Scalable Hierarchical Clustering with Tree Grafting

Nicholas Monath*
nmonath@cs.umass.edu
CICS, UMass Ambherst

Michael R. Glass
mrglass@us.ibm.com
IBM

ABSTRACT

We introduce GRINCH, a new algorithm for large-scale, non-greedy
hierarchical clustering with general linkage functions that compute
arbitrary similarity between two point sets. The key components
of GRINCH are its rotate and graft subroutines that efficiently
reconfigure the hierarchy as new points arrive, supporting dis-
covery of clusters with complex structure. GRINCH is motivated
by a new notion of separability for clustering with linkage func-
tions: we prove that when the linkage function is consistent with a
ground-truth clustering, GRINCH is guaranteed to produce a clus-
ter tree containing the ground-truth, independent of data arrival
order. Our empirical results on benchmark and author coreference
datasets (with standard and learned linkage functions) show that
GRINCH is more accurate than other scalable methods, and orders
of magnitude faster than hierarchical agglomerative clustering.

CCS CONCEPTS

« Computing methodologies — Cluster analysis; Online learn-
ing settings.

KEYWORDS

Clustering, Hierarchical Clustering

ACM Reference Format:

Nicholas Monath, Ari Kobren, Akshay Krishnamurthy, Michael R. Glass,
and Andrew McCallum. 2019. Scalable Hierarchical Clustering with Tree
Grafting. In The 25th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD °19), August 4-8, 2019, Anchorage, AK, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3292500.3330929

1 INTRODUCTION

Best-first, bottom-up, hierarchical agglomerative clustering (HAC)
is one of the most widely-used clustering algorithms, proving ef-
fective for a wide variety of applications such as analyzing gene
expression data [10], community detection in social networks [4],

“The first two authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08....$15.00
https://doi.org/10.1145/3292500.3330929

Ari Kobren®
akobren@cs.umass.edu
CICS, UMass Amherst

Akshay Krishnamurthy
akshay@cs.umass.edu
Microsoft Research

Andrew McCallum
mccallum@cs.umass.edu
CICS, UMass Amherst

and scientific author disambiguation [8]. One capability that con-
tributes significantly to HAC’s prevalence is that it can be used to
construct a clustering according to any cluster-level scoring func-
tion, also known as a linkage function [22, 24]. This is crucial for ap-
plications such as entity resolution, in which the quality of a cluster
is typically a learned function of a group of data points [8, 28, 31].

While effective, HAC requires O(n? log n) computation for gen-
eral linkage functions, making it infeasible to run on datasets of
even moderate size. One option for circumventing this computa-
tional problem is to use an online or mini-batch variant of the
algorithm. However, both HAC variants make irrecoverable, greedy
merges and are thus sensitive to data arrival order. Non-greedy,
incremental algorithms provide a more robust alternative to their
online counterparts [21, 34]. Like online approaches, incremental
methods consume data points, one at a time, but when new data
arrives, incremental algorithms can revisit previous clustering de-
cisions. However, current incremental algorithms fail in two ways:
they are only capable of reconsidering clustering decisions at a local
level and they do not support arbitrary linkage functions [21, 34].

In this paper we introduce GRINCH, a hierarchical, incremental
(non-greedy) clustering algorithm that can cluster with any link-
age function. GRINCH builds a cluster tree over the incoming data
points, one at a time, attempting to keep similar data points near
one another in the tree. Robustness to suboptimal data arrival order
is achieved by employing both local and global tree rearrangements.
Local rearrangements are performed using a rotate subroutine,
which recursively swaps a child with its aunt. Global rearrange-
ments are performed via a graft subroutine, in which GRINCH may
steal a subtree from one part of the hierarchy and merge it with
another similar, but distant, subtree. Grafting is a key for both our
theoretical and empirical results and supports the discovery of clus-
ters that exhibit (single or sparse) linked structures—an important
feature of clustering algorithms used in practice [11].

Theoretically, we define a notion of model-based separation that
characterizes the relationship between a linkage function and a
dataset. For generality, we adopt a graph-theoretic formalism, where
data points correspond to vertices of an unknown graph whose con-
nected components form a ground truth clustering. Model-based
separation suggests that the linkage function value is high for two
item sets if the induced subgraph is connected (see Subsection 2.1).
We prove that under this condition, the ground-truth clusters are a
tree-consistent partition of the hierarchy built by GRINCH.

In experiments, we show that GRINCH is efficient and builds trees
with higher dendrogram purity than other clustering algorithms
on large scale datasets. The experiments are performed with a
common and important linkage function—average linkage—as well

https://doi.org/10.1145/3292500.3330929
https://doi.org/10.1145/3292500.3330929

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

as a linkage function that measures the cosine similarity between
two cluster centroid representations. We also perform experiments
on two author coreference datasets using learned linkage functions,
and demonstrate that GRINCH is more efficient and accurate than
the baselines. Our experiments reveal that GRINCH outperforms
competitors that only make local tree rearrangements, highlighting
the power of the graft subroutine and the robustness of GRINCH.

2 LINKAGE FUNCTIONS FOR CLUSTERING

Clustering is the problem of constructing a partition C = {Cy, - -+ ,C}
of a dataset X = {xi}{il, such that Jcee C = X and YC,C’ € C,
C N C’ = 0. The partition is known as a clustering of X.

Most algorithms construct clusterings using pairwise similarities
among data points. But, pairwise similarities cannot capture many
complex relationships, e.g., data points x; and x3 are similar when
clustered with data point x3, but are otherwise dissimilar. A natural
generalization that can capture these types of relationships are
similarities defined over sets of data points, which we refer to as
linkage functions. Formally, a linkage function is f : 28 %28 SR

Clustering with linkage functions is ubiquitous, especially in
HAC (from which the name linkage function is derived). In HAC,
many popular linkage functions such as single-, complete- and
average-linkage are computed from pairwise distance functions.
More complex, set-wise linkage functions are used in applications
such as image segmentation, noun-phrase coreference and entity
resolution; in the latter two domains, these functions are often
learned [6, 14, 22, 32, 33]. A unique capability of HAC is that it
can easily support an arbitrary linkage function. This flexibility is
essential to combat the ill-posed nature of clustering.

2.1 Model-based Separation

Our goal is to design an algorithm that, like HAC, can support
arbitrary linkage functions, but is dramatically faster. In developing
clustering algorithms, it is often useful to consider various assump-
tions about the separability of the underlying data. For example, in
the pairwise setting one of the strongest data assumptions is known
as strict separation [1]. This assumption holds that any data point
in ground-truth cluster C; is more similar to every other data point
in C; than any data point from a different ground-truth cluster, C;.
Popular instantiations of HAC (e.g., single-, average- and complete-
linkage) provably succeed under strict separation, providing some
theoretical motivation for these algorithms.

We introduce a notion of model-based separation for clustering
with a linkage function. Since linkage functions may operate on
data of any type, we formalize the definition in terms of a graph,
where the data points correspond to vertices.

DEFINITION 1 (MODEL-BASED SEPARATION). Let G = (X,E) bea
graph. Let f : 2% x 2X SR bea linkage function that computes the
similarity of two groups of vertices and let ¢ : 2% x 2% — {0,1} be a
function that returns 1 if the union of its arguments is a connected

subgraph of G. Then f separates G if
Vso,s1,52 € X, p(s0,51) > ¢(s0,52) = f(s0,51) > f(s0,52)

In words, for a linkage function f to separate a graph G, take any
two sets of vertices, sg and s1, such that sy U s1 is connected in G,

Monath*, Kobren™, Krishnamurthy, Glass, McCallum

C;

S0 51

e

(b) Chain-shaped clusters.

S0

(a) Clique-shaped clusters.

Figure 1: Model-based separation. Figure 1a shows two clique-
shaped clusters with data points as vertices in a graph. If
f separates the graph then f(so,s1) > max[f(so,s2), f(s1,52)]
because sy and s; form a connected subgraph. In Figure 1b,
even if f separates the graph, it is possible for f(so,s1) <
f(s1,s2). However, f(s1,s2) < f(s2,53).

ie., #(so,s1) = 1. Then, for any set sz such that ¢(so,s2) = 0, the
score of f on input (so, s1) must be greater than on input (so, s2).

Model-based separation offers a non-standard view of clustering.
Specifically, the data points of a dataset are treated as vertices
in a graph with latent edges. The ground-truth clusters are the
connected components of the graph and the goal of clustering is to
discover these components using a linkage function.

We provide the following two examples to help build intuition
about model-based separation. The examples are used throughout
the remainder of our discussion.

ExampiE 1 (CLIQUE). Consider a graph G = (X, E) in which each
connected component is a clique. Then if f separates G, every vertex
in a connected component, C;, is more similar to all other vertices in
Ci than any vertex in connected component C;, where similarity is
defined by f. Thus, clique-structured connected components exactly
capture strict separation.

ExampLE 2 (CHAIN). Consider a graph G = (X, E) in which each
connected component is chain-structured. According to Definition 1,
two vertices that are part of the same chain but do not share an edge
may be dissimilar under f even if separates G. However, any two
segments of the chain connected by an edge are similar under f.

A visual illustration of both clique and chain style clusters is
depicted in Figure 1. As we will see, chain structured connected
components pose a challenge to existing incremental algorithms,
something we resolve with GrINcH (Section 3).

2.2 Cluster Trees

In most clustering problems, the appropriate number of clusters is
unknown a priori. HAC addresses this uncertainty by building a
cluster tree over data points.

DEFINITION 2 (CLUSTER TREE [23]). A binary cluster tree T

on a dataset X = {xi}f\il is a collection of subsets such that Cy =
{xi}ﬁil € 7 and for each C;,Cj € T either C; C Cj, Cj C C; or

CinCj =0.ForanyC € T, ifAC" € T with C' C C, then there
exists two Cr,Cr € T that partition C.

Scalable Hierarchical Clustering with Tree Grafting

(a) x is added to the cluster tree.

(b) v finds its nearest neighbor v’.

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

(c) v is grafted to v'.

Figure 2: The graft subroutine. Dotted lines denote new nodes and mergers. Before x is added, [and v’ are in disjoint subtrees
despite belonging to the same ground-truth cluster. The addition of x creates the subtree with root v and initiates the graft.

Given a cluster tree, 7, any set of disjoint subtrees whose leaves
cover X represents a valid clustering and is referred to as a tree con-
sistent partition [16]. Thus, cluster trees compactly encode multiple
alternative clusterings, allowing for a clustering to be selected as a
post-processing step. Another advantage of using cluster trees is
that they often facilitate efficient search and naturally group similar
data points near one another in the hierarchy.

We relate model-based separation, cluster trees and HAC in the
following fact:

Fact 1. Let f be a linkage function that separates G. Then run-
ning HAC under f returns a cluster tree, T, such that the connected
components of G are a tree-consistent partition of T .

To see why, notice that in each iteration of HAC, the highest
scoring pair of remaining subtrees is merged. Since f separates G,
a merger resulting in a subtree that corresponds to a connected
subgraph of G has higher score than any merger resulting in a
disconnected subgraph of G. Even though HAC can construct a
cluster tree that contains the ground-truth clustering as a tree-
consistent partition, the algorithm costs O(n? log n) for general
linkage functions and does not scale to large datasets. We will
verify this claim empirically in our experiments (Section 4).

3 ROTATIONS, GRAFTING AND GRINCH

In this section, we derive an efficient, incremental algorithm called
GRINCH that can be used to construct clusterings under any linkage
function. Like HAC, the backbone of GRINCH is a cluster tree. We
begin the discussion by analyzing a greedy, incremental variant
of HAC and when it fails. Then, we introduce two subroutines,
rotate and graft, that can be used to enhance robustness. Finally,
we present our algorithm, GRINCH.

3.1 Online HAC and Rotations

An efficient alternative to HAC is its online variant that merges each
incoming data point with its nearest neighbor seen so far (ONLINE).
For now, let us consider the setting in which a nearest neighbor
is found using a linkage function, f. Let f separate a graph G and
let ground-truth clusters be cliques in G (i.e., the data is strictly
separated). Even in this simple case, ONLINE may construct a cluster
tree in which the ground-truth clustering is not a tree consistent
partition. To see why, consider a stream in which the first two data
points, x; and xy, are of the same ground-truth cluster and the
third data point, x3 is of a different cluster. Assume, without loss of

generality, that ONLINE adds x3 as a sibling of x;. Then the ground-
truth clustering is not a tree consistent partition of the resulting
tree (and all subsequent trees).

To recover from such mistakes, local tree rearrangements may
be applied. Previous work uses rotations, which swap a child and its
aunt in the tree, to correct local errors induced by unfavorable ar-
rival order [21]. While originally designed to be used with pairwise
distances, the condition under which rotations should be applied
can be extended to linkage functions:

f(v,5(v)) < f(v,aunt(v)) 1)

where the functions s(-) and aunt(-) return the sibling and aunt
of their input, respectively. In words, if a node v € 7~ achieves a
higher score under f with its aunt than with its sibling, then the
aunt and sibling should be swapped. Now, let us revisit the example
above. Since x; and x; are both vertices in the same clique in G,
they are connected by an edge. Then, by model-based separation,
f(x1,x2) > f(x1,x3), so arotation will be applied, producing a tree
that contains the ground-truth clustering.

Unfortunately, the ONLINE algorithm, augmented with the ability
to perform rotations (ROTATE), cannot always recover the connected
components of a graph that is separated by f. In particular, ROTATE
cannot reliably recover chains (Example 2). By virtue of being a
local operation, rotations can only be used to provably recover
connected components that are clique-structure.

3.2 Subtree Grafting

We introduce a non-local tree rearrangment called a graft, which
facilitates the discovery of chain-structured connected components.
At a high level, the graf't procedure with respect to anode v € 7~
searches 7~ for a node v’ that is both similar to v and dissimilar
from its current sibling, s(v’). If such a subtree is found, v’ is
disconnected from its parent and made a sibling of v. A visual
illustration of a successful graf't is depicted in Figure 2.

In detail, a graft searches the leaves of 7~ for the nearest neigh-
bor leaf of v called I. Then it checks whether the following holds:

f(w.D) > max[f(v,s(0)), f(Ls(]))] @)

i.e., v and [prefer each other to their current siblings according
to f. If the condition succeeds, merge v and . If the condition
fails because I prefers its sibling to v, retest the condition at v
and I’s parent, par(l); if the condition fails because v prefers its
sibling to I, then retest the condition at par(v) and I. Continue to

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

N
C; @ ()
v wa (v) (@) (v3) ()

Figure 3: Poorly structured tree. Even though v’s leaves form
a connected subgraph in the graph on the left of the Figure
(i.e., they all belong to cluster C;), v.I’s descendant leaves, x;
and xy, are disconnected. An attempt to graft either x; or x
from a node whose descendants are not in C; may succeed.

check recursively until the condition succeeds or until the first time
two nodes, v1 and v9, are reached such that one is the ancestor of
the other. Pseudocode for the graft subroutine can be found in
Algorithm 1. In the algorithm, par returns the parent of a node, 1ca
returns the lowest common ancestors of its arguments and makeSib
merges its arguments and returns their new parent. NN performs a
nearest neighbor search and constrNN performs a nearest neighbor
search that excludes its second argument from the result.

Algorithm 1 graft (v, 7T, f)

| « constrNN(v, lvs(v), f,7)
v« lca(v,l); st « v
whilev # v Al #v" As(v) # 1 do
if f(v,1) > max[f (v, s(v), f(I,s(l))] then
z <« s(v); v < merge(v,l)
restruct(z, lca(z, v), f)
break
if f(v,1) < f(l,s(l)) then [« par(l)
if f(v,1) < f(v,s(v)) then v « par(v)
if v = st then output: v’ else output: v

3.3 Tree Restructuring

While the graf't subroutine facilitates discovery of chain-structured
clusters, poorly structured trees are susceptible to having the graft
subroutine disconnect previously discovered ground-truth clusters.
As an example, consider Figure 3, in which 1vs(v) form the con-
nected subgraph C; (i.e., they all belong to the same ground-truth
cluster). Consider v’s left child, v.l, and its descendants, which form
a disconnected subgraph. An attempt to graft either descendant,
X1 or xz, may succeed, even when initiated from a node (not de-
picted) whose descendants are not connected to C;. After such a
graft, 7 cannot contain a tree-consistent partition that matches
the ground-truth clustering.

Notice that a subtree can defend against spurious grafts by
ensuring that each of its descendant subtrees is connected. For
example, in Figure 3, if x, and x3 were swapped, then each descen-
dant subtree of v would be connected. Moreover, after such a swap,
grafts from nodes whose descendants were not part of C; would
necessarily fail (assuming that f separates the graph).

During tree construction, the only step that can result in a con-
nected subtree with disconnected descendants is the graf't subrou-
tine (a rigorous proof is included in the supplement). We introduce

Monath*, Kobren™, Krishnamurthy, Glass, McCallum

Algorithm 2 restruct(z,r, f)

while z # r do
as < {s(a) for a € ancs(z)\ancs(r)}
m « argmax, ., f(z, a)
if f(z,s(z)) < f(z, m) then swap(s(z), m)
z « par(z)

Algorithm 3 Insert(x;, 7, f)
I« NN(x;, f,7); t < makeSib(x;,I)
while f(x;,s(x;)) < f(aunt(x;), s(x;)) do
rotate (x;, aunt(x;))
p < par(x;)
while p # null do
p « graft(p, 7, f)

the restruct (restructure) subroutine, which is performed after
a successful graft, and reorganizes a subtree with the intent of
making each of its descendants connected. Let v” be a node that was
just grafted, v be the previous sibling of v’ (i.e., before the graft) and
let r = 1ca(v,v’) be the current least common ancestor of v and
v’. restruct is initiated from v. First, the siblings of the ancestors
of v (until r) are collected. Then, we find the node in the collection
most similar to v. If that node is more similar to v than v’s current
sibling (according to f), the two are swapped. The intuition here
is that if a graf't left v and its new sibling disconnected, then the
swap serves as a mechanism to restore the connectedness of v’s
parent. Such swaps are attempted from the ancestors of v until r.
Pseudocode appears in Algorithm 2.

3.4 Grinch

Using the rotate, graft and restruct tree rearrangement rou-
tines, we derive a new algorithm called GrincH, which stands for:
Grafting and Rotation-based INCremental Hierarchical clustering.
The steps of the algorithm are as follows: when a new data point,
x;j, arrives, find x;’s nearest neighbor, [, among the leaves of 7.
Add x; to 7 as a sibling of I. Then, apply the rotate subroutine
while Equation 1 is true. Finally, attempt to graf't recursively from
each ancestor of x;. Each time a graf't is successful, restructure the
tree to group similar items together. Pseudocode for GRINCH can
be found in Algorithm 3.

THEOREM 1. Let X = {xi}f\il be a dataset with ground-truth
clustering C* = {Cy,--- ,Cy}. Let f separate a graph G on vertices
X and let each cluster C € C* be a connected component in G.
Then GRINCH recovers a cluster tree such that C* is a tree consistent
partition of T regardless of the input order.

The proof of Theorem 1 can be found in the appendix.

4 EXPERIMENTS

We experiment with GRINCH to assess its scalability and accuracy.
We begin by demonstrating that GRINCH outperforms other incre-
mental clustering algorithms on a synthetic dataset. Observing that

Scalable Hierarchical Clustering with Tree Grafting

some of the steps of GRINCH are underutilized, we present four ap-
proximations of GRINCH’s algorithmic components. We apply each
approximation in turn and show that together they dramatically
improve GRINCH’s scalability without compromising its cluster-
ing quality. Then, we compare the approximate variant of GRINCH
to state-of-the-art large scale hierarchical clustering methods. To
showcase the flexibility of GRINCH, we also provide experimental
results in entity resolution, where the linkage function is learned.
Finally, we provide analysis of the graft subroutine-GrINcH’s dis-
tinguishing feature-and perform experiments to demonstrate the
algorithm’s robustness on adversarial data orderings.

Dendrogram Purity. Before beginning, we briefly review dendro-
gram purity, a preferred method of holistically evaluating hierar-
chical clusterings [5, 16, 21]. Dendrogram purity is computed as
follows: Let C* = {Cy, - - - , Cx} be the ground-truth clustering of
a dataset X, and let P* = {(x, x")|x,x” € X, C*(x) = C*(x")} be
the set of all data point pairs that belong to the same ground-truth
clusters. Then the dendrogram purity (DP) of a cluster tree, 7 is:

DP(T) = Z pur(lvs(lca(x, x’)), C*(x))

(x,x")eP*

1P*]

where 1ca(x, x’) returns the least common ancestor of x and x’
in 7, 1vs(:) returns the descendant leaves of its argument, and
pur(-, C*(x)) takes a collection of leaves and computes the fraction
that belong to ground-truth cluster C* (x).

An implementation of GRINCH and code to reproduce these ex-
periments is available !.

4.1 Synthetic Data Experiment

In our first experiment, we compare GRINCH to other incremental
hierarchical clustering algorithms on a synthetic dataset in order
to begin to understand GRINCH’s empirical performance charac-
teristics in a controlled manner. The data is generated so that it
satisfies model-based separation with respect to cosine similarity.
In particular, the dataset contains 2,500 10,000-dimensional binary
vectors that belong to 100 clusters, with 25 points per cluster. Points
in cluster k have bits 100(k — 1) to 100k — 1 set randomly to 1 with
probability 0.1. All other bits are set to 0. This way, across cluster
points have cosine similarity 0 and within cluster points can have
either 0 or non-zero cosine similarity. In other words, two points,
x1 and x2, in the same cluster can appear to be dissimilar and end
up in distant regions of the tree. The representation of each internal
node in the GRINCH tree is the sum of the vectors of its descendant
leaves. We compute the cosine similarity between two nodes v and
v’ as the cosine similarity between their aggregated vectors (we
refer to this as cosine linkage in the following sections). We compare
GRINCH, ROTATE and ONLINE.

The experimental results reveal that GRINCH achieves perfect
dendrogram purity (1.0), which is expected given GRINCH’s cor-
rectness guarantee. ROTATE achieves a dendrogram purity of 0.872
while ONLINE achieves 0.854. ROTATE and ONLINE do not construct
trees of perfect purity because of their inability to globally rearrange
a cluster hierarchy.

Uhttps://github.com/iesl/grinch

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Tree Height

Tree Height

2000 1000 G000 S0 1000 0 00 1000 1500
Nom Points Added Num Points Added

(a) ALOI (b) Synthetic

Figure 4: The height of trees built with exact and approx-
imate (capping, single elimination, and single NN search)
GRINCH are shown for a subset of ALOI and the Synthetic
data described in Section 4.1. We notice that trees are fairly
balanced and not chain structured. The height is close to (if
not less than) to log? N.

4.2 Scalability and Approximations

4.2.1 Worst-case running time analysis. We measure the worst-
case running time of the algorithm in terms of the number of
linkage function calls. The insert method consists of four com-
ponents: nearest neighbor search, rotations, grafting, and restruc-
turing. Under particular assumptions (N-point metric space with
expansion constant ¢ > 2), exact nearest neighbor search is pos-
sible in O(c!? log(N)) time per query where N is the number of
data points [3]. Otherwise, exhaustive O(N) time is required unless
approximate nearest neighbor search methods are used. We will
use O(T) to refer to the time spent on nearest neighbor search. Let
H be the height of the GRINCH tree, i.e., the length of the longest
root to leaf path. There can be at most O(H) rotations applied in a
call to insert. In the extreme, grafts could be recursively applied
moving all of the N — 1 leaves (those other than the new point’s
sibling) one at a time in separate graf'ts. Since each graft involves
a nearest neighbor search, there would be in the worst case O(NT)
computations from grafts in insert. There can be at most O(H)
swaps made in a given restruct call, and each of these swaps in-
volves considering O(H) ancestors, resulting in O(H?) time overall.
This results in O(NT + H?) time per data point. While there is
no guarantee on the height of trees built with GriNcH, we find in
practice that they are close to log? N as shown in Figure 4. If the
trees had such a height, the running time would further be reduced
to: O(TN + log*(N)) per data point.

4.2.2 Approximate GRINCH. Some of the algorithmic steps of GRINCH,
which are required to prove its correctness, are seldom invoked in
practice. For example, and perhaps expectedly, a graf't is unlikely to
succeed between two nodes close to the root of the tree. Therefore,
we introduce a handful of approximations designed to have little
effect on the quality of the clusterings constructed by GRrINCH, but
also designed to make the algorithm significantly faster in practice.
(1) Capping. The recursive subroutines rotate, graf't, and restruct,
improve performance, but are also computationally expensive
to check, and often are not applied. Moreover, we notice that
tree rearrangements that occur close to the root do not have a
significant, instantaneous effect on dendrogram purity. There-
fore, we introduce rotation, graft and restructure caps, which

https://github.com/iesl/grinch

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

prohibit rotations, grafts and restructures from occurring above
a height, h.

(2) Single Elimination Mode. The graft subroutine generally
improves GRINCH's clustering performance, and is essential in
attaining perfect purity on the synthetic dataset, but we find
that graft attempts are rejected many more times than they
are accepted. However, at times, we observe that a sequence
of recursive grafts are accepted when initiated close to the
leaves. Therefore, to limit the number of attempted grafts
while retaining these graft sequences, we introduce single
elimination mode. In this mode, the recursive grafting procedure
terminates after a graft between v and v’ fails because both
prefer their current siblings to a merge.

(3) Single Nearest Neighbor Searching. GRINCH makes heavy
use of nearest neighbor search under the linkage function f.
Rather than perform nearest neighbor search anew for each
graft, when a data point arrives, we perform a single k-NN
search (k € [25,50]) and only consider these nodes during
subsequent graf'ts (until the next data point arrives).
Navigable Small World Graphs. Instead of performing near-
est neighbor computations exactly, we can perform them ap-
proximately. To this end, we employ a navigable small world
nearest neighbor graph (NSW)-a data structure inspired by
decentralized search in small world networks [19, 20, 30]. To
find the nearest neighbor of a data point, x;, in an NSW, be-
gin at a random node, v. If the similarity between x; and v is
maximal among all neighbors of v, terminate; otherwise, move
to the neighbor of v most similar to x;. To insert a new data
point, x;, find its k nearest neighbors and add edges between
those neighbors and a new data point [26]. Thus, NSWs are
constructed online. In practice, we simultaneous construct a
hierarchical clustering and an NSW over the data points stored
in the tree’s leaves.

To measure the effects of our approximations on the speed and

quality of the resulting algorithm, we conduct the following ab-

lation. We run GRINCH on our synthetically generated dataset as
well as a random 5k subset of the ALOI [12] dataset and measure
dendrogram purity, time, and the number of calls made to rotate,
graft and restruct. We repeat the procedure multiple times, each
time adding one of the following approximations, in order: capping,
single elimination, single nearest neighbor search and approximate
nearest neighbor search. Capping is performed at height 100. We
also experiment with removal of the graft and rotate subroutines.

The result of the ablation is contained in Table 1. We observe
that, for both datasets, each of the approximations reduces the
computational cost of algorithm without effecting the resulting DP.
However, once grafts are removed, the DP drops by 3% on ALOI
and 12% on the synthetic datasets. When rotate is also removed,
DP drops by an additional 6% and 2%, respectively.

Having verified that on a subset of ALOI our approximations
improve scalability at little expense in terms of dendrogram pu-
rity, in the following experiments we report results for GRINCH in
single elimination mode and with the rotation cap set to h = 100.
We did not tune the cap parameter and used that same setting for
all datasets. We mildly tune the number of nearest neighbors con-
nected in NSW construction setting based on the dimensionality of
the data, using values of 5 for CovType, 50 for ALOI, and 100 for

—~
N
=

Monath*, Kobren™, Krishnamurthy, Glass, McCallum

the other datasets. This can be tuned based on the nearest neigh-
bor performance of the structure (independent of the clustering
algorithm).

4.3 Large Scale Clustering

We compare GRINCH with the following 4 algorithms: ONLINE -
an online hierarchical clustering algorithm that consumes one data
point at a time and places it as a sibling of its nearest neighbor;
ROTATE - an incremental algorithm that places a data point next
to its nearest neighbor and then performs rotations until Equation
1 holds; MB-HAC - the mini-batch version of HAC, which keeps a
buffer of size b, runs a single step of HAC using the data points in
the buffer and then adds the next record to the buffer; HAC - best-
first, bottom-up hierarchical agglomerative clustering and PERcH
- a state-of-the-art large scale hierarchical clustering method.

We run each algorithm on 5 large scale clustering datasets: Cov-
Type, a datset of forest covertype, ALOI [12], a 50K subset of the
Imagenet ILSVRC12 dataset [27] and the Speaker dataset [13], and
a 100K subset of ImageNet containing all 17K classes not just the
subset in ILSVRC12. Datasets have 500K, 50K, 100K, 36K, and 100K
instances, respectively. We run each HAC variant under two dif-
ferent linkage functions: average linkage and cosine linkage. To
compute the cosine similarity between two nodes, v and v’, first,
for each node, compute the sum of the vectors contained at their
descendant leaves. Then, compute the cosine similarity between
the aggregated vectors.

Results are displayed in Table 2, where we record the dendrogram
purity averaged over 5 replicates of each algorithm, where for each
replicate we randomize the arrival order of the data. The table
reveals that GRINcH—under both linkage functions—-outperforms
the corresponding versions of RoTATE and ONLINE on all datasets
except for on the CovType dataset where the methods all seem
to perform equally well. This underscores the power of the graft
subroutine. GRINCH with approximate nearest neighbor search even
outperforms PERCH, which uses exact nearest neighbor search,
on ALOL Recall that, unlike the HAC variants, PERCH employs a
specific linkage function. Seeing as the HAC variants outperform
PERCH on Speaker suggests that the ability to equip various linkage
functions can be advantageous. HAC is best on Speaker, but cannot
scale to ALOL.

4.4 Author Coreference

Bibliographic databases, like PubMed, DBLP, and Google Scholar,
contain citation records that must be attributed to the correspond-
ing authors. For some records, the attribution process is easy, but
for many others, the identities of a publication’s authors are am-
biguous. For example, DBLP contains hundreds of citations written
by different authors named “Wei Wang” that currently cannot be
disambiguated 2. Intuitively, author coreference datasets often ex-
hibit chain like structures because a single citation written by a
prolific author (perhaps in a short-lived collaboration) may only
be similar to a small number of that author’s other citations and
dissimilar from the rest.

Following previous work, we train a linkage function to predict
the likelihood that a group of citation records were all written by

2https://dblp.uni-trier.de/pers/hd/w/Wang:Wei

https://dblp.uni-trier.de/pers/hd/w/Wang:Wei

Scalable Hierarchical Clustering with Tree Grafting

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

ALOI Synthetic
Approx. DP Time(s) # Rotate # Graft # Restr. DP Time(s) # Rotate # Graft # Restr.
GrincH (No Approx). 0.533 85.371 7107 2435 1088 1.0 160.307 2558 578 203
w/ Cap (100) 0.533 48.452 6495 2157 686 0.993 164.328 2558 578 194
w/ Single Elimn 0.534 39.019 6574 1586 533 0.997 157.622 2523 526 184
w/ Single NN 0.540 22.226 6441 1516 570 0.993 83.014 2517 415 148
w/ no Restruct 0.538 14.292 6477 1634 0 0.993 82.262 2476 426 0
w/ no Graft 0.506 12.748 6747 0 0 0.872 82.055 2259 0 0
w/ no Rotate 0.442 14.793 0 0 0 0.854 80.526 0 0 0

Table 1: Ablation. Each row in the table represents GRINCH with the corresponding approximation applied in addition to
all approximations contained in previous rows. The first 4 approximations significantly decreases the computational cost of
GRINCH, but do not compromise DP. The ablation is performed for the first 5000 points of ALOI and the Synthetic datasets.

Algorithm Linkage CovTIype ILSVRC12 (50Kk) ALOI Speaker ImageNet (100k)
GRINCH Avg 0.43 = 0.00 0.557 + 0.003 0.504 + 0.002 0.480 + 0.003 0.065 + 0.000
GRINCH CS 0.43 = 0.00 0.544 + 0.005 0.499 + 0.003 0.478 + 0.003 0.062 £ 0.000
RoTATE Avg 0.43 +0.01 0.545 + 0.004 0.476 + 0.004 0.407 = 0.003 0.063 + 0.001
RoTATE CS 0.44 + 0.01 0.513 £ 0.007 0.472 + 0.003 0.406+0.003 0.062 £ 0.000
ONLINE - 0.44 = 0.01 0.527 + 0.004 0.435 + 0.004 0.317 +£0.002 0.0589

PERCH [21] - 0.45 + 0.004 0.53 + 0.003 0.44 + 0.004 0.37 £ 0.002 0.065+0.000

PERcH-BC [21] - 0.45 + 0.004 0.36 £ 0.005 0.37 £ 0.008 0.09 = 0.001 0.03 = 0.00
MB-HAC [21] Best Reported 0.44 + 0.005 0.43 = 0.005 0.30 + 0.002 0.01 = 0.002 -
HAC [21] Average - 0.54 - 0.55 -

Table 2: Dendrogram Purity results for GRINCH and baseline methods. We compare two linkage functions: approximate aver-

age linkage (Avg) and cosine similarity linkage (CS).

the same author [8, 28, 31]. We train our model, that utilizes features
such as coauthor names, title, venue, year, etc., by running HAC
and, at each step, use the model to predict the precision of merging
two groups of records as in [24].

We compare the 5 HAC variants in author coreference on two
datasets with labeled author identities: Rexa [8] and PSU-DBLP [15].
Evaluation is done using the pairwise F1-score of a predicted flat
clustering against the ground-truth clustering. To compute pair-
wise F1-score, each pair of citations that appears in both the same
ground-truth and predicted clusters is considered a true positive;
each pair of citations that belongs to different ground-truth clusters
but the same predicted cluster is considered a false positive. None
of the authors represented in the test set, have any publications in
the training set.

Figure 3 shows the precision, recall, and pairwise F1-score achieved
by each method. The results show that GRINCH outperforms the
other scalable methods on both datasets and even outperforms HAC
on DBLP. This behavior may stem from overfitting of the learned
linkage function, which is exploited by HAC; since GRINCH only
approximates HAC, it can be thought of as a form of regularization.
Again, GRINCH outperforms ONLINE and ROTATE on both datasets
underscoring the importance of the rotate and graft procedures.

4.5 Significance of Grafting

The results above indicate that GRINCH—even when employing a
number of approximations—constructs trees with higher dendro-
gram purity than other scalable methods in a comparable amount of

Rexa DBLP
Algorithm Pre Rec F Pre Rec F

GRINCH 0.808 0.883 0.844 0.809 0.620 0.701
RoTATE 0864 0.641 0.734 0.876 0.554 0.678
ONLINE 0.850 0.209 0.331 0.827 0.151 0.255
MB-HAC-Med. 0.807 0.881 0.843 0.375 0.631 0.461
MB-HAC-Sm. 0.922 0.333 0.483 0.697 0.151 0.247
HAC 0.805 0.887 0.844 0.741 0.600 0.664

Table 3: Precision, recall and F-Score of various methods on
the Rexa and DBLP datasets.

time. Interestingly, GRINCH only differs from the algorithm RoTATE
in its use of the graft (and subsequent restruct) subroutine.
To better understand the significance of grafting, we compare
GrINCH and the algorithm ROTATE on the first 5000 points of ALOL

Figure 5a shows that dendrogram purity as a function of the
number of data points inserted for both GRiNncH and ROTATE and
the first 5000 points of ALOL Echoing the results above, by 1000
points, GRINCH dominates ROTATE.

Figure 5b shows the instantaneous and cumulative change in
dendrogram purity due to grafts made by GrincH. That is, for
the ith data point, x;, we record the dendrogram purity after x;
is inserted and rotations are performed (i.e., what would be exe-
cuted by RoTATE). Then, we perform grafting (if appropriate) and
record the dendrogram purity after all recursive grafts have been
completed. The difference between the dendrogram purity after

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

(b) Instanta-

(a) Dendrogram neous/cumulative
purity per point. change in DP due to
grafts.

Figure 5: Figure 5a shows the dendrogram purity of two
trees, one built by GRiNcH and the other built by rotate,
on the first 5000 points of ALOIL The dendrogram purity of
the tree built GRINCH is greater than that of the tree built
by rotate. Figure 5b plots the instantaneous and cumulative
change in dendrogram purity due to grafts. While GRINCH
achieves 3% larger dendrogram purity than rotate

grafting and before grafting (but after rotations) is the instan-
taneous change in dendrogram purity due to grafts; the sum of
instantaneous changes is the cumulative change.

Note the y-axis of Figure 5b, which reveals that even the most
instantaneously significant graf'ts only lead to minute changes in
dendrogram purity (of about 0.001). Moreover, after 5000 points, the
cumulative change in dendrogram purity due to grafts is less than
0.005-hardly accounting for the difference in dendrogram purity
between the tree built by GRINCH and the tree built by RoTaTE
(of 0.03). We conclude from these measurements that the increase
in performance due to the graft subroutine is related to the re-
arrangement of small numbers of points. These rearrangements
do not immediately have significant impact on dendrogram purity,
but they do have significant long-term affects. To make this hy-
pothesis more concrete, consider the case in which two dissimilar
data points from the same cluster are split between two distant
regions of the tree early on in clustering. The points are never
merged (via a graf't) and so each point draws a significant portion
of the cluster’s other data points to its location in the tree. This has
dire consequences with respect to dendrogram purity. If a graft
is performed early on to correct the split, an adverse scenario like
this can be averted.

4.6 Robustness

For completeness, we perform an experiment used in previous
work to test an incremental clustering algorithm’s robustness to
data point arrival order [21]. In the experiment, a dataset is ordered
in two specific ways. Round-Robin — Randomly determine an
ordering of ground-truth clusters. Then, construct a data point
arrival order such that the ith data point is a member of cluster
i mod K, where K is the number of clusters and mod returns the
remainder when its first argument is divided by its second. Sorted
— Randomly determine an ordering of ground-truth clusters. All
points of cluster C; arrive before any point of cluster C;; arrives.
As in previous work, we perform a robustness experiments with
the ALOI dataset.

Table 4 shows that GRINCH achieves higher dendrogram purity
than both PERcH and mini-batch HAC (with 2 different batch sizes)

Monath*, Kobren™, Krishnamurthy, Glass, McCallum

on data ordered using the Round Robin ordering scheme. Under
this arrival order, MB-HAC performs poorly showing its lack of
robustness. When the data is in Sorted order-which makes for
easier clustering for MB-HAC-GRINCH outperforms PERCH and is
competitive with MB-HAC.

Method Round. Sort.
GRINCH 0.503 0.457
PERCH 0.446 0.351

MB-HAC (5K) 0.299 0.464
MB-HAC (2K) 0.171 0.451

Table 4: DP for adversarial arrival orders (ALOI).

5 RELATED WORK

The family of online and incremental clustering methods is diverse,
however all algorithms in this family optimize for specific linkage
functions. PErcH, from which the rotate procedure is inspired,
performs rearrangments to satisfy a condition similar to complete-
linkage [21]. BIRCH is another top-down hierarchical clustering
algorithm that attempts to minimize a k-center style cost at each
node in the tree [34]. BIRCH also includes a non-greedy reassign-
ment step but has been shown to produce low quality trees in
practice. Liberty et al [25] propose a flat clustering algorithm that
optimizes k-means cost. Since their algorithm runs in the online
setting, after a data point arrives and is assigned to a cluster, it may
never be reassigned. While not incremental, some work focuses on
designing highly scalable algorithms for specific linkage functions.
Particular attention is paid to single-linkage because of its connec-
tion to the minimum spanning tree problem. For example, recent
work develops massively parallel algorithms for single-linkage [2].

When clustering with linkage functions, probabilistic approaches
can provide an alternative to HAC. For example, split-merge Markov
Chain Monte Carlo (MCMC) methods perform clustering by ran-
domly splitting and merging clusters according to a proposal func-
tion [18]. An algorithm similar to split-merge MCMC has even been
used for author coreference [31]. This algorithm employs a custom
linkage function on structured records and works by maintaining a
forest—each tree corresponding to a cluster—and randomly propos-
ing mergers and splits of various branches. Unlike GriNcH, this
algorithm relies on sampling to escape local minima. As the number
of items grows, the likelihood of sampling a merge or split that will
be accepted decreases rapidly.

Our work is partially inspired by complex linkage functions
that are used for clustering. One example is Bayesian hierarchical
clustering (BHC)-a recursive, probabilistic, hierarchical model for
data [16]. Fitting BHC models is performed by running HAC with
BHC as the linkage function. Because HAC is inefficient, random-
ized approaches for fitting BHC have also been proposed, but each
of these methods still runs HAC as a subroutine on small, randomly
selected subsets of data [17]. HAC-style algorithms are also used to
do probabilistic, hierarchical community detection and alongside
learned models for entity resolution [4, 24].

Model-based separation is related to recently proposed defini-
tions of perfect hierarchical clustering structure [7, 29], in which
pairwise similarities between data points lead to a tree that can be

Scalable Hierarchical Clustering with Tree Grafting

discovered by HAC that has minimal cost. The costs used in these
works are variants of Dasgupta’s cost [9]. Perfect hierarchical clus-
tering structures are a special case of model-based separation, in
which single-, average-, or complete-linkage is used. Model-based
separation is strictly more general, allowing for linkage functions
that compute the similarity of two point sets arbitrarily, rather than
as a function of pairwise data point similarities.

6 CONCLUSION

This paper introduces GRINCH, an incremental algorithm for hi-
erarchical clustering under any linkage function. The algorithm
relies on three subroutines, rotate, graft, and restruct, that help
it to discover complex cluster structure regardless of data arrival
order. We introduce model-based separation for clustering with
linkage functions and prove that GRINCH always returns a tree with
perfect dendrogram purity when running in the separated setting.
We describe an efficient implementation of GRINCH and present
an empirical evaluation demonstrating that GRINCH is more accu-
rate than other baseline approaches and more scalable than HAC.
We believe that GRINCH is an asset for large clustering problems
in which the data points engage in complicated relationships and
clusters are best modeled by learned linkage function.

ACKNOWLEDGMENTS

This work was supported in part by the Center for Data Science
and the Center for Intelligent Information Retrieval, in part by the
National Science Foundation under Grant No. NSF-1763618, in part
by the Chan Zuckerberg Initiative under the project “Scientific
Knowledge Base Construction,” in part by International Business
Machines Corporation Cognitive Horizons Network agreement
number W1668553, and in part using high performance computing
equipment obtained under a grant from the Collaborative R&D Fund
managed by the Massachusetts Technology Collaborative. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect those of the sponsor.

REFERENCES

[1] M.-F. Balcan, A. Blum, and S. Vempala. 2008. A discriminative framework for
clustering via similarity functions. STOC.

[2] M. Bateni, S. Behnezhad, M. Derakhshan, M. Hajiaghayi, R. Kiveris, S. Lattanzi,
and V. Mirrokni. 2017. Affinity Clustering: Hierarchical Clustering at Scale.
NeurlPS.

[3] A.Beygelzimer, S. Kakade, and J. Langford. 2006. Cover trees for nearest neighbor.
ICML.

[4] C.Blundell and Y. W. Teh. 2013. Bayesian hierarchical community discovery.
NeurlIPS.

[5] C.Blundell, Y. W. Teh, and K. A Heller. 2010. Bayesian Rose Trees. UAL

[6] K.Clark and C. D. Manning. 2016. Improving Coreference Resolution by Learning
Entity-Level Distributed Representations. ACL.

[7] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu. 2018. Hierar-
chical clustering: Objective functions and algorithms. SODA.

[8] A. Culotta, P. Kanani, R. Hall, M. Wick, and A. McCallum. 2007. Author dis-
ambiguation using error-driven machine learning with a ranking loss function.
Workshop on Information Integration on the Web.

[9] S.Dasgupta. 2016. A cost function for similarity-based hierarchical clustering.
STOC.

[10] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. 1998. Cluster analysis
and display of genome-wide expression patterns. PNAS.

[11] M. Ester, H. Kriegel, J. Sander, X. Xu, et al. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD.

[12] J. Geusebroek, G. J. Burghouts, and A. W.M. Smeulders. 2005. The Amsterdam
library of object images. IJCV.

(13]

—_

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

C.S. Greenberg, D. Bansé, G. R. Doddington, D. Garcia-Romero, J. J. Godftrey, T.
Kinnunen, A. F. Martin, A. McCree, M. Przybocki, and D. A. Reynolds. 2014. The
NIST 2014 speaker recognition i-vector machine learning challenge. Odyssey.
A. Haghighi and D. Klein. 2010. Coreference resolution in a modular, entity-
centered model. NAACL-HLT.

H. Han, H. Zha, and C. L. Giles. 2005. Name disambiguation in author citations
using a k-way spectral clustering method. JCDL.

K. Heller and Z. Ghahramani. 2005. Bayesian hierarchical clustering. ICML.

K. Heller and Z. Ghahramani. 2005. Randomized algorithms for fast Bayesian
hierarchical clustering.

S.Jain and R. M. Neal. 2004. A split-merge Markov chain Monte Carlo procedure
for the Dirichlet process mixture model. Journal of computational and Graphical
Statistics.

J. Kleinberg. 2000. The small-world phenomenon: An algorithmic perspective.
STOC.

J. Kleinberg. 2006. Complex networks and decentralized search algorithms. ICM.
A. Kobren, N. Monath, A. Krishnamurthy, and A. McCallum. 2017. A Hierarchical
Algorithm for Extreme Clustering. KDD.

P. Kohli, P. H. S. Torr, and L. Ladicky. 2009. Robust higher order potentials for
enforcing label consistency. IJCV.

A. Krishnamurthy, S. Balakrishnan, M. Xu, and A. Singh. 2012. Efficient active
algorithms for hierarchical clustering. ICML.

H. Lee, M. Recasens, A. Chang, M. Surdeanu, and D. Jurafsky. 2012. Joint entity
and event coreference resolution across documents. EMNLP/CoNLL.

E. Liberty, R. Sriharsha, and M. Sviridenko. 2016. ALENEX. Workshop on Algo-
rithm Engineering and Experiments.

Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. 2014. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information
Systems.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al. 2015. Imagenet large scale visual recognition
challenge. IFCV.

S. Singh, A. Subramanya, F. Pereira, and A. McCallum. 2011. Large-scale cross-
document coreference using distributed inference and hierarchical models. ACL.
D. Wang and Y. Wang. 2018. An Improved Cost Function for Hierarchical Cluster
Trees. arXiv preprint.

D.J. Watts and S. H. Strogatz. 1998. Collective dynamics of ‘small-world’networks.
Nature.

M. Wick, S. Singh, and A. McCallum. 2012. A discriminative hierarchical model
for fast coreference at large scale. ACL.

S. Wiseman, A. M. Rush, and S. M Shieber. 2016. Learning global features for
coreference resolution. NAACL-HLT.

L. Zhang, M. Song, Z. Liu, X. Liu, J. Bu, and C. Chen. 2013. Probabilistic graphlet
cut: Exploiting spatial structure cue for weakly supervised image segmentation.
CVPR.

T. Zhang, R. Ramakrishnan, and M. Livny. 1996. BIRCH: an efficient data cluster-
ing method for very large databases. SIGMOD.

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

A APPENDIX

A.1 Proof of Theorem 1
Define the following properties:

DEFINITION 3 (STRONG CONNECTIVITY). Let G = (X,E) be a
graph and let T [v] be a tree rooted at a node v with leaves, 1vs(v) =
X’ € X.wv is connected if X’ is a connected subgraph of G. v is
strongly connected if every descendant of v is connected. v is a
maximal strongly connected node if v is strongly connected and
par(v) is not strongly connected. Finally, the tree T satisfies strong
connectivity if all connected nodes in T are strongly connected.

DEFINITION 4 (COMPLETENESS). Let G = (X, E) be a graph and
let T [v] be a tree rooted at a node v with leaves, 1lvs(v) = X’ C X.
Then v is complete if X’ is a connected component in G. The tree T
satisfies completeness if the set of connected components of G are
(the leaves of) a tree consistent partition of T .

According to Theorem 1, GRINCH always constructs a tree that
satisfies completeness. To prove the theorem, we will show that
after the addition of each new data point, the resulting tree sat-
isfies strong connectivity and completeness. We analyze various
subroutines of GRINCH and demonstrate how they preserve strong
connectivity, completeness or both. In the proceeding lemmas and
proofs, let G = (X, E) be a graph and let f be a model that separates
G.

LEMMA 1 (RotaTioN LEMMA). Let 7 be a tree with lvs(7) = X,
and let x be a new data point to be added to T . Then all nodes that
were strongly connected before the addition of x are strongly connected
after the addition of x, i.e., rotations preserve strong connectivity.

Note: while rotations preserve strong connectivity, they do not
guarantee completeness. Therefore rotations are insufficient for
proving Theorem 1.

ProOF. Let v be a maximal strongly connected node in 7~ and
assume that x is added as a leaf of v (rotations have not yet been
applied). Consider two cases: (1) there exists an edge between x and
some leaf in 1vs(v), and (2) there does not exist an edge between x
and any leaf in 1vs(v).

Case 1: Let L C 1lvs(v) be the set of v’s descendant leaves to
which x is connected. Then x is initially added as a sibling of its
nearest neighbor leaf, x’, and x’ € L because f separates G. par(x)
is strongly connected because there exists an edge between x and
x'.

The addition of x does not disconnect v or any strongly con-
nected descendant of v. To see why, consider the siblings of the
ancestors of x” before the addition of x. Any such sibling that was
connected to x’, is, after the addition of x, also connected to par(x)
and thus remains strongly connected. Nodes that are not ances-
tors of x cannot be disconnected and thus, before rotations, strong
connectivity is preserved.

Now consider subsequent rotations. By the logic above, x and
its sibling, x” = s(x), are connected. If a rotation succeeds then
x and aunt(x) are swapped. So long as aunt(x) and s(x) form a
connected subgraph in G, i.e., ¢(s(x), aunt(x)) = ¢(x,s(x)) = 1,
then the rotation preserves strong connectivity.

Monath*, Kobren™, Krishnamurthy, Glass, McCallum

The only way for a rotation to disrupt strong connectivity is if
x and aunt(x) are swapped, and s(x) and aunt(x) do not form
a connected subgraph in G, i.e., ¢(x,s(x)) > ¢(s(x),aunt(x)).
But, because f separates G, ¢(x,s(x)) > ¢(s(x),aunt(x)) =
f(x,s(x)) > f(s(x),aunt(x)) and so, in this case, a rotation will
not be performed and the procedure terminates.

Case 2: If there does not exist an edge between x and any leaf in
1vs(v), then after x is made a sibling of some leaf x”” € 1vs(v), v
is no longer strongly connected and so strong connectivity has not
been preserved. Since v was strongly connected before the addition
of x, there exists an edge between 1vs(s(x)) and lvs(aunt(x)).
Since f separates G, f(x, s(x)) < f(s(x),aunt(x)), which triggers
the rotate subroutine. Rotations proceed with respect to x at least
until x is no longer a descendant of v, and thus, v remains strongly
connected. Strongly connected nodes that are not descendants of
v are unaffected by the rotations and so strong connectivity is
preserved. O

LEMMA 2 (GRAFTING LEMMA 1). Let T satisfy strong connectiv-
ity and completeness. Let v be a node in T such that v is either a
maximal strongly connected node or not strongly connected. Then a
graft operation initiated from v preserves strong connectivity and
completeness.

PRrOOF. Let 7 be strongly connected and complete. Since 1vs(v)
is not a strict subset of any connected component in G, there does
not exist a non-empty subset s in 1vs(7)\1vs(v) such that s U
1vs(v) is a connected subgraph in G. For any node v’ that is strongly
connected but not maximal, there must be an edge connecting
lvs(v’) and 1vs(s(v’)) and s(v’) must be strongly connected, so
f(@,s(@’)) > f(v,v’). Therefore, an attempt to make any such v’
the sibling of v fails.

If v/ is a maximal strongly connected node, an attempt to make
v"’ the sibling of v may succeed but this does not disconnect any
strongly connected subtrees in 7. The same is true if v’ is not
strongly connected. O

LEMMA 3 (GRAFTING LEMMA 2). Let 7T be a tree such that1vs(7") =
X and let T satisfy strong connectivity. Let v be strongly connected
and let 1vs(v) be a strict subset of the vertices in some connected
component, C, in G. Then, a graft initiated from v returns a node v’
such that v’ is strongly connected and 1vs(v) C lvs(v”).

ProOOF. Since 1vs(v) are a strict subset of the vertices in the
connected component, C, there exists a non-empty subset s in
1vs(77)\1lvs(v) such that s U 1vs(v) constitute the vertices in C.
Let ¢ maximize f(v,{) over all 1vs(7") \ 1vs(v). By the fact that
lvs(v) is a strict subset of a connected component, there must exist
an edge between 1vs(v) and €. Note that ¢ is the leaf found when
the constrained nearest neighbor search from v is initiated in the
first line of graf't (Algorithm 1).

If f(v,€) < f(¢£,s()), then there must exist an edge between
¢ and a node in lvs(s(f)) and so par({) is strongly connected.
If f(v,€) < f(v,s(v)), then there must exist an edge between a
node in 1vs(v) and a node in 1vs(s(v)) and so par(v) is strongly
connected. In both of these cases, we do not merge v with ¢, but
instead attempt another merge between two strongly connected
nodes, either: par(v) with ¢, v with par(£), or par(v) with par(¢).

Scalable Hierarchical Clustering with Tree Grafting

(a) A graph G = (X, E).

(b) Strongly connected & complete.

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

(c) Complete only.

Figure 6: A graph G with 3 connected components (Figure 6a). In Figure 6b and Figure 6¢, black-bordered nodes are strongly
connected, thick-black-border nodes are maximal, gray bordered nodes are connected (but not strongly) and nodes with dashed
borders are disconnected. The tree in Figure 6b satisfies strong connectivity and completeness. The tree in Figure 6¢ does not

satisfy strong connectivity because v; is disconnected.

As before, the two nodes we are attempting to merge also have an
edge between them.

Let v1 and vy be two nodes involved in a merge and let v; €
ancs(v) and vy € ancs(f). If at some point

f(v1,v2) > max[f(v1, s(v1)), f(v2,s(v2))]

then vy is made a sibling of v; and the new parent of v; is returned.
Since v; and vy are strongly connected and there exists an edge
between 1lvs(v1) and lvs(vy), par(vi), which is created by the
merge, is strongly connected, and the lemma holds.

If a merge is never performed, the recursion stops when v; =
vg = lca(v, £). In this case, the 1ca, which we return, is already
strongly connected and, by definition, its leaves are a superset of
lvs(v). o

LEMMA 4 (RESTRUCTURING LEMMA). Letv € 7 be strongly con-
nected. Let a € ancs(v) be the deepest connected ancestor of v such
that: a is not strongly connected, and all siblings of the nodes on the
path from v to a are strongly connected. Then restruct on inputs v
and a restructures T [a] so that a satisfies strong connectivity.

ProoF. Let z be the deepest ancestor of v that is strongly con-
nected with parent par(z) that is disconnected. Since par(z) is
disconnected (but by assumption both z and s(z) are connected),
there are no edges between 1vs(z) and 1vs(s(z)).

Let a’ be a child of a and without loss of generality, a’ ¢ ancs(z).
Since a is the deepest connected ancestor of z, there must exist an
edge between 1vs(z) and lvs(a’).

When computing the argmax of f(z,) in the restruct method,
anode, 2/, that is connected to z will be returned and then swapped
with s(z). The new parent of z is strongly connected because z and
z" are both strongly connected and there exists an edge between
1vs(z) and 1vs(z’). Any subsequent swap attempted from a dis-
connected node with a connected ancestor succeeds and produces
a new parent that is strongly connected.

Since a is connected and a swap among the descendants of a
do not change 1vs(a), swapping preserves the connectedness of
a. Therefore, swaps proceed until the node a is reached at which
point a must be strongly connected.

Note that a swap attempt between a strongly connected node
and a node to which it is not connected fails, because f separates
G. A swap attempt between a connected node and a node to which
it is connected succeeds and produces a new parent that is strongly
connected. O

We now prove Theorem 1.

Proor. We show by induction that if GRINCH is used to build a
tree, 7, over vertices, X, then the connected components of G are
a tree consistent partition in 7. Furthermore, 7 satisfies strong
connectivity.

Clearly, the theorem holds for the base case: a tree with a single
node.

Let X = 1vs(7"). Assume the inductive hypothesis: that 7 sat-
isfies completeness and strong connectivity. Now vertex x arrives.

If there does not exist an edge between x and any other vertex
in X, then after rotations, 7’ satisfies completeness. Since Ya €
ancs(x), lvs(a) is a not a strict subset of any connected component
in G, by Grafting Lemma 1, subsequent graft attempts from the
ancestors of x preserve strong connectivity and completeness and
so the theorem holds.

Assume that x is connected to some set of leaves s C 1vs(7").
Since 7 satisfies strong connectivity, by the Rotation Lemma, after
x is added and rotations terminate, 7 satisfies strong connectivity.
Note that 7" may not satisfy completeness if, before the arrival of
x, the leaves in s formed at least 2 distinct connected subgraphs in
G.

After rotations, a series of graft attempts are performed. Con-
sider the first graft initiated at par(x). By Grafting Lemma 2, the
attempt returns a strongly connected ancestor of x whose leaves
are a strict superset of 1vs(x). If a merge is performed that moves
a node v and makes it a sibling of v’, then strong connectivity
may be violated. However, notice that the only nodes that can be
disconnected by such a merge are the node that, prior to the merge,
were ancestors of v and also descendants of a = 1ca(v, v’).

After the merge, a is restructured, and by the Restructuring
Lemma, the resulting tree satisfies strong connectivity. Subsequent
calls to graf't proceed from a. Notice that each invocation of graft
returns a new strongly connected node with a strictly larger number
of descendant leaves, until the resulting tree satisfies completeness.
Therefore, successive grafting followed by restructuring eventually
returns a node whose leaves are a connected component of G. Ulti-
mately, after rotations and grafting, 7/ must satisfy completeness
and strong connectivity.

O

	Abstract
	1 Introduction
	2 Linkage Functions for Clustering
	2.1 Model-based Separation
	2.2 Cluster Trees

	3 Rotations, Grafting and Grinch
	3.1 Online HAC and Rotations
	3.2 Subtree Grafting
	3.3 Tree Restructuring
	3.4 Grinch

	4 Experiments
	4.1 Synthetic Data Experiment
	4.2 Scalability and Approximations
	4.3 Large Scale Clustering
	4.4 Author Coreference
	4.5 Significance of Grafting
	4.6 Robustness

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Proof of Theorem 1

