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Optimization of Smooth Functions With Noisy

Observations: Local Minimax Rates
Yining Wang , Sivaraman Balakrishnan, and Aarti Singh

Abstract— We consider the problem of global optimization of1

an unknown non-convex smooth function with noisy zeroth-order2

feedback. We propose a local minimax framework to study3

the fundamental difficulty of optimizing smooth functions with4

adaptive function evaluations. We show that for functions with5

fast growth around their global minima, carefully designed6

optimization algorithms can identify a near global minimizer7

with many fewer queries than worst-case global minimax theory8

predicts. For the special case of strongly convex and smooth func-9

tions, our implied convergence rates match the ones developed for10

zeroth-order convex optimization problems. On the other hand,11

we show that in the worst case no algorithm can converge faster12

than the minimax rate of estimating an unknown function in the13

ℓ -norm. Finally, we show that non-adaptive algorithms, though14

optimal in a global minimax sense, do not attain the optimal local15

minimax rate.16

Index Terms— Optimization of smooth functions, nonparamet-17

ric statistics, local minimax analysis.18

I. INTRODUCTION19

GLOBAL function optimization with stochastic (zeroth-20

order) query oracles is an important problem in opti-21

mization, machine learning and statistics. To optimize an22

unknown bounded function f : X R defined on a known23

compact d-dimensional domain X R
d , the data analyst24

makes n active queries x1, . . . , xn X and observes25

yt f xt wt , wt
i.i.d .

N 0, 1 ,
1 t 1, . . . , n. (1)26

The queries x1, . . . , xt are active in the sense that the selection27

of xt can depend on the previous queries and their responses28

x1, y1, . . . , xt 1, yt 1. After n queries, an estimate xn X is29

produced that approximately minimizes the unknown function30

f . Such “active query” models are relevant in a broad range31

of (noisy) global optimization applications, for instance in32

hyper-parameter tuning of machine learning algorithms [1] and33
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1The exact Gaussianity of the independent noise variables εt is not crucial

and our results can be easily generalized to sub-Gaussian noise.

sequential design in material synthesis experiments where the 34

goal is to maximize the strength of the synthesized material 35

as a function of experimental settings [2], [3]. We refer the 36

readers to Section II-A for a rigorous formulation of the active 37

query model and contrast it with the classical passive query 38

model. 39

The error of the estimate xn is measured by the difference 40

of f xn and the global minimum of f : 41

L xn; f : f xn f where f : inf
x X

f x . (2) 42

To simplify our presentation, throughout the paper we take the 43

domain X to be the d-dimensional unit cube 0, 1 d , while our 44

results can be easily generalized to other compact domains 45

satisfying minimal regularity conditions. 46

When f belongs to a smoothness class, say the Hölder 47

class with exponent α, a straightforward global optimization 48

method is to first sample n points uniformly at random 49

from X and then construct nonparametric estimates fn of 50

f using nonparametric regression methods such as kernel 51

smoothing or local polynomial regression [4], [5]. Classical 52

analysis shows that the sup-norm reconstruction error fn 53

f supx X fn x f x can be upper bounded by 54

OP n α 2α d 2. This global reconstruction guarantee then 55

implies an OP n α 2α d upper bound on L xn; f by con- 56

sidering an estimate xn X for which fn xn infx X fn x 57

(such an xn exists because X is closed and bounded). Formally, 58

we have the following proposition (proved in the Appendix) 59

that converts a global reconstruction guarantee into an upper 60

bound on the optimization error: 61

Proposition 1. Suppose fn xn infx X fn x . Then 62

L xn; f 2 fn f . 63

Typically, fundamental limits on the optimal optimization 64

error are understood through the lens of minimax analysis 65

where the object of study is the (global) minimax risk: 66

inf
xn

sup
f F

E f L xn, f , (3) 67

where F is a certain class of smooth functions such as 68

the Hölder class. Although optimization appears to be easier 69

than global reconstruction, we show in this paper that the 70

n α 2α d rate is not improvable in the global minimax sense 71

in over Hölder classes. Such a surprising phenomenon was also 72

noted in previous works [6]–[8] for related problems. On the 73

2In the O or OP notation we suppress constant factors and terms that
depend poly-logarithmically on n.
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other hand, extensive empirical evidence suggests that non-74

uniform/active allocations of query points can significantly75

reduce optimization error in practical global optimization of76

smooth, non-convex functions [1]. This raises the interesting77

question of understanding, from a theoretical perspective,78

the conditions under which the global optimization of smooth79

functions is easier than their reconstruction, and the power80

of active/feedback-driven queries that play important roles in81

global optimization.82

In this paper, we propose a theoretical framework that83

partially answers the above questions. In contrast to clas-84

sical global minimax analysis of nonparametric estimation85

problems, we adopt a local analysis which characterizes the86

optimal convergence rate of optimization error when the under-87

lying function f is within a neighborhood of a “reference”88

function f0. (See Section II-B for the rigorous local minimax89

formulation considered in this paper.) Our main results are90

to characterize the local convergence rates Rn f0 for a91

wide range of reference functions f0 F . Concretely, our92

contributions can be summarized as follows:93

1) We design an iterative (active) algorithm whose opti-94

mization error L xn; f converges at a rate of Rn f095

depending on the reference function f0. When the96

level-sets of f0 satisfy certain regularity and polynomial97

growth conditions, the local rate Rn f0 can be upper98

bounded by Rn f0 O n α 2α d αβ , where β99

0, d α is a parameter depending on f0 that character-100

izes the volume growth of the level-sets of the reference101

function f0. (See assumption (A2), Proposition 2 and102

Theorem 1 for details). The rate matches the global103

minimax convergence rate n α 2α d for worst-case f0104

where β 0, but can be much faster when β 0.105

We emphasize that our algorithm has no knowledge106

of the reference function f0 and achieves this rate107

adaptively.108

2) We prove local minimax lower bounds that match the109

n α 2α d αβ upper bound, up to logarithmic factors110

in n. More specifically, we show that even if f0 is111

known, no (active) algorithm can estimate f in close112

neighborhoods of f0 at a rate faster than n α 2α d αβ .113

We further show that, if active queries are not available114

and queries x1, . . . , xn are i.i.d. uniformly sampled from115

X , then the n α 2α d global minimax rate also applies116

locally regardless of how large β is. Thus, there is an117

explicit gap between local minimax rates in the active118

and uniform query models when β is large.119

3) In the special case when f is convex, the global opti-120

mization problem is usually referred to as zeroth-order121

convex optimization and this problem has been widely122

studied [9]–[14]. Our results imply that, when f0 is123

strongly convex and smooth, the local minimax rate124

Rn f0 is on the order of O n 1 2 , which matches125

the convergence rates in [11]. Additionally, our negative126

results (Theorem 2) indicate that the n 1 2 rate cannot127

be achieved if f0 is merely convex, which seems to128

contradict n 1 2 results in [13], [14] that do not require129

strong convexity of f . However, it should be noted that130

mere convexity of f0 does not imply convexity of f in131

a neighborhood of f0 (e.g., f f0 ε). Our results 132

show significant differences in the intrinsic difficulty 133

of zeroth-order optimization of convex and near-convex 134

functions. 135

A. Related Work 136

Global optimization, known variously as black-box opti- 137

mization, Bayesian optimization and the continuum-armed 138

bandit, has a long history in the optimization research com- 139

munity [15], [16] and has also received a significant amount of 140

recent interest in statistics and machine learning [1], [6], [8], 141

[17]–[19]. Many previous works [17], [20] have derived rates 142

for non-convex smooth payoffs in “continuum-armed” bandit 143

problems. 144

The papers [21], [22] are closely related to our work. They 145

studied the related problem of estimating the set of all optima 146

of a smooth function in the Hausdorff distance. For Hölder 147

smooth functions with polynomial growth, the paper [21] 148

derives an n 1 2α d αβ minimax rate for α 1 (subse- 149

quently improved to include α 1 in [23]). This result is 150

similar to our Propositions 2 and 3. The papers [21], [22] 151

also discussed adaptivity to unknown smoothness parameters. 152

We however remark on several differences between our work 153

and the papers [21], [22]. First, in [21], [22] only functions 154

with polynomial growth are considered, while in our Theo- 155

rems 1 and 2 functionals εU
n f0 and εL

n f0 are proposed 156

for general reference functions f0 satisfying mild regularity 157

conditions, which include functions with polynomial growth 158

as special cases. In addition, [21] considers the harder problem 159

of estimating maxima sets in Hausdorff distance, as opposed 160

to the problem of producing a single approximately optimal 161

solution xT . As a result, the minimax lower bounds in [21] 162

do not apply to this latter setting. An algorithm, without 163

distinguishing between two functions with different optima 164

sets, can nevertheless produce a good approximate optimizer 165

as long as the two functions under consideration have overlap- 166

ping optima sets. New constructions and information-theoretic 167

techniques are therefore required to prove lower bounds under 168

the weaker (one-point) approximate optimization framework. 169

Finally, we prove minimax lower bounds when only uniform 170

query points are available and demonstrate a significant gap 171

between algorithms having access to uniformly sampled or 172

adaptively chosen data points. 173

The papers [18], [19] imposed additional assumptions on the 174

level-sets of the underlying function to obtain an improved 175

convergence rate. The level-set assumptions considered in 176

the mentioned references are rather restrictive and essentially 177

require the underlying function to be uni-modal, while our 178

assumptions are much more flexible and apply to multi-modal 179

functions as well. In addition, [18], [19] considered a noise- 180

less setting in which exact function evaluations f xt can 181

be obtained, while our paper studies the noise corrupted 182

model in (1) for which vastly different convergence rates are 183

derived. Finally, no matching lower bounds were proved in the 184

papers [18], [19]. 185

The (stochastic) global optimization problem is similar to 186

mode estimation of either densities or regression functions, 187
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which has a rich literature [24]–[26]. An important difference188

between statistical mode estimation and global optimization is189

the way sample/query points x1, . . . , xn X are distributed:190

in mode estimation it is customary to assume the samples191

are independently and identically distributed, while in global192

optimization sequential designs of samples/queries are typical.193

Furthermore, to estimate/locate the mode of an unknown194

density or regression function, such a mode has to be well-195

defined; on the other hand, producing an estimate xn with196

small L xn, f is easier and results in weaker conditions197

imposed on the underlying function.198

Methodology-wise, our proposed algorithm is conceptually199

similar to the abstract Pure Adaptive Search (PAS) frame-200

work proposed and analyzed in [27]. The iterative procedure201

also resembles disagreement-based active learning meth-202

ods [28]–[30] and the “successive rejection” algorithm in ban-203

dit problems [31]. The intermediate steps of candidate point204

elimination can also be viewed as level-set estimation prob-205

lems [32]–[34] or cluster-tree estimation problems [35], [36]206

with active queries.207

Another line of research has focused on first-order opti-208

mization of quasi-convex or non-convex functions [37]–[42],209

in which exact or unbiased evaluations of function gradients210

are available at query points x X . The paper [42] considered211

a Cheeger’s constant restriction on level-sets which is similar212

to our level-set regularity assumptions (A2 and A2’). The213

papers [43], [44] studied local minimax rates for the first-order214

optimization of convex functions. First-order optimization215

differs significantly from our setting because unbiased gradient216

estimation is generally impossible in the model of (1). Fur-217

thermore, most works on (first-order) non-convex optimization218

focus on obtaining stationary points or local minima, while we219

consider the problem of finding a (near) global minima.220

B. Comparison with the HOO Algorithm221

The HOO algorithm [17], as well as similar algorithms222

such as Algorithm 2 in [45] and the POO algorithm in [22],223

are theoretically well-studied methods for global optimization.224

Below we summarize the differences of our results and the225

ones from these works.226

(a) Weaker Smoothness Conditions I: In Algorithm 1,227

we use local polynomial estimation as a sub-routine228

to obtain local estimates of the objective function229

f . Compared to the sample average approach in230

HOO (e.g., Algorithm 2 in [45]), local polynomial231

estimates have the advantage of being unbiased for232

the estimation of low-degree polynomials. This trans-233

lates to the improved (A1) Hölder-continuity condi-234

tion that only restricts the α -th order derivatives235

of objective functions. More specifically, the actual236

function values of f x and f x for x, x close237

to each other can be very different, as long as such238

differences can be perfectly modeled by low-degree239

polynomials. This is in contrast to the smoothness240

conditions imposed in [17], [45] which essentially241

require f x to be close to f x for x close to x the242

optima of f .243

(b) Weaker Smoothness Conditions II: Our results in 244

Section IV-C hold on functions that are only assumed 245

to be smooth in regions close to its global minimum, in 246

contrast to Definition 1 in [45] and many other existing 247

works that place smoothness assumptions on the entire 248

domain of the objective function f . 249

(c) Spatially Restricted Queries: Our proposed algorithm is 250

“grid” based, and can be run on any sufficiently dense 251

finite grid Gn in X and does not need to have the 252

capacity to query arbitrary points in X . As a result, 253

our algorithm can be run in experimental settings where 254

queries are restricted to belong to a large pool of a-priori 255

chosen points. 256

(d) Results for any Smooth Function: Our algorithm and 257

lower bounds yield essentially tight results for the 258

complexity of optimization of arbitrary smooth func- 259

tions. While these rates are most interpretable under 260

the level-set growth conditions (also studied in [45]) our 261

results also yield nearly matching guarantees for other 262

(arbitrary, smooth) functions f0. 263

II. BACKGROUND AND NOTATION 264

We first review standard asymptotic notation that will 265

be used throughout this paper. For two sequences an n 1 266

and bn n 1, we write an O bn or an bn if 267

lim supn an bn , or equivalently bn $ an or 268

bn an . Denote an % bn or an bn if both an bn 269

and an bn hold. We also write an o bn or equivalently 270

bn ω an if limn an bn 0. For two sequences 271

of random variables An n 1 and Bn n 1, denote An 272

OP Bn if for every ε 0, there exists C 0 such that 273

lim supn Pr An C Bn ε. For r 0, 1 p 274

and x R
d , we denote by B

p
r x : z R

d : z x p r 275

the d-dimensional ℓp-ball of radius r centered at x , where 276

the vector ℓp norm is defined as x p :
d
j 1 x j

p 1 p
277

for 1 p and x : max1 j d x j . For any subset 278

S R
d we denote by B

p
r x; S the set B

p
r x S. 279

A. Passive and Active Query Models 280

Let U be a known random quantity defined on a probability 281

space U . The following definitions characterize all passive and 282

active optimization algorithms: 283

Definition 1 (The passive query model). Let x1, . . . , xn be 284

i.i.d. points uniformly sampled on X and y1, . . . , yn be obser- 285

vations from the model (1). A passive optimization algorithm 286

A with n queries is parameterized by a mapping φn : 287

x1, y1, . . . , xn, yn, U xn that maps the i.i.d. observations 288

xi , yi
n
i 1 to an estimated optimum xn X , potentially 289

randomized by U. 290

Definition 2 (The active query model). An active opti- 291

mization algorithm can be parameterized by mappings 292

χ1, . . . ,χn,φn , where for t 1, . . . , n, 293

χt : x1, y1, . . . , xt 1, yt 1, U xt 294
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produces a query point xt X based on previous observations295

xi , ti
t 1
i 1, and296

φn : x1, y1, . . . , xn, yn, U xn297

produces the final estimate. All mappings χ1, . . . ,χn,φn can298

be randomized by U.299

B. Local Minimax Rates300

We use a classical local minimax analysis [46] to understand301

the fundamental information-theoretic limits of noisy global302

optimization of smooth functions. On the upper bound side,303

we seek (active) estimators xn such that304

sup
f0 %

sup
f % , f f0 εn f0

Pr
f

L xn; f C1 Rn f0 1 4,305

(4)306

where C1 0 is a positive constant. Here f0 % is307

referred to as the reference function, and f % is the true308

underlying function to be optimized, which is assumed to be309

“near” f0 (in the ℓ norm). The minimax convergence rate310

of L xn; f is then characterized locally by Rn f0 which311

depends on the reference function f0. The constant of 1 4312

is chosen arbitrarily and any small constant leads to similar313

conclusions. To establish negative results (i.e., local minimax314

lower bounds), in contrast to the upper bound formulation,315

we assume the potential active optimization estimator xn has316

perfect knowledge about the reference function f0 %.317

We then prove local minimax lower bounds of the form318

inf
xn

sup
f % , f f0 εn f0

Pr
f

L xn; f C2 Rn f0 1 3,319

(5)320

where C2 0 is another positive constant and εn f0 , Rn f0321

are desired local convergence rates for functions near the322

reference f0.323

Although in some sense classical, the local minimax defin-324

ition we propose warrants further discussion:325

1) Roles of % and % : The reference function f0 and the326

true functions f are assumed to belong to different but327

closely related function classes % and % . In particular,328

in our paper % % , meaning that less restrictive329

assumptions are imposed on the true underlying function330

f compared to those imposed on the reference function331

f0 on which Rn and εn are based.332

2) Upper Bounds: It is worth emphasizing that the333

estimator xn has no knowledge of the reference function334

f0. From the perspective of upper bounds, we can335

consider the simpler task of producing f0-dependent336

bounds (eliminating the second supremum) to instead337

study the (already interesting) quantity:338

sup
f0 %

Pr
f0

L xn; f0 C1 Rn f0 1 4.339

As indicated above we maintain the double-supremum340

in the definition because fewer assumptions are imposed341

directly on the true underlying function f , and further342

because it allows to more directly compare our upper343

and lower bounds.344

3) Lower Bounds and the choice of the “localization 345

radius” εn f0 : Our lower bounds allow the estima- 346

tor knowledge of the reference function (this makes 347

establishing the lower bound more challenging). The 348

lower bound in (5) implies that no estimator xn can 349

effectively optimize a function f close to f0 beyond the 350

convergence rate of Rn f0 , even if perfect knowledge 351

of the reference function f0 is available a priori. The 352

εn f0 parameter that decides the “range” in which 353

local minimax rates apply is taken to be on the same 354

order as the actual local rate Rn f0 in this paper. 355

This is (up to constants) the smallest radius for which 356

we can hope to obtain non-trivial lower-bounds: if we 357

consider a much smaller radius than Rn f0 then the 358

trivial estimator which outputs the minimizer of the ref- 359

erence function would achieve a faster rate than Rn f0 . 360

On the other hand selecting the smallest possible radius 361

makes establishing the lower bound most challenging 362

but provides a refined picture of the complexity of 363

zeroth-order optimization. 364

We remark that our primary motivation for the 365

local-minimax analysis stems from the fact that for natural 366

function classes the global-minimax rate for the optimization 367

complexity is excessively pessimistic, while the local minimax 368

analysis provides a more refined picture. In machine learning 369

applications, there are several cases where the population risk 370

is well-behaved (smooth, potentially non-convex) but we are 371

only able to access/query the empirical risk which we want to 372

minimize. Using standard concentration bounds the empirical 373

risk and population risk are close, and the resulting problem 374

is then to minimize the approximate-smooth empirical risk 375

(see for instance [42], [47] for a more detailed discussion). 376

III. MAIN RESULTS 377

With this background in place we now turn our attention 378

to our main results. We begin by collecting our assumptions 379

about the true underlying function and the reference function 380

in Section III-A. We state and discuss the consequences of 381

our upper and lower bounds in Sections III-B and III-C 382

respectively. We defer most technical proofs to Section V and 383

turn our attention to our optimization algorithm in Section IV. 384

A. Assumptions 385

We first state and motivate assumptions that will be used. 386

The first assumption states that f is locally Hölder smooth on 387

its level-sets. 388

(A1) There exist constants κ,α, M, ζ 0 such 389

that f restricted to X f,κ,ζ : x X : 390

infz X , z x ζ f z f κ belongs to the 391

Hölder class -α M , meaning that f is k-times 392

differentiable on X f,κ,ζ and furthermore for any 393

x, x X f,κ,ζ
3, 394

α1 ... αd k

f α,k x f α,k x

x x α k
M. (6) 395

3We use the ℓ -norm for convenience and it can be replaced by any
equivalent vector norm.
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Here k α is the largest integer lower bounding α396

and f α, j x : j f x x
α1
1 . . . x

αd

d .397

We use -α
κ M to denote the class of all functions satisfy-398

ing (A1). We remark that (A1) is weaker than the usual Hölder399

assumption in two ways. First, (6) only imposes stability400

conditions on the α -th order derivatives of the function f , in401

contrast to conditions involving all orders of derivatives in pre-402

vious works [17], [45]. Second, (A1) only imposes the Hölder403

smoothness assumption on certain regions of X , because404

regions with function values larger than f κ can be easily405

detected and removed by a pre-processing step, highlighting406

an important difference between optimization and ℓ -norm407

estimation. We give further details of the pre-processing step408

in Section IV-C.409

Our next assumption concerns the “regularity” of the level-410

sets of the “reference” function f0. Define L f0 ε : x411

X : f0 x f0 ε as the ε-level-set of f0, and412

µ f0 ε : λ L f0 ε as the Lebesgue measure of L f0 ε ,413

which we refer to as the distribution function. Define,414

N L f0 ε , δ as the smallest number of ℓ2-balls of radius δ415

that cover L f0 ε . Then we make the following assumption:416

(A2) There exist constants c0 0 and C0 0 such that417

N L f0 ε , δ C0 1 µ f0 ε δ d for all ε, δ 0, c0 .418

We use %C to denote all functions that satisfy (A2) with419

respect to parameters C c0, C0 .420

At a high-level, the regularity condition (A2) assumes that421

the level-sets are sufficiently “regular” such that covering them422

with small-radius balls does not require significantly larger423

total volume. For example, consider the perfectly regular case424

when L f0 ε is the d-dimensional ℓ2 ball of radius r : L f0 ε425

x X : x x 2 r . Clearly, µ f0 ε rd . In addition,426

the δ-covering number in ℓ2 of L f0 ε is on the order of 1427

r δ d 1 µ f0 ε δ d , which satisfies the scaling in (A2).428

When (A2) holds, uniform confidence intervals for f on429

its level-sets are easier to construct because little statistical430

efficiency is lost by slightly enlarging the level-sets so that431

complete (sufficiently small) d-dimensional cubes are con-432

tained in the enlarged level-sets. On the other hand, when433

regularity of level-sets fails to hold such nonparametric esti-434

mation can be very difficult or even impossible. As an extreme435

example, suppose the level-set L f0 ε consists of n standalone436

and well-spaced points in X : the Lebesgue measure of L f0 ε437

would be zero, but at least $ n queries are necessary to438

construct uniform confidence intervals on L f0 ε . It is clear439

that such L f0 ε violates (A2), because N L f0 ε , δ n as440

δ 0 but µ f0 ε 0.441

B. Upper Bound442

The following theorem is our main result that provides443

an upper bound on the local minimax rate of noisy global444

optimization with active queries.445

Theorem 1. For any α, M, κ, c0, C0 0 and f0 -α
κ M446

%C, where C c0, C0 , define447

εU
n f0 : sup ε 0 : ε 2 d α

µ f0 ε n logω n , (7)448

where ω 5 d α is a large constant. Suppose also that449

εU
n f0 0 as n . Then for sufficiently large n,450

there exists an estimator xn with access to n active queries 451

x1, . . . , xn X , a constant CR 0 depending only 452

on α, M, κ, c, c0, C0 and a constant γ 0 depending only 453

on α and d such that 454

sup
f0 -α

κ M %C

sup
f -α

κ M ,

f f0 εU
n f0

Pr
f

L xn, f 455

CR logγ n εU
n f0 n 1 2 1 4. (8) 456

457

Remark 1. Unlike the (local) smoothness class -α
κ M , 458

the additional function class %C that encapsulates (A2) is 459

imposed only on the “reference” function f0 but not the 460

true function f to be estimated. This makes the assumptions 461

considerably weaker because the true function f may violate 462

(A2) while our results remain valid. 463

Remark 2. The estimator xn does not require knowledge of 464

parameters κ, c0, C0 or εU
n f0 , and automatically adapts to 465

them, as shown in the next section. While the knowledge of 466

smoothness parameters α and M is in general unavoidable 467

in non-parametric regression (see [48]), in the zeroth-order 468

optimization problem it is possible to adapt to α and M 469

by running O log2 n parallel sessions of xn on O log n 470

grids of α and M values, and then using $ n log2 n 471

single-point queries to decide on the location with the smallest 472

function value. This adaptive strategy was suggested in [22] 473

to remove an additional condition in [21], and also applies to 474

our setting. 475

Remark 3. When the distribution function µ f0 ε does not 476

change abruptly with ε the expression of εU
n f0 can be 477

significantly simplified. In particular, if for all ε 0, c0 it 478

holds that 479

µ f0 ε log n µ f0 ε log n O 1
, (9) 480

then εU
n f0 can be upper bounded as 481

εU
n f0 log n O 1 sup ε 0 : ε 2 d α

µ f0 ε n . 482

(10) 483

If µ f0 ε scales polynomially with ε, i.e. µ f0 ε εβ for 484

some constant β 0, then (9) and (10) are both satisfied. 485

The quantity εU
n f0 sup ε 0 : ε 2 d α

µ f0 ε 486

n logω n is crucial in determining the convergence rate of 487

optimization error of xn locally around the reference function 488

f0. While the definition of εU
n f0 is mostly implicit and 489

involves solving an inequality involving the distribution func- 490

tion µ f0 , we remark that it admits a simple form when µ f0 491

has a polynomial growth rate similar to a local Tsybakov noise 492

condition [4], [49], as shown in the following proposition: 493

Proposition 2. Suppose µ f0 ε εβ for some constant 494

β 0, 2 d α . Then εU
n f0 O n α 2α d αβ . 495

In addition, if β 0, d α then εU
n f0 n 1 2 εU

n f0 496

O n α 2α d αβ . 497

We remark that, following Proposition 1 of [45], α,β and d 498

must satisfy the relationship that β d α. Proposition 2 can 499
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be easily verified by solving the system ε 2 d α
µ f0 ε500

n logω n with the condition µ f0 ε εβ . We therefore omit501

its proof. The following two examples give some simple502

reference functions f0 that satisfy the µ f0 ε εβ condition503

in Proposition 2 with particular values of β.504

Example 1. The constant function f0 0 satisfies (A1)505

through (A3) with β 0.506

Example 2. f0 -2
κ M that is strongly convex4 satisfies507

(A1) through (A3) with β d 2.508

Example 1 is simple to verify, as the volume of level-sets509

of the constant function f0 0 exhibit a phase transition at510

ε 0 and ε 0. Consequently, β 0 is the only parameter511

for which µ f0 ε εβ . Example 2 is more involved, and holds512

because the strong convexity of f0 lower bounds the growth513

rate of f0 when moving away from its minimum. We give514

a rigorous proof for Example 2 in the appendix. We also515

remark that f0 does not need to be exactly strongly convex for516

β d 2 to hold, and the example is valid for, e.g., piecewise517

strongly convex functions with a constant number of pieces518

too.519

To best interpret the results in Theorem 1 and Proposition 2,520

it is instructive to compare the “local” rate n α 2α d αβ
521

with the baseline rate n α 2α d , which can be attained by522

reconstructing f in sup-norm and applying Proposition 1.523

Since β 0, the local convergence rate established in Theo-524

rem 1 is never slower, and the improvement compared to the525

baseline rate n α 2α d is dictated by β, which governs the526

growth rate of volume of level-sets of the reference function527

f0. In particular, for functions that grows fast when moving528

away from its minimum, the parameter β is large and therefore529

the local convergence rate around f0 could be much faster than530

n α 2α d .531

Theorem 1 also implies concrete convergence rates for532

special functions considered in Examples 1 and 2. For the533

constant reference function f0 0, Example 1 and Theorem 1534

yield that Rn f0 n α 2α d , which matches the baseline535

rate n α 2α d and suggests that f0 0 is the worst-case ref-536

erence function. This is intuitive, because f0 0 has a drastic537

level-set change at ε 0 and therefore small perturbations538

of f0 result in changes to the optimal location. On the other539

hand, if f0 is strongly smooth and convex as in Example 2,540

Theorem 1 leads to the bound of Rn f0 n 1 2, which541

is significantly better than the n 2 4 d baseline rate5 and542

also matches existing works on zeroth-order optimization of543

convex functions [11]. The faster rate holds intuitively because544

strongly convex functions grow quickly when moving away545

from the minimum. An active query algorithm can focus most546

of its queries on the small level-sets of the underlying function,547

resulting in more accurate local function reconstruction and548

faster optimization error rate.549

Our proof of Theorem 1 is constructive, by upper bounding550

the local minimax optimization error of an explicit algorithm.551

4A twice differentiable function f0 is strongly convex if there exists σ 0

such that ∇
2 f0 x σ I, x X .

5Note that f0 being strongly smooth corresponds to α 2 in the local
smoothness assumption.

Roughly, our algorithm partitions the n active queries evenly 552

into log n epochs, and level-sets of f are estimated at the end 553

of each epoch by comparing (uniform) confidence intervals 554

on a dense grid on X . It is then proved that the volume 555

of the estimated level-sets contracts geometrically, until the 556

target convergence rate Rn f0 is attained. The algorithm is 557

described in more detail in Section IV and the complete proof 558

of Theorem 1 is in Section V-B. 559

C. Lower Bounds 560

We prove local minimax lower bounds that match the upper 561

bounds in Theorem 1 up to logarithmic terms. As we remarked 562

in Section II-B, in the local minimax lower bound formulation 563

we assume the data analyst has full knowledge of the reference 564

function f0, which makes the lower bounds stronger as more 565

information is available a priori. 566

To facilitate such local minimax lower bounds, the following 567

additional condition is imposed on the reference function f0 568

of which the data analyst has perfect information. 569

(A2’) There exist constants c0, C0 0 such that 570

M L f0 ε , δ C0µ f0 ε δ d for all ε, δ 0, c0 , 571

where M L f0 ε , δ is the maximum number of dis- 572

joint ℓ2 balls of radius δ that can be packed into L f0 ε . 573

We denote %
C

as the class of functions that satisfy (A2’) with 574

respect to parameters C c0, C0 0. Intuitively, (A2’) can 575

be regarded as a converse of (A2). 576

We are now ready to state our main negative result, which 577

shows, from an information-theoretic perspective, that the 578

upper bound in Theorem 1 is not improvable. 579

Theorem 2. Suppose α, c0, C0, c0, C0 0 and κ . 580

Denote C c0, C0 and C c0, C0 . For any f0 581

%C %
C

, define 582

εL
n f0 : sup ε 0 : ε 2 d α

µ f0 ε n . (11) 583

Then there exists a constant M 0 depending on α, d, C and 584

C such that, for any f0 -α
κ M 2 %C %C , 585

inf
xn

sup
f -α

κ M ,

f f0 2εL
n f0

Pr
f

L xn; f εL
n f0

1

3
. (12) 586

587

Remark 4. We note in passing that for any f0 and n it always 588

holds that εL
n f0 εU

n f0 . 589

Remark 5. If the distribution function µ f0 ε satisfies (9) 590

(i.e. it does not change too abruptly) in Remark 3, then 591

εL
n f0 εU

n f0 log n O 1 . Consequently, the upper and 592

lower bounds for these functions match up to logarithmic 593

factors. 594

The following proposition derives an explicit expression for 595

εL
n f0 for reference functions whose distribution functions 596

have a polynomial growth, which matches the upper bound 597

in Proposition 2 up to log n factors. The proof of this Propo- 598

sition is straightforward and is omitted. 599

Proposition 3. Suppose µ f0 ε εβ for some β 0, 2 600

d α . Then εL
n f0 $ n α 2α d αβ . 601
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The following proposition additionally shows the existence602

of f0 -α M %C %C that satisfies µ f0 ε εβ for603

any values of α 0 and β 0, d α . Its proof is given in604

the Appendix.605

Proposition 4. Fix arbitrary α, M 0 and β 0, d α .606

There exists f0 -α
κ M %C %C for κ and constants607

C c0, C0 , C c0, C0 that depend only on α,β, M and608

d such that µ f0 ε εβ .609

Theorem 2 and Proposition 3 show that the n α 2α d αβ
610

upper bound on local minimax convergence rate established in611

Theorem 1 is not improvable up to logarithmic factors of n.612

Such information-theoretic lower bounds on the convergence613

rates hold even if the data analyst has perfect information of614

f0, the reference function on which the n α 2α d αβ local615

rate is based. Our results also imply an n α 2α d minimax616

lower bound over all α-Hölder smooth functions, showing that617

without additional assumptions, noisy optimization of smooth618

functions is as difficult as reconstructing the unknown function619

in sup-norm.620

Our proof of Theorem 2 also differs from those of existing621

minimax lower bounds for active nonparametric models [50].622

The classical approach is to invoke Fano’s inequality and to623

upper bound the KL divergence between different underlying624

functions f and g using f g , corresponding to the625

point x X that leads to the largest KL divergence. Such626

an approach, however, does not produce tight lower bounds627

for our problem. To overcome such difficulties, we borrow628

the lower bound analysis for bandit pure exploration problems629

in [51]. In particular, our analysis considers the query distri-630

bution of any active query algorithm A ϕ1, . . . ,ϕn,φn631

under the reference function f0 and bounds the perturbation in632

query distributions between f0 and f using Le Cam’s lemma.633

Afterwards, an adversarial function choice f can be made634

based on the query distributions of the considered algorithm A.635

We defer the complete proof of Theorem 2 to Section V-C.636

Theorem 2 applies to any global optimization method that637

makes active queries, corresponding to the query model in638

Definition 2. The following theorem, on the other hand, shows639

that for passive algorithms (Definition 1) the n α 2α d opti-640

mization rate is not improvable even with additional level-set641

assumptions imposed on f0. This demonstrates an explicit642

gap between passive and adaptive query models in global643

optimization problems.644

Theorem 3. Suppose α, c0, C0, c0, C0 0 and κ .645

Denote C c0, C0 and C c0, C0 . Then there exist646

constants M 0 depending on α, d, C, C and N depending647

on M such that, for any f0 -α
κ M 2 %C %C satisfying648

εL
n f0 εL

n : log n n α 2α d ,649

inf
xn

sup
f -α

κ M ,

f f0 2εL
n

Pr
f

L xn; f εL
n

1

3
for all n N.650

(13)651

Intuitively, the apparent gap demonstrated by Theorems 2652

and 3 between the active and passive query models stems from653

the observation that, a passive algorithm A only has access 654

to uniformly sampled query points x1, . . . , xn and therefore 655

cannot focus on a small level-set of f in order to improve 656

query efficiency. In addition, for functions that grow faster 657

when moving away from their minima (implying a larger 658

value of β), the gap between passive and active query models 659

becomes bigger as active queries can more effectively exploit 660

the restricted level-sets of such functions. 661

IV. OUR ALGORITHM 662

In this section we describe a concrete algorithm that attains 663

the upper bound in Theorem 1. We start with a cleaner 664

algorithm that operates under the slightly stronger condition 665

that κ in (A1), meaning that f is α-Hölder smooth on the 666

entire domain X . The generalization to κ 0 being a constant 667

is given in Section IV-C with an additional pre-processing step. 668

Let Gn X be a finite grid of points in X . We assume the 669

finite grid Gn satisfies the following two mild conditions: 670

(B1) Points in Gn are sampled i.i.d. from an unknown distri- 671

bution PX on X ; furthermore, the density pX associated 672

with PX satisfies p
0

pX x p0 for all x X , where 673

0 p
0

p0 are universal constants; 674

(B2) Gn n3 and log Gn O log n . 675

Remark 6. Although typically the choices of the grid points 676

Gn belong to the data analyst, in some applications the choices 677

of design points are not completely unconstrained. For exam- 678

ple, in material synthesis experiments described previously 679

some environmental parameter settings (e.g., temperature and 680

pressure) might not be allowed due to budget or physical con- 681

straints. Thus, we choose to consider less restrictive conditions 682

imposed on the design grid Gn , allowing it to be more flexible 683

in real-world applications. 684

Remark 7. Condition (B2) ensures that the grid Gn is 685

sufficiently dense, such that even with the smallest bandwidth 686

our algorithm possibly uses (ht x 1 n2, see (18)), each 687

x Gn has abundant neighboring points in Gn , so that the 688

local polynomial estimates in (15) are well-defined. 689

For any subset S Gn and a “weight” function 690

ϱ : Gn R , define the extension S ϱ of S with respect 691

to ϱ as 692

S ϱ :

x S

B
ϱ x

x; Gn where 693

B
ϱ x

x; Gn z Gn : z x ϱ x . (14) 694

The algorithm can then be formulated as two levels of iter- 695

ations, with the outer loop shrinking the “active set” Sτ and 696

the inner loop collecting data in order to reduce the lengths 697

of the confidence intervals on the points in the active set. 698

A pseudocode description of our proposed algorithm is given 699

in Figure 1. 700

A. Local Polynomial Regression 701

We use local polynomial regression [5] to obtain the esti- 702

mate f . In particular, for any x Gn and a bandwidth 703
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Fig. 1. An informal illustration of Algorithm 1. Solid blue curves depict the underlying function f to be optimized, black and red solid dots denote the query
points and their responses xt , yt , and black and red vertical line segments correspond to uniform confidence intervals on function evaluations constructed
using the current batch of data observed. The left figure illustrates the first epoch of our algorithm, where query points are uniformly sampled from the entire
domain X . Afterwards, sub-optimal locations based on the constructed confidence intervals are removed, and a shrunken “candidate set” S1 is obtained. The
algorithm then proceeds to the second epoch, illustrated in the right figure, where query points (in red) are sampled only from the restricted candidate set and
shorter confidence intervals (also in red) are constructed and updated. The procedure is repeated until O log n epochs are completed.

Parameters: α, M , δ, n

Output: xn , the final prediction

Initialization: S0 Gn , ϱ0 x , T log2 n ,

n0 n T ;

for τ 1, 2, . . . , T do
Compute “extended” sample set Sτ 1 ϱτ 1 defined

in (14);

for t τ 1 n0 1 to τn0 do
Sample xt uniformly at random from Sτ 1 ϱτ 1

and observe yt f xt wt ;

end

For every x Sτ 1, compute bandwidth hτ x

using (18) and build the confidence interval

ℓτ x , uτ x in (19);

Sτ : x Sτ 1 : ℓτ x minx Sτ 1
uτ x ,

ϱτ x : min ϱτ 1 x , hτ x ,
end

Final processing: for every x ST let fhT ,x be the

local polynomial estimates constructed in (15) at x .

Output xn arg minx ST minx B
hT x

x;X fhT ,x x .

Algorithm 1 The Main Algorithm

parameter h 0, consider the least squares polynomial704

estimate705

fh argmin
g Pk

t

t 1

I xt Bh x yt g xt
2
, (15)706

where Bh x : x X : x x h and Pk denotes707

all polynomials of degree k on X .708

To analyze the performance of fh evaluated at a certain709

point x X , define the mapping710

ψx,h : z 1,ψ1
x,h z , . . . ,ψk

x,h z711

where ψ
j

x,h : z
j

ℓ 1 h 1 ziℓ xiℓ
d
i1,...,i j 1 is the712

degree- j polynomial mapping from R
d to R

d j
. Also define713

6t,h : ψx,h xt 1 t t,xt Bh x as the m D aggregated714

design matrix, where m t
t 1 I xt Bh x and D 715

1 d . . . dk , k α . The estimate fh defined in (15) 716

then admits the following closed-form expression: 717

fh z ψx,h z 6t,h6t,h 6t,hYt,h, (16) 718

where Yt,h yt 1 t t,xt Bh x and A is the 719

Moore-Penrose pseudo-inverse of A. 720

The following lemma gives a finite-sample analysis of the 721

error of fh x : 722

Lemma 1. Suppose that f satisfies (6) on Bh x;X , 723

maxz Bh x;X ψx,h z 2 b and 1
m

6t,h6t,h σ ID D for 724

some σ 0. Then for any δ 0, 1 2 , with probability 1 δ 725

fh x f x
b2

σ
Mdkhα

bh,δ x

b
5D ln 1 δ

σm

sh,δ x

: ηh,δ x , 726

x Bh x;X . (17) 727

728

Remark 8. bh,δ x , sh,δ x and ηh,δ x depend on x because 729

σ depends on 6t,h , which further depends on the sample points 730

in the neighborhood Bh x;X of x. 731

In the rest of the paper we define bh,δ x : b2 σ Mdkhα
732

and sh,δ x : b 5D ln 1 δ σm as the bias and standard 733

deviation terms in the error of fh x , respectively. We also 734

denote ηh,δ x : bh,δ x sh,δ x as the overall error 735

in fh x . 736

Notice that when bandwidth h increases, the bias term 737

bh,δ x increases because of the hα term; on the other hand, 738

with h increasing the local neighborhood Bh x;X grows 739

and would potentially contain more samples, implying a larger 740

m and smaller standard deviation term sh,δ x . A careful 741

selection of the bandwidth h balances bh,δ x and sh,δ x and 742

yields appropriate confidence intervals on f x , and we turn 743

our attention to this in the next section. 744
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B. Bandwidth Selection and Confidence Intervals745

Given the expressions of bias bh,δ x and standard deviation746

sh,δ x in (17), the bandwidth hτ x 0 at epoch τ and point747

x is selected as748

hτ x :
jτ x

n2
where jτ x : arg max j N ,749

j n2 : b j n2,δ x s j n2,δ x . (18)750

More specifically, hτ x is the largest positive value in an751

evenly spaced grid j n2 such that the bias of fhτ x is752

smaller than its standard deviation. This bandwidth selection753

is in principle similar to the Lepski’s method [52], with the754

exception that an upper bound on the bias for any bandwidth755

parameter is known and does not need to be estimated from756

data.757

With the selection of bandwidth hτ x at epoch τ and758

query point x , a confidence interval on f x for all x759

B
hτ x

x;X is constructed as
760

ℓτ x : max
1 t τ

sup
x B

hτ x
x;X

fht x x ηht x ,δ x ;761

uτ x : min
1 t τ

inf
x B

hτ x
x;X

fht x x ηht x ,δ x .762

(19)763

Note that for any x X , the lower confidence edge ℓτ x is764

a non-decreasing function in τ and the upper confidence edge765

uτ x is a non-increasing function in τ .766

C. Pre-processing767

We describe a pre-processing step that relaxes the smooth-768

ness condition from κ to κ $ 1 , meaning that only769

local smoothness of f around its minimum values is required.770

Let n0 n log n , x1, . . . , xn0 be points i.i.d. uniformly sam-771

pled from X and y1, . . . , yn0 be their corresponding responses.772

For every grid point x Gn , perform the following:773

1) Compute fx as the local polynomial fits of all yi774

corresponding to xi x n
1 2d

0 log3 n : h0;775

2) Compute f x as the sample average of all yi corre-776

sponding to xi x h0;777

3) Remove all x Gn from S0 if f x778

minz Gn infz Bh0
z;X fz z 1 log n.779

Remark 9. The 1 log n term in the removal condition f x780

minz Gn f z 1 log n is not important, and can be replaced781

with any sequence ωn such that limn ωn 0 and782

limn ωnnt for any t 0. The readers are referred to783

the proof of Proposition 5 in the appendix for the motivation784

of this term as well as the selection of the pre-processing785

bandwidth h0.786

To analyze the pre-processing step, we state the following787

proposition:788

Proposition 5. Assume f -α
κ M and let S0 be the screened789

grid after step 2 of the pre-processing procedure. Then for790

sufficiently large n, with probability 1 O n 1 we have791

Bh0
x;X L f κ 2 , x S0, (20)792

where L f κ 2 x X : f x f κ 2 .793

To interpret Proposition 5, note that for sufficiently large n, 794

f -α
κ M implies f being α-Hölder smooth (i.e., f 795

satisfies (6)) on x L f κ 2 Bh0
x;X , because κ 0 is a 796

constant and h0 0 as n . Subsequently, the proposition 797

shows that with high probability, the pre-processing step will 798

remove all grid points in Gn in non-smooth regions of f , 799

while maintaining the global optimal solution. This justifies 800

the pre-processing step for f -α
κ M , because f is smooth 801

on the grid and its close neighborhood after pre-processing. 802

The proof of Proposition 5 uses the fact that the local 803

mean estimation is large provided that all data points in the 804

local mean estimator are large, regardless of their underlying 805

smoothness. The complete proof of Proposition 5 is deferred 806

to the Appendix. 807

V. PROOFS OF MAIN THEOREMS 808

A. Proof of Lemma 1 809

Our proof closely follows the analysis of asymptotic con- 810

vergence rates for series estimators in [53]. We further work 811

out all constants in the error bounds to arrive at a com- 812

pletely finite-sample result, which is then used to construct 813

finite-sample confidence intervals. 814

We start with as polynomial interpolation results for all 815

Hölder smooth functions in Bht
x;X . 816

Lemma 2. Suppose f satisfies (6) on Bh x;X . Then there 817

exists fx Pk such that 818

sup
z Bh x;X

f z fx z Mdkhα
. (21) 819

820

Proof. Consider 821

fx z : f x

k

j 1 α1 ... αd j

j f x

x
α1

1 . . . x
αd

d

d

ℓ 1

zℓ xℓ
αℓ .

(22) 822

By Taylor expansion with Lagrangian remainders, there exists 823

ξ 0, 1 such that 824

fx z f z 825

α1 ... αd k

f α x ξ z x f α x

d

ℓ 1

zℓ xℓ
αℓ . 826

Because f satisfies (6) on Bh x;X , we have that f α x 827

ξ z x f α x M z x α k . Also note that zℓ xℓ 828

z x h for all z Bh x;X . The lemma is thus 829

proved. 830

Using (16), the local polynomial estimate fh can be written 831

as fh z ψx,h z θh , where 832

θh 6t,h6t,h
16t,hYt,h . (23) 833

In addition, because fx Pk , there exists θ R
D

834

such that fx z ψx,h z θ . Denote also that Ft,h : 835

f xt 1 t t,xt Bh x , :t,h : f xt fx xt 836
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1 t t,xt Bh x and Wt,h : wt 1 t t,xt Bh x . (23) can837

then be re-formulated as838

θh 6t,h6t,h
16t,h 6t,hθ :t,h Wt,h (24)839

θ
1

m
6t,h6t,h

1
1

m
6t,h :t,h Wt,h . (25)840

Because 1
m

6t,h6t,h σ ID D and supz Bh x ψx,h z 2841

b, we have that842

θh θ 2
b

σ
:t,h

1

m
6t,h6t,h

1
1

m
6t,hWt

2

. (26)843

Invoking Lemma 2 we have :t,h Mdkhα . In addition,844

because Wt Nm 0, Im n , we have that845

1

m
6t,h6t,h

1
1

m
6t,h Wt ND 0,

1

m

1

m
6t,h6t,h

1

.846

(27)847

Applying concentration inequalities for quadratic forms of848

Gaussian random vectors (Lemma 10), with probability 1 δ849

it holds that850

1

m
6t,h6t,h

1
1

m
6t,hWt

2

5D log 1 δ

σm
. (28)851

We then have that with probability 1 δ that852

θh θ 2
b

σh

Mdkhα
t

5D log 1 δ

σm
. (29)853

Finally, noting that for all x Bh x;X , ψx,h x 2 b854

by definition, we have that855

fh x f x fh x fx x856

ψx,h x θh θ b θh θ 2,857

which completes the proof of Lemma 1.858

B. Proof of Theorem 1859

In this section we prove Theorem 1. We prove the theorem860

by considering every reference function f0 -α
κ M %C861

separately. For simplicity, we assume κ throughout862

the proof. The 0 κ can be handled by replacing863

X with S0 which is the grid after the pre-processing step864

described in Section IV-C. We also suppress dependency on865

d,α, M, C, p
0
, p0 in O , $ , % , , and notations.866

We further suppress logarithmic terms of n in O and $867

notations.868

The following lemma is our main lemma, which shows869

that the active set Sτ in our proposed algorithm shrinks870

geometrically before it reaches a certain level. To simplify871

notations, denote c0 : 10c0 and (A2) then hold for all872

ε, δ 0, c0 for all f0 %C.873

Lemma 3. For τ 1, . . . , T define ετ : max c0874

2 τ
, C3 εU

n f0 n 1 2 log2 n , where C3 0 is a con-875

stant depending only on d,α, M, p
0
, p0 and C. Denote also876

ρτ : maxx Sτ ϱτ x . Then for sufficiently large n, with877

probability 1 O n 1 the following holds uniformly for all 878

outer iterations τ 1, . . . , T : 879

B
ρτ

x;X L f ετ . (30) 880

Lemma 3 shows that the level ετ in L f ετ that con- 881

tains Sτ 1 shrinks geometrically, until the condition ετ 882

C3 εU
n f0 n 1 2 log2 n is violated. If the condition is 883

never violated, then at the end of the last epoch τ we 884

have ετ O n 1 because τ log n. On the other 885

hand, because Sτ Sτ 1 always holds, we have ετ 886

εU
n f0 n 1 2 log2 n. Combining both cases we have that 887

ετ εU
n f0 n 1 2 log2 n n 1. Theorem 1 is thus 888

proved. 889

In the rest of this section we prove Lemma 3. We need 890

several technical lemmas and propositions. Except for Propo- 891

sition 6 that is straightforward, the proofs of the other technical 892

lemmas are deferred to the end of this section. 893

Denote xn : argminx Gn
f x as the point on the grid Gn 894

with the smallest objective value The following proposition 895

shows that with high probability, the confidence intervals 896

constructed in the algorithm are truthful and the successive 897

rejection procedure will never exclude the true optimizer of f 898

on Gn . 899

Proposition 6. Suppose δ 1 n4 Gn . Then with probability 900

1 O n 1 the following hold: 901

1) f x ℓt x , ut x for all 1 t n and x Gn , 902

x B
ht x

x;X ; 903

2) xn Sτ for all 0 τ n. 904

Proof. The first property is true by applying the union bound 905

over all t 1, . . . , n and x Gn . The second property 906

then follows, because ℓt xn f xn and minx Sτ 1 ut x 907

f xn for all τ . 908

The following lemma shows that every small box centered 909

around a certain sample point x Gn contains a sufficient 910

number of sample points whose least eigenvalue can be 911

bounded with high probability under the polynomial mapping 912

ψx,h defined in Section III-B. 913

Lemma 4. For any x Gn , 1 m n and h 0, 914

let K 1
h,m x , . . . , K n

h,m x be n independent point sets, where 915

each point set consists of m points sampled i.i.d. uniformly at 916

random from Bh x; Gn Gn Bh x;X . With probability 917

1 O n 1 the following holds true uniformly for all x Gn , 918

h j n2 : j N, j n2 and K ℓ
h,m x , ℓ n as n : 919

1) suph 0 supz Bh x ψx,h z 2 % 1 ; 920

2) Bh x; Gn hd Gn ; 921

3) σmin K ℓ
h,m x % 1 for all m $ log2 n and 922

m Gn , where σmin K ℓ
h,m x is the least eigenvalue 923

of 1
m z K ℓ

h,m x ψx,h z ψx,h z . 924

Remark 10. It is possible to improve the concentration result 925

in (48) using the strategies adopted in [35] based on sharper 926

Bernstein type concentration inequalities. Such improvements 927

are, however, not important in establishing the main results of 928

this paper. 929
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The next lemma shows that, the bandwidth ht selected at the930

end of each outer iteration τ is near-optimal, being sandwiched931

between two quantities determined by the size of the active932

sample grid Sτ 1 : Sτ 1 ϱτ 1 .933

Lemma 5. There exist constants C1, C2 0 depending934

only on d,α, M, p
0
, p0 and C such that with probability935

1 O n 1 , the following holds for every outer iteration936

τ 1, . . . , T and all x Sτ 1:937

C1 ντ 1n0
1 2α d τ n ϱτ x938

ht x C2 ντ 1n0
1 2α d log n τ n, (31)939

where ντ 1 : Gn Sτ 1 .940

We are now ready to state the proof of Lemma 3,941

which is based on an inductive argument over the epochts942

τ 1, . . . , T .943

Proof. We use induction to prove this lemma. For the base944

case τ 1, because f f0 εU
n f0 and εU

n f0 0 as945

n , it suffices to prove that B
ρ1

x;X L f0 c0 4946

for all x S1 and sufficiently large n. Because S0 S0947

Gn , invoking Lemmas 5 and 1 we have that ηht x ,δ x948

O n α 2α d for all x Gn with high probability at the end949

of the first outer iteration τ 1. Therefore, for sufficiently950

large n we conclude that supx Gn
ηht x ,δ x c0 16 and951

hence B
ρ1

x;X L f0 c0 4 for all x S1.952

We now prove the lemma for τ 2, assuming it holds for953

τ 1. We also assume that n (and hence n0) is sufficiently954

large, such that the maximum CI length maxx G ηht x ,δ x955

after the first outer iteration τ 1 is smaller than c0 2.956

Because f f0 εU
n f0 and ετ 1 C3ε

U
n f0 log2 n,957

for appropriately chosen constant C3 that is not too small, we958

have that f f0 ετ 1. By the inductive hypothesis we959

have960

x Sτ 1, B
ρτ 1

x;X L f ετ 1 ;961

Equivalently,962

Sτ 1 L f ετ 1,ρτ 1 L f0
ετ 1 f f0 ,ρτ 1963

L f0
2ετ 1,ρτ 1 . (32)964

Subsequently,965

Sτ 1 Sτ 1 L f0
2ετ 1, 2ρτ 1 . (33)966

Let x Hn
B2

2ρτ 1

x be the smallest covering set of967

L f0 2ετ 1 , meaning that L f0 2ετ 1 x Hn
B2

2ρτ 1

x ,968

where B2
2ρτ 1

x z X : z x 2 2ρτ 1 is the969

ℓ2 ball of radius 2ρτ 1 centered at x . By (A2), we know970

that Hn 1 ρτ 1
d
µ f0 2ετ 1 . In addition, the enlarged971

level-set satisfies L f0
2ετ 1, 2ρτ 1 x Hn

B
4ρτ 1

x .972

Subsequently,973

µ f0
2ετ 1,ρτ 1 Hn ρτ 1

d
µ f0 2ετ 1 ρτ 1

d
.

(34)974

By Lemma 5, the monotonicity of Sτ 1 and the fact that 975

p
0

pX z p0 for all z X , we have 976

ρτ 1 µ f ετ 1,ρτ 1
1 2α d n

1 2α d

0 log n (35) 977

µ f0
2ετ 1,ρτ 1

1 2α d n
1 2α d

0 log n (36) 978

µ f0 2ετ 1 ρτ 1
d

1 2α d

n
1 2α d

0 log n. 979

(37) 980

Re-arranging terms on both sides of (37) we have 981

ρτ 1 max µ f0 2ετ 1

1
2α d n

1
2α d

0 log n, n
1

2α
0 log n . 982

(38) 983

On the other hand, according to the selection procedure of 984

the bandwidth ht x , we have that ηht x ,δ x bht x ,δ x . 985

Invoking Lemma 5 we have for all x Sτ 1 that 986

ηht x ,δ x bht x ,δ x ht x α (39) 987

ντ 1n0
α 2α d log n (40) 988

ντ 2n0
α 2α d log n (41) 989

ρτ 1
α log n. (42) 990

Here (40) holds by invoking the upper bound on ht x in 991

Lemma 5, (41) holds because ντ 1 ντ 2, and (42) holds 992

by again invoking the lower bound on ϱτ 1 x in Lemma 5. 993

Combining Eqs. (38,42) we have 994

max
x Sτ 1

ηht x ,δ x (43) 995

max µ f0 2ετ 1

α
2α d n

α
2α d

0 log2 n, n
1
2

0 log n . 996

(44) 997

Recall that n0 n log n and εU
n f0 ετ 1, provided 998

that C3 is not too small. By definition, every ε εU
n f0 999

satisfies ε 2 d α
µ f0 ε n logω n for some large constant 1000

ω 5 d α. Subsequently, 1001

µ f0 2ετ 1

α
2α d n

α
2α d

0 log2
1002

2ετ 1n
α

2α d log
ωα

2α d n n
α

2α d

0 log2 n (45) 1003

ετ 1 log n
ω 5 d α α

2α d . (46) 1004

Because ω 5 d α, the right-hand side of (46) is 1005

asymptotically dominated 6 by ετ 1. In addition, n
1 2

0 log n 1006

is also asymptotically dominated by ετ 1 because ετ 1 1007

C3n 1 2 logω n. Therefore, for sufficiently large n we have 1008

max
x Sτ 1

ηht x ,δ x ετ 1 4. (47) 1009

Lemma 3 is thus proved. 1010

6We say an is asymptotically dominated by bn if limn

an bn 0.
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1) Proof of Lemma 4:1011

Proof. We first show that the first property holds almost surely.1012

Recall the definition of ψx,h , we have that 1 ψx,h z 21013

D max1 j d h 1 z j x j
k. Because z x h for1014

all z Bh x , supz Bh x ψx,h z 2 O 1 for all h 0.1015

Thus, suph 0 supz Bh x ψx,h z 2 % 1 for all x Gn .1016

For the second property, by Hoeffding’s inequality1017

(Lemma 9) and the union bound, with probability 1 O n 1
1018

we have that1019

max
x,h

Bh x; Gn

Gn

PX z Bh x
log n

Gn

. (48)1020

In addition, note that PX z Bh x;X1021

p
0
λ Bh x;X hd and PX z Bh x;X1022

p0λ Bh x;X hd , where λ denotes the Lebesgue1023

measure on X . Subsequently, Bh x; Gn is lower bounded1024

by $ hd Gn Gn log n and upper bounded by1025

O hd Gn Gn log n . The second property is then1026

proved by noting that hd n d and Gn n3d min α,1 .1027

We next prove the third property. Because p
0

pX z p01028

for all z X , we have that1029

p
0

Bh x;X

ψx,h z ψx,h z dUx,h z1030

E
1

m
z K ℓ

h,m

ψx,h z ψx,h z (49)1031

p0
Bh x;X

ψx,h z ψx,h z dUx,h z , (50)1032

where Ux,h is the uniform distribution on Bh x;X . Note1033

also that1034

X

ψ0,1 z ψ0,1 z dU z1035

Bh x;X

ψx,h z ψx,h z dUx,h z (51)1036

2d

X

ψ0,1 z ψ0,1 z dU z (52)1037

where U is the uniform distribution on X 0, 1 d . The1038

following proposition upper and lower bounds the eigenvalues1039

of
X

ψ0,1 z ψ0,1 z dU z , which is proved in the appendix.1040

Proposition 7. There exist constants 0 ψ0 601041

depending only on d, D such that1042

ψ0 ID D
X

ψ0,1 z ψ0,1 z dU z 60 ID D. (53)1043

1044

Using Proposition 7 and Eqs. (51,52), we conclude that1045

$ 1 ID D E
1

m
z K ℓ

h,m

ψx,h z ψx,h z O 1 ID D.1046

(54)1047

Applying matrix Chernoff bound (Lemma 11) and the union 1048

bound, we have that with probability 1 O n 1 , 1049

max
x,h,m,ℓ

1

m
z K ℓ

h,m x

ψx,h z ψx,h z 1050

E ψx,h z ψx,h z z Bh x
op

log n

m
. 1051

Combining Eqs. (54,55) and applying Weyl’s inequality 1052

(Lemma 12) we have 1053

$ 1 O log n m σmin K ℓ
h,m x 1054

O 1 O log n m . (55) 1055

The third property is therefore proved. 1056

2) Proof of Lemma 5: Proof. We use induction to prove this 1057

lemma. For the base case of τ 1, we have S0 S0 Gn 1058

and therefore ντ 1 1. Furthermore, applying Lemma 4 we 1059

have that for all h j n2, 1060

bh,δ x hα
, sh,δ x

log n

hd n0
. (56) 1061

Thus, for h selected according to (18) as the largest bandwidth 1062

of the form j n2, j N such that bh,δ x sh,δ x , 1063

both bh,δ x , sh,δ x are on the order of n
1 2α d

0 up to 1064

logarithmic terms of n, and therefore one can pick appropriate 1065

constants C1, C2 0 such that C1n
1 2α d

0 ϱ1 x 1066

C2n
1 2α d

0 log n holds for all x Gn . 1067

We next prove the lemma for τ 1, assuming it holds 1068

for τ 1. We first establish the lower bound part. Define 1069

ρτ 1 : minz Sτ 1 ϱτ 1 z . By inductive hypothesis, ρτ 1 1070

C1 ντ 2n0
1 2α d τ 1 n. Note also that ντ 1 ντ 2 1071

because Sτ 1 Sτ 2, which holds because Sτ 1 Sτ 2 1072

and ϱτ 1 z ϱτ 2 z for all z. Let ht be the smallest 1073

number of the form jt n2, jt n2 such that ht 1074

C1 ντ 1n0
1 2α d τ n. We then have ht ρτ 1 and 1075

therefore query points in epoch τ are uniformly distributed in 1076

B
ht

x; Gn . Subsequently, applying Lemma 4 we have with 1077

probability 1 O n 1 that 1078

bht ,δ x C ht
α
, sht ,δ x C

log n

ht
dντ 1n

, (57) 1079

where C , C 0 are constants that depend on 1080

d,α, M, p
0
, p0 and C, but not C1, C2, τ or ht . By choosing 1081

C1 appropriately (depending on C and C ) we can make 1082

bht ,δ x sht ,δ x holds for all x Sτ 1, thus establishing 1083

ϱτ x min ϱτ 1 x , ht C1 ντ 1n0
1 2α d τ n. 1084

We next prove the upper bound part. For any ht jt n2
1085

where jt n2 , invoking Lemma 4 we have that 1086

bh,δ x C hα
, sh,δ x C

log n

min h,ρτ 1
d ντ 1n0

, 1087

(58) 1088



IE
E
E
 P

ro
o

f

WANG et al.: OPTIMIZATION OF SMOOTH FUNCTIONS WITH NOISY OBSERVATIONS 13

where C and C are again constants depending on1089

d,α, M, p
0
, p0 and C, but not C1, C2. Note also that ρτ 11090

C1 ντ 2n0
1 2α d τ 1 n C1 ντ 1n0

1 2α d
1091

τ n, because ντ 1 ντ 2. By selecting constant C21092

0 carefully (depending on C , C and C1), we can ensure1093

bh,δ x sh,δ x for all h C2 ντ 1n0
1 2α d τ n.1094

Therefore, ϱτ x ht x C2 ντ 1n0
1 2α d τ n.1095

C. Proof of Theorem 21096

In this section we prove the main negative result in Theo-1097

rem 2. To simplify presentation, we suppress dependency on1098

α, d, c0 and C0 in , , , O and $ notations. However,1099

we do not suppress dependency on C R or M in any of the1100

above notations.1101

Let ϕ0 : 2, 2 d
R be a non-negative function1102

defined on X such that ϕ0 -
α

κ 1 with κ ,1103

supx X ϕ0 x $ 1 and ϕ0 z 0 for all z 2 1. Here1104

α denotes the smallest integer that upper bounds α. Such1105

functions exist and are the cornerstones of the construction of1106

information-theoretic lower bounds in nonparametric estima-1107

tion problems [50]. One typical example is the “smoothstep”1108

function (see for example [54])1109

SN x :
1

Z
x N 1

N

n 0

N n

n

2N 1

N n
x n

,1110

N 0, 1, 2, . . . ,1111

where Z 0 is a scaling parameter. The smoothstep function1112

SN is defined on 0, 1 and satisfies the Hölder condition in (6)1113

of order α N on 0, 1 . It can be easily extended to SN,d :1114

2, 2 d
R by considering SN,d x : 1 Z SN a x 11115

where x 1 x1 . . . xd and a 1 2d . It is easy1116

to verify that, with Z chosen appropriately, SN,d -N 1 ,1117

supx X SN,d x 1 Z $ 1 and SN,d z 0 for all1118

z 2 1, where M 0 is a constant.1119

For any x X and h 0, define ϕx,h : X R as1120

ϕx,h z : I z Bh x
Mhα

2
ϕ0

z x

h
. (59)1121

It is easy to verify that ϕx,h -α M 2 , and furthermore1122

supz X ϕx,h z Mhα and ϕx,h z 0 for all z Bh x .1123

Let L f0 εL
n f0 be the level-set of f0 at εL

n f0 . Let Hn1124

L f0 εL
n f0 be the largest packing set such that Bh x are1125

disjoint for all x Hn, and x Hn
Bh x L f0 εL

n f0 .1126

By (A2’) and the definition of εL
n f0 , we have that1127

Hn M L f0 εL
n f0 , 2 dh1128

µ f0 εL
n f0 h d εL

n f0
2 d α nh d

. (60)1129

For any x Hn, construct fx : X R as1130

fx z : f0 z ϕx,h z . (61)1131

Let Fn : fx : x Hn be the class of functions indexed1132

by x Hn. Let also h εL
n f0 M 1 α such that ϕx,h1133

2εL
n f0 . We then have that fx f0 2εL

n f0 and fx1134

-α M , because f0,ϕx,h -α M 2 .1135

The next lemma shows that, with n adaptive queries to the 1136

noisy zeroth-order oracle yt f xt wt , it is information 1137

theoretically not possible to identify a certain fx in Fn with 1138

high probability. 1139

Lemma 6. Suppose Fn 2. Let An χ1, . . . ,χn,φn 1140

be an active optimization algorithm operating with a sample 1141

budget n, which consists of samplers χℓ : xi , yi
ℓ 1
i 1 xℓ 1142

and an estimator φn : xi , yi
n
i 1 fx Fn , both can be 1143

deterministic or randomized functions. Then 1144

inf
An

sup
fx Fn

Pr
fx

fx fx
1

2

n sup fx Fn
fx f0

2

2 Fn

.

(62) 1145

1146

Lemma 7. There exists constant M 0 depending on 1147

α, d, c0, C0 such that the right-hand side of (62) is lower 1148

bounded by 1 3. 1149

Lemmas 6 and 7 are proved at the end of this section. 1150

Combining both lemmas and noting that for any distinct 1151

fx , fx Fn and z X , max L z; fx ,L z; fx εL
n f0 , 1152

we proved the minimax lower bound formulated in Theorem 2. 1153

1) Proof of Lemma 6: Our proof is inspired by the negative 1154

result of multi-arm bandit pure exploration problems estab- 1155

lished in [51]. 1156

Proof. For any x Hn, define 1157

nx : E f0

n

i 1

I x Bh x . (63) 1158

Because Bh x are disjoint for x Hn, we have x Hn
nx 1159

n. Also define, for every x Hn, 1160

℘x : Pr
f0

fx fx . (64) 1161

Because x Hn
℘x 1, by pigeonhole principle there is at 1162

most one x Hn such that ℘x 1 2. Let x1, x2 Hn 1163

be the points that have the smallest and second smallest nx . 1164

Then there exists x x1, x2 such that ℘x 1 2 and 1165

nx 2n Fn . By Le Cam’s and Pinsker’s inequality (see, 1166

for example, [4]) we have that 1167

Pr
fx

fx fx Pr
f0

fx fx dTV P
An

f0
P
An

fx
(65) 1168

Pr
f0

fx fx
1

2
KL P

An

f0
P
An

fx
(66) 1169

℘x
1

2
KL P

An

f0
P
An

fx
(67) 1170

1

2

1

2
KL P

An

f0
P
An

fx
. (68) 1171

It remains to upper bound KL divergence of the active 1172

queries made by An . Using the standard lower bound analysis 1173

for active learning algorithms [50], [55] and the fact that 1174
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fx f0 on X Bh x , we have1175

KL P
An

f0
P
An

fx
E f0,An

log
P f0,An

x1:n, y1:n

P fx ,An
x1:n, y1:n

(69)1176

E f0,An
log

n
i 1 P f0 yi xi PAn

xi x1: i 1 , y1: i 1

n
i 1 P fx yi xi PAn

xi x1: i 1 , y1: i 1

1177

(70)1178

E f0,An
log

n
i 1 P f0 yi xi
n
i 1 P fx yi xi

(71)1179

E f0,An

xi Bh x

log
P f0 yi xi

P fx yi xi

(72)1180

nx sup
z Bh x;X

KL P f0 z P fx z (73)1181

nx f0 fx
2

. (74)1182

Therefore,1183

Pr
fx

fx fx
1

2

1

4
nxε2

n

1

2

n fx f0
2

2 Fn

. (75)1184

1185

2) Proof of Lemma 7:1186

Proof. By construction, n sup fx Fx
fx f0

2 M2 nh2α
1187

and Fn Hn Cεε
L
n f0

2 d αnh d . Note also that1188

h ε M 1 α Cεε
L
n f0 M 1 α because fx f01189

ε Cεε
L
n f0 . Subsequently,1190

n sup fx Fx
fx f0

2

2 Fn

n Cεε
L
n f0

2

n Cεε
L
n f0

2 Md α
M d α

.1191

(76)1192

By choosing the constant M 0 to be sufficiently large,1193

the right-hand side of the above inequality is upper bounded1194

by 1 36. The lemma is thus proved.1195

D. Proof of Theorem 31196

The proof of Theorem 3 is similar to the proof of The-1197

orem 2, but is much more standard by invoking the Fano’s1198

inequality [4]. In particular, adapting the Fano’s inequality on1199

any finite function class Fn constructed we have the following1200

lemma:1201

Lemma 8 (Fano’s inequality). Suppose Fn 2, and1202

xi , yi
n
i 1 are i.i.d. random variables. Then1203

inf
fx

sup
fx Fn

Pr
fx

fx fx1204

1
log 2 n sup fx , fx Fn

KL P fx P fx

log Fn

, (77)1205

where P fx denotes the distribution of x, y under the law1206

of fx .1207

Let Fn be the function class constructed in the previous1208

proof of Theorem 2, corresponding to the largest packing1209

set Hn of L f0 εL
n such that Bh x for all x Hn are1210

disjoint, where h εL
n M 1 α such that ϕx,h 2εL

n for1211

all x Hn. Because f0 satisfies (A2’), we have that Fn 1212

Hn µ f0 εL
n h d . Under the condition that εU

n f0 εL
n , it 1213

holds that µ f0 εL
n εL

n
2 d αn. Therefore, 1214

Fn εL
n

2 d α nh d εL
n

2 nMd α
. (78) 1215

Because log n εL
n log n and M 0 is a constant, we have 1216

that log Fn c log n for all n N , where c 0 is a constant 1217

depending only on α, d and N N is a constand depending 1218

on M . 1219

Let U be the uniform distribution on X . Because x U 1220

and fx fx on X Bh x , we have that 1221

KL P fx P fx

1

2 X

fx z fx z 2dU z (79) 1222

1

2
Pr
U

z Bh x fx fx
2 (80) 1223

1

2
λ Bh x εL

n
2 (81) 1224

hd εL
n

2 εL
n

2 d α Md α
. (82) 1225

By choosing M to be sufficiently large, the right-hand side 1226

of (77) can be lower bounded by an absolute constant. The 1227

theorem is then proved following the same argument as in the 1228

proof of Theorem 2. 1229

APPENDIX A 1230

SOME CONCENTRATION INEQUALITIES 1231

In this section, to ease readability of our paper, we provide 1232

some concentration inequalities and other standard results that 1233

we use extensively. 1234

Lemma 9 ( [56]). Suppose X1, . . . , Xn are i.i.d. random 1235

variables such that a X i b almost surely. Then for any 1236

t 0, 1237

Pr
1

n

n

i 1

X i EX t 2 exp
nt2

2 b a 2
. 1238

1239

Lemma 10 ( [57]). Suppose x Nd 0, Id d and let A be 1240

a d d positive semi-definite matrix. Then for all t 0, 1241

Pr x Ax tr A 2 tr A2 t 2 A opt e t
. 1242

1243

Lemma 11 ( [58], simplified). Suppose A1, . . . , An are 1244

i.i.d. positive semidefinite random matrices of dimension d and 1245

Ai op R almost surely. Then for any t 0, 1246

Pr
1

n

n

i 1

Ai EA

op

t 2 exp
nt2

8R2
. 1247

1248

Lemma 12 (Weyl’s inequality). Let A and A E 1249

be d d matrices with σ1, . . . , σd and σ1, . . . , σd be 1250

their singular values, sorted in descending order. Then 1251

max1 i d σi σi E op. 1252
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APPENDIX B1253

ADDITIONAL PROOFS1254

Proof of Proposition 1. Consider arbitrary x X such1255

that f x infx X f x . Then we have that L xn; f1256

f xn f x fn xn fn f fn x fn1257

f 2 fn f , where the last inequality holds because1258

fn xn fn x by optimality of xn .1259

Proof of Example 2. Because f0 -2
κ M is strongly convex,1260

there exists σ 0 such that ∇
2 f0 x σ I for all1261

x X f0,κ , where X f0,κ : L f0 κ is the κ-level-set of f0.1262

Let x arg minx X f0 x , which is unique because f0 is1263

strongly convex. The smoothness and strong convexity of f01264

implies that1265

f0

σ

2
x x 2 f0 x f0

M

2
x x 2 x X f0,κ .1266

(83)1267

Subsequently, there exist constants c0, C1, C2 0 depending1268

only on σ, M, κ and d such that for all ε 0, c0 ,1269

B
C1 ε

x ;X L f0 ε B
C2 ε

x ;X . (84)1270

The property µ f0 ε εβ holds because µ L f0 ε1271

µ B
C1 ε

x ;X εd 2. To prove (A2), note that1272

N L f0 ε , δ N B
C2 ε

x ;X , δ 1 ε δ d . Because1273

εd 2
µ L f0 ε µ f0 ε , we conclude that1274

N L f0 ε , δ 1 δ d
µ f0 ε and (A2) is thus proved.1275

Proof of Proposition 4. Consider f0 0 if β 0 and f0 z :1276

a0 z
p
1 . . . z

p
d for all z z1, . . . , zd 0, 1 d , where1277

a0 0 is a constant depending on α, M , and p d β for1278

β 0, d α . The β 0 case where f0 0 trivially holds.1279

So we shall only consider the case of β 0, d α .1280

We first show f0 -α
κ M with κ , provided that a0 is1281

sufficiently small. For any j k α and α1 . . . αd j ,1282

we have1283

j

x
α1

1 . . . x
αd

d

f0 z
a0 j ! z

p j
ℓ if αℓ j, ℓ d ;

0 otherwise.
1284

(85)1285

Because z1, . . . , zd 0, 1 and p d β α j , it’s clear1286

that 0 j f0 z x
α1

1 . . . x
αd

d a0 j !. In addition, for any1287

z, z 0, 1 d and αℓ k, ℓ d , we have1288

k

x
α1

1 . . . x
αd

d

f0 z
k

x
α1

1 . . . x
αd

d

f0 z1289

a0k! zℓ
p k zℓ

p k (86)1290

a0k! zℓ zℓ
min p k,1

, (87)1291

where the last inequality holds because x t is min t, 1 -Hölder1292

continuous on 0, 1 for t 0. The zℓ zℓ
min p k,1

1293

term can be further upper bounded by z z α k , because1294

p d β α. By selecting a0 0 to be sufficiently small1295

(depending on M) we have f0 -α M .1296

We next prove f0 satisfies µ f0 ε εβ with parameter β1297

depending on a0 and p. For any ε 0, the level-set L f0 ε can1298

be expressed as L f0 ε z 0, 1 d : z
p
1 . . . z

p
d ε a0 . 1299

Subsequently, 1300

0,
ε

a0d

1 p d

L f0 ε 0,
ε

a0

1 p d

. (88) 1301

Therefore, 1302

ε a0d dp
µ f0 ε ε a0

dp
. (89) 1303

Because a0, d are constants and dp β, we established 1304

µ f0 ε εβ for β dp. 1305

Finally, note that for any ε 0, L f0 ε is sandwiched 1306

between two cubics whose volumes only differ by a constant. 1307

This proves (A2) and (A2’) on the covering and packing 1308

numbers of L f0 ε . 1309

Proof of Proposition 5. By the Chernoff bound and the 1310

union bound, with probability 1 O n 1 uniformly over all 1311

x Gn , there are $ n0 log2 n uniform samples in 1312

Bh0
x;X . Because h0 ζ for sufficiently large n0 (ζ is 1313

defined in condition (A1)), by Lemma 1 it holds that 1314

fx x fx x hα
0 n

1 4

0 n
α 2d

0 n
1 4

0 , 1315

x Gn, x Bh0
x;X . (90) 1316

Also, using the standard Gaussian concentration inequality, 1317

with probability 1 O n 1 we have 1318

inf
x Bh0

x;X

f x O n
1 4

0 1319

f x sup
x Bh0

x;X

f x O n
1 4

0 x Gn . (91) 1320

Let x be the minimizer of f on X and x Gn such 1321

that x x h0. By (90), we have with probability 1322

1 O n 1 that infx Bh0
x;X fx x f O n

α 2d

0 1323

n
1 4

0 f 1 2 log n, where f f x . Now consider 1324

arbitrary z Gn such that Bh0
z;X L f κ 2 , 1325

meaning that for all z X , z z h0, f z 1326

κ 2. By (90), f z κ 2 O n
1 4

0 κ 2 1 2 log n. 1327

Hence when n0 is sufficiently large, z S0, which is to be 1328

demonstrated. 1329

Proof of Proposition 7. The upper bound part of (53) triv- 1330

ially holds because the absolute values of every element in 1331

ψ0,1 z ψ0,1 z for z X 0, 1 d is upper bounded by 1332

O 1 . To prove the lower bound part, we only need to show 1333

X
ψ0,1 z ψ0,1 z dU z is invertible. Assume the contrary. 1334

Then there exists v R
D 0 such that 1335

v

X

ψ0,1 z ψ0,1 z dU z v 1336

X

ψ0,1 z v
2
dU z 0. (92) 1337

Therefore, ψ0,1 z , v 0 almost everywhere on z 1338

0, 1 d . Because h 0, by re-scaling with constants this 1339
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implies the existence of non-zero coefficient vector ξ such1340

that1341

P z1, . . . , zm :

α1 ... αm k

ξα1,...,αm z
α1

1 . . . zαm
m 01342

almost everywhere on z 0, 1 d
.1343

We next use induction to show that, for any degree-k1344

polynomial P of s variables z1, . . . , zs that has at least1345

one non-zero coefficient, the set z1, . . . , zs 0, 1 d :1346

P z1, . . . , zs 0 must have zero measure. This would then1347

result in the desired contradiction. For the base case of s 1,1348

the fundamental theorem of algebra asserts that P z1 0 can1349

have at most k roots, which is a finite set and of measure 0.1350

We next consider the case where P z1, . . . , zs takes on s1351

variables. Re-organizing the terms we have1352

P z1, . . . , zs P0 z1, . . . , zs 1 zs P1 z1, . . . , zs 11353

. . . zk
s Pk z1, . . . , zs 1 , (93)1354

where P1, . . . , Pk are degree-k polynomials of z1, . . . , zs 1.1355

Because P has a non-zero coefficient, at least one Pj must1356

also have a non-zero coefficient. By the inductive hypothesis,1357

the set z1, . . . , zs 1 : Pj z1, . . . , zs 1 has measure 0.1358

On the other hand, if Pj z1, . . . , zs 1 0, then invoking1359

the fundamental theorem of algebra again on zs we know1360

that there are finitely many zs such that P z1, . . . , zs 0.1361

Therefore, z1, . . . , zs : P z1, . . . , zs 0 must also have1362

measure zero.1363
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Optimization of Smooth Functions With Noisy

Observations: Local Minimax Rates
Yining Wang , Sivaraman Balakrishnan, and Aarti Singh

Abstract— We consider the problem of global optimization of1

an unknown non-convex smooth function with noisy zeroth-order2

feedback. We propose a local minimax framework to study3

the fundamental difficulty of optimizing smooth functions with4

adaptive function evaluations. We show that for functions with5

fast growth around their global minima, carefully designed6

optimization algorithms can identify a near global minimizer7

with many fewer queries than worst-case global minimax theory8

predicts. For the special case of strongly convex and smooth func-9

tions, our implied convergence rates match the ones developed for10

zeroth-order convex optimization problems. On the other hand,11

we show that in the worst case no algorithm can converge faster12

than the minimax rate of estimating an unknown function in the13

ℓ -norm. Finally, we show that non-adaptive algorithms, though14

optimal in a global minimax sense, do not attain the optimal local15

minimax rate.16

Index Terms— Optimization of smooth functions, nonparamet-17

ric statistics, local minimax analysis.18

I. INTRODUCTION19

GLOBAL function optimization with stochastic (zeroth-20

order) query oracles is an important problem in opti-21

mization, machine learning and statistics. To optimize an22

unknown bounded function f : X R defined on a known23

compact d-dimensional domain X R
d , the data analyst24

makes n active queries x1, . . . , xn X and observes25

yt f xt wt , wt
i.i.d .

N 0, 1 ,
1 t 1, . . . , n. (1)26

The queries x1, . . . , xt are active in the sense that the selection27

of xt can depend on the previous queries and their responses28

x1, y1, . . . , xt 1, yt 1. After n queries, an estimate xn X is29

produced that approximately minimizes the unknown function30

f . Such “active query” models are relevant in a broad range31

of (noisy) global optimization applications, for instance in32

hyper-parameter tuning of machine learning algorithms [1] and33
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1The exact Gaussianity of the independent noise variables εt is not crucial

and our results can be easily generalized to sub-Gaussian noise.

sequential design in material synthesis experiments where the 34

goal is to maximize the strength of the synthesized material 35

as a function of experimental settings [2], [3]. We refer the 36

readers to Section II-A for a rigorous formulation of the active 37

query model and contrast it with the classical passive query 38

model. 39

The error of the estimate xn is measured by the difference 40

of f xn and the global minimum of f : 41

L xn; f : f xn f where f : inf
x X

f x . (2) 42

To simplify our presentation, throughout the paper we take the 43

domain X to be the d-dimensional unit cube 0, 1 d , while our 44

results can be easily generalized to other compact domains 45

satisfying minimal regularity conditions. 46

When f belongs to a smoothness class, say the Hölder 47

class with exponent α, a straightforward global optimization 48

method is to first sample n points uniformly at random 49

from X and then construct nonparametric estimates fn of 50

f using nonparametric regression methods such as kernel 51

smoothing or local polynomial regression [4], [5]. Classical 52

analysis shows that the sup-norm reconstruction error fn 53

f supx X fn x f x can be upper bounded by 54

OP n α 2α d 2. This global reconstruction guarantee then 55

implies an OP n α 2α d upper bound on L xn; f by con- 56

sidering an estimate xn X for which fn xn infx X fn x 57

(such an xn exists because X is closed and bounded). Formally, 58

we have the following proposition (proved in the Appendix) 59

that converts a global reconstruction guarantee into an upper 60

bound on the optimization error: 61

Proposition 1. Suppose fn xn infx X fn x . Then 62

L xn; f 2 fn f . 63

Typically, fundamental limits on the optimal optimization 64

error are understood through the lens of minimax analysis 65

where the object of study is the (global) minimax risk: 66

inf
xn

sup
f F

E f L xn, f , (3) 67

where F is a certain class of smooth functions such as 68

the Hölder class. Although optimization appears to be easier 69

than global reconstruction, we show in this paper that the 70

n α 2α d rate is not improvable in the global minimax sense 71

in over Hölder classes. Such a surprising phenomenon was also 72

noted in previous works [6]–[8] for related problems. On the 73

2In the O or OP notation we suppress constant factors and terms that
depend poly-logarithmically on n.

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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other hand, extensive empirical evidence suggests that non-74

uniform/active allocations of query points can significantly75

reduce optimization error in practical global optimization of76

smooth, non-convex functions [1]. This raises the interesting77

question of understanding, from a theoretical perspective,78

the conditions under which the global optimization of smooth79

functions is easier than their reconstruction, and the power80

of active/feedback-driven queries that play important roles in81

global optimization.82

In this paper, we propose a theoretical framework that83

partially answers the above questions. In contrast to clas-84

sical global minimax analysis of nonparametric estimation85

problems, we adopt a local analysis which characterizes the86

optimal convergence rate of optimization error when the under-87

lying function f is within a neighborhood of a “reference”88

function f0. (See Section II-B for the rigorous local minimax89

formulation considered in this paper.) Our main results are90

to characterize the local convergence rates Rn f0 for a91

wide range of reference functions f0 F . Concretely, our92

contributions can be summarized as follows:93

1) We design an iterative (active) algorithm whose opti-94

mization error L xn; f converges at a rate of Rn f095

depending on the reference function f0. When the96

level-sets of f0 satisfy certain regularity and polynomial97

growth conditions, the local rate Rn f0 can be upper98

bounded by Rn f0 O n α 2α d αβ , where β99

0, d α is a parameter depending on f0 that character-100

izes the volume growth of the level-sets of the reference101

function f0. (See assumption (A2), Proposition 2 and102

Theorem 1 for details). The rate matches the global103

minimax convergence rate n α 2α d for worst-case f0104

where β 0, but can be much faster when β 0.105

We emphasize that our algorithm has no knowledge106

of the reference function f0 and achieves this rate107

adaptively.108

2) We prove local minimax lower bounds that match the109

n α 2α d αβ upper bound, up to logarithmic factors110

in n. More specifically, we show that even if f0 is111

known, no (active) algorithm can estimate f in close112

neighborhoods of f0 at a rate faster than n α 2α d αβ .113

We further show that, if active queries are not available114

and queries x1, . . . , xn are i.i.d. uniformly sampled from115

X , then the n α 2α d global minimax rate also applies116

locally regardless of how large β is. Thus, there is an117

explicit gap between local minimax rates in the active118

and uniform query models when β is large.119

3) In the special case when f is convex, the global opti-120

mization problem is usually referred to as zeroth-order121

convex optimization and this problem has been widely122

studied [9]–[14]. Our results imply that, when f0 is123

strongly convex and smooth, the local minimax rate124

Rn f0 is on the order of O n 1 2 , which matches125

the convergence rates in [11]. Additionally, our negative126

results (Theorem 2) indicate that the n 1 2 rate cannot127

be achieved if f0 is merely convex, which seems to128

contradict n 1 2 results in [13], [14] that do not require129

strong convexity of f . However, it should be noted that130

mere convexity of f0 does not imply convexity of f in131

a neighborhood of f0 (e.g., f f0 ε). Our results 132

show significant differences in the intrinsic difficulty 133

of zeroth-order optimization of convex and near-convex 134

functions. 135

A. Related Work 136

Global optimization, known variously as black-box opti- 137

mization, Bayesian optimization and the continuum-armed 138

bandit, has a long history in the optimization research com- 139

munity [15], [16] and has also received a significant amount of 140

recent interest in statistics and machine learning [1], [6], [8], 141

[17]–[19]. Many previous works [17], [20] have derived rates 142

for non-convex smooth payoffs in “continuum-armed” bandit 143

problems. 144

The papers [21], [22] are closely related to our work. They 145

studied the related problem of estimating the set of all optima 146

of a smooth function in the Hausdorff distance. For Hölder 147

smooth functions with polynomial growth, the paper [21] 148

derives an n 1 2α d αβ minimax rate for α 1 (subse- 149

quently improved to include α 1 in [23]). This result is 150

similar to our Propositions 2 and 3. The papers [21], [22] 151

also discussed adaptivity to unknown smoothness parameters. 152

We however remark on several differences between our work 153

and the papers [21], [22]. First, in [21], [22] only functions 154

with polynomial growth are considered, while in our Theo- 155

rems 1 and 2 functionals εU
n f0 and εL

n f0 are proposed 156

for general reference functions f0 satisfying mild regularity 157

conditions, which include functions with polynomial growth 158

as special cases. In addition, [21] considers the harder problem 159

of estimating maxima sets in Hausdorff distance, as opposed 160

to the problem of producing a single approximately optimal 161

solution xT . As a result, the minimax lower bounds in [21] 162

do not apply to this latter setting. An algorithm, without 163

distinguishing between two functions with different optima 164

sets, can nevertheless produce a good approximate optimizer 165

as long as the two functions under consideration have overlap- 166

ping optima sets. New constructions and information-theoretic 167

techniques are therefore required to prove lower bounds under 168

the weaker (one-point) approximate optimization framework. 169

Finally, we prove minimax lower bounds when only uniform 170

query points are available and demonstrate a significant gap 171

between algorithms having access to uniformly sampled or 172

adaptively chosen data points. 173

The papers [18], [19] imposed additional assumptions on the 174

level-sets of the underlying function to obtain an improved 175

convergence rate. The level-set assumptions considered in 176

the mentioned references are rather restrictive and essentially 177

require the underlying function to be uni-modal, while our 178

assumptions are much more flexible and apply to multi-modal 179

functions as well. In addition, [18], [19] considered a noise- 180

less setting in which exact function evaluations f xt can 181

be obtained, while our paper studies the noise corrupted 182

model in (1) for which vastly different convergence rates are 183

derived. Finally, no matching lower bounds were proved in the 184

papers [18], [19]. 185

The (stochastic) global optimization problem is similar to 186

mode estimation of either densities or regression functions, 187
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which has a rich literature [24]–[26]. An important difference188

between statistical mode estimation and global optimization is189

the way sample/query points x1, . . . , xn X are distributed:190

in mode estimation it is customary to assume the samples191

are independently and identically distributed, while in global192

optimization sequential designs of samples/queries are typical.193

Furthermore, to estimate/locate the mode of an unknown194

density or regression function, such a mode has to be well-195

defined; on the other hand, producing an estimate xn with196

small L xn, f is easier and results in weaker conditions197

imposed on the underlying function.198

Methodology-wise, our proposed algorithm is conceptually199

similar to the abstract Pure Adaptive Search (PAS) frame-200

work proposed and analyzed in [27]. The iterative procedure201

also resembles disagreement-based active learning meth-202

ods [28]–[30] and the “successive rejection” algorithm in ban-203

dit problems [31]. The intermediate steps of candidate point204

elimination can also be viewed as level-set estimation prob-205

lems [32]–[34] or cluster-tree estimation problems [35], [36]206

with active queries.207

Another line of research has focused on first-order opti-208

mization of quasi-convex or non-convex functions [37]–[42],209

in which exact or unbiased evaluations of function gradients210

are available at query points x X . The paper [42] considered211

a Cheeger’s constant restriction on level-sets which is similar212

to our level-set regularity assumptions (A2 and A2’). The213

papers [43], [44] studied local minimax rates for the first-order214

optimization of convex functions. First-order optimization215

differs significantly from our setting because unbiased gradient216

estimation is generally impossible in the model of (1). Fur-217

thermore, most works on (first-order) non-convex optimization218

focus on obtaining stationary points or local minima, while we219

consider the problem of finding a (near) global minima.220

B. Comparison with the HOO Algorithm221

The HOO algorithm [17], as well as similar algorithms222

such as Algorithm 2 in [45] and the POO algorithm in [22],223

are theoretically well-studied methods for global optimization.224

Below we summarize the differences of our results and the225

ones from these works.226

(a) Weaker Smoothness Conditions I: In Algorithm 1,227

we use local polynomial estimation as a sub-routine228

to obtain local estimates of the objective function229

f . Compared to the sample average approach in230

HOO (e.g., Algorithm 2 in [45]), local polynomial231

estimates have the advantage of being unbiased for232

the estimation of low-degree polynomials. This trans-233

lates to the improved (A1) Hölder-continuity condi-234

tion that only restricts the α -th order derivatives235

of objective functions. More specifically, the actual236

function values of f x and f x for x, x close237

to each other can be very different, as long as such238

differences can be perfectly modeled by low-degree239

polynomials. This is in contrast to the smoothness240

conditions imposed in [17], [45] which essentially241

require f x to be close to f x for x close to x the242

optima of f .243

(b) Weaker Smoothness Conditions II: Our results in 244

Section IV-C hold on functions that are only assumed 245

to be smooth in regions close to its global minimum, in 246

contrast to Definition 1 in [45] and many other existing 247

works that place smoothness assumptions on the entire 248

domain of the objective function f . 249

(c) Spatially Restricted Queries: Our proposed algorithm is 250

“grid” based, and can be run on any sufficiently dense 251

finite grid Gn in X and does not need to have the 252

capacity to query arbitrary points in X . As a result, 253

our algorithm can be run in experimental settings where 254

queries are restricted to belong to a large pool of a-priori 255

chosen points. 256

(d) Results for any Smooth Function: Our algorithm and 257

lower bounds yield essentially tight results for the 258

complexity of optimization of arbitrary smooth func- 259

tions. While these rates are most interpretable under 260

the level-set growth conditions (also studied in [45]) our 261

results also yield nearly matching guarantees for other 262

(arbitrary, smooth) functions f0. 263

II. BACKGROUND AND NOTATION 264

We first review standard asymptotic notation that will 265

be used throughout this paper. For two sequences an n 1 266

and bn n 1, we write an O bn or an bn if 267

lim supn an bn , or equivalently bn $ an or 268

bn an . Denote an % bn or an bn if both an bn 269

and an bn hold. We also write an o bn or equivalently 270

bn ω an if limn an bn 0. For two sequences 271

of random variables An n 1 and Bn n 1, denote An 272

OP Bn if for every ε 0, there exists C 0 such that 273

lim supn Pr An C Bn ε. For r 0, 1 p 274

and x R
d , we denote by B

p
r x : z R

d : z x p r 275

the d-dimensional ℓp-ball of radius r centered at x , where 276

the vector ℓp norm is defined as x p :
d
j 1 x j

p 1 p
277

for 1 p and x : max1 j d x j . For any subset 278

S R
d we denote by B

p
r x; S the set B

p
r x S. 279

A. Passive and Active Query Models 280

Let U be a known random quantity defined on a probability 281

space U . The following definitions characterize all passive and 282

active optimization algorithms: 283

Definition 1 (The passive query model). Let x1, . . . , xn be 284

i.i.d. points uniformly sampled on X and y1, . . . , yn be obser- 285

vations from the model (1). A passive optimization algorithm 286

A with n queries is parameterized by a mapping φn : 287

x1, y1, . . . , xn, yn, U xn that maps the i.i.d. observations 288

xi , yi
n
i 1 to an estimated optimum xn X , potentially 289

randomized by U. 290

Definition 2 (The active query model). An active opti- 291

mization algorithm can be parameterized by mappings 292

χ1, . . . ,χn,φn , where for t 1, . . . , n, 293

χt : x1, y1, . . . , xt 1, yt 1, U xt 294
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produces a query point xt X based on previous observations295

xi , ti
t 1
i 1, and296

φn : x1, y1, . . . , xn, yn, U xn297

produces the final estimate. All mappings χ1, . . . ,χn,φn can298

be randomized by U.299

B. Local Minimax Rates300

We use a classical local minimax analysis [46] to understand301

the fundamental information-theoretic limits of noisy global302

optimization of smooth functions. On the upper bound side,303

we seek (active) estimators xn such that304

sup
f0 %

sup
f % , f f0 εn f0

Pr
f

L xn; f C1 Rn f0 1 4,305

(4)306

where C1 0 is a positive constant. Here f0 % is307

referred to as the reference function, and f % is the true308

underlying function to be optimized, which is assumed to be309

“near” f0 (in the ℓ norm). The minimax convergence rate310

of L xn; f is then characterized locally by Rn f0 which311

depends on the reference function f0. The constant of 1 4312

is chosen arbitrarily and any small constant leads to similar313

conclusions. To establish negative results (i.e., local minimax314

lower bounds), in contrast to the upper bound formulation,315

we assume the potential active optimization estimator xn has316

perfect knowledge about the reference function f0 %.317

We then prove local minimax lower bounds of the form318

inf
xn

sup
f % , f f0 εn f0

Pr
f

L xn; f C2 Rn f0 1 3,319

(5)320

where C2 0 is another positive constant and εn f0 , Rn f0321

are desired local convergence rates for functions near the322

reference f0.323

Although in some sense classical, the local minimax defin-324

ition we propose warrants further discussion:325

1) Roles of % and % : The reference function f0 and the326

true functions f are assumed to belong to different but327

closely related function classes % and % . In particular,328

in our paper % % , meaning that less restrictive329

assumptions are imposed on the true underlying function330

f compared to those imposed on the reference function331

f0 on which Rn and εn are based.332

2) Upper Bounds: It is worth emphasizing that the333

estimator xn has no knowledge of the reference function334

f0. From the perspective of upper bounds, we can335

consider the simpler task of producing f0-dependent336

bounds (eliminating the second supremum) to instead337

study the (already interesting) quantity:338

sup
f0 %

Pr
f0

L xn; f0 C1 Rn f0 1 4.339

As indicated above we maintain the double-supremum340

in the definition because fewer assumptions are imposed341

directly on the true underlying function f , and further342

because it allows to more directly compare our upper343

and lower bounds.344

3) Lower Bounds and the choice of the “localization 345

radius” εn f0 : Our lower bounds allow the estima- 346

tor knowledge of the reference function (this makes 347

establishing the lower bound more challenging). The 348

lower bound in (5) implies that no estimator xn can 349

effectively optimize a function f close to f0 beyond the 350

convergence rate of Rn f0 , even if perfect knowledge 351

of the reference function f0 is available a priori. The 352

εn f0 parameter that decides the “range” in which 353

local minimax rates apply is taken to be on the same 354

order as the actual local rate Rn f0 in this paper. 355

This is (up to constants) the smallest radius for which 356

we can hope to obtain non-trivial lower-bounds: if we 357

consider a much smaller radius than Rn f0 then the 358

trivial estimator which outputs the minimizer of the ref- 359

erence function would achieve a faster rate than Rn f0 . 360

On the other hand selecting the smallest possible radius 361

makes establishing the lower bound most challenging 362

but provides a refined picture of the complexity of 363

zeroth-order optimization. 364

We remark that our primary motivation for the 365

local-minimax analysis stems from the fact that for natural 366

function classes the global-minimax rate for the optimization 367

complexity is excessively pessimistic, while the local minimax 368

analysis provides a more refined picture. In machine learning 369

applications, there are several cases where the population risk 370

is well-behaved (smooth, potentially non-convex) but we are 371

only able to access/query the empirical risk which we want to 372

minimize. Using standard concentration bounds the empirical 373

risk and population risk are close, and the resulting problem 374

is then to minimize the approximate-smooth empirical risk 375

(see for instance [42], [47] for a more detailed discussion). 376

III. MAIN RESULTS 377

With this background in place we now turn our attention 378

to our main results. We begin by collecting our assumptions 379

about the true underlying function and the reference function 380

in Section III-A. We state and discuss the consequences of 381

our upper and lower bounds in Sections III-B and III-C 382

respectively. We defer most technical proofs to Section V and 383

turn our attention to our optimization algorithm in Section IV. 384

A. Assumptions 385

We first state and motivate assumptions that will be used. 386

The first assumption states that f is locally Hölder smooth on 387

its level-sets. 388

(A1) There exist constants κ,α, M, ζ 0 such 389

that f restricted to X f,κ,ζ : x X : 390

infz X , z x ζ f z f κ belongs to the 391

Hölder class -α M , meaning that f is k-times 392

differentiable on X f,κ,ζ and furthermore for any 393

x, x X f,κ,ζ
3, 394

α1 ... αd k

f α,k x f α,k x

x x α k
M. (6) 395

3We use the ℓ -norm for convenience and it can be replaced by any
equivalent vector norm.
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Here k α is the largest integer lower bounding α396

and f α, j x : j f x x
α1
1 . . . x

αd

d .397

We use -α
κ M to denote the class of all functions satisfy-398

ing (A1). We remark that (A1) is weaker than the usual Hölder399

assumption in two ways. First, (6) only imposes stability400

conditions on the α -th order derivatives of the function f , in401

contrast to conditions involving all orders of derivatives in pre-402

vious works [17], [45]. Second, (A1) only imposes the Hölder403

smoothness assumption on certain regions of X , because404

regions with function values larger than f κ can be easily405

detected and removed by a pre-processing step, highlighting406

an important difference between optimization and ℓ -norm407

estimation. We give further details of the pre-processing step408

in Section IV-C.409

Our next assumption concerns the “regularity” of the level-410

sets of the “reference” function f0. Define L f0 ε : x411

X : f0 x f0 ε as the ε-level-set of f0, and412

µ f0 ε : λ L f0 ε as the Lebesgue measure of L f0 ε ,413

which we refer to as the distribution function. Define,414

N L f0 ε , δ as the smallest number of ℓ2-balls of radius δ415

that cover L f0 ε . Then we make the following assumption:416

(A2) There exist constants c0 0 and C0 0 such that417

N L f0 ε , δ C0 1 µ f0 ε δ d for all ε, δ 0, c0 .418

We use %C to denote all functions that satisfy (A2) with419

respect to parameters C c0, C0 .420

At a high-level, the regularity condition (A2) assumes that421

the level-sets are sufficiently “regular” such that covering them422

with small-radius balls does not require significantly larger423

total volume. For example, consider the perfectly regular case424

when L f0 ε is the d-dimensional ℓ2 ball of radius r : L f0 ε425

x X : x x 2 r . Clearly, µ f0 ε rd . In addition,426

the δ-covering number in ℓ2 of L f0 ε is on the order of 1427

r δ d 1 µ f0 ε δ d , which satisfies the scaling in (A2).428

When (A2) holds, uniform confidence intervals for f on429

its level-sets are easier to construct because little statistical430

efficiency is lost by slightly enlarging the level-sets so that431

complete (sufficiently small) d-dimensional cubes are con-432

tained in the enlarged level-sets. On the other hand, when433

regularity of level-sets fails to hold such nonparametric esti-434

mation can be very difficult or even impossible. As an extreme435

example, suppose the level-set L f0 ε consists of n standalone436

and well-spaced points in X : the Lebesgue measure of L f0 ε437

would be zero, but at least $ n queries are necessary to438

construct uniform confidence intervals on L f0 ε . It is clear439

that such L f0 ε violates (A2), because N L f0 ε , δ n as440

δ 0 but µ f0 ε 0.441

B. Upper Bound442

The following theorem is our main result that provides443

an upper bound on the local minimax rate of noisy global444

optimization with active queries.445

Theorem 1. For any α, M, κ, c0, C0 0 and f0 -α
κ M446

%C, where C c0, C0 , define447

εU
n f0 : sup ε 0 : ε 2 d α

µ f0 ε n logω n , (7)448

where ω 5 d α is a large constant. Suppose also that449

εU
n f0 0 as n . Then for sufficiently large n,450

there exists an estimator xn with access to n active queries 451

x1, . . . , xn X , a constant CR 0 depending only 452

on α, M, κ, c, c0, C0 and a constant γ 0 depending only 453

on α and d such that 454

sup
f0 -α

κ M %C

sup
f -α

κ M ,

f f0 εU
n f0

Pr
f

L xn, f 455

CR logγ n εU
n f0 n 1 2 1 4. (8) 456

457

Remark 1. Unlike the (local) smoothness class -α
κ M , 458

the additional function class %C that encapsulates (A2) is 459

imposed only on the “reference” function f0 but not the 460

true function f to be estimated. This makes the assumptions 461

considerably weaker because the true function f may violate 462

(A2) while our results remain valid. 463

Remark 2. The estimator xn does not require knowledge of 464

parameters κ, c0, C0 or εU
n f0 , and automatically adapts to 465

them, as shown in the next section. While the knowledge of 466

smoothness parameters α and M is in general unavoidable 467

in non-parametric regression (see [48]), in the zeroth-order 468

optimization problem it is possible to adapt to α and M 469

by running O log2 n parallel sessions of xn on O log n 470

grids of α and M values, and then using $ n log2 n 471

single-point queries to decide on the location with the smallest 472

function value. This adaptive strategy was suggested in [22] 473

to remove an additional condition in [21], and also applies to 474

our setting. 475

Remark 3. When the distribution function µ f0 ε does not 476

change abruptly with ε the expression of εU
n f0 can be 477

significantly simplified. In particular, if for all ε 0, c0 it 478

holds that 479

µ f0 ε log n µ f0 ε log n O 1
, (9) 480

then εU
n f0 can be upper bounded as 481

εU
n f0 log n O 1 sup ε 0 : ε 2 d α

µ f0 ε n . 482

(10) 483

If µ f0 ε scales polynomially with ε, i.e. µ f0 ε εβ for 484

some constant β 0, then (9) and (10) are both satisfied. 485

The quantity εU
n f0 sup ε 0 : ε 2 d α

µ f0 ε 486

n logω n is crucial in determining the convergence rate of 487

optimization error of xn locally around the reference function 488

f0. While the definition of εU
n f0 is mostly implicit and 489

involves solving an inequality involving the distribution func- 490

tion µ f0 , we remark that it admits a simple form when µ f0 491

has a polynomial growth rate similar to a local Tsybakov noise 492

condition [4], [49], as shown in the following proposition: 493

Proposition 2. Suppose µ f0 ε εβ for some constant 494

β 0, 2 d α . Then εU
n f0 O n α 2α d αβ . 495

In addition, if β 0, d α then εU
n f0 n 1 2 εU

n f0 496

O n α 2α d αβ . 497

We remark that, following Proposition 1 of [45], α,β and d 498

must satisfy the relationship that β d α. Proposition 2 can 499
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be easily verified by solving the system ε 2 d α
µ f0 ε500

n logω n with the condition µ f0 ε εβ . We therefore omit501

its proof. The following two examples give some simple502

reference functions f0 that satisfy the µ f0 ε εβ condition503

in Proposition 2 with particular values of β.504

Example 1. The constant function f0 0 satisfies (A1)505

through (A3) with β 0.506

Example 2. f0 -2
κ M that is strongly convex4 satisfies507

(A1) through (A3) with β d 2.508

Example 1 is simple to verify, as the volume of level-sets509

of the constant function f0 0 exhibit a phase transition at510

ε 0 and ε 0. Consequently, β 0 is the only parameter511

for which µ f0 ε εβ . Example 2 is more involved, and holds512

because the strong convexity of f0 lower bounds the growth513

rate of f0 when moving away from its minimum. We give514

a rigorous proof for Example 2 in the appendix. We also515

remark that f0 does not need to be exactly strongly convex for516

β d 2 to hold, and the example is valid for, e.g., piecewise517

strongly convex functions with a constant number of pieces518

too.519

To best interpret the results in Theorem 1 and Proposition 2,520

it is instructive to compare the “local” rate n α 2α d αβ
521

with the baseline rate n α 2α d , which can be attained by522

reconstructing f in sup-norm and applying Proposition 1.523

Since β 0, the local convergence rate established in Theo-524

rem 1 is never slower, and the improvement compared to the525

baseline rate n α 2α d is dictated by β, which governs the526

growth rate of volume of level-sets of the reference function527

f0. In particular, for functions that grows fast when moving528

away from its minimum, the parameter β is large and therefore529

the local convergence rate around f0 could be much faster than530

n α 2α d .531

Theorem 1 also implies concrete convergence rates for532

special functions considered in Examples 1 and 2. For the533

constant reference function f0 0, Example 1 and Theorem 1534

yield that Rn f0 n α 2α d , which matches the baseline535

rate n α 2α d and suggests that f0 0 is the worst-case ref-536

erence function. This is intuitive, because f0 0 has a drastic537

level-set change at ε 0 and therefore small perturbations538

of f0 result in changes to the optimal location. On the other539

hand, if f0 is strongly smooth and convex as in Example 2,540

Theorem 1 leads to the bound of Rn f0 n 1 2, which541

is significantly better than the n 2 4 d baseline rate5 and542

also matches existing works on zeroth-order optimization of543

convex functions [11]. The faster rate holds intuitively because544

strongly convex functions grow quickly when moving away545

from the minimum. An active query algorithm can focus most546

of its queries on the small level-sets of the underlying function,547

resulting in more accurate local function reconstruction and548

faster optimization error rate.549

Our proof of Theorem 1 is constructive, by upper bounding550

the local minimax optimization error of an explicit algorithm.551

4A twice differentiable function f0 is strongly convex if there exists σ 0

such that ∇
2 f0 x σ I, x X .

5Note that f0 being strongly smooth corresponds to α 2 in the local
smoothness assumption.

Roughly, our algorithm partitions the n active queries evenly 552

into log n epochs, and level-sets of f are estimated at the end 553

of each epoch by comparing (uniform) confidence intervals 554

on a dense grid on X . It is then proved that the volume 555

of the estimated level-sets contracts geometrically, until the 556

target convergence rate Rn f0 is attained. The algorithm is 557

described in more detail in Section IV and the complete proof 558

of Theorem 1 is in Section V-B. 559

C. Lower Bounds 560

We prove local minimax lower bounds that match the upper 561

bounds in Theorem 1 up to logarithmic terms. As we remarked 562

in Section II-B, in the local minimax lower bound formulation 563

we assume the data analyst has full knowledge of the reference 564

function f0, which makes the lower bounds stronger as more 565

information is available a priori. 566

To facilitate such local minimax lower bounds, the following 567

additional condition is imposed on the reference function f0 568

of which the data analyst has perfect information. 569

(A2’) There exist constants c0, C0 0 such that 570

M L f0 ε , δ C0µ f0 ε δ d for all ε, δ 0, c0 , 571

where M L f0 ε , δ is the maximum number of dis- 572

joint ℓ2 balls of radius δ that can be packed into L f0 ε . 573

We denote %
C

as the class of functions that satisfy (A2’) with 574

respect to parameters C c0, C0 0. Intuitively, (A2’) can 575

be regarded as a converse of (A2). 576

We are now ready to state our main negative result, which 577

shows, from an information-theoretic perspective, that the 578

upper bound in Theorem 1 is not improvable. 579

Theorem 2. Suppose α, c0, C0, c0, C0 0 and κ . 580

Denote C c0, C0 and C c0, C0 . For any f0 581

%C %
C

, define 582

εL
n f0 : sup ε 0 : ε 2 d α

µ f0 ε n . (11) 583

Then there exists a constant M 0 depending on α, d, C and 584

C such that, for any f0 -α
κ M 2 %C %C , 585

inf
xn

sup
f -α

κ M ,

f f0 2εL
n f0

Pr
f

L xn; f εL
n f0

1

3
. (12) 586

587

Remark 4. We note in passing that for any f0 and n it always 588

holds that εL
n f0 εU

n f0 . 589

Remark 5. If the distribution function µ f0 ε satisfies (9) 590

(i.e. it does not change too abruptly) in Remark 3, then 591

εL
n f0 εU

n f0 log n O 1 . Consequently, the upper and 592

lower bounds for these functions match up to logarithmic 593

factors. 594

The following proposition derives an explicit expression for 595

εL
n f0 for reference functions whose distribution functions 596

have a polynomial growth, which matches the upper bound 597

in Proposition 2 up to log n factors. The proof of this Propo- 598

sition is straightforward and is omitted. 599

Proposition 3. Suppose µ f0 ε εβ for some β 0, 2 600

d α . Then εL
n f0 $ n α 2α d αβ . 601
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The following proposition additionally shows the existence602

of f0 -α M %C %C that satisfies µ f0 ε εβ for603

any values of α 0 and β 0, d α . Its proof is given in604

the Appendix.605

Proposition 4. Fix arbitrary α, M 0 and β 0, d α .606

There exists f0 -α
κ M %C %C for κ and constants607

C c0, C0 , C c0, C0 that depend only on α,β, M and608

d such that µ f0 ε εβ .609

Theorem 2 and Proposition 3 show that the n α 2α d αβ
610

upper bound on local minimax convergence rate established in611

Theorem 1 is not improvable up to logarithmic factors of n.612

Such information-theoretic lower bounds on the convergence613

rates hold even if the data analyst has perfect information of614

f0, the reference function on which the n α 2α d αβ local615

rate is based. Our results also imply an n α 2α d minimax616

lower bound over all α-Hölder smooth functions, showing that617

without additional assumptions, noisy optimization of smooth618

functions is as difficult as reconstructing the unknown function619

in sup-norm.620

Our proof of Theorem 2 also differs from those of existing621

minimax lower bounds for active nonparametric models [50].622

The classical approach is to invoke Fano’s inequality and to623

upper bound the KL divergence between different underlying624

functions f and g using f g , corresponding to the625

point x X that leads to the largest KL divergence. Such626

an approach, however, does not produce tight lower bounds627

for our problem. To overcome such difficulties, we borrow628

the lower bound analysis for bandit pure exploration problems629

in [51]. In particular, our analysis considers the query distri-630

bution of any active query algorithm A ϕ1, . . . ,ϕn,φn631

under the reference function f0 and bounds the perturbation in632

query distributions between f0 and f using Le Cam’s lemma.633

Afterwards, an adversarial function choice f can be made634

based on the query distributions of the considered algorithm A.635

We defer the complete proof of Theorem 2 to Section V-C.636

Theorem 2 applies to any global optimization method that637

makes active queries, corresponding to the query model in638

Definition 2. The following theorem, on the other hand, shows639

that for passive algorithms (Definition 1) the n α 2α d opti-640

mization rate is not improvable even with additional level-set641

assumptions imposed on f0. This demonstrates an explicit642

gap between passive and adaptive query models in global643

optimization problems.644

Theorem 3. Suppose α, c0, C0, c0, C0 0 and κ .645

Denote C c0, C0 and C c0, C0 . Then there exist646

constants M 0 depending on α, d, C, C and N depending647

on M such that, for any f0 -α
κ M 2 %C %C satisfying648

εL
n f0 εL

n : log n n α 2α d ,649

inf
xn

sup
f -α

κ M ,

f f0 2εL
n

Pr
f

L xn; f εL
n

1

3
for all n N.650

(13)651

Intuitively, the apparent gap demonstrated by Theorems 2652

and 3 between the active and passive query models stems from653

the observation that, a passive algorithm A only has access 654

to uniformly sampled query points x1, . . . , xn and therefore 655

cannot focus on a small level-set of f in order to improve 656

query efficiency. In addition, for functions that grow faster 657

when moving away from their minima (implying a larger 658

value of β), the gap between passive and active query models 659

becomes bigger as active queries can more effectively exploit 660

the restricted level-sets of such functions. 661

IV. OUR ALGORITHM 662

In this section we describe a concrete algorithm that attains 663

the upper bound in Theorem 1. We start with a cleaner 664

algorithm that operates under the slightly stronger condition 665

that κ in (A1), meaning that f is α-Hölder smooth on the 666

entire domain X . The generalization to κ 0 being a constant 667

is given in Section IV-C with an additional pre-processing step. 668

Let Gn X be a finite grid of points in X . We assume the 669

finite grid Gn satisfies the following two mild conditions: 670

(B1) Points in Gn are sampled i.i.d. from an unknown distri- 671

bution PX on X ; furthermore, the density pX associated 672

with PX satisfies p
0

pX x p0 for all x X , where 673

0 p
0

p0 are universal constants; 674

(B2) Gn n3 and log Gn O log n . 675

Remark 6. Although typically the choices of the grid points 676

Gn belong to the data analyst, in some applications the choices 677

of design points are not completely unconstrained. For exam- 678

ple, in material synthesis experiments described previously 679

some environmental parameter settings (e.g., temperature and 680

pressure) might not be allowed due to budget or physical con- 681

straints. Thus, we choose to consider less restrictive conditions 682

imposed on the design grid Gn , allowing it to be more flexible 683

in real-world applications. 684

Remark 7. Condition (B2) ensures that the grid Gn is 685

sufficiently dense, such that even with the smallest bandwidth 686

our algorithm possibly uses (ht x 1 n2, see (18)), each 687

x Gn has abundant neighboring points in Gn , so that the 688

local polynomial estimates in (15) are well-defined. 689

For any subset S Gn and a “weight” function 690

ϱ : Gn R , define the extension S ϱ of S with respect 691

to ϱ as 692

S ϱ :

x S

B
ϱ x

x; Gn where 693

B
ϱ x

x; Gn z Gn : z x ϱ x . (14) 694

The algorithm can then be formulated as two levels of iter- 695

ations, with the outer loop shrinking the “active set” Sτ and 696

the inner loop collecting data in order to reduce the lengths 697

of the confidence intervals on the points in the active set. 698

A pseudocode description of our proposed algorithm is given 699

in Figure 1. 700

A. Local Polynomial Regression 701

We use local polynomial regression [5] to obtain the esti- 702

mate f . In particular, for any x Gn and a bandwidth 703
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Fig. 1. An informal illustration of Algorithm 1. Solid blue curves depict the underlying function f to be optimized, black and red solid dots denote the query
points and their responses xt , yt , and black and red vertical line segments correspond to uniform confidence intervals on function evaluations constructed
using the current batch of data observed. The left figure illustrates the first epoch of our algorithm, where query points are uniformly sampled from the entire
domain X . Afterwards, sub-optimal locations based on the constructed confidence intervals are removed, and a shrunken “candidate set” S1 is obtained. The
algorithm then proceeds to the second epoch, illustrated in the right figure, where query points (in red) are sampled only from the restricted candidate set and
shorter confidence intervals (also in red) are constructed and updated. The procedure is repeated until O log n epochs are completed.

Parameters: α, M , δ, n

Output: xn , the final prediction

Initialization: S0 Gn , ϱ0 x , T log2 n ,

n0 n T ;

for τ 1, 2, . . . , T do
Compute “extended” sample set Sτ 1 ϱτ 1 defined

in (14);

for t τ 1 n0 1 to τn0 do
Sample xt uniformly at random from Sτ 1 ϱτ 1

and observe yt f xt wt ;

end

For every x Sτ 1, compute bandwidth hτ x

using (18) and build the confidence interval

ℓτ x , uτ x in (19);

Sτ : x Sτ 1 : ℓτ x minx Sτ 1
uτ x ,

ϱτ x : min ϱτ 1 x , hτ x ,
end

Final processing: for every x ST let fhT ,x be the

local polynomial estimates constructed in (15) at x .

Output xn arg minx ST minx B
hT x

x;X fhT ,x x .

Algorithm 1 The Main Algorithm

parameter h 0, consider the least squares polynomial704

estimate705

fh argmin
g Pk

t

t 1

I xt Bh x yt g xt
2
, (15)706

where Bh x : x X : x x h and Pk denotes707

all polynomials of degree k on X .708

To analyze the performance of fh evaluated at a certain709

point x X , define the mapping710

ψx,h : z 1,ψ1
x,h z , . . . ,ψk

x,h z711

where ψ
j

x,h : z
j

ℓ 1 h 1 ziℓ xiℓ
d
i1,...,i j 1 is the712

degree- j polynomial mapping from R
d to R

d j
. Also define713

6t,h : ψx,h xt 1 t t,xt Bh x as the m D aggregated714

design matrix, where m t
t 1 I xt Bh x and D 715

1 d . . . dk , k α . The estimate fh defined in (15) 716

then admits the following closed-form expression: 717

fh z ψx,h z 6t,h6t,h 6t,hYt,h, (16) 718

where Yt,h yt 1 t t,xt Bh x and A is the 719

Moore-Penrose pseudo-inverse of A. 720

The following lemma gives a finite-sample analysis of the 721

error of fh x : 722

Lemma 1. Suppose that f satisfies (6) on Bh x;X , 723

maxz Bh x;X ψx,h z 2 b and 1
m

6t,h6t,h σ ID D for 724

some σ 0. Then for any δ 0, 1 2 , with probability 1 δ 725

fh x f x
b2

σ
Mdkhα

bh,δ x

b
5D ln 1 δ

σm

sh,δ x

: ηh,δ x , 726

x Bh x;X . (17) 727

728

Remark 8. bh,δ x , sh,δ x and ηh,δ x depend on x because 729

σ depends on 6t,h , which further depends on the sample points 730

in the neighborhood Bh x;X of x. 731

In the rest of the paper we define bh,δ x : b2 σ Mdkhα
732

and sh,δ x : b 5D ln 1 δ σm as the bias and standard 733

deviation terms in the error of fh x , respectively. We also 734

denote ηh,δ x : bh,δ x sh,δ x as the overall error 735

in fh x . 736

Notice that when bandwidth h increases, the bias term 737

bh,δ x increases because of the hα term; on the other hand, 738

with h increasing the local neighborhood Bh x;X grows 739

and would potentially contain more samples, implying a larger 740

m and smaller standard deviation term sh,δ x . A careful 741

selection of the bandwidth h balances bh,δ x and sh,δ x and 742

yields appropriate confidence intervals on f x , and we turn 743

our attention to this in the next section. 744
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B. Bandwidth Selection and Confidence Intervals745

Given the expressions of bias bh,δ x and standard deviation746

sh,δ x in (17), the bandwidth hτ x 0 at epoch τ and point747

x is selected as748

hτ x :
jτ x

n2
where jτ x : arg max j N ,749

j n2 : b j n2,δ x s j n2,δ x . (18)750

More specifically, hτ x is the largest positive value in an751

evenly spaced grid j n2 such that the bias of fhτ x is752

smaller than its standard deviation. This bandwidth selection753

is in principle similar to the Lepski’s method [52], with the754

exception that an upper bound on the bias for any bandwidth755

parameter is known and does not need to be estimated from756

data.757

With the selection of bandwidth hτ x at epoch τ and758

query point x , a confidence interval on f x for all x759

B
hτ x

x;X is constructed as
760

ℓτ x : max
1 t τ

sup
x B

hτ x
x;X

fht x x ηht x ,δ x ;761

uτ x : min
1 t τ

inf
x B

hτ x
x;X

fht x x ηht x ,δ x .762

(19)763

Note that for any x X , the lower confidence edge ℓτ x is764

a non-decreasing function in τ and the upper confidence edge765

uτ x is a non-increasing function in τ .766

C. Pre-processing767

We describe a pre-processing step that relaxes the smooth-768

ness condition from κ to κ $ 1 , meaning that only769

local smoothness of f around its minimum values is required.770

Let n0 n log n , x1, . . . , xn0 be points i.i.d. uniformly sam-771

pled from X and y1, . . . , yn0 be their corresponding responses.772

For every grid point x Gn , perform the following:773

1) Compute fx as the local polynomial fits of all yi774

corresponding to xi x n
1 2d

0 log3 n : h0;775

2) Compute f x as the sample average of all yi corre-776

sponding to xi x h0;777

3) Remove all x Gn from S0 if f x778

minz Gn infz Bh0
z;X fz z 1 log n.779

Remark 9. The 1 log n term in the removal condition f x780

minz Gn f z 1 log n is not important, and can be replaced781

with any sequence ωn such that limn ωn 0 and782

limn ωnnt for any t 0. The readers are referred to783

the proof of Proposition 5 in the appendix for the motivation784

of this term as well as the selection of the pre-processing785

bandwidth h0.786

To analyze the pre-processing step, we state the following787

proposition:788

Proposition 5. Assume f -α
κ M and let S0 be the screened789

grid after step 2 of the pre-processing procedure. Then for790

sufficiently large n, with probability 1 O n 1 we have791

Bh0
x;X L f κ 2 , x S0, (20)792

where L f κ 2 x X : f x f κ 2 .793

To interpret Proposition 5, note that for sufficiently large n, 794

f -α
κ M implies f being α-Hölder smooth (i.e., f 795

satisfies (6)) on x L f κ 2 Bh0
x;X , because κ 0 is a 796

constant and h0 0 as n . Subsequently, the proposition 797

shows that with high probability, the pre-processing step will 798

remove all grid points in Gn in non-smooth regions of f , 799

while maintaining the global optimal solution. This justifies 800

the pre-processing step for f -α
κ M , because f is smooth 801

on the grid and its close neighborhood after pre-processing. 802

The proof of Proposition 5 uses the fact that the local 803

mean estimation is large provided that all data points in the 804

local mean estimator are large, regardless of their underlying 805

smoothness. The complete proof of Proposition 5 is deferred 806

to the Appendix. 807

V. PROOFS OF MAIN THEOREMS 808

A. Proof of Lemma 1 809

Our proof closely follows the analysis of asymptotic con- 810

vergence rates for series estimators in [53]. We further work 811

out all constants in the error bounds to arrive at a com- 812

pletely finite-sample result, which is then used to construct 813

finite-sample confidence intervals. 814

We start with as polynomial interpolation results for all 815

Hölder smooth functions in Bht
x;X . 816

Lemma 2. Suppose f satisfies (6) on Bh x;X . Then there 817

exists fx Pk such that 818

sup
z Bh x;X

f z fx z Mdkhα
. (21) 819

820

Proof. Consider 821

fx z : f x

k

j 1 α1 ... αd j

j f x

x
α1

1 . . . x
αd

d

d

ℓ 1

zℓ xℓ
αℓ .

(22) 822

By Taylor expansion with Lagrangian remainders, there exists 823

ξ 0, 1 such that 824

fx z f z 825

α1 ... αd k

f α x ξ z x f α x

d

ℓ 1

zℓ xℓ
αℓ . 826

Because f satisfies (6) on Bh x;X , we have that f α x 827

ξ z x f α x M z x α k . Also note that zℓ xℓ 828

z x h for all z Bh x;X . The lemma is thus 829

proved. 830

Using (16), the local polynomial estimate fh can be written 831

as fh z ψx,h z θh , where 832

θh 6t,h6t,h
16t,hYt,h . (23) 833

In addition, because fx Pk , there exists θ R
D

834

such that fx z ψx,h z θ . Denote also that Ft,h : 835

f xt 1 t t,xt Bh x , :t,h : f xt fx xt 836
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1 t t,xt Bh x and Wt,h : wt 1 t t,xt Bh x . (23) can837

then be re-formulated as838

θh 6t,h6t,h
16t,h 6t,hθ :t,h Wt,h (24)839

θ
1

m
6t,h6t,h

1
1

m
6t,h :t,h Wt,h . (25)840

Because 1
m

6t,h6t,h σ ID D and supz Bh x ψx,h z 2841

b, we have that842

θh θ 2
b

σ
:t,h

1

m
6t,h6t,h

1
1

m
6t,hWt

2

. (26)843

Invoking Lemma 2 we have :t,h Mdkhα . In addition,844

because Wt Nm 0, Im n , we have that845

1

m
6t,h6t,h

1
1

m
6t,h Wt ND 0,

1

m

1

m
6t,h6t,h

1

.846

(27)847

Applying concentration inequalities for quadratic forms of848

Gaussian random vectors (Lemma 10), with probability 1 δ849

it holds that850

1

m
6t,h6t,h

1
1

m
6t,hWt

2

5D log 1 δ

σm
. (28)851

We then have that with probability 1 δ that852

θh θ 2
b

σh

Mdkhα
t

5D log 1 δ

σm
. (29)853

Finally, noting that for all x Bh x;X , ψx,h x 2 b854

by definition, we have that855

fh x f x fh x fx x856

ψx,h x θh θ b θh θ 2,857

which completes the proof of Lemma 1.858

B. Proof of Theorem 1859

In this section we prove Theorem 1. We prove the theorem860

by considering every reference function f0 -α
κ M %C861

separately. For simplicity, we assume κ throughout862

the proof. The 0 κ can be handled by replacing863

X with S0 which is the grid after the pre-processing step864

described in Section IV-C. We also suppress dependency on865

d,α, M, C, p
0
, p0 in O , $ , % , , and notations.866

We further suppress logarithmic terms of n in O and $867

notations.868

The following lemma is our main lemma, which shows869

that the active set Sτ in our proposed algorithm shrinks870

geometrically before it reaches a certain level. To simplify871

notations, denote c0 : 10c0 and (A2) then hold for all872

ε, δ 0, c0 for all f0 %C.873

Lemma 3. For τ 1, . . . , T define ετ : max c0874

2 τ
, C3 εU

n f0 n 1 2 log2 n , where C3 0 is a con-875

stant depending only on d,α, M, p
0
, p0 and C. Denote also876

ρτ : maxx Sτ ϱτ x . Then for sufficiently large n, with877

probability 1 O n 1 the following holds uniformly for all 878

outer iterations τ 1, . . . , T : 879

B
ρτ

x;X L f ετ . (30) 880

Lemma 3 shows that the level ετ in L f ετ that con- 881

tains Sτ 1 shrinks geometrically, until the condition ετ 882

C3 εU
n f0 n 1 2 log2 n is violated. If the condition is 883

never violated, then at the end of the last epoch τ we 884

have ετ O n 1 because τ log n. On the other 885

hand, because Sτ Sτ 1 always holds, we have ετ 886

εU
n f0 n 1 2 log2 n. Combining both cases we have that 887

ετ εU
n f0 n 1 2 log2 n n 1. Theorem 1 is thus 888

proved. 889

In the rest of this section we prove Lemma 3. We need 890

several technical lemmas and propositions. Except for Propo- 891

sition 6 that is straightforward, the proofs of the other technical 892

lemmas are deferred to the end of this section. 893

Denote xn : argminx Gn
f x as the point on the grid Gn 894

with the smallest objective value The following proposition 895

shows that with high probability, the confidence intervals 896

constructed in the algorithm are truthful and the successive 897

rejection procedure will never exclude the true optimizer of f 898

on Gn . 899

Proposition 6. Suppose δ 1 n4 Gn . Then with probability 900

1 O n 1 the following hold: 901

1) f x ℓt x , ut x for all 1 t n and x Gn , 902

x B
ht x

x;X ; 903

2) xn Sτ for all 0 τ n. 904

Proof. The first property is true by applying the union bound 905

over all t 1, . . . , n and x Gn . The second property 906

then follows, because ℓt xn f xn and minx Sτ 1 ut x 907

f xn for all τ . 908

The following lemma shows that every small box centered 909

around a certain sample point x Gn contains a sufficient 910

number of sample points whose least eigenvalue can be 911

bounded with high probability under the polynomial mapping 912

ψx,h defined in Section III-B. 913

Lemma 4. For any x Gn , 1 m n and h 0, 914

let K 1
h,m x , . . . , K n

h,m x be n independent point sets, where 915

each point set consists of m points sampled i.i.d. uniformly at 916

random from Bh x; Gn Gn Bh x;X . With probability 917

1 O n 1 the following holds true uniformly for all x Gn , 918

h j n2 : j N, j n2 and K ℓ
h,m x , ℓ n as n : 919

1) suph 0 supz Bh x ψx,h z 2 % 1 ; 920

2) Bh x; Gn hd Gn ; 921

3) σmin K ℓ
h,m x % 1 for all m $ log2 n and 922

m Gn , where σmin K ℓ
h,m x is the least eigenvalue 923

of 1
m z K ℓ

h,m x ψx,h z ψx,h z . 924

Remark 10. It is possible to improve the concentration result 925

in (48) using the strategies adopted in [35] based on sharper 926

Bernstein type concentration inequalities. Such improvements 927

are, however, not important in establishing the main results of 928

this paper. 929
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The next lemma shows that, the bandwidth ht selected at the930

end of each outer iteration τ is near-optimal, being sandwiched931

between two quantities determined by the size of the active932

sample grid Sτ 1 : Sτ 1 ϱτ 1 .933

Lemma 5. There exist constants C1, C2 0 depending934

only on d,α, M, p
0
, p0 and C such that with probability935

1 O n 1 , the following holds for every outer iteration936

τ 1, . . . , T and all x Sτ 1:937

C1 ντ 1n0
1 2α d τ n ϱτ x938

ht x C2 ντ 1n0
1 2α d log n τ n, (31)939

where ντ 1 : Gn Sτ 1 .940

We are now ready to state the proof of Lemma 3,941

which is based on an inductive argument over the epochts942

τ 1, . . . , T .943

Proof. We use induction to prove this lemma. For the base944

case τ 1, because f f0 εU
n f0 and εU

n f0 0 as945

n , it suffices to prove that B
ρ1

x;X L f0 c0 4946

for all x S1 and sufficiently large n. Because S0 S0947

Gn , invoking Lemmas 5 and 1 we have that ηht x ,δ x948

O n α 2α d for all x Gn with high probability at the end949

of the first outer iteration τ 1. Therefore, for sufficiently950

large n we conclude that supx Gn
ηht x ,δ x c0 16 and951

hence B
ρ1

x;X L f0 c0 4 for all x S1.952

We now prove the lemma for τ 2, assuming it holds for953

τ 1. We also assume that n (and hence n0) is sufficiently954

large, such that the maximum CI length maxx G ηht x ,δ x955

after the first outer iteration τ 1 is smaller than c0 2.956

Because f f0 εU
n f0 and ετ 1 C3ε

U
n f0 log2 n,957

for appropriately chosen constant C3 that is not too small, we958

have that f f0 ετ 1. By the inductive hypothesis we959

have960

x Sτ 1, B
ρτ 1

x;X L f ετ 1 ;961

Equivalently,962

Sτ 1 L f ετ 1,ρτ 1 L f0
ετ 1 f f0 ,ρτ 1963

L f0
2ετ 1,ρτ 1 . (32)964

Subsequently,965

Sτ 1 Sτ 1 L f0
2ετ 1, 2ρτ 1 . (33)966

Let x Hn
B2

2ρτ 1

x be the smallest covering set of967

L f0 2ετ 1 , meaning that L f0 2ετ 1 x Hn
B2

2ρτ 1

x ,968

where B2
2ρτ 1

x z X : z x 2 2ρτ 1 is the969

ℓ2 ball of radius 2ρτ 1 centered at x . By (A2), we know970

that Hn 1 ρτ 1
d
µ f0 2ετ 1 . In addition, the enlarged971

level-set satisfies L f0
2ετ 1, 2ρτ 1 x Hn

B
4ρτ 1

x .972

Subsequently,973

µ f0
2ετ 1,ρτ 1 Hn ρτ 1

d
µ f0 2ετ 1 ρτ 1

d
.

(34)974

By Lemma 5, the monotonicity of Sτ 1 and the fact that 975

p
0

pX z p0 for all z X , we have 976

ρτ 1 µ f ετ 1,ρτ 1
1 2α d n

1 2α d

0 log n (35) 977

µ f0
2ετ 1,ρτ 1

1 2α d n
1 2α d

0 log n (36) 978

µ f0 2ετ 1 ρτ 1
d

1 2α d

n
1 2α d

0 log n. 979

(37) 980

Re-arranging terms on both sides of (37) we have 981

ρτ 1 max µ f0 2ετ 1

1
2α d n

1
2α d

0 log n, n
1

2α
0 log n . 982

(38) 983

On the other hand, according to the selection procedure of 984

the bandwidth ht x , we have that ηht x ,δ x bht x ,δ x . 985

Invoking Lemma 5 we have for all x Sτ 1 that 986

ηht x ,δ x bht x ,δ x ht x α (39) 987

ντ 1n0
α 2α d log n (40) 988

ντ 2n0
α 2α d log n (41) 989

ρτ 1
α log n. (42) 990

Here (40) holds by invoking the upper bound on ht x in 991

Lemma 5, (41) holds because ντ 1 ντ 2, and (42) holds 992

by again invoking the lower bound on ϱτ 1 x in Lemma 5. 993

Combining Eqs. (38,42) we have 994

max
x Sτ 1

ηht x ,δ x (43) 995

max µ f0 2ετ 1

α
2α d n

α
2α d

0 log2 n, n
1
2

0 log n . 996

(44) 997

Recall that n0 n log n and εU
n f0 ετ 1, provided 998

that C3 is not too small. By definition, every ε εU
n f0 999

satisfies ε 2 d α
µ f0 ε n logω n for some large constant 1000

ω 5 d α. Subsequently, 1001

µ f0 2ετ 1

α
2α d n

α
2α d

0 log2
1002

2ετ 1n
α

2α d log
ωα

2α d n n
α

2α d

0 log2 n (45) 1003

ετ 1 log n
ω 5 d α α

2α d . (46) 1004

Because ω 5 d α, the right-hand side of (46) is 1005

asymptotically dominated 6 by ετ 1. In addition, n
1 2

0 log n 1006

is also asymptotically dominated by ετ 1 because ετ 1 1007

C3n 1 2 logω n. Therefore, for sufficiently large n we have 1008

max
x Sτ 1

ηht x ,δ x ετ 1 4. (47) 1009

Lemma 3 is thus proved. 1010

6We say an is asymptotically dominated by bn if limn

an bn 0.
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1) Proof of Lemma 4:1011

Proof. We first show that the first property holds almost surely.1012

Recall the definition of ψx,h , we have that 1 ψx,h z 21013

D max1 j d h 1 z j x j
k. Because z x h for1014

all z Bh x , supz Bh x ψx,h z 2 O 1 for all h 0.1015

Thus, suph 0 supz Bh x ψx,h z 2 % 1 for all x Gn .1016

For the second property, by Hoeffding’s inequality1017

(Lemma 9) and the union bound, with probability 1 O n 1
1018

we have that1019

max
x,h

Bh x; Gn

Gn

PX z Bh x
log n

Gn

. (48)1020

In addition, note that PX z Bh x;X1021

p
0
λ Bh x;X hd and PX z Bh x;X1022

p0λ Bh x;X hd , where λ denotes the Lebesgue1023

measure on X . Subsequently, Bh x; Gn is lower bounded1024

by $ hd Gn Gn log n and upper bounded by1025

O hd Gn Gn log n . The second property is then1026

proved by noting that hd n d and Gn n3d min α,1 .1027

We next prove the third property. Because p
0

pX z p01028

for all z X , we have that1029

p
0

Bh x;X

ψx,h z ψx,h z dUx,h z1030

E
1

m
z K ℓ

h,m

ψx,h z ψx,h z (49)1031

p0
Bh x;X

ψx,h z ψx,h z dUx,h z , (50)1032

where Ux,h is the uniform distribution on Bh x;X . Note1033

also that1034

X

ψ0,1 z ψ0,1 z dU z1035

Bh x;X

ψx,h z ψx,h z dUx,h z (51)1036

2d

X

ψ0,1 z ψ0,1 z dU z (52)1037

where U is the uniform distribution on X 0, 1 d . The1038

following proposition upper and lower bounds the eigenvalues1039

of
X

ψ0,1 z ψ0,1 z dU z , which is proved in the appendix.1040

Proposition 7. There exist constants 0 ψ0 601041

depending only on d, D such that1042

ψ0 ID D
X

ψ0,1 z ψ0,1 z dU z 60 ID D. (53)1043

1044

Using Proposition 7 and Eqs. (51,52), we conclude that1045

$ 1 ID D E
1

m
z K ℓ

h,m

ψx,h z ψx,h z O 1 ID D.1046

(54)1047

Applying matrix Chernoff bound (Lemma 11) and the union 1048

bound, we have that with probability 1 O n 1 , 1049

max
x,h,m,ℓ

1

m
z K ℓ

h,m x

ψx,h z ψx,h z 1050

E ψx,h z ψx,h z z Bh x
op

log n

m
. 1051

Combining Eqs. (54,55) and applying Weyl’s inequality 1052

(Lemma 12) we have 1053

$ 1 O log n m σmin K ℓ
h,m x 1054

O 1 O log n m . (55) 1055

The third property is therefore proved. 1056

2) Proof of Lemma 5: Proof. We use induction to prove this 1057

lemma. For the base case of τ 1, we have S0 S0 Gn 1058

and therefore ντ 1 1. Furthermore, applying Lemma 4 we 1059

have that for all h j n2, 1060

bh,δ x hα
, sh,δ x

log n

hd n0
. (56) 1061

Thus, for h selected according to (18) as the largest bandwidth 1062

of the form j n2, j N such that bh,δ x sh,δ x , 1063

both bh,δ x , sh,δ x are on the order of n
1 2α d

0 up to 1064

logarithmic terms of n, and therefore one can pick appropriate 1065

constants C1, C2 0 such that C1n
1 2α d

0 ϱ1 x 1066

C2n
1 2α d

0 log n holds for all x Gn . 1067

We next prove the lemma for τ 1, assuming it holds 1068

for τ 1. We first establish the lower bound part. Define 1069

ρτ 1 : minz Sτ 1 ϱτ 1 z . By inductive hypothesis, ρτ 1 1070

C1 ντ 2n0
1 2α d τ 1 n. Note also that ντ 1 ντ 2 1071

because Sτ 1 Sτ 2, which holds because Sτ 1 Sτ 2 1072

and ϱτ 1 z ϱτ 2 z for all z. Let ht be the smallest 1073

number of the form jt n2, jt n2 such that ht 1074

C1 ντ 1n0
1 2α d τ n. We then have ht ρτ 1 and 1075

therefore query points in epoch τ are uniformly distributed in 1076

B
ht

x; Gn . Subsequently, applying Lemma 4 we have with 1077

probability 1 O n 1 that 1078

bht ,δ x C ht
α
, sht ,δ x C

log n

ht
dντ 1n

, (57) 1079

where C , C 0 are constants that depend on 1080

d,α, M, p
0
, p0 and C, but not C1, C2, τ or ht . By choosing 1081

C1 appropriately (depending on C and C ) we can make 1082

bht ,δ x sht ,δ x holds for all x Sτ 1, thus establishing 1083

ϱτ x min ϱτ 1 x , ht C1 ντ 1n0
1 2α d τ n. 1084

We next prove the upper bound part. For any ht jt n2
1085

where jt n2 , invoking Lemma 4 we have that 1086

bh,δ x C hα
, sh,δ x C

log n

min h,ρτ 1
d ντ 1n0

, 1087

(58) 1088
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where C and C are again constants depending on1089

d,α, M, p
0
, p0 and C, but not C1, C2. Note also that ρτ 11090

C1 ντ 2n0
1 2α d τ 1 n C1 ντ 1n0

1 2α d
1091

τ n, because ντ 1 ντ 2. By selecting constant C21092

0 carefully (depending on C , C and C1), we can ensure1093

bh,δ x sh,δ x for all h C2 ντ 1n0
1 2α d τ n.1094

Therefore, ϱτ x ht x C2 ντ 1n0
1 2α d τ n.1095

C. Proof of Theorem 21096

In this section we prove the main negative result in Theo-1097

rem 2. To simplify presentation, we suppress dependency on1098

α, d, c0 and C0 in , , , O and $ notations. However,1099

we do not suppress dependency on C R or M in any of the1100

above notations.1101

Let ϕ0 : 2, 2 d
R be a non-negative function1102

defined on X such that ϕ0 -
α

κ 1 with κ ,1103

supx X ϕ0 x $ 1 and ϕ0 z 0 for all z 2 1. Here1104

α denotes the smallest integer that upper bounds α. Such1105

functions exist and are the cornerstones of the construction of1106

information-theoretic lower bounds in nonparametric estima-1107

tion problems [50]. One typical example is the “smoothstep”1108

function (see for example [54])1109

SN x :
1

Z
x N 1

N

n 0

N n

n

2N 1

N n
x n

,1110

N 0, 1, 2, . . . ,1111

where Z 0 is a scaling parameter. The smoothstep function1112

SN is defined on 0, 1 and satisfies the Hölder condition in (6)1113

of order α N on 0, 1 . It can be easily extended to SN,d :1114

2, 2 d
R by considering SN,d x : 1 Z SN a x 11115

where x 1 x1 . . . xd and a 1 2d . It is easy1116

to verify that, with Z chosen appropriately, SN,d -N 1 ,1117

supx X SN,d x 1 Z $ 1 and SN,d z 0 for all1118

z 2 1, where M 0 is a constant.1119

For any x X and h 0, define ϕx,h : X R as1120

ϕx,h z : I z Bh x
Mhα

2
ϕ0

z x

h
. (59)1121

It is easy to verify that ϕx,h -α M 2 , and furthermore1122

supz X ϕx,h z Mhα and ϕx,h z 0 for all z Bh x .1123

Let L f0 εL
n f0 be the level-set of f0 at εL

n f0 . Let Hn1124

L f0 εL
n f0 be the largest packing set such that Bh x are1125

disjoint for all x Hn, and x Hn
Bh x L f0 εL

n f0 .1126

By (A2’) and the definition of εL
n f0 , we have that1127

Hn M L f0 εL
n f0 , 2 dh1128

µ f0 εL
n f0 h d εL

n f0
2 d α nh d

. (60)1129

For any x Hn, construct fx : X R as1130

fx z : f0 z ϕx,h z . (61)1131

Let Fn : fx : x Hn be the class of functions indexed1132

by x Hn. Let also h εL
n f0 M 1 α such that ϕx,h1133

2εL
n f0 . We then have that fx f0 2εL

n f0 and fx1134

-α M , because f0,ϕx,h -α M 2 .1135

The next lemma shows that, with n adaptive queries to the 1136

noisy zeroth-order oracle yt f xt wt , it is information 1137

theoretically not possible to identify a certain fx in Fn with 1138

high probability. 1139

Lemma 6. Suppose Fn 2. Let An χ1, . . . ,χn,φn 1140

be an active optimization algorithm operating with a sample 1141

budget n, which consists of samplers χℓ : xi , yi
ℓ 1
i 1 xℓ 1142

and an estimator φn : xi , yi
n
i 1 fx Fn , both can be 1143

deterministic or randomized functions. Then 1144

inf
An

sup
fx Fn

Pr
fx

fx fx
1

2

n sup fx Fn
fx f0

2

2 Fn

.

(62) 1145

1146

Lemma 7. There exists constant M 0 depending on 1147

α, d, c0, C0 such that the right-hand side of (62) is lower 1148

bounded by 1 3. 1149

Lemmas 6 and 7 are proved at the end of this section. 1150

Combining both lemmas and noting that for any distinct 1151

fx , fx Fn and z X , max L z; fx ,L z; fx εL
n f0 , 1152

we proved the minimax lower bound formulated in Theorem 2. 1153

1) Proof of Lemma 6: Our proof is inspired by the negative 1154

result of multi-arm bandit pure exploration problems estab- 1155

lished in [51]. 1156

Proof. For any x Hn, define 1157

nx : E f0

n

i 1

I x Bh x . (63) 1158

Because Bh x are disjoint for x Hn, we have x Hn
nx 1159

n. Also define, for every x Hn, 1160

℘x : Pr
f0

fx fx . (64) 1161

Because x Hn
℘x 1, by pigeonhole principle there is at 1162

most one x Hn such that ℘x 1 2. Let x1, x2 Hn 1163

be the points that have the smallest and second smallest nx . 1164

Then there exists x x1, x2 such that ℘x 1 2 and 1165

nx 2n Fn . By Le Cam’s and Pinsker’s inequality (see, 1166

for example, [4]) we have that 1167

Pr
fx

fx fx Pr
f0

fx fx dTV P
An

f0
P
An

fx
(65) 1168

Pr
f0

fx fx
1

2
KL P

An

f0
P
An

fx
(66) 1169

℘x
1

2
KL P

An

f0
P
An

fx
(67) 1170

1

2

1

2
KL P

An

f0
P
An

fx
. (68) 1171

It remains to upper bound KL divergence of the active 1172

queries made by An . Using the standard lower bound analysis 1173

for active learning algorithms [50], [55] and the fact that 1174
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fx f0 on X Bh x , we have1175

KL P
An

f0
P
An

fx
E f0,An

log
P f0,An

x1:n, y1:n

P fx ,An
x1:n, y1:n

(69)1176

E f0,An
log

n
i 1 P f0 yi xi PAn

xi x1: i 1 , y1: i 1

n
i 1 P fx yi xi PAn

xi x1: i 1 , y1: i 1

1177

(70)1178

E f0,An
log

n
i 1 P f0 yi xi
n
i 1 P fx yi xi

(71)1179

E f0,An

xi Bh x

log
P f0 yi xi

P fx yi xi

(72)1180

nx sup
z Bh x;X

KL P f0 z P fx z (73)1181

nx f0 fx
2

. (74)1182

Therefore,1183

Pr
fx

fx fx
1

2

1

4
nxε2

n

1

2

n fx f0
2

2 Fn

. (75)1184

1185

2) Proof of Lemma 7:1186

Proof. By construction, n sup fx Fx
fx f0

2 M2 nh2α
1187

and Fn Hn Cεε
L
n f0

2 d αnh d . Note also that1188

h ε M 1 α Cεε
L
n f0 M 1 α because fx f01189

ε Cεε
L
n f0 . Subsequently,1190

n sup fx Fx
fx f0

2

2 Fn

n Cεε
L
n f0

2

n Cεε
L
n f0

2 Md α
M d α

.1191

(76)1192

By choosing the constant M 0 to be sufficiently large,1193

the right-hand side of the above inequality is upper bounded1194

by 1 36. The lemma is thus proved.1195

D. Proof of Theorem 31196

The proof of Theorem 3 is similar to the proof of The-1197

orem 2, but is much more standard by invoking the Fano’s1198

inequality [4]. In particular, adapting the Fano’s inequality on1199

any finite function class Fn constructed we have the following1200

lemma:1201

Lemma 8 (Fano’s inequality). Suppose Fn 2, and1202

xi , yi
n
i 1 are i.i.d. random variables. Then1203

inf
fx

sup
fx Fn

Pr
fx

fx fx1204

1
log 2 n sup fx , fx Fn

KL P fx P fx

log Fn

, (77)1205

where P fx denotes the distribution of x, y under the law1206

of fx .1207

Let Fn be the function class constructed in the previous1208

proof of Theorem 2, corresponding to the largest packing1209

set Hn of L f0 εL
n such that Bh x for all x Hn are1210

disjoint, where h εL
n M 1 α such that ϕx,h 2εL

n for1211

all x Hn. Because f0 satisfies (A2’), we have that Fn 1212

Hn µ f0 εL
n h d . Under the condition that εU

n f0 εL
n , it 1213

holds that µ f0 εL
n εL

n
2 d αn. Therefore, 1214

Fn εL
n

2 d α nh d εL
n

2 nMd α
. (78) 1215

Because log n εL
n log n and M 0 is a constant, we have 1216

that log Fn c log n for all n N , where c 0 is a constant 1217

depending only on α, d and N N is a constand depending 1218

on M . 1219

Let U be the uniform distribution on X . Because x U 1220

and fx fx on X Bh x , we have that 1221

KL P fx P fx

1

2 X

fx z fx z 2dU z (79) 1222

1

2
Pr
U

z Bh x fx fx
2 (80) 1223

1

2
λ Bh x εL

n
2 (81) 1224

hd εL
n

2 εL
n

2 d α Md α
. (82) 1225

By choosing M to be sufficiently large, the right-hand side 1226

of (77) can be lower bounded by an absolute constant. The 1227

theorem is then proved following the same argument as in the 1228

proof of Theorem 2. 1229

APPENDIX A 1230

SOME CONCENTRATION INEQUALITIES 1231

In this section, to ease readability of our paper, we provide 1232

some concentration inequalities and other standard results that 1233

we use extensively. 1234

Lemma 9 ( [56]). Suppose X1, . . . , Xn are i.i.d. random 1235

variables such that a X i b almost surely. Then for any 1236

t 0, 1237

Pr
1

n

n

i 1

X i EX t 2 exp
nt2

2 b a 2
. 1238

1239

Lemma 10 ( [57]). Suppose x Nd 0, Id d and let A be 1240

a d d positive semi-definite matrix. Then for all t 0, 1241

Pr x Ax tr A 2 tr A2 t 2 A opt e t
. 1242

1243

Lemma 11 ( [58], simplified). Suppose A1, . . . , An are 1244

i.i.d. positive semidefinite random matrices of dimension d and 1245

Ai op R almost surely. Then for any t 0, 1246

Pr
1

n

n

i 1

Ai EA

op

t 2 exp
nt2

8R2
. 1247

1248

Lemma 12 (Weyl’s inequality). Let A and A E 1249

be d d matrices with σ1, . . . , σd and σ1, . . . , σd be 1250

their singular values, sorted in descending order. Then 1251

max1 i d σi σi E op. 1252
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APPENDIX B1253

ADDITIONAL PROOFS1254

Proof of Proposition 1. Consider arbitrary x X such1255

that f x infx X f x . Then we have that L xn; f1256

f xn f x fn xn fn f fn x fn1257

f 2 fn f , where the last inequality holds because1258

fn xn fn x by optimality of xn .1259

Proof of Example 2. Because f0 -2
κ M is strongly convex,1260

there exists σ 0 such that ∇
2 f0 x σ I for all1261

x X f0,κ , where X f0,κ : L f0 κ is the κ-level-set of f0.1262

Let x arg minx X f0 x , which is unique because f0 is1263

strongly convex. The smoothness and strong convexity of f01264

implies that1265

f0

σ

2
x x 2 f0 x f0

M

2
x x 2 x X f0,κ .1266

(83)1267

Subsequently, there exist constants c0, C1, C2 0 depending1268

only on σ, M, κ and d such that for all ε 0, c0 ,1269

B
C1 ε

x ;X L f0 ε B
C2 ε

x ;X . (84)1270

The property µ f0 ε εβ holds because µ L f0 ε1271

µ B
C1 ε

x ;X εd 2. To prove (A2), note that1272

N L f0 ε , δ N B
C2 ε

x ;X , δ 1 ε δ d . Because1273

εd 2
µ L f0 ε µ f0 ε , we conclude that1274

N L f0 ε , δ 1 δ d
µ f0 ε and (A2) is thus proved.1275

Proof of Proposition 4. Consider f0 0 if β 0 and f0 z :1276

a0 z
p
1 . . . z

p
d for all z z1, . . . , zd 0, 1 d , where1277

a0 0 is a constant depending on α, M , and p d β for1278

β 0, d α . The β 0 case where f0 0 trivially holds.1279

So we shall only consider the case of β 0, d α .1280

We first show f0 -α
κ M with κ , provided that a0 is1281

sufficiently small. For any j k α and α1 . . . αd j ,1282

we have1283

j

x
α1

1 . . . x
αd

d

f0 z
a0 j ! z

p j
ℓ if αℓ j, ℓ d ;

0 otherwise.
1284

(85)1285

Because z1, . . . , zd 0, 1 and p d β α j , it’s clear1286

that 0 j f0 z x
α1

1 . . . x
αd

d a0 j !. In addition, for any1287

z, z 0, 1 d and αℓ k, ℓ d , we have1288

k

x
α1

1 . . . x
αd

d

f0 z
k

x
α1

1 . . . x
αd

d

f0 z1289

a0k! zℓ
p k zℓ

p k (86)1290

a0k! zℓ zℓ
min p k,1

, (87)1291

where the last inequality holds because x t is min t, 1 -Hölder1292

continuous on 0, 1 for t 0. The zℓ zℓ
min p k,1

1293

term can be further upper bounded by z z α k , because1294

p d β α. By selecting a0 0 to be sufficiently small1295

(depending on M) we have f0 -α M .1296

We next prove f0 satisfies µ f0 ε εβ with parameter β1297

depending on a0 and p. For any ε 0, the level-set L f0 ε can1298

be expressed as L f0 ε z 0, 1 d : z
p
1 . . . z

p
d ε a0 . 1299

Subsequently, 1300

0,
ε

a0d

1 p d

L f0 ε 0,
ε

a0

1 p d

. (88) 1301

Therefore, 1302

ε a0d dp
µ f0 ε ε a0

dp
. (89) 1303

Because a0, d are constants and dp β, we established 1304

µ f0 ε εβ for β dp. 1305

Finally, note that for any ε 0, L f0 ε is sandwiched 1306

between two cubics whose volumes only differ by a constant. 1307

This proves (A2) and (A2’) on the covering and packing 1308

numbers of L f0 ε . 1309

Proof of Proposition 5. By the Chernoff bound and the 1310

union bound, with probability 1 O n 1 uniformly over all 1311

x Gn , there are $ n0 log2 n uniform samples in 1312

Bh0
x;X . Because h0 ζ for sufficiently large n0 (ζ is 1313

defined in condition (A1)), by Lemma 1 it holds that 1314

fx x fx x hα
0 n

1 4

0 n
α 2d

0 n
1 4

0 , 1315

x Gn, x Bh0
x;X . (90) 1316

Also, using the standard Gaussian concentration inequality, 1317

with probability 1 O n 1 we have 1318

inf
x Bh0

x;X

f x O n
1 4

0 1319

f x sup
x Bh0

x;X

f x O n
1 4

0 x Gn . (91) 1320

Let x be the minimizer of f on X and x Gn such 1321

that x x h0. By (90), we have with probability 1322

1 O n 1 that infx Bh0
x;X fx x f O n

α 2d

0 1323

n
1 4

0 f 1 2 log n, where f f x . Now consider 1324

arbitrary z Gn such that Bh0
z;X L f κ 2 , 1325

meaning that for all z X , z z h0, f z 1326

κ 2. By (90), f z κ 2 O n
1 4

0 κ 2 1 2 log n. 1327

Hence when n0 is sufficiently large, z S0, which is to be 1328

demonstrated. 1329

Proof of Proposition 7. The upper bound part of (53) triv- 1330

ially holds because the absolute values of every element in 1331

ψ0,1 z ψ0,1 z for z X 0, 1 d is upper bounded by 1332

O 1 . To prove the lower bound part, we only need to show 1333

X
ψ0,1 z ψ0,1 z dU z is invertible. Assume the contrary. 1334

Then there exists v R
D 0 such that 1335

v

X

ψ0,1 z ψ0,1 z dU z v 1336

X

ψ0,1 z v
2
dU z 0. (92) 1337

Therefore, ψ0,1 z , v 0 almost everywhere on z 1338

0, 1 d . Because h 0, by re-scaling with constants this 1339
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implies the existence of non-zero coefficient vector ξ such1340

that1341

P z1, . . . , zm :

α1 ... αm k

ξα1,...,αm z
α1

1 . . . zαm
m 01342

almost everywhere on z 0, 1 d
.1343

We next use induction to show that, for any degree-k1344

polynomial P of s variables z1, . . . , zs that has at least1345

one non-zero coefficient, the set z1, . . . , zs 0, 1 d :1346

P z1, . . . , zs 0 must have zero measure. This would then1347

result in the desired contradiction. For the base case of s 1,1348

the fundamental theorem of algebra asserts that P z1 0 can1349

have at most k roots, which is a finite set and of measure 0.1350

We next consider the case where P z1, . . . , zs takes on s1351

variables. Re-organizing the terms we have1352

P z1, . . . , zs P0 z1, . . . , zs 1 zs P1 z1, . . . , zs 11353

. . . zk
s Pk z1, . . . , zs 1 , (93)1354

where P1, . . . , Pk are degree-k polynomials of z1, . . . , zs 1.1355

Because P has a non-zero coefficient, at least one Pj must1356

also have a non-zero coefficient. By the inductive hypothesis,1357

the set z1, . . . , zs 1 : Pj z1, . . . , zs 1 has measure 0.1358

On the other hand, if Pj z1, . . . , zs 1 0, then invoking1359

the fundamental theorem of algebra again on zs we know1360

that there are finitely many zs such that P z1, . . . , zs 0.1361

Therefore, z1, . . . , zs : P z1, . . . , zs 0 must also have1362

measure zero.1363
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