space that minimizes the cost Cggpc(X, Z) given
in Eq.15 while assuming that the embedding of the data points
X, Zx, is fixed over the boundary of the hyperbolic disk. In or-
der to learn an embedding Zy, which needn’t be constrained to
be over the boundary of the hyperbolic disk, we need to define a
problem-specific cost function, Cproplem(X), and jointly optimize it
with Cygugc(X, Z) as follows:

Z{;l’igx Cyrnc (T, X) + Cproblem (X)- (21)

Multi-task learning: In this case we are given a set of regres-
sion (classification) problems that are somehow related. We let X;
denotes the dataset of task i. The goal is to arrange the tasks in a
tree structure and regularize the regression weights over the tree.
In this case Cproblem (X) = X; loss(Xj; Zx, ), where Zy, in this case
represents the regression (classification) weights of task i. As such,
when optimizing Eq.21 using the above problem specific cost, we
learn both the regression weights and the tree structure over tasks.
We note here that using the optimization algorithm in Section 4,
we sample three data points (d;, dj, di) from three regression prob-
lems (i, j, k) and compute the gradient of Eq.21. In this case, this
will result in updates to the regression weights of each problem,
(Zx;+Zx;, Zx,.), as well as to the internal tree structure. It should
be noted that from Eq.15, the representation of each regression
weight is constrained by the location of its parent, which enforces
the desired multi-task regularization effect.

Representation learning;: In this application, we want to learn
an embedding of words in the hyperbolic space and jointly discover
a tree structured clustering of the words and so use the GloVe
objective [36] for Cproprem(X)-

6 EXPERIMENTS

We provide qualitative and quantitative evaluations of our method.
We evaluate our method over several hierarchical clustering datasets,
We demonstrate the efficacy of our method in a downstream multi-
task learning application using end-to-end optimization. We quali-
tatively evaluate the performance of our method on representation
learning using a word-embedding task.
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6.1 Hierarchical Clustering Evaluation

We evaluate the performance of our method of using continuous
trees for hierarchical clustering against state-of-the-art hierarchical
clustering methods that search over the discrete space of trees.
Following previous work [22, 28], we evaluate the quality of our
hierarchical clusterings using dendrogram purity (DP). Given a
ground truth flat clustering C* of a dataset X, dendrogram purity
of a tree structure 7~ is:

S

C*eC* (xi,xj)€C*XC*

DP(T) = pur(Lea(xi, x;),C*), (22)

where P* = {(x;,xj)|C*(x;) = C*(x;)}, C*(x) denotes the ground
truth cluster membership of x and pur(n, C*) is the purity of the
cluster represented by n with respect to the cluster C (i.e. the frac-
tion of n’s descendant leaves are in the ground truth cluster C*).
In words, this is the average purity of the least common ancestors
of pairs of points belonging to the same ground truth cluster. Trees
with high DP scores contain nodes that are similar to clusters in
the ground truth flat partition.

We follow the experimental setup of Kobren et al. [28] and evalu-
ate our method against the following approaches: PERCH [28] is a
state-of-the-art large scale clustering algorithm that incrementally
builds a tree structure by inserting points as a sibling of their near-
est neighbor and performing local tree re-arrangements; BIRCH
[54] is a top-down hierarchical clustering algorithm with a dynami-
cally growing tree structure; Hierarchical K-Means (HKMeans)
is a recursive application of Lloyd’s algorithm; Hierarchical Ag-
glomerative Clustering (HAC) is a widely used and exceedingly
performant method that builds a trees structure in a bottom-up
way by recursively merging the two sub-trees with the highest
similarity value according to its linkage function.

To demonstrate the effectiveness of our approach, we evaluate
the performance of our model on three classic hierarchical cluster-
ing benchmark datasets as well as on three large scale datasets [28]:
Glass samples of glass!; Spambase spam emails ?; Digits samples
of handwritten digits 3; CovType forest cover types; ALOI (Ams-
terdam Library of Object Images) contains images and is used as
an extreme classification benchmarks; ImageNet ILSVRC 2012

Uhttps://archive.ics.uci.edu/ml/datasets/glass+identification
Zhttps://archive.ics.uci.edu/ml/datasets/spambase
3https://archive.ics.uci.edu/ml/datasets/optical\+recognition+of+handwritten+digits
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https://archive.ics.uci.edu/ml/datasets/optical\+recognition+of+handwritten+digits

Research Track Paper KDD ’19, August 4-8, 2019, Anchorage, AK, USA

technology
language
o P - —-——
Y
/
/O
1
e I -
| e
1 .
/ 7 /
o 8 ’,
'
- 7/
/
!
|
|
1 8 §
/
O

Figure 3: Sampled sub-tree of the learned hierarchical tree using GloVe. We can clearly identify groups of semantically similar
words, such as ‘science’, ‘technology’, ‘language’, and ‘media’. On a higher level, we also observe that ‘science’ and ‘technology’
sub-trees, which are semantically very close, merge into a larger sub-tree. The same happens for ‘language’ and ‘media’. Some
nodes were collapsed and leaf nodes were sub-sampled to allow for better visualization of the tree.
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Figure 4: Sampled sub-trees of the learned hierarchical tree on the ImageNet dataset. Both images above show sampled sub-tree
of the full learned tree with 1-million leaf nodes. In 4a we can observe both how photos of the same animals were clustered
together into the lower sub-trees and that as we go up in the sub-trees, the dendrogram merges together sub-trees of similar
animal species. In 4b we see clear clusters of specific animals and animal groups, such as ‘dogs’, ‘wolves’ and ‘birds’. It’s inter-
esting to notice, for instance, how the clusters for ‘dogs’ and ‘wolves’ are close together, and how among the different clusters
of animal groups, the one closest to ‘musical instruments’ is the ‘birds’ cluster.
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Glass Digits Spambase CovType ALOI ImageNet ILSVRC
# Ground truth clusters 6 10 2 7 1000 1000
# Data points 214 200 4601 500K 108K 1.3M
Dimensionality 10 64 57 54 128 2048
gHHC (This Paper) 0.463 £ 0.0016 0.675 +£0.015  0.614 £0.009  0.444 + 0.005 0.462 + 0.0004 0.367 + 0.0001
PERCH 0.474 £ 0.017 0.614 £0.033 0.611 £ 0.0131  0.45 £ 0.004 0.44 + 0.004 0.21 + 0.017
BIRCH 0.429 £0.013  0.544 £ 0.054 0.595 + 0.013 0.44 + 0.002 0.32 £0.002 0.11 £ 0.006
HKMeans 0.508 + 0.008 0.586 + 0.054 0.626 + 0.00 0.44 + 0.001 0.44 + 0.001 0.11 + 0.003
HAC-Centroid 0.47 0.594 0.628 - - -
HAC-Avg 0.501 0.7836 0.629 - - -

Table 1: Dendrogram Purity. Results for competing approaches from [28] using each algorithm’s optimal setting. Bold indicates
the best performing method. On small-scale problems (first three datasets) HAC performs very well. As the number of ground
truth clusters, dimensionality and data points increases, our algorithm outperforms state of the art methods.

representations of each image from the last layer of the Inception
neural network.

For all datasets, we use the same settings of the hyperparameters
of gHHC. We use: a Poincaré ball of the same dimension d as the
original space of the data, a learning rate of 0.01, a batch size of 100,
training episodes of length 5000. For the Glove dataset, Adam [25] is
to optimize the embedding of points in D?. Similarly for the Digits
dataset, which requires learning a representation in hyperbolic
space. For the first three, we use a number of internal nodes = 64,
for CovType we use 5000, and for the ALOI and ImageNet we use
40K and 20K internal nodes respectively. For baselines we report
the best results obtained using hyperparameter settings from [28].

Table 1 presents the results for this experiment. As evident, HAC
is optimal for small-scale problems, however, its quadratic complex-
ity prevents is from scaling to the rest of the large scale datasets.
Furthermore, among all scalable clustering methods, our method
consistently performs competitively, and significantly outperforms
state of the art over the ImageNet dataset by around 15 points. We
should note here that for CovType and Spambase, there is no signif-
icant winner. For ALOI, PERCH used a complete binary tree while
our method used only 40K internal nodes. For ImageNet, both meth-
ods used a reduced number of nodes, PERCH uses 25K while our
used 20K nodes. We hypothesize that our increased performance
is due to gHHC’s ability to update internal nodes in mini-batch
fashion without making the incremental hard decisions that are
difficult with a small number of internal nodes.

6.2 Multi-Task Learning

In this section, we show the efficacy of the end-to-end optimization
of regression weights and tree structure in a hierarchical multi-
task learning problem as described in Section 5. We use the school
dataset which is the standard testbed for multi-task regression. It
consists of the examination scores of 15362 students from 139 sec-
ondary schools in London during the years 1985, 1986 and 1987.
Thus there are 139 tasks, and each example has the year of the ex-
amination, four school-specific and three student-specific attributes.
We follows the experimental setup and split in [56]. We replace each
categorical attribute with one binary variable for each possible at-
tribute value resulting in 27 attributes per example. We evaluate the
performance using the measure of percentage explained variance
which is defined as the percentage of one minus nMSE (normalized
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mean squared error) [56]. We compare against state the art Multi-
task relationship learning (MTRL [56]) that learns the structure
of inter-task relationship and against a single-task learning (STL)
baseline that solves each regression problem independently. As
shown in Table 2, we outperform the baselines.

Method Explained Variance (higher better)
STL 23.5
MTRL [56] 29.9
gHHC (this paper) 384

Table 2: Results over the school dataset.

6.3 Qualitative Evaluation

We examine, qualitatively, the quality of the tree structures learned
by our method. We show two scenarios, one in which the input
representation is fixed over the ImageNet dataset (Figure 4) and one
in which the input representation is jointly learned with the tree
structure as described in Section 5 using GloVe [36] (Figure 3). In
both cases, we see that our method produces meaningful structure.

7 RELATED WORK

Hierarchical clustering is a widely studied problem theoretically,
in machine learning, and in applications. Apart from the work on
Dasgupta’s cost and related costs [49], there has been much work
on probabilistic models that have been used to describe the quality
of hierarchical clusterings. Much of this work uses Bayesian non-
parametric models to describe tree structures [1]. There has also
been some work using discriminative graphical models to measure
the quality of a clustering [50]. These cost functions come with their
own inductive biases and the optimization of them with similar
techniques to this paper could be interesting future work. Gradient-
based methods are prevalent in flat clustering such as stochastic
and mini-batch k-means [42].

Hyperbolic geometry has received much recent interest in the
machine learning community. It has been studied in the embedding
of taxonomies and graphs [19, 35, 40, 48]. It has also been used
to visualize hierarchical clustering [4, 31]. Recent work [47] uses
hyperbolic space to discover, in an unsupervised way, the relation-
ships between words. However, to the best of our knowledge, no
work addressed learning latent tree in an unsupervised fashion in
the hyperbolic space as we do in this paper.
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Differentiable clustering methods have also been used as regu-
larizes in deep auto-encoders as well as deep supervised models
that jointly optimize flat clustering objectives with their models
core objective. Goyal et al. [20] similarly uses a nested Chinese
Restaurant Process model jointly with an autoencoder for videos.
Other problems traditionally solved with clustering, such as within-
document coreference have used problem specific representations
of clusterings that support gradient-based learning of similarity
between data points and assignment of points to clusters [33]. Work
on extreme classification also learns tree structures but typically
use labeled data to discover these structures [24].

8 CONCLUSION

In this paper, we presented a novel hierarchical clustering algorithm
that uses gradient-based optimization and a continuous representa-
tion of trees in the Poincaré ball. We showed its ability to perform
hierarchical clustering on large scale data. We also showed how
our model can be jointly optimized with multi-task regression. In
future work, we hope to explore gradient-based optimization of
tree structures in deep latent-variable models.
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