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Optimization of Smooth Functions With Noisy
Observations: LLocal Minimax Rates

Yining Wang™, Sivaraman Balakrishnan, and Aarti Singh

Abstract— We consider the problem of global optimization of
an unknown non-convex smooth function with noisy zeroth-order
feedback. We propose a local minimax framework to study
the fundamental difficulty of optimizing smooth functions with
adaptive function evaluations. We show that for functions with
fast growth around their global minima, carefully designed
optimization algorithms can identify a near global minimizer
with many fewer queries than worst-case global minimax theory
predicts. For the special case of strongly convex and smooth func-
tions, our implied convergence rates match the ones developed for
zeroth-order convex optimization problems. On the other hand,
we show that in the worst case no algorithm can converge faster
than the minimax rate of estimating an unknown function in the
{o-norm. Finally, we show that non-adaptive algorithms, though
optimal in a global minimax sense, do not attain the optimal local
minimax rate.

Index Terms— Optimization of smooth functions, nonparamet-
ric statistics, local minimax analysis.

I. INTRODUCTION

LOBAL function optimization with stochastic (zeroth-
Gorder) query oracles is an important problem in opti-
mization, machine learning and statistics. To optimize an
unknown bounded function f : X — R defined on a known
compact d-dimensional domain X < RY, the data analyst
makes n active queries xi, ..., x, € X and observes

Vo= fx) +w,  w N1, =100 (1)

The queries x1, ..., X; are active in the sense that the selection
of x; can depend on the previous queries and their responses
X1, Y1s.-.»Xr—1, yr—1. After n queries, an estimate x, € X is
produced that approximately minimizes the unknown function
f. Such “active query” models are relevant in a broad range
of (noisy) global optimization applications, for instance in
hyper-parameter tuning of machine learning algorithms [1] and
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IThe exact Gaussianity of the independent noise variables ¢; is not crucial
and our results can be easily generalized to sub-Gaussian noise.

sequential design in material synthesis experiments where the
goal is to maximize the strength of the synthesized material
as a function of experimental settings [2], [3]. We refer the
readers to Section II-A for a rigorous formulation of the active
query model and contrast it with the classical passive query
model.

The error of the estimate X, is measured by the difference
of f(x,) and the global minimum of f:

L(Xn; f) = f(xn) — f*  where f*:=inf f(x). (2)

X€X
To simplify our presentation, throughout the paper we take the
domain X to be the d-dimensional unit cube [0, 1]¢, while our
results can be easily generalized to other compact domains
satisfying minimal regularity conditions.

When f belongs to a smoothness class, say the Holder
class with exponent a, a straightforward global optimization
method is to first sample n points uniformly at random
from X and then construct nonparametric estimates f, of
f using nonparametric regression methods such as kernel
smoothing or local polynomial regression [4], [5]. Classical
analysis shows that the sup-norm reconstruction error || f, —
fllo = supyex | fu(x) — f(x)| can be upper bounded by
ap(n*“/ (2a+d )2. This global reconstruction guarantee then
implies an Op(n—%/(2a+d)) ypper bound on £(X,; f) by con-
sidering an estimate X, € X for which f,(X,) = inf ex f(x)
(such an x,, exists because X is closed and bounded). Formally,
we have the following proposition (proved in the Appendix)
that converts a global reconstruction guarantee into an upper
bound on the optimization error:

Proposition 1. Suppose fu(®) = infrex fu(x). Then
2()?)1; f) < 2||f;1 - f”OO

Typically, fundamental limits on the optimal optimization
error are understood through the lens of minimax analysis
where the object of study is the (global) minimax risk:

inf sup Ef£(x,, f), 3)

n feF
where F is a certain class of smooth functions such as
the Holder class. Although optimization appears to be easier
than global reconstruction, we show in this paper that the
n~4/Qo+d) pate is not improvable in the global minimax sense
in over Holder classes. Such a surprising phenomenon was also
noted in previous works [6]—[8] for related problems. On the

2In the O(-) or Op(-) notation we suppress constant factors and terms that
depend poly-logarithmically on n.
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other hand, extensive empirical evidence suggests that non-
uniform/active allocations of query points can significantly
reduce optimization error in practical global optimization of
smooth, non-convex functions [1]. This raises the interesting
question of understanding, from a theoretical perspective,
the conditions under which the global optimization of smooth
functions is easier than their reconstruction, and the power
of active/feedback-driven queries that play important roles in
global optimization.

In this paper, we propose a theoretical framework that
partially answers the above questions. In contrast to clas-
sical global minimax analysis of nonparametric estimation
problems, we adopt a local analysis which characterizes the
optimal convergence rate of optimization error when the under-
lying function f is within a neighborhood of a “reference”
function fy. (See Section II-B for the rigorous local minimax
formulation considered in this paper.) Our main results are
to characterize the local convergence rates R,(fp) for a
wide range of reference functions fy € F. Concretely, our
contributions can be summarized as follows:

1) We design an iterative (active) algorithm whose opti-
mization error £(X,; f) converges at a rate of R,(fo)
depending on the reference function fy. When the
level-sets of fj satisfy certain regularity and polynomial
growth conditions, the local rate R,(fp) can be upper
bounded by R,(fo) = O(n~%/(2etd=ah)y \where f €
[0, d/a] is a parameter depending on fp that character-
izes the volume growth of the level-sets of the reference
function fy. (See assumption (A2), Proposition 2 and
Theorem 1 for details). The rate matches the global
minimax convergence rate n—4/Qa+d) for worst-case fo
where f = 0, but can be much faster when f > O.
We emphasize that our algorithm has no knowledge
of the reference function fp and achieves this rate
adaptively.

2) We prove local minimax lower bounds that match the
n—a/Qa+d—af) upper bound, up to logarithmic factors
in n. More specifically, we show that even if fo is
known, no (active) algorithm can estimate f in close
neighborhoods of fj at a rate faster than n4/Qa+d—ap)
We further show that, if active queries are not available
and queries x1, .. ., x, are i.i.d. uniformly sampled from
X, then the n—¢/(20+d) global minimax rate also applies
locally regardless of how large f is. Thus, there is an
explicit gap between local minimax rates in the active
and uniform query models when f is large.

3) In the special case when f is convex, the global opti-
mization problem is usually referred to as zeroth-order
convex optimization and this problem has been widely
studied [9]-[14]. Our results imply that, when fy is
strongly convex and smooth, the local minimax rate
R.(fo) is on the order of O(n~'/?), which matches
the convergence rates in [11]. Additionally, our negative
results (Theorem 2) indicate that the n~1/2 rate cannot
be achieved if fp is merely convex, which seems to
contradict n~1/2 results in [13], [14] that do not require
strong convexity of f. However, it should be noted that
mere convexity of fy does not imply convexity of f in
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a neighborhood of fy (e.g., | f — folloo < €). Our results
show significant differences in the intrinsic difficulty
of zeroth-order optimization of convex and near-convex
functions.

A. Related Work

Global optimization, known variously as black-box opti-
mization, Bayesian optimization and the continuum-armed
bandit, has a long history in the optimization research com-
munity [15], [16] and has also received a significant amount of
recent interest in statistics and machine learning [1], [6], [8],
[17]-[19]. Many previous works [17], [20] have derived rates
for non-convex smooth payoffs in “continuum-armed” bandit
problems.

The papers [21], [22] are closely related to our work. They
studied the related problem of estimating the set of all optima
of a smooth function in the Hausdorff distance. For Holder
smooth functions with polynomial growth, the paper [21]
derives an n~1/(26+d=af) minimax rate for a < 1 (subse-
quently improved to include o > 1 in [23]). This result is
similar to our Propositions 2 and 3. The papers [21], [22]
also discussed adaptivity to unknown smoothness parameters.
We however remark on several differences between our work
and the papers [21], [22]. First, in [21], [22] only functions
with polynomial growth are considered, while in our Theo-
rems 1 and 2 functionals ¢Y(fy) and &L (fy) are proposed
for general reference functions fy satisfying mild regularity
conditions, which include functions with polynomial growth
as special cases. In addition, [21] considers the harder problem
of estimating maxima sets in Hausdorff distance, as opposed
to the problem of producing a single approximately optimal
solution X7. As a result, the minimax lower bounds in [21]
do not apply to this latter setting. An algorithm, without
distinguishing between two functions with different optima
sets, can nevertheless produce a good approximate optimizer
as long as the two functions under consideration have overlap-
ping optima sets. New constructions and information-theoretic
techniques are therefore required to prove lower bounds under
the weaker (one-point) approximate optimization framework.
Finally, we prove minimax lower bounds when only uniform
query points are available and demonstrate a significant gap
between algorithms having access to uniformly sampled or
adaptively chosen data points.

The papers [18], [19] imposed additional assumptions on the
level-sets of the underlying function to obtain an improved
convergence rate. The level-set assumptions considered in
the mentioned references are rather restrictive and essentially
require the underlying function to be uni-modal, while our
assumptions are much more flexible and apply to multi-modal
functions as well. In addition, [18], [19] considered a noise-
less setting in which exact function evaluations f(x;) can
be obtained, while our paper studies the noise corrupted
model in (1) for which vastly different convergence rates are
derived. Finally, no matching lower bounds were proved in the
papers [18], [19].

The (stochastic) global optimization problem is similar to
mode estimation of either densities or regression functions,
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which has a rich literature [24]-[26]. An important difference
between statistical mode estimation and global optimization is
the way sample/query points xi,...,x, € X are distributed:
in mode estimation it is customary to assume the samples
are independently and identically distributed, while in global
optimization sequential designs of samples/queries are typical.
Furthermore, to estimate/locate the mode of an unknown
density or regression function, such a mode has to be well-
defined; on the other hand, producing an estimate X, with
small £(X,, f) is easier and results in weaker conditions
imposed on the underlying function.

Methodology-wise, our proposed algorithm is conceptually
similar to the abstract Pure Adaptive Search (PAS) frame-
work proposed and analyzed in [27]. The iterative procedure
also resembles disagreement-based active learning meth-
ods [28]-[30] and the “successive rejection” algorithm in ban-
dit problems [31]. The intermediate steps of candidate point
elimination can also be viewed as level-set estimation prob-
lems [32]-[34] or cluster-tree estimation problems [35], [36]
with active queries.

Another line of research has focused on first-order opti-
mization of quasi-convex or non-convex functions [37]-[42],
in which exact or unbiased evaluations of function gradients
are available at query points x € X'. The paper [42] considered
a Cheeger’s constant restriction on level-sets which is similar
to our level-set regularity assumptions (A2 and A2’). The
papers [43], [44] studied local minimax rates for the first-order
optimization of convex functions. First-order optimization
differs significantly from our setting because unbiased gradient
estimation is generally impossible in the model of (1). Fur-
thermore, most works on (first-order) non-convex optimization
focus on obtaining stationary points or local minima, while we
consider the problem of finding a (near) global minima.

B. Comparison with the HOO Algorithm

The HOO algorithm [17], as well as similar algorithms
such as Algorithm 2 in [45] and the POO algorithm in [22],
are theoretically well-studied methods for global optimization.
Below we summarize the differences of our results and the
ones from these works.

(a) Weaker Smoothness Conditions I: In Algorithm 1,
we use local polynomial estimation as a sub-routine
to obtain local estimates of the objective function
f. Compared to the sample average approach in
HOO (e.g., Algorithm 2 in [45]), local polynomial
estimates have the advantage of being unbiased for
the estimation of low-degree polynomials. This trans-
lates to the improved (Al) Holder-continuity condi-
tion that only restricts the |a]-th order derivatives
of objective functions. More specifically, the actual
function values of f(x) and f(x’) for x,x’ close
to each other can be very different, as long as such
differences can be perfectly modeled by low-degree
polynomials. This is in contrast to the smoothness
conditions imposed in [17], [45] which essentially
require f(x) to be close to f(x*) for x close to x* the
optima of f.

(b) Weaker Smoothness Conditions II:  Our results in
Section IV-C hold on functions that are only assumed
to be smooth in regions close to its global minimum, in
contrast to Definition 1 in [45] and many other existing
works that place smoothness assumptions on the entire
domain of the objective function f.

(c) Spatially Restricted Queries: Our proposed algorithm is
“grid” based, and can be run on any sufficiently dense
finite grid G, in X and does not need to have the
capacity to query arbitrary points in X. As a result,
our algorithm can be run in experimental settings where
queries are restricted to belong to a large pool of a-priori
chosen points.

Results for any Smooth Function: Our algorithm and

lower bounds yield essentially tight results for the

complexity of optimization of arbitrary smooth func-
tions. While these rates are most interpretable under
the level-set growth conditions (also studied in [45]) our
results also yield nearly matching guarantees for other
(arbitrary, smooth) functions fjy.

(d)

II. BACKGROUND AND NOTATION

We first review standard asymptotic notation that will
be used throughout this paper. For two sequences {a,}>>,
and {b,}”,, we write a, = O(b,) or a, < by, if
lim sup,,_, o, |an|/|bn| < o0, or equivalently b, = Q(ay) or
b, Z a,. Denote a, = @(b,) or a, = b, if both a, < b,
and a, = b, hold. We also write a, = o(b,) or equivalently
by = w(ap) if limy— e |as|/|bn] = 0. For two sequences
of random variables {A,} >, and {B,},”,, denote A, =
Op(By) if for every € > 0, there exists C > 0 such that
limsup,_, o, Pr[|A,y| > C|Bn|]] < €. Forr >0,1 < p <o
and x € R?, we denote by Bf (x) :={zeRY: |z — x|, <r}
the d-dimensional £,-ball of radius r centered at x, where
the vector £, norm is defined as |x[|, := (Z‘j-:l |xj|”)1/p
for 1 < p < o and |x||e := maxi<j<a |x;|. For any subset
S € R? we denote by Bf (x; S) the set B (x) n S.

A. Passive and Active Query Models

Let U be a known random quantity defined on a probability
space U. The following definitions characterize all passive and
active optimization algorithms:

Definition 1 (The passive query model). Let xi,...,x, be
i.i.d. points uniformly sampled on X and vy, ..., y, be obser-
vations from the model (1). A passive optimization algorithm
A with n queries is parameterized by a mapping ¢,
(X1, Y1» -+ o> Xny Y, U) > X, that maps the i.i.d. observations
{(xi, yi)}]_, to an estimated optimum X, € X, potentially
randomized by U.

Definition 2 (The active query model). An active opti-
mization algorithm can be parameterized by mappings
(X1 s Xn>®n), where fort =1,...,n,

Xt - (Xl, Yiseoos Xe—1, Yi—1, U) = Xy
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produces a query point x; € X based on previous observations
1—1
{(xi,;)};_, and

i=

¢n : (xl»ylw-wxn,yn»U) an

produces the final estimate. All mappings (x1, . . .
be randomized by U.

B Xn, ¢Vl) can

B. Local Minimax Rates

We use a classical local minimax analysis [46] to understand
the fundamental information-theoretic limits of noisy global
optimization of smooth functions. On the upper bound side,
we seek (active) estimators X, such that

sup sup Pr[L(Xn; f) = C1 - Ry(fo)] < 1/4,
F0E® 10" || f=foll-o<en(fo) T

“)

where C; > 0 is a positive constant. Here fy € O is
referred to as the reference function, and f € ®' is the true
underlying function to be optimized, which is assumed to be
“near” fp (in the {4 norm). The minimax convergence rate
of £(X,; f) is then characterized locally by R,(fo) which
depends on the reference function fp. The constant of 1/4
is chosen arbitrarily and any small constant leads to similar
conclusions. To establish negative results (i.e., local minimax
lower bounds), in contrast to the upper bound formulation,
we assume the potential active optimization estimator X, has
perfect knowledge about the reference function fy € ©O.
We then prove local minimax lower bounds of the form

inf sup Pr[£(Xn; ) = Ca- Ry (fo)] = 1/3,
T €@’ | f = foloo<en(fo) T
(5)

where C, > 0 is another positive constant and ¢, (fo), R, (fo)
are desired local convergence rates for functions near the
reference fj.

Although in some sense classical, the local minimax defin-

ition we propose warrants further discussion:

1) Roles of ® and ®’: The reference function fp and the
true functions f are assumed to belong to different but
closely related function classes ® and ®'. In particular,
in our paper ® < @', meaning that less restrictive
assumptions are imposed on the true underlying function
f compared to those imposed on the reference function
fo on which R, and ¢, are based.

2) Upper Bounds: It is worth emphasizing that the
estimator X, has no knowledge of the reference function
fo. From the perspective of upper bounds, we can
consider the simpler task of producing fo-dependent
bounds (eliminating the second supremum) to instead
study the (already interesting) quantity:

sup Pr[£(X,; fo) = C1R.(fo)] < 1/4.

foe® fo
As indicated above we maintain the double-supremum
in the definition because fewer assumptions are imposed
directly on the true underlying function f, and further
because it allows to more directly compare our upper
and lower bounds.
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3) Lower Bounds and the choice of the ‘localization
radius” &,(fp): Our lower bounds allow the estima-
tor knowledge of the reference function (this makes
establishing the lower bound more challenging). The
lower bound in (5) implies that no estimator X, can
effectively optimize a function f close to fo beyond the
convergence rate of R,(fp), even if perfect knowledge
of the reference function fy is available a priori. The
en(fo) parameter that decides the “range” in which
local minimax rates apply is taken to be on the same
order as the actual local rate R,(fp) in this paper.
This is (up to constants) the smallest radius for which
we can hope to obtain non-trivial lower-bounds: if we
consider a much smaller radius than R,(fo) then the
trivial estimator which outputs the minimizer of the ref-
erence function would achieve a faster rate than R, ( fp).
On the other hand selecting the smallest possible radius
makes establishing the lower bound most challenging
but provides a refined picture of the complexity of
zeroth-order optimization.

We remark that our primary motivation for the
local-minimax analysis stems from the fact that for natural
function classes the global-minimax rate for the optimization
complexity is excessively pessimistic, while the local minimax
analysis provides a more refined picture. In machine learning
applications, there are several cases where the population risk
is well-behaved (smooth, potentially non-convex) but we are
only able to access/query the empirical risk which we want to
minimize. Using standard concentration bounds the empirical
risk and population risk are close, and the resulting problem
is then to minimize the approximate-smooth empirical risk
(see for instance [42], [47] for a more detailed discussion).

IIT. MAIN RESULTS

With this background in place we now turn our attention
to our main results. We begin by collecting our assumptions
about the true underlying function and the reference function
in Section III-A. We state and discuss the consequences of
our upper and lower bounds in Sections III-B and III-C
respectively. We defer most technical proofs to Section V and
turn our attention to our optimization algorithm in Section I'V.

A. Assumptions

We first state and motivate assumptions that will be used.
The first assumption states that f is locally Holder smooth on
its level-sets.

(A1) There exist constants «,o, M, > 0 such
that f restricted to Xy, = {x € X
infex |z x|o<c f(2) < f* + x} belongs to the
Holder class X*(M), meaning that f is k-times
differentiable on Xy, and furthermore for any
x,x" € Xy 3,

2

o1+...+ag=k

R0 = FeRE

rae—k
5

(6)

x — x

3We use the £ -norm for convenience and it can be replaced by any
equivalent vector norm.
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Here k = |a] is the largest integer lower bounding «
and f(®7)(x) := 07 f(x)/0x{" ... 0x57.

We use X%(M) to denote the class of all functions satisfy-
ing (Al). We remark that (A1) is weaker than the usual Holder
assumption in two ways. First, (6) only imposes stability
conditions on the |« |-th order derivatives of the function f, in
contrast to conditions involving all orders of derivatives in pre-
vious works [17], [45]. Second, (A1) only imposes the Holder
smoothness assumption on certain regions of X, because
regions with function values larger than f* + k can be easily
detected and removed by a pre-processing step, highlighting
an important difference between optimization and £« -norm
estimation. We give further details of the pre-processing step
in Section IV-C.

Our next assumption concerns the “regularity” of the level-
sets of the “reference” function fy. Define Ly (€) := {x €
X folx) < f) + €} as the e-level-set of fp, and
Uf(€) := A(Lg(€)) as the Lebesgue measure of Ly (),
which we refer to as the distribution function. Define,
N(L s, (), 0) as the smallest number of {-balls of radius o
that cover L 7, (€). Then we make the following assumption:
(A2) There exist constants cg > 0 and Cop > 0 such that

N(L 4,(€),0) < Co[l+ 5, ()0 9] for all €, € (0, co].
We use Oc¢ to denote all functions that satisfy (A2) with
respect to parameters C = (cp, Cp).

At a high-level, the regularity condition (A2) assumes that
the level-sets are sufficiently “regular” such that covering them
with small-radius balls does not require significantly larger
total volume. For example, consider the perfectly regular case
when L f, (€) is the d-dimensional £, ball of radius r: L 4, (€) =
{x € X :|x —x*|2 <r}. Clearly, pg(€) = r?. In addition,
the d-covering number in £, of Lz, (¢) is on the order of 1 +
(r/0)® =<1+u 5, (€)d¢, which satisfies the scaling in (A2).

When (A2) holds, uniform confidence intervals for f on
its level-sets are easier to construct because little statistical
efficiency is lost by slightly enlarging the level-sets so that
complete (sufficiently small) d-dimensional cubes are con-
tained in the enlarged level-sets. On the other hand, when
regularity of level-sets fails to hold such nonparametric esti-
mation can be very difficult or even impossible. As an extreme
example, suppose the level-set L f, (¢) consists of n standalone
and well-spaced points in X: the Lebesgue measure of L f,(¢)
would be zero, but at least Q(n) queries are necessary to
construct uniform confidence intervals on L f (€). It is clear
that such L ,(€) violates (A2), because N(L s, (€),0) = n as
d— 0% but ug(e) =0.

B. Upper Bound

The following theorem is our main result that provides
an upper bound on the local minimax rate of noisy global
optimization with active queries.

Theorem 1. For any a, M, k, co, Co > 0 and fo € (M) n
Oc, where C = (cg, Cp), define

&y (fo) == sup {8 >0:e”@H () > n/log“’n} . (D

where @ > 5 + d/o is a large constant. Suppose also that
er?(fo) — 0 as n — oo. Then for sufficiently large n,

there exists an estimator X, with access to n active queries
X1,...,X, € X, a constant Cr > 0 depending only
on a,M,k,c,co,Co and a constant y > 0 depending only
on a and d such that

sup
JoeXY (M)r‘\@c

sup
fex®(M),
I £ folloo<el (fo)

Crlog’ n (e (fo) +n )| <1/4. (®)

Pr[L(X,, f) >

Remark 1. Unlike the (local) smoothness class L2 (M),
the additional function class ®c that encapsulates (A2) is
imposed only on the “reference” function fo but not the
true function f to be estimated. This makes the assumptions
considerably weaker because the true function f may violate
(A2) while our results remain valid.

Remark 2. The estimator X, does not require knowledge of
parameters k,co, Co or e,LZJ(f()), and automatically adapts to
them, as shown in the next section. While the knowledge of
smoothness parameters o. and M is in general unavoidable
in non-parametric regression (see [48]), in the zeroth-order
optimization problem it is possible to adapt to a and M
by running O(log”> n) parallel sessions of X, on O(logn)
grids of a and M values, and then using Q(n/log> n)
single-point queries to decide on the location with the smallest
function value. This adaptive strategy was suggested in [22]
to remove an additional condition in [21], and also applies to
our setting.

Remark 3. When the distribution function u y,(€) does not
change abruptly with € the expression of s,LZJ (fo) can be
significantly simplified. In particular, if for all € € (0, co] it
holds that

1o (e/logn) = u g, (€)/[logn]®W, )

then &9(fo) can be upper bounded as

eY(fo) < [logn]o(l) - sup {e >0: 8_(2+d/“),uf0(e) > n} .
(10)

If uy,(€) scales polynomially with €, ie. uf(€) = e? for
some constant f§ = 0, then (9) and (10) are both satisfied.

The quantity eV (fo) = sup{e > 0 : e~/ () >
n/log® n} is crucial in determining the convergence rate of
optimization error of X, locally around the reference function
fo. While the definition of &Y(fo) is mostly implicit and
involves solving an inequality involving the distribution func-
tion u f,(-), we remark that it admits a simple form when yx f,
has a polynomial growth rate similar to a local Tsybakov noise
condition [4], [49], as shown in the following proposition:

Proposition 2. Suppose pyg(€) < e? for some constant
B € [0,2 + d/a). Then 9(fy) = O(n=*/Qutd=ap))
In addition, if B € [0,d/a] then £9(fo) +n'/2 < eY(fo) =
O (n—*/Qatd=af))

We remark that, following Proposition 1 of [45], a, f and d
must satisfy the relationship that # < d/a. Proposition 2 can
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be easily verified by solving the system 3_(2+d/“),uf0 (6) =
n/log® n with the condition 4 s, (¢) < €#. We therefore omit
its proof. The following two examples give some simple
reference functions fy that satisfy the uz (€) < €” condition
in Proposition 2 with particular values of /.

Example 1. The constant function fo =
through (A3) with p = 0.

0 satisfies (Al)

Example 2. fy € Z2(M) that is strongly convex* satisfies
(Al) through (A3) with f = d /2.

Example 1 is simple to verify, as the volume of level-sets
of the constant function fy = 0 exhibit a phase transition at
€ = 0 and € > 0. Consequently, f = 0 is the only parameter
for which u 4, (€) < eP. Example 2 is more involved, and holds
because the strong convexity of fy lower bounds the growth
rate of fy when moving away from its minimum. We give
a rigorous proof for Example 2 in the appendix. We also
remark that fj does not need to be exactly strongly convex for
S = d/2 to hold, and the example is valid for, e.g., piecewise
strongly convex functions with a constant number of pieces
too.

To best interpret the results in Theorem 1 and Proposition 2,
it is instructive to compare the “local” rate n—a/Qa+d—af)
with the baseline rate n—¢/(2¢+d ), which can be attained by
reconstructing f in sup-norm and applying Proposition 1.
Since S > 0, the local convergence rate established in Theo-
rem 1 is never slower, and the improvement compared to the
baseline rate n~%/(2¢+d) s dictated by S, which governs the
growth rate of volume of level-sets of the reference function
fo- In particular, for functions that grows fast when moving
away from its minimum, the parameter f is large and therefore
the local convergence rate around fj could be much faster than
n—/(2a+d)

Theorem 1 also implies concrete convergence rates for
special functions considered in Examples 1 and 2. For the
constant reference function fy = 0, Example 1 and Theorem 1
yield that R, ( fy) = n~%/(2+d) \which matches the baseline
rate n~*/(2a+d) anqg suggests that fo = 0 is the worst-case ref-
erence function. This is intuitive, because fy = 0 has a drastic
level-set change at € — 0™ and therefore small perturbations
of fp result in changes to the optimal location. On the other
hand, if fo is strongly smooth and convex as in Example 2,
Theorem 1 leads to the bound of R,(fo) = n~'/2, which
is significantly better than the n=2/(4+d) baseline rate’ and
also matches existing works on zeroth-order optimization of
convex functions [11]. The faster rate holds intuitively because
strongly convex functions grow quickly when moving away
from the minimum. An active query algorithm can focus most
of its queries on the small level-sets of the underlying function,
resulting in more accurate local function reconstruction and
faster optimization error rate.

Our proof of Theorem 1 is constructive, by upper bounding
the local minimax optimization error of an explicit algorithm.

4A twice differentiable function fo is strongly convex if there exists ¢ > 0
such that V2 fy(x) = o1, Vx € X.

SNote that fo being strongly smooth corresponds to e = 2 in the local
smoothness assumption.
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Roughly, our algorithm partitions the n active queries evenly
into logn epochs, and level-sets of f are estimated at the end
of each epoch by comparing (uniform) confidence intervals
on a dense grid on X. It is then proved that the volume
of the estimated level-sets contracts geometrically, until the
target convergence rate R,(fy) is attained. The algorithm is
described in more detail in Section IV and the complete proof
of Theorem 1 is in Section V-B.

C. Lower Bounds

We prove local minimax lower bounds that match the upper
bounds in Theorem 1 up to logarithmic terms. As we remarked
in Section II-B, in the local minimax lower bound formulation
we assume the data analyst has full knowledge of the reference
function fy, which makes the lower bounds stronger as more
information is available a priori.

To facilitate such local minimax lower bounds, the following
additional condition is imposed on the reference function fo
of which the data analyst has perfect information.

(A2’) There exist constants c{,C) > 0 such that
M(Ly(€),6) = Chuy(€)o™ for all €, € (0,ch].
where M(L 7, (€), 0) is the maximum number of dis-
joint £ balls of radius o that can be packed into L f, (¢).

We denote @E, as the class of functions that satisfy (A2’) with

respect to parameters C' = (¢, C},) > 0. Intuitively, (A2’) can

be regarded as a converse of (A2).

We are now ready to state our main negative result, which
shows, from an information-theoretic perspective, that the
upper bound in Theorem 1 is not improvable.

Theorem 2. Suppose a, co, Co,c), Cj > 0 and k = .
Denote C = (co, Co) and C' = (c{, C|). For any fo €
Oc n ®’C,, define

er(fo) i=sup{e > 0: e o) = nf. (D)

Then there exists a constant M > 0 depending on o, d, C and
C’ such that, for any fo € £*(M/2) n O¢c N B¢,

inf sup Pr [2(55"; f)= Eplf(fo)] = l (12)
Y gese(m). S .

If — follo<2e5(fo)

Remark 4. We note in passing that for any fo and n it always
holds that e-(fo) < eV(fo).

Remark 5. If the distribution function p s, (€) satisfies (9)
(i.e. it does not change too abruptly) in Remark 3, then
e-(fo) = eY(fo)/Nlogn]®W). Consequently, the upper and
lower bounds for these functions match up to logarithmic
factors.

The following proposition derives an explicit expression for
8,';( fo) for reference functions whose distribution functions
have a polynomial growth, which matches the upper bound
in Proposition 2 up to logn factors. The proof of this Propo-
sition is straightforward and is omitted.

Proposition 3. Suppose 1 5,(€) 2 P for some B € [0,2 +
d/a). Then e-(fo) = Q(n~/Qatd—af)y
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The following proposition additionally shows the existence
of fo € T4 (M) n Oc n Oc that satisfies u f,(e) = €’ for
any values of « > 0 and f € [0,d/a]. Its proof is given in
the Appendix.

Proposition 4. Fix arbitrary o, M > 0 and p € [0,d/a].
There exists fo € Z2(M)NOcnO¢ for k = 0 and constants
C = (co, Cp), C' = (06, C(')) that depend only on a, , M and
d such that p g(€) = €”.

Theorem 2 and Proposition 3 show that the n—¢/(2¢+d—ap)
upper bound on local minimax convergence rate established in
Theorem 1 is not improvable up to logarithmic factors of n.
Such information-theoretic lower bounds on the convergence
rates hold even if the data analyst has perfect information of
fo, the reference function on which the n—/Qa+d=ap) 1ocq]
rate is based. Our results also imply an n~%/(2¢+4) minimax
lower bound over all a-Holder smooth functions, showing that
without additional assumptions, noisy optimization of smooth
functions is as difficult as reconstructing the unknown function
in sup-norm.

Our proof of Theorem 2 also differs from those of existing
minimax lower bounds for active nonparametric models [50].
The classical approach is to invoke Fano’s inequality and to
upper bound the KL divergence between different underlying
functions f and g using ||f — g|lw, corresponding to the
point x € X that leads to the largest KL divergence. Such
an approach, however, does not produce tight lower bounds
for our problem. To overcome such difficulties, we borrow
the lower bound analysis for bandit pure exploration problems
in [51]. In particular, our analysis considers the query distri-
bution of any active query algorithm A = (g1, ..., ¢u, dn)
under the reference function fy and bounds the perturbation in
query distributions between fj and f using Le Cam’s lemma.
Afterwards, an adversarial function choice f can be made
based on the query distributions of the considered algorithm .A.
We defer the complete proof of Theorem 2 to Section V-C.

Theorem 2 applies to any global optimization method that
makes active queries, corresponding to the query model in
Definition 2. The following theorem, on the other hand, shows
that for passive algorithms (Definition 1) the n—4/Qa+d) opti-
mization rate is not improvable even with additional level-set
assumptions imposed on fy. This demonstrates an explicit
gap between passive and adaptive query models in global
optimization problems.

Theorem 3. Suppose a,cq, Co, ¢, C), > 0 and k = oo.
Denote C = (co, Co) and C' = (c[, C}). Then there exist
constants M > 0 depending on a,d,C,C' and N depending
on M such that, for any fy € L¢(M/2) nOc n Oc¢r satisfying
e(fo) < 7 = [logn/n]*/2e+d),

1

inf sup — foralln = N.
B rexi(m), 3

IL.f— foll-o <224

Pre )22t >
(13)

Intuitively, the apparent gap demonstrated by Theorems 2
and 3 between the active and passive query models stems from

the observation that, a passive algorithm A only has access
to uniformly sampled query points xi,...,x, and therefore
cannot focus on a small level-set of f in order to improve
query efficiency. In addition, for functions that grow faster
when moving away from their minima (implying a larger
value of f), the gap between passive and active query models
becomes bigger as active queries can more effectively exploit
the restricted level-sets of such functions.

IV. OUR ALGORITHM

In this section we describe a concrete algorithm that attains
the upper bound in Theorem 1. We start with a cleaner
algorithm that operates under the slightly stronger condition
that x = o0 in (A1), meaning that f is a-Holder smooth on the
entire domain X. The generalization to ¥ > 0 being a constant
is given in Section IV-C with an additional pre-processing step.

Let G, € X be a finite grid of points in X'. We assume the
finite grid G, satisfies the following two mild conditions:

(B1) Points in G, are sampled i.i.d. from an unknown distri-
bution Py on X; furthermore, the density px associated
with Py satisfies p; < px(x) <p forall x € X, where
0< 2 < po < o0 are universal constants;

(B2) |Gy| = n? and log|G,| = O(logn).

Remark 6. Although typically the choices of the grid points
G, belong to the data analyst, in some applications the choices
of design points are not completely unconstrained. For exam-
ple, in material synthesis experiments described previously
some environmental parameter settings (e.g., temperature and
pressure) might not be allowed due to budget or physical con-
straints. Thus, we choose to consider less restrictive conditions
imposed on the design grid G, allowing it to be more flexible
in real-world applications.

Remark 7. Condition (B2) ensures that the grid G, is
sufficiently dense, such that even with the smallest bandwidth
our algorithm possibly uses (h;(x) = 1/n?, see (18)), each
x € G, has abundant neighboring points in G, so that the
local polynomial estimates in (15) are well-defined.

For any subset S < G, and a “weight” function
0:G, — R*, define the extension S°(p) of S with respect
to p as

5°(0) = U BZ‘(’X)(x; G,) where
X€ES

BX (1 Gy) = {z € Gyt |z —x[o0 < 0(x)}. (14)

The algorithm can then be formulated as two levels of iter-
ations, with the outer loop shrinking the “active set” S; and
the inner loop collecting data in order to reduce the lengths
of the confidence intervals on the points in the active set.
A pseudocode description of our proposed algorithm is given
in Figure 1.

A. Local Polynomial Regression

We use local polynomial regression [S] to obtain the esti-
mate f. In particular, for any x € G, and a bandwidth
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An informal illustration of Algorithm 1. Solid blue curves depict the underlying function f to be optimized, black and red solid dots denote the query

points and their responses {(x;, y;)}, and black and red vertical line segments correspond to uniform confidence intervals on function evaluations constructed
using the current batch of data observed. The left figure illustrates the first epoch of our algorithm, where query points are uniformly sampled from the entire
domain X'. Afterwards, sub-optimal locations based on the constructed confidence intervals are removed, and a shrunken “candidate set” Sy is obtained. The
algorithm then proceeds to the second epoch, illustrated in the right figure, where query points (in red) are sampled only from the restricted candidate set and
shorter confidence intervals (also in red) are constructed and updated. The procedure is repeated until O (logn) epochs are completed.

Parameters: o, M, o, n
Output: X, the final prediction
Initialization: Sp = G, 0o(x) = 0, T = |log, n|,
no = |n/T|;
fort=1,2,...,T do
Compute “extended” sample set S;_ (o, 1) defined
in (14);
for t = (v — )ng + 1 to tnp do

Sample x; uniformly at random from S?_,(0; 1)

and observe y; = f(x;) + wy;
end
For every x € S;_, compute bandwidth / (x)
using (18) and build the confidence interval
[€z(x),u.(x)] in (19);
Sy i={x € S;—1 : € (x) <minges,_, ur(x")},
¢ (x) :=min{or—1(x), hr (x)},
end
Final processing: for every x € Sy let fhr,x(-) be the
local polynomial estimates constructed in (15) at x.
Output X, = arg minyes; mmX’EB,fT‘(X)(X;X) Frg o (x)).

Algorithm 1 The Main Algorithm

parameter 4 > 0, consider the least squares polynomial
estimate

'
fin € argmin Y Ixy € B(@)] - (v — g(x))®,  (15)
8€Pk ;—1
where B°(x) := {x’ € X : |x" — x|o < h} and Pk denotes
all polynomials of degree k on X'.
To analyze the performance of f;, evaluated at a certain
point x € X, define the mapping

(@)

7 - [Hézlhfl(zif—xw)]ﬁ,l_,_,,-j:l is the
degree-j polynomial mapping from R? to R?' . Also define
Yin = (Wx,h(xt’))lét’st,x,,egh(x) as the m x D aggregated

ven 12 (L, ().

where 1//; i

design matrix, where m = 33, I[xy € B{°(x)] and D =
1+d+...4+d" k = |a]. The estimate f, defined in (15)
then admits the following closed-form expression:

~

ASETZENE A% 1 AR (16)
where Y, = (Ww)i<r<ixsenr(x) and AT s the
Moore-Penrose pseudo-inverse of A.

The following lemma gives a finite-sample analysis of the
error of fj(x):

Lemma 1. Suppose that f satisfies (6) on B;°(x: X),
max.c e () 1V (2) |2 < b and 28T, > o lpxp for
some o > 0. Then for any ¢ € (0, 1/2), with probability 1 — 6

~ b? 5D1In(1/6
A= £ () < Zmatne by 22000 _ o,
o om
| — N e —.
by 5(x) sp,5(x)

Vx' e BP(x; X). (17)

Remark 8. b, s5(x), s5.5(x) and ny s(x) depend on x because
o depends on Y, ,, which further depends on the sample points
in the neighborhood B;°(x; X) of x.

In the rest of the paper we define by 5(x) := (b*>/o)Md*h*
and s, 5(x) := b/5DIn(1/d)/om as the bias and standard
deviation terms in the error of ﬁl(x), respectively. We also
denote 7;,5(x) = bps(x) + sp,0(x) as the overall error
in fi(x).

Notice that when bandwidth % increases, the bias term
bj,s(x) increases because of the A% term; on the other hand,
with £ increasing the local neighborhood B,°(x; X') grows
and would potentially contain more samples, implying a larger
m and smaller standard deviation term sj s(x). A careful
selection of the bandwidth A balances b, 5(x) and s, s(x) and
yields appropriate confidence intervals on f(x), and we turn
our attention to this in the next section.
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B. Bandwidth Selection and Confidence Intervals

Given the expressions of bias by, 5(x) and standard deviation
sp.5(x) in (17), the bandwidth . (x) > 0 at epoch 7 and point
x is selected as

he(x) = hn(;)

where j(x) :=argmax {j € N,

J<n? b () <5j/n2’5(x)} (18)
More specifically, h.(x) is the largest positive value in an
evenly spaced grid {j/n?} such that the bias of fj, (x) is
smaller than its standard deviation. This bandwidth selection
is in principle similar to the Lepski’s method [52], with the
exception that an upper bound on the bias for any bandwidth
parameter is known and does not need to be estimated from
data.

With the selection of bandwidth i,(x) at epoch 7z and
query point x, a confidence interval on f(x') for all x’ €

B}f(x)(x; X) is constructed as

be(x) := max Sup f 1 (x xl — Mn,(x X) (s
(x) 1<t <Tx€B°C(X>(x X){ By ( )( ) By ( ),6( )}
ur(x) = 1Lr}n<1UIEmef {fh,/(x)(xl) + ’Ih,,(x),(s(x)}.

fo )

19)

Note that for any x € X, the lower confidence edge ¢, (x) is
a non-decreasing function in 7 and the upper confidence edge
u;(x) is a non-increasing function in 7.

C. Pre-processing

We describe a pre-processing step that relaxes the smooth-
ness condition from x = o0 to x = Q(1), meaning that only
local smoothness of f around its minimum values is required.
Letng = |n/logn|, x1, ..., X, be points i.i.d. uniformly sam-
pled from X and y1, ..., yu, be their corresponding responses.
For every grid point x € G,, perform the following:

1) Compute f,(-) as the local polynomial fits of all y;
corresponding to ||x; — x[eo < I/Zd log® n =: ho;

2) Compute f(x) as the sample average of all y; corre-
sponding to |x; — x]e < ho;
3) Remove all x € G,

minZEGn iIle/eng (z;X) fZ (ZI) +

if f(x) =

from Sy
1/logn.

Remark 9. The 1/logn term in the removal condition f(x) >
mingeg, fl2)+ 1/logn is not important, and can be replaced
with any sequence {w,} such that lim,_,e ©, = 0 and
lim,,_y00 wyn' = o0 for any t > 0. The readers are referred to
the proof of Proposition 5 in the appendix for the motivation
of this term as well as the selection of the pre-processing
bandwidth hy.

To analyze the pre-processing step, we state the following
proposition:

Proposition 5. Assume f € ¢ (M) and let S|, be the screened
grid after step 2 of the pre-processing procedure. Then for
sufficiently large n, with probability 1 — O(n~") we have

Buo(x; X) nLyp(x/2) # &, Vxe S, (20)
where Ly(x/2) ={xe X : f(x) < f* +x/2}.

To interpret Proposition 5, note that for sufficiently large n,
f € X*(M) implies f being a-Holder smooth (i.e., f
satisfies (6)) on UXELf(K/z) o ©(x; X), because k > 0 is a
constant and kg — 0 as n — 0. Subsequently, the proposition
shows that with high probability, the pre-processing step will
remove all grid points in G, in non-smooth regions of f,
while maintaining the global optimal solution. This justifies
the pre-processing step for f € L%¢(M), because f is smooth
on the grid and its close neighborhood after pre-processing.

The proof of Proposition 5 uses the fact that the local
mean estimation is large provided that all data points in the
local mean estimator are large, regardless of their underlying
smoothness. The complete proof of Proposition 5 is deferred
to the Appendix.

V. PROOFS OF MAIN THEOREMS

A. Proof of Lemma 1

Our proof closely follows the analysis of asymptotic con-
vergence rates for series estimators in [53]. We further work
out all constants in the error bounds to arrive at a com-
pletely finite-sample result, which is then used to construct
finite-sample confidence intervals.

We start with as polynomial interpolation results for all
Holder smooth functions in B°(x; X').

Lemma 2. Suppose f satisfies (6) on B;°(x; X). Then there
exists fy € Py such that

sup | f(2) — fe(2)] < Md*h*. 1)

Z€B (x: X)

Proof. Consider

k
@)=+ N

j=lai+..+aq=j

d
axf f ljl z¢ — x¢)"
(22)
By Taylor expansion with Lagrangian remainders, there exists
¢ € (0, 1) such that

|fx(z) = f(2)| <
Z |f(°‘)(x+f(z—

o1+...fag=k

— @ (x

()] H |ze — xe|*.

Because f satisfies (6) on B;°(x; X), we have that | £ (x +
E(z—x))—f®(x)] < M-|z—x|% . Also note that |z—x;| <
|z — x| < h for all z € B°(x; X). The lemma is thus
proved. O

Using (16), the local polynomial estimate fi can be written
as fi(z) = yxn(z) On, where

On = (¥, )", Y. (23)
In addition,w because fwx € ~77k, there exists § € RP
such that fy(z) = Wx,h(Z)T(?. Denote also that F;; :=

(f(xt’))l<t’<t,x,/eB,f(x)’ Ain = (flxr) — ﬁc(xt’))
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léf’ét,xt/GBf(x) and Wt,h t= (wt
then be re-formulated as

é\h — (‘{ltThlPl‘,h)_l‘{ltTh [“Pt’hg‘i‘ Al‘,h + Wt,h]

Ni<i<ixseBP () (23) can
(24)
~ 1T -lrq -

=0+ | VP | [ (An + Wen) |- (29

Because %LP:Thle:h > olpxp and sup epr(,) [wan(2)]2 <
b, we have that
PO -1
16,01 < Wi

b

2

1
s

Invoking Lemma 2 we have | A, ;o0 < Md*h®. In addition,
because W; ~ N, (0, Iy xy,), we have that

LT 1 T 1 1 -1
Z\Pt,h\yt,h Z\Pt’h W, ~ Np o ‘I’ n¥in .
(27)
Applying concentration inequalities for quadratic forms of

Gaussian random vectors (Lemma 10), with probability 1 — o
it holds that

1 1 5Dlog(1/5
[ yT ‘I’,h] “wTw,| < SDlog(1/0) g
m ’ ) om
We then have that with probability 1 — ¢ that
L b 5Dlog(1/6
By —Bn < Zmaine 4 2212010 g
o om

Finally, noting that for all x" € B°(x; X), ||y n(x)|2 < b
by definition, we have that

1fnx") = £ = [ fu('x) = fela”)]
=y (x') (O — 0)| < b0k — 02,

which completes the proof of Lemma 1.

B. Proof of Theorem 1

In this section we prove Theorem 1. We prove the theorem
by considering every reference function fy € Z%(M) n O¢
separately. For simplicity, we assume x = oo throughout
the proof. The 0 < ¥ < o0 can be handled by replacing
X with Sy which is the grid after the pre-processing step
described in Section IV-C. We also suppress dependency on
d,a,M,C, p,,poin O(-), Q(:), ©(-), 2, < and = notations.

We further suppress logarithmic terms of n in O(-) and Q(-)
notations.

The following lemma is our main lemma, which shows
that the active set S; in our proposed algorithm shrinks
geometrically before it reaches a certain level. To simplify
notations, denote ¢y := 10cy and (A2) then hold for all
€,0 € [0, ¢cp] for all fy € Oc.

Lemma 3. For t = 1,...,T define ¢; := max{cy -
2_’,C3[8,l1J(f0) + n_l/z] log? n}, where C3 > 0 is a con-
stant depending only on d, o, M, Py Po and C. Denote also
p¥ 1= maxyes, 0¢(x). Then for sufficiently large n, with
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probability 1 — O(n™") the following holds uniformly for all
outer iterations Tt = 1,...,T:

BZ?g(x;X)mLf(ar);éQ. (30)

Lemma 3 shows that the level &; in Lf(e;) that con-
tains S;_; shrinks geometrically, until the condition &, >
C3[eY(fo) + n'/?]1og® n is violated. If the condition is
never violated, then at the end of the last epoch t* we
have e,+ = O(n~!) because 7* = logn. On the other
hand, because S; S S;_; always holds, we have ¢, <
[€Y(fo) + n~/*]log? n. Combining both cases we have that
eex < [e9(fo) + n/2]log® n + n'. Theorem 1 is thus
proved.

In the rest of this section we prove Lemma 3. We need
several technical lemmas and propositions. Except for Propo-
sition 6 that is straightforward, the proofs of the other technical
lemmas are deferred to the end of this section.

Denote x, := argmin,c; f(x) as the point on the grid G
with the smallest objective value The following proposition
shows that with high probability, the confidence intervals
constructed in the algorithm are truthful and the successive
rejection procedure will never exclude the true optimizer of f
on Gj.

Proposition 6. Suppose § = 1/n*|G,|. Then with probability
1 — 0(n™") the following hold:
1) f(x") e [C(x),ur(x)] forall 1 <t <
e B}??X)(x; X);
2) x eS8 forall0 <7 <n.

n and x € Gy,

Proof. The first property is true by applying the union bound

over all t = 1,...,n and x € G,. The second property
then follows, because C(x) < f(x)) and minges, , u;(x) >
f(x)) for all 7. O

The following lemma shows that every small box centered
around a certain sample point x € G, contains a sufficient
number of sample points whose least eigenvalue can be
bounded with high probability under the polynomial mapping
wy,n defined in Section III-B.

Lemma 4. For any x € G,, 1 < m < n and h > 0,
let K}Lm(x), .., Ky, (x) be n independent point sets, where
each point set consists of m points sampled i.i.d. uniformly at
randomfrom B°(x; Gp) = G, B;P(x; X). With probability
1—0(n~"Y) the following holds true uniformly for all x € G,
he{j/m*:jeN,j<n? anthm( x), £ € [n] as n — oo

1) supy,~o Sup.ep (x) [wa.n(2) |2 = O(1);
2) |B;(x: Gn)| = h?|Gy|;

3) amin(Kf;m(x)) ©(1) for all m > Q(log® n) and
m < |Gnl, (Kh m( x)) is the least eigenvalue
Ofm ZZGK,“" (x) I/’X,h( )V/x h( )

Remark 10. It is possible to improve the concentration result
in (48) using the strategies adopted in [35] based on sharper
Bernstein type concentration inequalities. Such improvements
are, however, not important in establishing the main results of
this paper.
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The next lemma shows that, the bandwidth 4, selected at the
end of each outer iteration 7 is near-optimal, being sandwiched
between two_quantities determined by the size of the active
sample grid S; 1 := S7_; (0:—1).

Lemma 5. There exist constants C1,Cr > 0 depending
only on d,a, M, Py Po and C such that with probability

1 — O(n "), the following holds for every outer iteration
te{l,...,Ttand all x € S; _:
Cl [17171”0]_1/(20(4_(1) - T/n < (254 (x)
< hy(x) < Cz[ﬁr_lno]fl/(2a+d)logn +t/n, (1)
where V1 := |Gp|/|Se—1-

We are now ready to state the proof of Lemma 3,
which is based on an inductive argument over the epochts
t=1,...,T

Proof. We use induction to prove this lemma. For the base

case 7 = 1, because || f — folloo < &Y (fo) and eV (fy) — 0 as

n — o0, it suffices to prove that B;O (x; X)n Lfo(co/4) #*
1

for all x € S; and sufficiently large n. Because §0 =5 =
G, invoking Lemmas 5 and 1 we have that |;7h1(x),(;(x)| =
O (n=*/(2a+d)) for all x € G,, with high probability at the end
of the first outer iteration ¢ = 1. Therefore, for sufficiently
large n we conclude that sup,cq, |71, (x),6(x)| < co/16 and
hence BOo (x; X) n Ly (co/4) # & for all x € Si.

We now prove the lemma for 7 > 2, assuming it holds for
7 — 1. We also assume that n (and hence ng) is sufficiently
large, such that the maximum CI length maxyeg |7, (x),5(%)|
after the first outer iteration 7 = 1 is smaller than co/2.

Because | f— folloo < eV(fo) and &, 1 = C3eY(fo)log? n,
for appropriately chosen constant C3 that is not too small, we
have that | f — fo|eo < €;—1. By the inductive hypothesis we
have

VxeS; 1, BOo (x; X) N Ly(er—1) # &

Pr—1

Equivalently,

S:—1 € L?(er—l’p:—l) c L?O(gr—l + Hf - fOHOO’p:—l)
C LG (2e;—1,pf ). (32)

Subsequently,

Seo1 =87 S LS (260 1.2pF ). (33)

Let J,ep, 32 (x) be the smallest covering set of
—1
Ly, (2e: 1), meanlng that Lz (2e;_1) Uern (x),
where B2 (x) ={z e X |z-x|2 < 2p}_ 1} is the
—1

{> ball of “radius 2p¥
that |H,| <1+[pF_,]7¢

1 centered at x. By (A2), we know
Uy (27 —1). In addition, the enlarged

level-set satisfies L% (2ec—1,2p7_1) S Uen, B;’Zil(x).

Subsequently,

15 2ec—1, p7—1) S |Hal - [pF1]" € 1y (20 1) + [pf]7.
(34)

By Lemma 5, the monotonicity of |S;_;| and the fact that
Py < px(z) < pg for all z € X, we have

pE S [ (eemr, pr )| VCH DT D 100 35)
[ﬂ? (281— 15p7:— )]1/(2a+d)n0_1/(2a+d) logn (36)
. 1/Qa+d)  _1/(24
S (:“fo(zgrfl) + [Pr_l]d) ng 1/@a+d) logn.
(37)

Re-arranging terms on both sides of (37) we have

ol o1
py_1 < max {[ﬂf0(2811)]mn0 “*logn, ny ™ logn}.
(38)
On the other hand, according to the selection procedure of

the bandwidth /,(x), we have that n, (,)5(x) < bp,(x)5(x).
Invoking Lemma 5 we have for all x € S;_; that

Ay (x),6(X) S b, (2),6(x) < [he(x)]* (39)
< [Peeino] /Gt iogpn (40)
< [Vran] /4D logn @1
< [pi—1]" logn. (42)

Here (40) holds by invoking the upper bound on /,(x) in
Lemma 5, (41) holds because V;_{ = V;_», and (42) holds
by again invoking the lower bound on g,_;(x) in Lemma 5.
Combining Eqgs. (38,42) we have

Xfergax Mhy (x ),5()6) (43)
o R 1
< {1 2o 175, 7 g, g o .
(44)

Recall that ng =
that C3 is not too small. By deﬁmtlon, every ¢ =
satisfies &~ (2F4/%) . (£) <
® > 5+ d/a. Subsequently,

n/logn and eV(fy) < &;—1, provided
en (o)

n/log®” n for some large constant

261 ﬁnimlo 2
K fo 0 g

< ZSTflnﬁ log_% n -n;m logzn (45)
(w—=5—d/a)a
<er1/[logn] 2erd (46)

Because w > 5 + d/a, the right-hand side of (46) is
asymptotically dominated ® by &,_;. In addition, ny 1/2 logn
is also asymptotically dominated by ¢,_; because e,_1 >
Cin—1/2 log® n. Therefore, for sufficiently large n we have

4. 47
X My, (x),6(X) < ee-1/ (47)
Lemma 3 is thus proved. O

OWe say {a,} is asymptotically dominated by {b,} if lim,_c
lan|/1bn| = 0.
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1) Proof of Lemma 4:

Proof. We first show that the first property holds almost surely.
Recall the definition of yy 5, we have that 1 < |y, 4 (2)]2 <
D - [maxi<j<ah™'|z; — x;|]*. Because |z — x|o < h for
all z € B°(x), supe g (x) [wxn(2)]2 < O(1) for all A > 0.
Thus, sup, o SUp.ep (x) | ¥x.n(2) |2 = O(1) for all x € G,.

For the second property, by Hoeffding’s inequality
(Lemma 9) and the union bound, with probability 1 — O(n 1)
we have that

B, (x5 Gu) © ‘ logn
max | ——— — Px(z€ B; (x))| < . (48)
x,h |Gn| X( h ( )) |Gn|

In addition, note that Px(z € BF(x:X)) =
EOA(B;;O()C; X)) z h? and Px(z € BP(x;X)) <
PoA(BP(x; X)) < hd, where A(-) denotes the Lebesgue
measure on X. Subsequently, |B;°(x; G,)| is lower bounded
by Q(h4|G,| — +/|Gn|logn) and upper bounded by
O(h?|G,| + +/|Gn|logn). The second property is then
proved by noting that g = n~¢ and |G| 2 n3¢/min(a.1),

We next prove the third property. Because Py < Px (z) € Py
for all z € X, we have that

on Wen (@) ven(z) T dUp(2)
B (x:X)

1
<E|— > yen@ven(@)’ (49)
ZEK}f’m
< %o f Ven(@wen(@) AU, (50)
BiP (x:1X)

where Uy is the uniform distribution on B.°(x; X). Note
also that

L vo.1(2)wo.(z) T dU(2)
< J Wen (2 waen(2) TdU 4 (2) (51)
Bf(x;X)

ﬁ2d[¥WQMOWQMOTdU&) (52

where U is the uniform distribution on & = [0, 1]¢. The
following proposition upper and lower bounds the eigenvalues
of § v wo,1(2)wo,1 (z)TdU(z), which is proved in the appendix.

Proposition 7. There exist constants 0 < yo < Yo < o
depending only on d, D such that

wo Ipxp < L{ wo.1(z)wo.1(z) TdU(z) < Wolpxp. (53)

Using Proposition 7 and Egs. (51,52), we conclude that

1

Q1) - Ipxp<E |~ Y ver@wen(@)’

¢
ZEKh,m

f; ()( 1) '12) XD-

(54)
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Applying matrix Chernoff bound (Lemma 11) and the union
bound, we have that with probability 1 — O(n~!),

! T
Jnax |- Z Ve (2)Ven (2)
€K}, (%)
logn
—E [Wx,h(Z)Wx,h(z)T|z € B,‘;o(x)] <4221
op m

Combining Eqgs. (54,55) and applying Weyl’s inequality
(Lemma 12) we have

Q(1) = 0(y/logn/m) < omin(Kf u(x))
< 0(1) — O(y/logn/m). (55)

The third property is therefore proved. O

2) Proof of Lemma 5: Proof. We use induction to prove this
lemma. For the base case of 7 = 1, we have Sy = Sy = G,
and therefore V;_; = 1. Furthermore, applying Lemma 4 we
have that for all & = j/n?,

logn
brs(x) =h*, sps(x) =4 ,hdn()'

Thus, for & selected according to (18) as the largest bandwidth
of the form j/n% j € N such that bys(x) < sp.4(x),
both by s5(x), sp,5(x) are on the order of n()_l/(2a+d) up to
logarithmic terms of n, and therefore one can pick appropriate

constants Cq, C, > 0 such that Clnal/(zaﬂl) < o1(x) <

Czn()_l/(za+d) logn holds for all x € G,.

We next prove the lemma for ¢ > 1, assuming it holds
for ¢ — 1. We first establish the lower bound part. Define
pr | :=mings, , 0r1(z). By inductive hypothesis, p* | >
Ci [ﬁr_znwo]_l/(z“td) —(z—1)/n. Note also that ;1 > D, _»
because S;—1 € S;—», which holds because S;—1 € S;—»
and p;—1(z) < 0:—2(z) for all z. Let h) be the smallest
number of the form j*/n?, j* € [n*] such that h¥ >
C1[V: _1no]V/@atd) _ 7 /n. We then have hi¥ < p¥_ | and
therefore query points in epoch 7 are uniformly distributed in
BZ; (x; G,,). Subsequently, applying Lemma 4 we have with

probability 1 — O(n~") that

(56)

logn

!/ ko "

bk 5(x) S C'[RT]", sy 5(x) = C [h¥]9%, _in’ 57
where C/,C" > 0 are constants that depend on

d,a, M,Eo,ﬁo and C, but not Cy, Ca, t or h;. By choosing
C| appropriately (depending on C’ and C”) we can make
bjx 5(x) < s),% 5(x) holds for all x € S; 1, thus establishing
0c(x) = min{or—1 (), h¥} > C1[Fr_yno] Y/« — o/,

We next prove the upper bound part. For any h, = j,/n®
where j, € [n?], invoking Lemma 4 we have that

logn

b.s(x) = C'h*, s;.5(x) < 5”\/

min{h, p¥ |} -V _ing’
(53)
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where €’ and C” are again constants depending on
d,a, M, p,. Po and C, but not C1, C. Note also that p¥_, >
Cl[grizno]fl/@owd) _ (T _ 1)/n > C1[1~)171n0]*1/(2“+d) _
7/n, because V;—1 = Vr_p. By selecting constant C; >
0 carefully (depending on C’,C” and Cj), we can ensure
bj.s(x) > sps(x) for all b > cz[s,,lno}*l/ﬂﬁd) +7/n.
Therefore, g, (x) < h;(x) < Ca[Vr—1no] V@44 d) 4z /n. O

C. Proof of Theorem 2

In this section we prove the main negative result in Theo-
rem 2. To simplify presentation, we suppress dependency on
a,d,coand Cpin <, 2, =, O(+) and Q(*) notations. However,
we do not suppress dependency on Cp or M in any of the
above notations.

Let g9 : [-2,2]¢
defined on X such that ¢o € E,[a](l) with k = o0,
sup,ex @o(x) = Q(1) and ¢o(z) = 0 for all |z|]|2 > 1. Here
[a] denotes the smallest integer that upper bounds a. Such
functions exist and are the cornerstones of the construction of
information-theoretic lower bounds in nonparametric estima-
tion problems [50]. One typical example is the “smoothstep”
function (see for example [54])

1 N+1 Z
Z

no(N:n)(iyj:>Gwy,

N=0,1,2,...,

— R* be a non-negative function

SN()C) ==

where Z > 0 is a scaling parameter. The smoothstep function
Sy is defined on [0, 1] and satisfies the Holder condition in (6)
of order & = N on [0, 1]. It can be easily extended to Sy g :
[—2,2]¢ — R by considering Sy.q(x) := 1/Z — Sy(ax|1)
where [x[1 = [x1] + ... + |xq| and a = 1/(2d). It is easy
to verify that, with Z chosen appropriately, Sy,a € =N (1),
SUp.ey Sn.a(x) = 1/Z = Q(1) and Sy4(z) = 0 for all
lzl2 = 1, where M > 0 is a constant.
For any x € X and h > 0, define ¢, 5 : X — R* as

Mh* 7—X

5 70 ( 7 ) .
It is easy to verify that ¢, € X% (M/2), and furthermore
Sup,ey ¢x,n(2) = Mh* and g, 4(z) = 0 for all z ¢ B°(x).

Let L, (eL(fo)) be the level-set of fo at e-(fo). Let H, <
L (e5(fo)) be the largest packing set such that B;°(x) are
disjoint for all x € H,, and Uer BP(x) S Ly (e5(fo)).
By (A2’) and the definition of &5( fy), we have that

pxn(z) =Tz € B (x)] - (59)

|Hal = M(L 1y (e5(f0)). 2/dh)
2 wh(en(fo)) b = [eg ()P -nh = (60)
For any x € H,,, construct f; : X — R as
fx(z) = folz) — pxn(z). 61)

Let F, := {fx : x € H,} be the class of functions indexed
by x € H,. Let also & = (e-(fo)/M)"/« such that [p,.1]e0 =
2¢L(fo). We then have that | f; — fo|oo < 265(f0) and fy €
2% (M), because fo, pxn € % (M)2).

The next lemma shows that, with n adaptive queries to the
noisy zeroth-order oracle y, = f(x;) + wy, it is information
theoretically not possible to identify a certain f in F, with
high probability.

Lemma 6. Suppose |F,| = 2. Let A, = (x1,---» Yn>®n)
be an active optimization algorithm operating with a sample
budget n, which consists of samplers y; : {(xi, yl)}lfl1 — X7
and an estimator ¢, : {(x;, yi)}7_, — fx € Fy, both can be
deterministic or randomized functions. Then

2
1 n-su — 7
inf sup Pr [fx # fx] > — _\/ Prer, 1 = fi ”oo
An freF, fx 2 2| F

(62)

Lemma 7. There exists constant M > 0 depending on
a,d,co, Co such that the right-hand side of (62) is lower
bounded by 1/3.

Lemmas 6 and 7 are proved at the end of this section.
Combining both lemmas and noting that for any distinct
fe, fr € Fpand z € X, max{L(z; fx), £(z; fir)} = grlf(fO)’
we proved the minimax lower bound formulated in Theorem 2.

1) Proof of Lemma 6: Our proof is inspired by the negative
result of multi-arm bandit pure exploration problems estab-
lished in [51].

Proof. For any x € H,, define

ny :=Eg lZ I[x e B,‘l’o(x)]] .

i=1

(63)

Because B;°(x) are disjoint for x € H,, we have erHn ny <
n. Also define, for every x € H,,

e i=Pr 7= 1] (64)

Because ») oy §x = 1, by pigeonhole principle there is at
most one x € H, such that o, > 1/2. Let x;,x2 € H,
be the points that have the smallest and second smallest 7.
Then there exists x € {x1,x2} such that g, < 1/2 and
ny < 2n/|F,|. By Le Cam’s and Pinsker’s inequality (see,
for example, [4]) we have that

1P

Pr 7= 1] < Pr [fx = 1| +drv(P (65)

]
<1;§[fx=fx]+ —KL PP (66)

(67)

L L (pPa | phn
= pox + EK( 1P7")

1 A pAn
< SKL(PR 1P, (68)

| =

It remains to upper bound KL divergence of the active
queries made by 4,,. Using the standard lower bound analysis
for active learning algorithms [50], [55] and the fact that
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1211

fx = fo on X\B;°(x), we have

(69)

I) Xl:ns
KL(P P =B [log M]

Pfx,A,, (xltn, yltn)

_E, 4 |log [Ti=1 Proilxi) Pa, (xi|x1:G -1y Y1:i—1))
Jordln [Tiz1 Pr ilxi) Pa, (xilx11ys Yigi-1))
(70)
P = Pfo(yz'|xi)]
=Ej .4, |log it 102 (71)
oA R T PrGl)
P (yi|xi
=Epa | log% (72)
_xiEBf‘(x) fe il
<ny- sup  KL(Pg(+2)]|Pr.(+]2)) (73)
€BF(x; X)
<nx | fo— fel%. (74)
Therefore,
~ 1 1 1 n|fe = fol%
= < - n.e2 < = _Jjx JOIo
I;f[fx fx]\2+V4”x€"\2+ 7w P
O

2) Proof of Lemma 7:
Proof. By construction, nsupy er, | fx — fol%, < M? nh?
and |F,| = |Ha| 2 [C.eb(fo)]*H4/“nh=¢. Note also that
h = (e/M)"" = (C,er(fo)/M)'/* because | fi — folleo =
e = C,e-(fo). Subsequently,

nSup rer, I fe — f0||c2>o <

nCok P i
2]

T n[Cuek(fo)]2 - Méla

(76)

By choosing the constant M > 0 to be sufficiently large,
the right-hand side of the above inequality is upper bounded
by 1/36. The lemma is thus proved. O

D. Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of The-
orem 2, but is much more standard by invoking the Fano’s
inequality [4]. In particular, adapting the Fano’s inequality on
any finite function class 7, constructed we have the following
lemma:

Lemma 8 (Fano’s inequality). Suppose |F,| = 2, and

{(xi, yi)}!_, are iid. random variables. Then
inf sup Pr [fx # fx]
fo feeFy I
log2 +n-supy ¢ ,er, KL(P|Pr,)
log || ,
where Py, denotes the distribution of (x,y) under the law

of fx.

Let F,, be the function class constructed in the previous
proof of Theorem 2, corresponding to the largest packing
set H, of Ly (2L) such that B(x) for all x € H, are
disjoint, where h = (85/M)"/ such that g, |00 = 28 for

>1-

=

(77)
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all x € H,. Because fy satisfies (A2’), we have that |F,| =
|Hy| 2 w5, (Z5)h=?. Under the condition that &Y (fo) < 2L, it
holds that u , (85) > [€4]2+4/%n. Therefore,

\Fol 2 [E52H9% nh = 2 52 ame . (78)

Because log(n/25) > logn and M > 0 is a constant, we have
that log | 7| = clogn forall n = N, where ¢ > 0 is a constant
depending only on a,d and N € N is a constand depending
on M.

Let U be the uniform distribution on &X’. Because x ~ U
and f, = fyr on X\B;°(x), we have that

KL(Pg 1P =5 [ 160~ @PaU@) (9
< Prlze BRI fulle 80)
< %A(Bff’(x)) el (81)
< AP < [P e e (82)

By choosing M to be sufficiently large, the right-hand side
of (77) can be lower bounded by an absolute constant. The
theorem is then proved following the same argument as in the
proof of Theorem 2.

APPENDIX A
SOME CONCENTRATION INEQUALITIES

In this section, to ease readability of our paper, we provide
some concentration inequalities and other standard results that
we use extensively.

Lemma 9 ( [56]). Suppose X1,...,X, are i.id. random
variables such that a < X; < b almost surely. Then for any

t >0,
>t <2 ni’
S 2€X alae————
P 2(b—a)?

|

Lemma 10 ( [57]). Suppose x ~ Ny(0, Iyxq) and let A be
a d x d positive semi-definite matrix. Then for all t > 0,

1 n
—ZX,-—EX
n

i=1

Pr [xTAx > tr(A) + 24/tr(A2)r + 2|A|opt] <e .

Lemma 11 ( [58], simplified). Suppose Ai,...,A, are
i.i.d. positive semidefinite random matrices of dimension d and
[|Ailop < R almost surely. Then for any t > 0,

1 n
Pr ;ZlAi—lEA
=

>t <2 nt?
X 2¢€X —_—— 7.

P17 3R?
op

Lemma 12 (Weyl’s inequality). Let A and A + E
be d x d matrices with o1,...,04 and of,...,0) be
their singular values, sorted in descending order. Then
maxi<i<da [0i — ]| < || Eop-
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APPENDIX B
ADDITIONAL PROOFS

Proof of Proposition 1. Consider arbitrary x* € X such

that f(x*) = inf,ey f(x). Then we have that £(%,; f) =
FE) = f&*) < UnGa) + 1o = Flloo] = Uar*) = 1 fu =
fllo] < 2\|j,, flloo, where the last inequality holds because

fa(Xn) < fu(x*) by optimality of X,. 0

Proof of Example 2. Because fy € E,%(M ) is strongly convex,
there exists ¢ > 0 such that V> fy(x) > o for all
x € Xy, Where Xy, := Ly (k) is the x-level-set of fp.
Let x* = argmin,ey fo(x), which is unique because fj is
strongly convex. The smoothness and strong convexity of fy
implies that

—Wx—xww

o
f0*+§||X—X*||c2>o<f0( x)< fo' + Vx € X

(83)

Subsequently, there exist constants cg, Cy, C2 > 0 depending
only on o, M, k and d such that for all € € (0, c],

X) S Lp(e) S BE j(x™: X).

Cl\f( Cav/e
The property uf,(€) < €’ holds because u(L g (€)) <

(84)

,U(Bg:\/g(X*;X)) < €2 To prove (A2), note that
N(Ly,(€),0) < N(B?;\/E(X*; X),0) S1+(+/€/6)?. Because
el? < u(Lg(e)) = wup(e), we conclude that

N(L g, (€),0) <140 1, (e) and (A2) is thus proved. 0

Proof of Proposition 4. Consider fop = 0if f = 0 and fy(z) :=
ao [zf +... +zg] for all z = (z1,...,zq4) € [0, 1]¢, where
ap > 0 is a constant depending on a, M, and p = d/f for
p € (0,d/a]. The B = 0 case where fy = O trivially holds.
So we shall only consider the case of § € (0, d/a].

We first show fy € 2%(M) with k = co, provided that ay is
sufficiently small. For any j < k = |oa|and a1 +...+ag = j,
we have

e fte) = st i o = ). 1)

oxy' ... 0x] 0 otherwise.
(85)

Because z1,...,z4 € [0,1] and p =d/f = a > j, it’s clear
that 0 < ¢/ fo(z)/0x]" ... 0xj* < ap j!. In addition, for any
z,2' € [0,1]? and ap = k, € € [d], we have

ok ok
mﬁ)(z) —mfo(z')
<aok! - |[ze)"F = [P 7F| (86)
<aok! |z — "™ PN (87)

where the last inequality holds because x' is mm{t 1}-Holder
continuous on [0, 1] for + > 0. The |z; — z; |mm{p k.1}
term can be further upper bounded by ||z — z Hoo because
p = d/B = a. By selecting ap > 0 to be sufﬁ01ently small
(depending on M) we have fy € L% (M).

We next prove fp satisfies u f,(€) = €? with parameter f
depending on ap and p. For any € > 0, the level-set Lz, (¢) can

{ze[0,1]7: 20 +...+28) < e€/ao}.

be expressed as L 5, (€) =
Subsequently,

o) "] saio= o (2) "]

Therefore,

(88)

[¢/(aod)]"? < gy (€) < [€/ao]l™” (89)

Because ag,d are constants and dp = J, we established
tgy(€) = € for = dp.

Finally, note that for any € > 0, Ly (¢) is sandwiched
between two cubics whose volumes only differ by a constant.
This proves (A2) and (A2’) on the covering and packing
numbers of L f, (€). O

Proof of Proposition 5. By the Chernoff bound and the
union bound, with probability 1 — O (n~!) uniformly over all
x € Gy, there are Q(\/nglog? n) uniform samples in
B;l’g(x; X). Because hg < ¢ for sufficiently large ng (¢ is

defined in condition (A1)), by Lemma 1 it holds that

a/2d —1/4

Fo@ < he 40y < g g
Vx € Gy, x EBhO(x,X).

| fe(x) —
(90)

Also, using the standard Gaussian concentration inequality,

with probability 1 — O(n~!) we have
. —1/4
f -0
x’eB%l(x;X)f(x) (no )
<T) < sup f)+0myH WreG, O

x’eB;?g(x;X)

Let x* be the minimizer of f on X and x € G, such
that |x — x*|oc < ho. By (90), we have with probability

1 — O(n~!) that infx’eB,}’é(x;X) flx) < f*+ O(ny a/2d
_1/4) < f* +1/2logn, where f* = f(x*). Now consider
arbitrary z € G, such that Boo(z X)n L(k)2) = @&,
meaning that for all 7/ € X, < ho, f(Z) >
x/2. By 90), f(z) = x/2—0(ny, ') = x/2 — 1/2logn.
Hence when ng is sufficiently large, z ¢ S(’), which is to be
demonstrated. O

—1/4

Proof of Proposition 7. The upper bound part of (53) triv-
ially holds because the absolute values of every element in
wo.1(z2)wo.1(z)" for z € X = [0,1]? is upper bounded by
O(1). To prove the lower bound part, we only need to show
Sa wo,1(2) o1 (z)TdU(z) is invertible. Assume the contrary.
Then there exists v € RP\{0} such that

0! [JX w(),1(Z)l//0,1(Z)TdU(Z)] v
= [ Ima@Tfave =0, o

Therefore, {yo,1(z),v) = 0 almost everywhere on z €
[0,1]?. Because h > 0, by re-scaling with constants this
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implies the existence of non-zero coefficient vector ¢ such

that
2

o1 +... o<k

P(Z1,~-~,Zm) = 60(1,---;%71Z(111 "‘Z:'Xnm :O

almost everywhere on z € [0, 1]%.

We next use induction to show that, for any degree-k
polynomial P of s variables zi,...,zs that has at least
one non-zero coefficient, the set {z1,...,z; € [0, l]d
P(z1,...,zs) = 0} must have zero measure. This would then
result in the desired contradiction. For the base case of s = 1,
the fundamental theorem of algebra asserts that P(z;) = 0 can
have at most k roots, which is a finite set and of measure 0.

We next consider the case where P(zj, ..., zs) takes on s
variables. Re-organizing the terms we have

P(z1,...y25) = Polz1y s 25—1) + 25 P1(215 oo 25—1)
o Pz zm1), (93)
where Pj, ..., Py are degree-k polynomials of zy,...,z5—1.

Because P has a non-zero coefficient, at least one P; must
also have a non-zero coefficient. By the inductive hypothesis,
the set {z1,...,25—1 Pj(z1,...,25—1)} has measure 0.
On the other hand, if P;(z1,...,zs—1) # O, then invoking
the fundamental theorem of algebra again on zg; we know

that there are finitely many z; such that P(zy,...,zs) = 0.

Therefore, {z1,...,25s : P(z1,...,2s) = 0} must also have

measure zero. Ll
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Optimization of Smooth Functions With Noisy
Observations: Local Minimax Rates

Yining Wang®, Sivaraman Balakrishnan, and Aarti Singh

Abstract— We consider the problem of global optimization of
an unknown non-convex smooth function with noisy zeroth-order
feedback. We propose a local minimax framework to study
the fundamental difficulty of optimizing smooth functions with
adaptive function evaluations. We show that for functions with
fast growth around their global minima, carefully designed
optimization algorithms can identify a near global minimizer
with many fewer queries than worst-case global minimax theory
predicts. For the special case of strongly convex and smooth func-
tions, our implied convergence rates match the ones developed for
zeroth-order convex optimization problems. On the other hand,
we show that in the worst case no algorithm can converge faster
than the minimax rate of estimating an unknown function in the
Lo-norm. Finally, we show that non-adaptive algorithms, though
optimal in a global minimax sense, do not attain the optimal local
minimax rate.

Index Terms— Optimization of smooth functions, nonparamet-
ric statistics, local minimax analysis.

I. INTRODUCTION

LOBAL function optimization with stochastic (zeroth-
order) query oracles is an important problem in opti-
mization, machine learning and statistics. To optimize an
unknown bounded function f : X — R defined on a known
compact d-dimensional domain X < R?, the data analyst

makes n active queries x1, ..., X, € X and observes

ve = fl) +w,  w NO1), =10 (1)

The queries x1, . .., x; are active in the sense that the selection
of x; can depend on the previous queries and their responses
X1, Y1, .-+, Xr—1, Yr—1. After n queries, an estimate x, € X is
produced that approximately minimizes the unknown function
f. Such “active query” models are relevant in a broad range
of (noisy) global optimization applications, for instance in
hyper-parameter tuning of machine learning algorithms [1] and
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IThe exact Gaussianity of the independent noise variables &; is not crucial
and our results can be easily generalized to sub-Gaussian noise.

sequential design in material synthesis experiments where the
goal is to maximize the strength of the synthesized material
as a function of experimental settings [2], [3]. We refer the
readers to Section II-A for a rigorous formulation of the active
query model and contrast it with the classical passive query
model.

The error of the estimate X, is measured by the difference
of f(x,) and the global minimum of f:

L(Xn; f) = f(xn) — f*  where f*:= inf f(x). (2)

xeX
To simplify our presentation, throughout the paper we take the
domain X to be the d-dimensional unit cube [0, 1], while our
results can be easily generalized to other compact domains
satisfying minimal regularity conditions.

When f belongs to a smoothness class, say the Holder
class with exponent a, a straightforward global optimization
method is to first sample n points uniformly at random
from X and then construct nonparametric estimates f;, of
f using nonparametric regression methods such as kernel
smoothing or local polynomial regression [4], [5]. Classical
analysis shows that the sup-norm reconstruction error || f,, —
f||oo = supx x| f(x)| can be upper bounded by
O]p e) ThlS global reconstruction guarantee then
implies an Op (n ~a/(2a +4)) upper bound on £(X,; f) by con-
sidering an estimate X, € X for which f;,(x,) = inf,cx fu(x)
(such an X, exists because X is closed and bounded). Formally,
we have the following proposition (proved in the Appendix)
that converts a global reconstruction guarantee into an upper
bound on the optimization error:

Then

Proposition 1. Suppose fn()?n) = inf,ecx fn(x)

£Rus £) <20 fa = floo-

Typically, fundamental limits on the optimal optimization
error are understood through the lens of minimax analysis
where the object of study is the (global) minimax risk:

inf sup E ¢ £(xn, f), ©)

Xn feF
where F is a certain class of smooth functions such as
the Holder class. Although optimization appears to be easier
than global reconstruction, we show in this paper that the
n=a/Q2a+d) rate is not improvable in the global minimax sense
in over Holder classes. Such a surprising phenomenon was also
noted in previous works [6]—[8] for related problems. On the

2In the O(-) or Op(-) notation we suppress constant factors and terms that
depend poly-logarithmically on .

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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other hand, extensive empirical evidence suggests that non-
uniform/active allocations of query points can significantly
reduce optimization error in practical global optimization of
smooth, non-convex functions [1]. This raises the interesting
question of understanding, from a theoretical perspective,
the conditions under which the global optimization of smooth
functions is easier than their reconstruction, and the power
of active/feedback-driven queries that play important roles in
global optimization.

In this paper, we propose a theoretical framework that
partially answers the above questions. In contrast to clas-
sical global minimax analysis of nonparametric estimation
problems, we adopt a local analysis which characterizes the
optimal convergence rate of optimization error when the under-
lying function f is within a neighborhood of a “reference”
function fy. (See Section II-B for the rigorous local minimax
formulation considered in this paper.) Our main results are
to characterize the local convergence rates R,(fo) for a
wide range of reference functions fy € F. Concretely, our
contributions can be summarized as follows:

1) We design an iterative (active) algorithm whose opti-
mization error £(X,; f) converges at a rate of R,(fo)
depending on the reference function fy. When the
level-sets of fy satisfy certain regularity and polynomial
growth conditions, the local rate R,(fp) can be upper
bounded by R,(fo) = O(n=%/(2etd=af)y \where f €
[0,d/a] is a parameter depending on fj that character-
izes the volume growth of the level-sets of the reference
function fy. (See assumption (A2), Proposition 2 and
Theorem 1 for details). The rate matches the global
minimax convergence rate n=%/(2a+d) for worst-case fo
where f = 0, but can be much faster when f > 0.
We emphasize that our algorithm has no knowledge
of the reference function fy and achieves this rate
adaptively.

2) We prove local minimax lower bounds that match the
n—e/(a+d—af) upper bound, up to logarithmic factors
in n. More specifically, we show that even if fy is
known, no (active) algorithm can estimate f in close
neighborhoods of fj at a rate faster than n=¢/Qat+d—af)
We further show that, if active queries are not available
and queries xi, .. ., x, are i.i.d. uniformly sampled from
X, then the n—¢/(20+d) global minimax rate also applies
locally regardless of how large £ is. Thus, there is an
explicit gap between local minimax rates in the active
and uniform query models when £ is large.

3) In the special case when f is convex, the global opti-
mization problem is usually referred to as zeroth-order
convex optimization and this problem has been widely
studied [9]-[14]. Our results imply that, when fy is
strongly convex and smooth, the local minimax rate
R.(fo) is on the order of O(n~'/2), which matches
the convergence rates in [11]. Additionally, our negative
results (Theorem 2) indicate that the n—1/2 rate cannot
be achieved if fy is merely convex, which seems to
contradict n~1/2 results in [13], [14] that do not require
strong convexity of f. However, it should be noted that
mere convexity of fy does not imply convexity of f in
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a neighborhood of fy (e.g., | f — follco < €). Our results
show significant differences in the intrinsic difficulty
of zeroth-order optimization of convex and near-convex
functions.

A. Related Work

Global optimization, known variously as black-box opti-
mization, Bayesian optimization and the continuum-armed
bandit, has a long history in the optimization research com-
munity [15], [16] and has also received a significant amount of
recent interest in statistics and machine learning [1], [6], [8],
[17]-[19]. Many previous works [17], [20] have derived rates
for non-convex smooth payoffs in “continuum-armed” bandit
problems.

The papers [21], [22] are closely related to our work. They
studied the related problem of estimating the set of all optima
of a smooth function in the Hausdorff distance. For Holder
smooth functions with polynomial growth, the paper [21]
derives an n~!/(2¢+d=ap) minimax rate for a < 1 (subse-
quently improved to include o = 1 in [23]). This result is
similar to our Propositions 2 and 3. The papers [21], [22]
also discussed adaptivity to unknown smoothness parameters.
We however remark on several differences between our work
and the papers [21], [22]. First, in [21], [22] only functions
with polynomial growth are considered, while in our Theo-
rems 1 and 2 functionals £Y(fy) and &5(fy) are proposed
for general reference functions fy satisfying mild regularity
conditions, which include functions with polynomial growth
as special cases. In addition, [21] considers the harder problem
of estimating maxima sets in Hausdorff distance, as opposed
to the problem of producing a single approximately optimal
solution X7. As a result, the minimax lower bounds in [21]
do not apply to this latter setting. An algorithm, without
distinguishing between two functions with different optima
sets, can nevertheless produce a good approximate optimizer
as long as the two functions under consideration have overlap-
ping optima sets. New constructions and information-theoretic
techniques are therefore required to prove lower bounds under
the weaker (one-point) approximate optimization framework.
Finally, we prove minimax lower bounds when only uniform
query points are available and demonstrate a significant gap
between algorithms having access to uniformly sampled or
adaptively chosen data points.

The papers [18], [19] imposed additional assumptions on the
level-sets of the underlying function to obtain an improved
convergence rate. The level-set assumptions considered in
the mentioned references are rather restrictive and essentially
require the underlying function to be uni-modal, while our
assumptions are much more flexible and apply to multi-modal
functions as well. In addition, [18], [19] considered a noise-
less setting in which exact function evaluations f(x;) can
be obtained, while our paper studies the noise corrupted
model in (1) for which vastly different convergence rates are
derived. Finally, no matching lower bounds were proved in the
papers [18], [19].

The (stochastic) global optimization problem is similar to
mode estimation of either densities or regression functions,
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which has a rich literature [24]-[26]. An important difference
between statistical mode estimation and global optimization is
the way sample/query points xi,...,x, € X are distributed:
in mode estimation it is customary to assume the samples
are independently and identically distributed, while in global
optimization sequential designs of samples/queries are typical.
Furthermore, to estimate/locate the mode of an unknown
density or regression function, such a mode has to be well-
defined; on the other hand, producing an estimate X, with
small £(%,, f) is easier and results in weaker conditions
imposed on the underlying function.

Methodology-wise, our proposed algorithm is conceptually
similar to the abstract Pure Adaptive Search (PAS) frame-
work proposed and analyzed in [27]. The iterative procedure
also resembles disagreement-based active learning meth-
ods [28]-[30] and the “successive rejection” algorithm in ban-
dit problems [31]. The intermediate steps of candidate point
elimination can also be viewed as level-set estimation prob-
lems [32]-[34] or cluster-tree estimation problems [35], [36]
with active queries.

Another line of research has focused on first-order opti-
mization of quasi-convex or non-convex functions [37]-[42],
in which exact or unbiased evaluations of function gradients
are available at query points x € X'. The paper [42] considered
a Cheeger’s constant restriction on level-sets which is similar
to our level-set regularity assumptions (A2 and A2’). The
papers [43], [44] studied local minimax rates for the first-order
optimization of convex functions. First-order optimization
differs significantly from our setting because unbiased gradient
estimation is generally impossible in the model of (1). Fur-
thermore, most works on (first-order) non-convex optimization
focus on obtaining stationary points or local minima, while we
consider the problem of finding a (near) global minima.

B. Comparison with the HOO Algorithm

The HOO algorithm [17], as well as similar algorithms
such as Algorithm 2 in [45] and the POO algorithm in [22],
are theoretically well-studied methods for global optimization.
Below we summarize the differences of our results and the
ones from these works.

(a) Weaker Smoothness Conditions I: In Algorithm 1,
we use local polynomial estimation as a sub-routine
to obtain local estimates of the objective function
f. Compared to the sample average approach in
HOO (e.g., Algorithm 2 in [45]), local polynomial
estimates have the advantage of being unbiased for
the estimation of low-degree polynomials. This trans-
lates to the improved (Al) Holder-continuity condi-
tion that only restricts the |a]-th order derivatives
of objective functions. More specifically, the actual
function values of f(x) and f(x') for x,x’ close
to each other can be very different, as long as such
differences can be perfectly modeled by low-degree
polynomials. This is in contrast to the smoothness
conditions imposed in [17], [45] which essentially
require f(x) to be close to f(x*) for x close to x* the
optima of f.

(b) Weaker Smoothness Conditions II:  Our results in
Section IV-C hold on functions that are only assumed
to be smooth in regions close to its global minimum, in
contrast to Definition 1 in [45] and many other existing
works that place smoothness assumptions on the entire
domain of the objective function f.

(c) Spatially Restricted Queries: Our proposed algorithm is
“grid” based, and can be run on any sufficiently dense
finite grid G, in X and does not need to have the
capacity to query arbitrary points in X. As a result,
our algorithm can be run in experimental settings where
queries are restricted to belong to a large pool of a-priori
chosen points.

Results for any Smooth Function: Our algorithm and

lower bounds yield essentially tight results for the

complexity of optimization of arbitrary smooth func-
tions. While these rates are most interpretable under
the level-set growth conditions (also studied in [45]) our
results also yield nearly matching guarantees for other
(arbitrary, smooth) functions fj.

(d)

II. BACKGROUND AND NOTATION

We first review standard asymptotic notation that will
be used throughout this paper. For two sequences {a,}.
and {b,}, >, we writt a, = O(b,) or a, < by, if
lim sup,,_, o, |@n|/|bn] < o0, or equivalently b, = Q(a,) or
b, = a,. Denote a, = @(b,) or a, = b, if both a, < b,
and a, = b, hold. We also write a, = o(by,) or equivalently
b, = w(ay) if limy,— |an|/|bn| = 0. For two sequences
of random variables {A,}>°, and {B,},°,, denote A, =
Op(By) if for every € > 0, there exists C > 0 such that
lim sup, _, o, Pr[|An| > C|By|]] < €. Forr >0,1 < p <o
and x € RY, we denote by B (x) :={zeRY : ||z — x|, <r}
the d-dimensional £,-ball of radius r centered at x, where
the vector £, norm is defined as |x|, := (Z‘;Zl |xj|f")1/17
for 1 < p < o0 and |x e := max;<;<a |x;|. For any subset
S < RY we denote by B/ (x; S) the set BY (x) n S.

A. Passive and Active Query Models

Let U be a known random quantity defined on a probability
space U. The following definitions characterize all passive and
active optimization algorithms:

Definition 1 (The passive query model). Let xi,...,x, be
i.i.d. points uniformly sampled on X and y1, ..., y, be obser-
vations from the model (1). A passive optimization algorithm
A with n queries is parameterized by a mapping ¢,
(X1, Y15 - - - » Xn> Y, U) — X, that maps the i.i.d. observations
{(xi, yi)}!_, to an estimated optimum X, € X, potentially
randomized by U.

Definition 2 (The active query model). An active opti-
mization algorithm can be parameterized by mappings
(X15--» Xn>®n), where fort =1,...,n,

Xt : (-xla )’l, ey Xi—1, yt—l, U) = X

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

produces a query point x; € X based on previous observations
1—1
{(xi, t:)};Z,, and
¢n : (xla yla .. axna )’n, U) g 5C\n

produces the final estimate. All mappings (x1, . . .
be randomized by U.

» Xn» @n) can

B. Local Minimax Rates

We use a classical local minimax analysis [46] to understand
the fundamental information-theoretic limits of noisy global
optimization of smooth functions. On the upper bound side,
we seek (active) estimators X, such that

sup sup Pr[L(X,; f) = C1- Ru(fo)] < 1/4,
Fo€® fe0r. | f—follo<en(fo)

“)

where C; > 0 is a positive constant. Here fo € © is
referred to as the reference function, and f € ®' is the true
underlying function to be optimized, which is assumed to be
“near” fy (in the {4 norm). The minimax convergence rate
of £(X,; f) is then characterized locally by R,(fo) which
depends on the reference function fy. The constant of 1/4
is chosen arbitrarily and any small constant leads to similar
conclusions. To establish negative results (i.e., local minimax
lower bounds), in contrast to the upper bound formulation,
we assume the potential active optimization estimator X, has
perfect knowledge about the reference function fyo € ©.
We then prove local minimax lower bounds of the form

inf sup Pr[&(Xn; f) = Ca2- Ru(fo)] = 1/3,
T fe®,|f—folo<en(fo) T
5)

where Cy > 0 is another positive constant and ¢, ( fo), Rn(fo)
are desired local convergence rates for functions near the
reference fo.

Although in some sense classical, the local minimax defin-

ition we propose warrants further discussion:

1) Roles of ® and ®': The reference function fy and the
true functions f are assumed to belong to different but
closely related function classes ® and ®'. In particular,
in our paper ® < @', meaning that less restrictive
assumptions are imposed on the true underlying function
f compared to those imposed on the reference function
fo on which R, and ¢, are based.

2) Upper Bounds: It is worth emphasizing that the
estimator X, has no knowledge of the reference function
fo. From the perspective of upper bounds, we can
consider the simpler task of producing fop-dependent
bounds (eliminating the second supremum) to instead
study the (already interesting) quantity:

sup Pr[£(xu: fo) = CiRa(fo)] < 1/4.

foe® fo
As indicated above we maintain the double-supremum
in the definition because fewer assumptions are imposed
directly on the true underlying function f, and further
because it allows to more directly compare our upper
and lower bounds.
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3) Lower Bounds and the choice of the ‘localization
radius” ¢,(fo): Our lower bounds allow the estima-
tor knowledge of the reference function (this makes
establishing the lower bound more challenging). The
lower bound in (5) implies that no estimator X, can
effectively optimize a function f close to fy beyond the
convergence rate of R,(fp), even if perfect knowledge
of the reference function fy is available a priori. The
en(fo) parameter that decides the “range” in which
local minimax rates apply is taken to be on the same
order as the actual local rate R,(fp) in this paper.
This is (up to constants) the smallest radius for which
we can hope to obtain non-trivial lower-bounds: if we
consider a much smaller radius than R,(fo) then the
trivial estimator which outputs the minimizer of the ref-
erence function would achieve a faster rate than R, ( fo).
On the other hand selecting the smallest possible radius
makes establishing the lower bound most challenging
but provides a refined picture of the complexity of

zeroth-order optimization.
We remark that our primary motivation for the

local-minimax analysis stems from the fact that for natural
function classes the global-minimax rate for the optimization
complexity is excessively pessimistic, while the local minimax
analysis provides a more refined picture. In machine learning
applications, there are several cases where the population risk
is well-behaved (smooth, potentially non-convex) but we are
only able to access/query the empirical risk which we want to
minimize. Using standard concentration bounds the empirical
risk and population risk are close, and the resulting problem
is then to minimize the approximate-smooth empirical risk
(see for instance [42], [47] for a more detailed discussion).

III. MAIN RESULTS

With this background in place we now turn our attention
to our main results. We begin by collecting our assumptions
about the true underlying function and the reference function
in Section III-A. We state and discuss the consequences of
our upper and lower bounds in Sections III-B and III-C
respectively. We defer most technical proofs to Section V and
turn our attention to our optimization algorithm in Section I'V.

A. Assumptions

We first state and motivate assumptions that will be used.
The first assumption states that f is locally Holder smooth on
its level-sets.

(A1) There exist constants x,a, M, > 0 such
that f restricted to Xy, = {x € &
inf ey |.—x|.<c f(2) < f* + x} belongs to the
Holder class X*(M), meaning that f is k-times
differentiable on X, and furthermore for any
x,x" € X3,

3 SR ) = rE RN

a1+...+ag=k

(6)

3We use the £oo-norm for convenience and it can be replaced by any
equivalent vector norm.
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Here k = |a] is the largest integer lower bounding a
and (&) (x) := 07 f(x)/ox{" ... x5

We use X2%(M) to denote the class of all functions satisfy-
ing (A1). We remark that (A1) is weaker than the usual Holder
assumption in two ways. First, (6) only imposes stability
conditions on the |a |-th order derivatives of the function f, in
contrast to conditions involving all orders of derivatives in pre-
vious works [17], [45]. Second, (A1) only imposes the Holder
smoothness assumption on certain regions of X, because
regions with function values larger than f* 4 x can be easily
detected and removed by a pre-processing step, highlighting
an important difference between optimization and £«-norm
estimation. We give further details of the pre-processing step
in Section IV-C.

Our next assumption concerns the “regularity” of the level-
sets of the “reference” function fp. Define Ly, (€) := {x €
X folx) < fff + €} as the e-level-set of fp, and
us(€) = A(Lys(€)) as the Lebesgue measure of L (€),
which we refer to as the distribution function. Define,
N(L,(€),0) as the smallest number of £>-balls of radius ¢
that cover L 7, (¢€). Then we make the following assumption:
(A2) There exist constants ¢cg > 0 and Cyp > 0 such that

N(L s, (€),9) < Co[l+us,(e)d0~¢] forall €, d € (0, co].
We use Oc to denote all functions that satisfy (A2) with
respect to parameters C = (co, Co).

At a high-level, the regularity condition (A2) assumes that
the level-sets are sufficiently “regular” such that covering them
with small-radius balls does not require significantly larger
total volume. For example, consider the perfectly regular case
when L j, (€) is the d-dimensional > ball of radius r: L ,(€) =
{x € X |x —x*|» < r}. Clearly, g (€) = r9. In addition,
the J-covering number in £ of L s, (€) is on the order of 1 +
(r/0)? =<1+u s (€)d ¢, which satisfies the scaling in (A2).

When (A2) holds, uniform confidence intervals for f on
its level-sets are easier to construct because little statistical
efficiency is lost by slightly enlarging the level-sets so that
complete (sufficiently small) d-dimensional cubes are con-
tained in the enlarged level-sets. On the other hand, when
regularity of level-sets fails to hold such nonparametric esti-
mation can be very difficult or even impossible. As an extreme
example, suppose the level-set L 4 (€) consists of n standalone
and well-spaced points in X’: the Lebesgue measure of L f, (€)
would be zero, but at least Q(n) queries are necessary to
construct uniform confidence intervals on L 7, (e). It is clear
that such L y,(€) violates (A2), because N(L z,(€),0) = n as
6 — 0% but Usp(e) =0.

B. Upper Bound

The following theorem is our main result that provides
an upper bound on the local minimax rate of noisy global
optimization with active queries.

Theorem 1. For any a, M, x, co, Co > 0 and fo € Z%(M) n
Oc, where C = (cp, Cp), define

2 (fo) 1= sup {& > 015~ CH ) = n/log”n}, (7)

where @ > 5+ d/a is a large constant. Suppose also that
e9(fo) — 0 as n — oo. Then for sufficiently large n,

there exists an estimator X, with access to n active queries
X1,...,Xn € X, a constant Cr > 0 depending only
on o,M,k,c,co, Co and a constant y > 0 depending only
on a and d such that

sup Pr[£(Xp, f) >
res¢(m),
If = folloo<eY (fo)

Crlog’ n-(eY(fo) + n_l/z)] <1/4. (8)

sup
foEZE(M)NOC

Remark 1. Unlike the (local) smoothness class Z2%(M),
the additional function class @Oc that encapsulates (A2) is
imposed only on the “reference” function fy but not the
true function f to be estimated. This makes the assumptions
considerably weaker because the true function f may violate
(A2) while our results remain valid.

Remark 2. The estimator X, does not require knowledge of
parameters k,co, Co or s,?( Jo), and automatically adapts to
them, as shown in the next section. While the knowledge of
smoothness parameters a and M is in general unavoidable
in non-parametric regression (see [48]), in the zeroth-order
optimization problem it is possible to adapt to a and M
by running O(log®> n) parallel sessions of X, on O(logn)
grids of a and M values, and then using Q(n/log> n)
single-point queries to decide on the location with the smallest
function value. This adaptive strategy was suggested in [22]
to remove an additional condition in [21], and also applies to
our setting.

Remark 3. When the distribution function p g, (€) does not
change abruptly with € the expression of g#(fo) can be
significantly simplified. In particular, if for all € € (0, co] it
holds that

wo(e/logn) = s (€)/[logn] M), ©)

then S,l,J(fo) can be upper bounded as

eV (fo) < [logn]°M) - sup {e >0:e CHDy 0 (e) > n} .
(10)

If 1s,(€) scales polynomially with €, i.e. g (e) = €P for
some constant = 0, then (9) and (10) are both satisfied.

The quantity eV (fo) = supfe > 0 : e~ CH/a)y () >
n/log”n} is crucial in determining the convergence rate of
optimization error of X, locally around the reference function
fo. While the definition of &Y(fo) is mostly implicit and
involves solving an inequality involving the distribution func-
tion x 7, (-), we remark that it admits a simple form when u ¢,
has a polynomial growth rate similar to a local Tsybakov noise
condition [4], [49], as shown in the following proposition:

Proposition 2. Suppose s (€) < e? for some constant
B € [0,2 + dJa). Then 9(fo) = O(n */Qutd—ap))
In addition, if € [0,d/a] then &9 (fo) +n= < £9(fo) =
6(nfa/(2a+dfaﬂ)).

We remark that, following Proposition 1 of [45], a, f and d
must satisfy the relationship that # < d/a. Proposition 2 can
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be easily verified by solving the system ¢~ (2d/a) fle) =

n/log” n with the condition u f,(¢) < €/. We therefore omit
its proof. The following two examples give some simple
reference functions fy that satisfy the w7 (€) < €” condition
in Proposition 2 with particular values of /.

Example 1. The constant function fo =
through (A3) with p = 0.

0 satisfies (Al)

Example 2. fy € Z2(M) that is strongly convex* satisfies
(Al) through (A3) with = d/2.

Example 1 is simple to verify, as the volume of level-sets
of the constant function fy = 0 exhibit a phase transition at
€ = 0 and € > 0. Consequently, f = 0 is the only parameter
for which u 1, (€) < €. Example 2 is more involved, and holds
because the strong convexity of fo lower bounds the growth
rate of fp when moving away from its minimum. We give
a rigorous proof for Example 2 in the appendix. We also
remark that fy does not need to be exactly strongly convex for
B =d/2 to hold, and the example is valid for, e.g., piecewise
strongly convex functions with a constant number of pieces
too.

To best interpret the results in Theorem 1 and Proposition 2,
it is instructive to compare the “local” rate n—a/Qa+d—af)
with the baseline rate n~%/(2¢+4) which can be attained by
reconstructing f in sup-norm and applying Proposition 1.
Since f > 0, the local convergence rate established in Theo-
rem 1 is never slower, and the improvement compared to the
baseline rate n~*/(2¢+4) is dictated by f, which governs the
growth rate of volume of level-sets of the reference function
fo. In particular, for functions that grows fast when moving
away from its minimum, the parameter f is large and therefore
the local convergence rate around fy could be much faster than
nfa/ (2a +d).

Theorem 1 also implies concrete convergence rates for
special functions considered in Examples 1 and 2. For the
constant reference function fy = 0, Example 1 and Theorem 1
yield that R, (fp) = n—¢/(2e+d) \which matches the baseline
rate n~=%/(2e+d) anq suggests that fo = 0 is the worst-case ref-
erence function. This is intuitive, because fo = 0 has a drastic
level-set change at € — 0™ and therefore small perturbations
of fo result in changes to the optimal location. On the other
hand, if fy is strongly smooth and convex as in Example 2,
Theorem 1 leads to the bound of R,(fo) = n=1/2, which
is significantly better than the n—2/(4+d) paseline rate’ and
also matches existing works on zeroth-order optimization of
convex functions [11]. The faster rate holds intuitively because
strongly convex functions grow quickly when moving away
from the minimum. An active query algorithm can focus most
of its queries on the small level-sets of the underlying function,
resulting in more accurate local function reconstruction and
faster optimization error rate.

Our proof of Theorem 1 is constructive, by upper bounding
the local minimax optimization error of an explicit algorithm.

4A twice differentiable function fo is strongly convex if there exists ¢ > 0
such that V2 fo(x) = oI, Vx € X.

SNote that £ being strongly smooth corresponds to oo = 2 in the local
smoothness assumption.
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Roughly, our algorithm partitions the n active queries evenly
into logn epochs, and level-sets of f are estimated at the end
of each epoch by comparing (uniform) confidence intervals
on a dense grid on &. It is then proved that the volume
of the estimated level-sets contracts geometrically, until the
target convergence rate R,(fo) is attained. The algorithm is
described in more detail in Section IV and the complete proof
of Theorem 1 is in Section V-B.

C. Lower Bounds

We prove local minimax lower bounds that match the upper
bounds in Theorem 1 up to logarithmic terms. As we remarked
in Section II-B, in the local minimax lower bound formulation
we assume the data analyst has full knowledge of the reference
function fy, which makes the lower bounds stronger as more
information is available a priori.

To facilitate such local minimax lower bounds, the following
additional condition is imposed on the reference function fy
of which the data analyst has perfect information.

(A2’) There exist constants cj,C) > 0 such that
M(Lyy(€),0) = Chur(€)d 4 for all €,6 € (0,ch],
where M (L f,(€),0) is the maximum number of dis-
joint £ balls of radius o that can be packed into L f, (€).

We denote @E, as the class of functions that satisfy (A2’) with

respect to parameters C' = (¢, C},) > 0. Intuitively, (A2’) can

be regarded as a converse of (A2).

We are now ready to state our main negative result, which
shows, from an information-theoretic perspective, that the
upper bound in Theorem 1 is not improvable.

Theorem 2. Suppose a,co,Co,c('),C(') > 0 and k = oo.
Denote C = (co, Co) and C' = (c{,C|). For any fo €
Oc n ®e,, define

ey (fo) = sup {8 >0:e MMy g (e) > n} (11)

Then there exists a constant M > 0 depending on o, d, C and
C’ such that, for any fo € (M /2) n O¢ N B¢,
inf sup (12)
o feXE(M),
1f = Follon <225 (fo)

I}r [E(J?n; f)= Sy'I(fo)] = %

Remark 4. We note in passing that for any fo and n it always
holds that €-(fo) < &Y (fo).

Remark 5. If the distribution function u g, (€) satisfies (9)
(i.e. it does not change too abruptly) in Remark 3, then
e-(fo) = eY(fo)/Nlogn]®W). Consequently, the upper and
lower bounds for these functions match up to logarithmic
factors.

The following proposition derives an explicit expression for
8,';( fo) for reference functions whose distribution functions
have a polynomial growth, which matches the upper bound
in Proposition 2 up to logn factors. The proof of this Propo-
sition is straightforward and is omitted.

Proposition 3. Suppose uy,(€) 2 e? for some B € [0,2 +
d/a). Then e-(fo) = Q(n—*/Qatd—ap)),
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The following proposition additionally shows the existence
of fo € T4 (M) n Oc n Oc that satisfies u f,(e) = €” for
any values of & > 0 and f € [0,d/a]. Its proof is given in
the Appendix.

Proposition 4. Fix arbitrary a,M > 0 and f € [0,d/a].
There exists fo € Z¢(M)NOcnO¢ for k = 0 and constants
C = (co, Co), C' = (cf), C})) that depend only on a, f, M and
d such that u s (€) = €.

Theorem 2 and Proposition 3 show that the n—a/Qa+d—af)
upper bound on local minimax convergence rate established in
Theorem 1 is not improvable up to logarithmic factors of n.
Such information-theoretic lower bounds on the convergence
rates hold even if the data analyst has perfect information of
fo, the reference function on which the n—@/Qatd—af) 1ocq]
rate is based. Our results also imply an n~/Q2e+d) minimax
lower bound over all a-Ho6lder smooth functions, showing that
without additional assumptions, noisy optimization of smooth
functions is as difficult as reconstructing the unknown function
in sup-norm.

Our proof of Theorem 2 also differs from those of existing
minimax lower bounds for active nonparametric models [50].
The classical approach is to invoke Fano’s inequality and to
upper bound the KL divergence between different underlying
functions f and g using |f — gllw, corresponding to the
point x € & that leads to the largest KL divergence. Such
an approach, however, does not produce tight lower bounds
for our problem. To overcome such difficulties, we borrow
the lower bound analysis for bandit pure exploration problems
in [51]. In particular, our analysis considers the query distri-
bution of any active query algorithm A = (g1, ..., ¢u, ¢n)
under the reference function fy and bounds the perturbation in
query distributions between fy and f using Le Cam’s lemma.
Afterwards, an adversarial function choice f can be made
based on the query distributions of the considered algorithm A.
We defer the complete proof of Theorem 2 to Section V-C.

Theorem 2 applies to any global optimization method that
makes active queries, corresponding to the query model in
Definition 2. The following theorem, on the other hand, shows
that for passive algorithms (Definition 1) the n—a/Qa+d) opti-
mization rate is not improvable even with additional level-set
assumptions imposed on fy. This demonstrates an explicit
gap between passive and adaptive query models in global
optimization problems.

Theorem 3. Suppose a,cq, Co,c(, C) > 0 and k = o0.
Denote C = (cg, Co) and C' = (c{, C}). Then there exist
constants M > 0 depending on a,d, C,C' and N depending
on M such that, for any fo € L¢(M/2) nOc n Ocr satisfying
e-(fo) < 2 = [logn/n]/Cat),

inf sup foralln > N.
no fex®(M),

IL.f — foll-o <224

Pr [s()?n; e 5,';] >
(13)

Intuitively, the apparent gap demonstrated by Theorems 2
and 3 between the active and passive query models stems from

the observation that, a passive algorithm 4 only has access
to uniformly sampled query points x1, ..., x, and therefore
cannot focus on a small level-set of f in order to improve
query efficiency. In addition, for functions that grow faster
when moving away from their minima (implying a larger
value of f), the gap between passive and active query models
becomes bigger as active queries can more effectively exploit
the restricted level-sets of such functions.

IV. OUR ALGORITHM

In this section we describe a concrete algorithm that attains
the upper bound in Theorem 1. We start with a cleaner
algorithm that operates under the slightly stronger condition
that k = o0 in (A1), meaning that f is a-Holder smooth on the
entire domain X. The generalization to ¥ > 0 being a constant
is given in Section I'V-C with an additional pre-processing step.

Let G, € X be a finite grid of points in X'. We assume the
finite grid G, satisfies the following two mild conditions:

(B1) Points in G, are sampled i.i.d. from an unknown distri-
bution Px on X’; furthermore, the density px associated
with Py satisfies p, < px(x) <P forall x € X, where
0< Py < Py < 00 are universal constants;

(B2) |G,| = n? and log|G,| = O(logn).

Remark 6. Although typically the choices of the grid points
G, belong to the data analyst, in some applications the choices
of design points are not completely unconstrained. For exam-
ple, in material synthesis experiments described previously
some environmental parameter settings (e.g., temperature and
pressure) might not be allowed due to budget or physical con-
straints. Thus, we choose to consider less restrictive conditions
imposed on the design grid G, allowing it to be more flexible
in real-world applications.

Remark 7. Condition (B2) ensures that the grid G, is
sufficiently dense, such that even with the smallest bandwidth
our algorithm possibly uses (h;(x) = 1/n?, see (18)), each
x € G, has abundant neighboring points in G, so that the
local polynomial estimates in (15) are well-defined.

For any subset S < G, and a “weight” function
0: G, —> R*, define the extension S°(p) of S with respect
to o as

S°(o) := U B;?X)(x; G,) where
X€ES

B (x:Ga) = (2 € Gt e — x|l < 0(x)}. (14)

The algorithm can then be formulated as two levels of iter-
ations, with the outer loop shrinking the “active set” §; and
the inner loop collecting data in order to reduce the lengths
of the confidence intervals on the points in the active set.
A pseudocode description of our proposed algorithm is given
in Figure 1.

A. Local Polynomial Regression

We use local polynomial regression [5] to obtain the esti-
mate f. In particular, for any x € G, and a bandwidth
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Fig. 1.
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An informal illustration of Algorithm 1. Solid blue curves depict the underlying function f to be optimized, black and red solid dots denote the query

points and their responses {(x;, y;)}, and black and red vertical line segments correspond to uniform confidence intervals on function evaluations constructed
using the current batch of data observed. The left figure illustrates the first epoch of our algorithm, where query points are uniformly sampled from the entire
domain X'. Afterwards, sub-optimal locations based on the constructed confidence intervals are removed, and a shrunken “candidate set” Sp is obtained. The
algorithm then proceeds to the second epoch, illustrated in the right figure, where query points (in red) are sampled only from the restricted candidate set and
shorter confidence intervals (also in red) are constructed and updated. The procedure is repeated until O(logn) epochs are completed.

Parameters: a, M, o, n
Output: x,, the final prediction
Initialization: So = Gy, go(x) = 0, T = |log, n|,
no = |n/T];
fort=1,2,...,T do
Compute “extended” sample set S;_, (o;—1) defined
in (14);
for t = (t — )ng + 1 to tnp do
Sample x; uniformly at random from S?_,(0;-1)
and observe y; = f(x;) + wy;
end
For every x € S;_1, compute bandwidth /4, (x)
using (18) and build the confidence interval
[€7(x), uc(x)] in (19);
Sy i={x € S;_1: l:(x) < minyres, , ur(x)},
00 (x) 1= min{or1(x), hy (x)},
end
Final processing: for every x € Sy let fhr,x(-) be the
local polynomial estimates constructed in (15) at x.
Output X, = arg minyes; minx’eBh’;(x)(x;X) Frpx(x').
Algorithm 1 The Main Algorithm

parameter & > 0, consider the least squares polynomial
estimate

t
fu € argmin Y Txy € BP(x)] - (v — g(xi)*,  (15)
8€Pk ;-1
where B (x) := {x € X : |x" — x||ooc < h} and Py denotes
all polynomials of degree k on X.
To analyze the performance of ﬁl evaluated at a certain
point x € X, define the mapping

’ V’f,h (2))

¢ o [THoyh ™ @ =)l oy is the
degree-j polynomial mapping from R¢ to R?’. Also define
Win = (V/x,h(xt’))lsz’st,x,,eBh(x) as the m x D aggregated

wen sz (1, wj,h(z), ..

where y!,

design matrix, where m = >3, _, I[x, € B°(x)] and D =
1+d+...+d" k = |a|. The estimate f, defined in (15)
then admits the following closed-form expression:

~

fn(2) = v @) (2P Y, (16)
where Y, = (Yt’)1<z’<t,xt,53f(x) and AT is the
Moore-Penrose pseudo-inverse of A.

The following lemma gives a finite-sample analysis of the
error of fj(x):

Lemma 1. Suppose that f satisfies (6) on B°(x; X),
maxZeth\(x;X) ”Wx,h(Z)HZ < b and n‘ﬁlszh‘Pt,h >olpxp fO}’
some o > 0. Then for any 6 € (0, 1/2), with probability 1 — 6

. 2
A=) < ke 4oy 22000 ),
o om

N
bp.5(x)

Vx'e BP(x: X). (17)

Remark 8. by, s5(x), sp.5(x) and ny s5(x) depend on x because
o depends on Y j, which further depends on the sample points
in the neighborhood B;°(x; X) of x.

In the rest of the paper we define by, s5(x) := (b%/o)Md*h*
and s 5(x) := by/5D1In(1/5)/om as the bias and standard
deviation terms in the error of ﬁl(x), respectively. We also
denote 7;,5(x) = bps(x) + sp6(x) as the overall error
in fi(x).

Notice that when bandwidth 4 increases, the bias term
bj,s(x) increases because of the A% term; on the other hand,
with A increasing the local neighborhood B,°(x; X') grows
and would potentially contain more samples, implying a larger
m and smaller standard deviation term s, 5(x). A careful
selection of the bandwidth & balances by, s(x) and s, 5(x) and
yields appropriate confidence intervals on f(x), and we turn
our attention to this in the next section.
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B. Bandwidth Selection and Confidence Intervals

Given the expressions of bias by, s(x) and standard deviation
5p,5(x) in (17), the bandwidth 4, (x) > 0 at epoch 7 and point
x is selected as

he(x) == j’n(;‘)

where j(x) :=argmax {j € N,

J <m0 (0) <5jpa(0f . (18)
More specifically, i, (x) is the largest positive value in an
evenly spaced grid {j/n’} such that the bias of ﬁ,r(x) is
smaller than its standard deviation. This bandwidth selection
is in principle similar to the Lepski’s method [52], with the
exception that an upper bound on the bias for any bandwidth
parameter is known and does not need to be estimated from
data.

With the selection of bandwidth h,(x) at epoch 7 and
query point x, a confidence interval on f(x') for all x’ €

B;‘:(x)(x; X) is constructed as

L = no_ R .
le(x) = lgagfxeB;g(x » {fht/(x)(x ) ”ht/(x),é(x)}a
o / ,

s (x) = 12H<lfx en” (x X) {fh’ () + m‘r’(x)")(x)}'

)
19)

Note that for any x € X, the lower confidence edge ¢, (x) is
a non-decreasing function in 7 and the upper confidence edge
ur(x) is a non-increasing function in 7.

C. Pre-processing

We describe a pre-processing step that relaxes the smooth-
ness condition from x = oo to x = (1), meaning that only
local smoothness of f around its minimum values is required.
Letng = |n/logn|, x1, ..., xu, be points i.i.d. uniformly sam-
pled from X and y1, ..., y,, be their corresponding responses.
For every grid point x € G, perform the following:

1) Compute f,(-) as the local polynomial fits of all y;

. —1/2d 3
corresponding to |x; — x |0 < 1) log® n =: ho;

2) Compute f(x) as the sample average of all y; corre-

sponding to |x; — x|eo < ho;

3) Remove all x € VG,,

mingeg, inleeB@ (2:X) fu(@) +

it flx) =

from Sp
1/logn.

Remark 9. The 1/logn term in the removal condition f(x) >
min,e, f(z)+1/logn is not important, and can be replaced
with any sequence {wy} such that lim,_,w, = 0 and
limy, o0 wyn' = oo for any t > 0. The readers are referred to
the proof of Proposition 5 in the appendix for the motivation
of this term as well as the selection of the pre-processing
bandwidth hy.

To analyze the pre-processing step, we state the following
proposition:

Proposition 5. Assume f € (M) and let S|, be the screened
grid after step 2 of the pre-processing procedure. Then for

sufficiently large n, with probability 1 — O(n~") we have
Bo(x; X) nLp(x/2) # &, Vxe S, (20)
where Ly(k/2) ={xe X : f(x) < f* +x/2}.

To interpret Proposition 5, note that for sufficiently large n,
f € XZ%(M) implies f being a-Holder smooth (ie., f
satisfies (6)) on UxeLf(K/z) B;:)’(x; X), because k > O'i.s a
constant and #9p — 0 as n — 0. Subsequently, the proposition
shows that with high probability, the pre-processing step will
remove all grid points in G, in non-smooth regions of f,
while maintaining the global optimal solution. This justifies
the pre-processing step for f € £%(M), because f is smooth
on the grid and its close neighborhood after pre-processing.

The proof of Proposition 5 uses the fact that the local
mean estimation is large provided that all data points in the
local mean estimator are large, regardless of their underlying
smoothness. The complete proof of Proposition 5 is deferred
to the Appendix.

V. PROOFS OF MAIN THEOREMS

A. Proof of Lemma 1

Our proof closely follows the analysis of asymptotic con-
vergence rates for series estimators in [53]. We further work
out all constants in the error bounds to arrive at a com-
pletely finite-sample result, which is then used to construct
finite-sample confidence intervals.

We start with as polynomial interpolation results for all
Holder smooth functions in B;°(x; ).

Lemma 2. Suppose f satisfies (6) on B;°(x; X). Then there
exists fy € Pr such that

sup | f(z) — 1)

2€BP(x;X)

fe(z)| < Md*h*.

Proof. Consider

k
F@ =+ Y]

j=lai+..tag=j

) at
6x‘1"1 . a_xsd ﬂ (Z€ xf)
(22)

By Taylor expansion with Lagrangian remainders, there exists

&€ (0, 1) such that
|fx(z) — f(z)] <
@ +e—x)

o1 +...+ag=k

— @

(x)]- H|Z[—X[| ‘

Because f satisfies (6) on B;°(x; X'), we have that |£(@) (x +
E(z—x))—f @ (x)] < M-||z—x|%*. Also note that |zp—x/| <
|z — x| < h for all z € B;°(x; X). The lemma is thus
proved. O

Usmg (16), the local polynomial estimate fh can be written
as fu(z) = wan(z) " O, where

On = (¥, ) ™", Y. (23)
In addition, because fx € P, there exists 0 € RP

such that fi(z) = w,.(z)' 0. Denote also that Fop o=
(f(xt’))lst’sz,xt,er(x)v A = (flar) — fulxr))

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836



837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

1<r'<rapeBr(x) and Win i= (i) 1<pr<r x,eB 7 (x)- (23) can
then be re-formulated as

O = (2], W) "W, ['P,,h§+ Avp + W,,h] (24)

~

1 1
=0+ [—'P,Thw,,h] [—\P,Th(A,,h + Wt,,,)] .
m m

Because —‘P Z¥Yen = olpxp and SUP.ep ™ (x) [wsn(2)l2 <
b, we have that

~ ~ b 1 !
100 =02 < —[Arnlloo+ [Z\Ptthf,,h] Z\Pjhw, . (26)

2

Invoking Lemma 2 we have |A; ;)0 < Md*h®. In addition,
because W, ~ N, (0, Ly, ), we have that

lote 7M1 ALyt —1
E\Pt,hqjt,h _lytht ~ Np Z‘Pt’h‘l"t,h .
(27)

Applying concentration inequalities for quadratic forms of
Gaussian random vectors (Lemma 10), with probability 1 — ¢
it holds that

< 5D10g(1/(5). 28)

om

1 -1
T
[—qf, hwt,h] — %, W,
m ’

2
We then have that with probability 1 — ¢ that

5Dlog(1/0)
om

P b

|6h — b2 < —Md*n* + (29)
Oh

Finally, noting that for all x" € B°(x; X), ||y n(x)|2 < b

by definition, we have that

Fn(e") = £ = (') = felx)]
= ()" O —0)| < b6 — O]z,

which completes the proof of Lemma 1.

B. Proof of Theorem 1

In this section we prove Theorem 1. We prove the theorem
by considering every reference function fy € £%(M) n O¢
separately. For simplicity, we assume x = oo throughout
the proof. The 0 < ¥ < o0 can be handled by replacing
X with Sy which is the grid after the pre-processing step
described in Section IV-C. We also suppress dependency on
d,a,M,C, p,,Poin O(-), Q(:), ©(-), 2, < and = notations.
We further suppress logarithmic terms of 7 in O(-) and Q(-)
notations.

The following lemma is our main lemma, which shows
that the active set S; in our proposed algorithm shrinks
geometrically before it reaches a certain level. To simplify
notations, denote ¢y := 10co and (A2) then hold for all
€,0 € [0, co] for all fy € Oc.

Lemma 3. For = = 1,...,T define ¢, := max{¢ -
277, C3[eY(fo) + n= /2] log? n}, where C3 > 0 is a con-
stant dependzng only ond,o, M, Py Po and C. Denote also
p¥ = maxyes, 0 (x). Then for suﬁ‘iczently large n, with
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probability 1 — O(n=") the following holds uniformly for all
outer iterations t = 1,...,T:

BZ?‘ (x; X) N Ly(er) # . (30)

Lemma 3 shows that the level &; in Ly(e;) that con-
tains S;_; shrinks geometrically, until the condition &, >
C3[eV(fo) + n="/2]1og? n is violated. If the condition is
never violated, then at the end of the last epoch 7* we
have e¢,+ = O(n~') because * = logn. On the other
hand, because S; < S;_j always holds, we have e,+ <
[£Y(fo) + n=1/ 2]log? n. Combining both cases we have that
eex < [eV(fo) + n='/2]log® n + n~'. Theorem 1 is thus
proved.

In the rest of this section we prove Lemma 3. We need
several technical lemmas and propositions. Except for Propo-
sition 6 that is straightforward, the proofs of the other technical
lemmas are deferred to the end of this section.

Denote x,; := argmin, . f(x) as the point on the grid G,
with the smallest objective value The following proposition
shows that with high probability, the confidence intervals
constructed in the algorithm are truthful and the successive
rejection procedure will never exclude the true optimizer of f
on Gy,.

Proposition 6. Suppose d = 1/n*|G,|. Then with probability
1 — O(n=") the following hold:
1) f(x") € [€i(x), us(x)] for all 1
x'e B \(x; X);
t X)
2) xfeS; forall0 <7 <n.

<t<nandx € Gy,

Proof. The first property is true by applying the union bound

over all t+ = 1,...,n and x € G,. The second property
then follows, because C(x)) < f(x)) and minges, | us(x) =
f(x)F) for all 7. O

The following lemma shows that every small box centered
around a certain sample point x € G, contains a sufficient
number of sample points whose least eigenvalue can be
bounded with high probability under the polynomial mapping
Wy defined in Section III-B.

Lemma 4. For any x € G,, 1 < m < n and h > 0,
let K,}’m(x), ..., K}, ,,(x) be n independent point sets, where
each point set consists of m points sampled i.i.d. uniformly at
random from B;°(x; Gp) = G, n B (x; X). With probability
1—0(n=") the following holds true uniformly for all x € Gy,
hel{j/m?:jeN,j<n®} and K}f,m(x), e [n]asn— o

1) supy~o Sup.ep (x) | (2) ]2 = O(1);
2) |BP(x; Gn)| = h?|G,|;
3) omin(K} ,,(x)) = O(1) for all m > Q(log?
m < |Gy|, where omin(K} m(X)) is the least eigenvalue

Of Zze]( )‘//x h( )‘//X,h( )T'

Remark 10. It is possible to improve the concentration result
in (48) using the strategies adopted in [35] based on sharper
Bernstein type concentration inequalities. Such improvements
are, however, not important in establishing the main results of
this paper.
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The next lemma shows that, the bandwidth /; selected at the
end of each outer iteration 7 is near-optimal, being sandwiched
between two quantities determined by the size of the active
sample grid Sp_i = S?_(ec—1).

Lemma 5. There exist constants Ci1,Cr > 0 depending
only on d,a,M,EO,ﬁO and C such that with probability

1 — O(n="Y), the following holds for every outer iteration
te{l,...,TYand all x € S;_;:
Ci [ﬁf_lno]fl/(zaw) —1/n < 0:(x)
< hi(x) < Co[Ve_1no] =P ) jogn + 1 /n, (31)

where ¥y 1 1= |Gp|/|S: 1)

We are now ready to state the proof of Lemma 3,
which is based on an inductive argument over the epochts
t=1,...,T.

Proof. We use induction to prove this lemma. For the base

case T = 1, because || f — folloo < &Y (fo) and eV(fo) — 0 as

n — oo, it suffices to prove that B;O (x; X)n Lq,«o(co/4) #
1

for all x € S; and sufficiently large n. Because §0 =5 =
Gy, invoking Lemmas 5 and 1 we have that |7, (y) s(x)| =
O (n—*/(2a+d)y for all x € G,, with high probability at the end
of the first outer iteration 7 = 1. Therefore, for sufficiently
large n we conclude that sup,cq, |74, (x),6(x)| < co/16 and
hence B;O* (x; X) n Ly, (co/4) # & for all x € 8.

We now prove the lemma for v > 2, assuming it holds for
7 — 1. We also assume that n (and hence ng) is sufficiently
large, such that the maximum CI length maxyeg |, (x),5(x)|
after the first outer iteration 7 = 1 is smaller than co/2.

Because | f—folo < &, (fo) ande,_1 = C3g (fo)log? n,
for appropriately chosen constant C3 that is not too small, we
have that | f — foeo < €-—1. By the inductive hypothesis we
have

Vx €S, B;O* (x; &) N Ly(ee—1) # &
7—1
Equivalently,

) c L;‘O(grfl + Hf — f0||009 p‘;kfl)
c L‘}h(Zsf,l, p;k—l)' (32)

S:1 C L;'(8T719 pffl

Subsequently,

Seo1 =580 LG, (2ec-1.2p} ). (33)

Let Uyen, 322 x (x) be the smallest covering set of

UxEH (x)’

lz —x[2 < 2p171} 1s the

L (2e:-1), meamng that L 7, (2e._1)
whereB2 (x) = {z e X :

Pr—1

¢y ball of radius 2p;"_
that |H,| <1+[pF 174

| centered at x. By (A2), we know
U f,(2e7—1). In addition, the enlarged

level-set satisfies L% (2¢:—-1,2p7 1) S Uyen, Bi’;* (x).
7—1
Subsequently,
ﬂ;b(zgz—lapjfl) < [Hal - [ﬂ:ll]d < wfo(2ec—1) + [p;kfl]%
(34)

By Lemma 5, the monotonicity of |S; ;| and the fact that
Py < px(z) <P for all z € X, we have

$[ ?(8,_1, *7 )]1/(2a+d)n(;1/(2a+d)logn (35)

<[5, Qe pk )]/ VT Di0g (36
1/(2a+d

(,Ujo (26e-1) + [p* ] ) /Qa+ )nal/(2a+d)10g”-

(37)

Re-arranging terms on both sides of (37) we have

[ L
pr_ | < max {[,ufO(ZgT_l)]Za—erno “*logn, ny ™ logn}.
(38)
On the other hand, according to the selection procedure of

the bandwidth /;(x), we have that 7, (,),s(x) < bp,(x).5(x)-
Invoking Lemma 5 we have for all x € S;_ that

My (x).6 (%) S B, (2),0(x) < [he(x)]* (39)
< [Pe_ino) =%/ Cetd) 1og (40)
< [Ve_ang] */Cetd1ogn 1)
< [pf_i]% logn. (42)

Here (40) holds by invoking the upper bound on /:(x) in
Lemma 5, (41) holds because V; | = V;_5, and (42) holds
by again invoking the lower bound on g, _1(x) in Lemma 5.
Combining Eqs. (38,42) we have

max i, (x),5(x) (43)
o e 1
< max {[ﬂfg(zgfl)]mno 1o n, ny ’ logn} .
(44)

Recall that ngp = n/logn and e, (fo) < &,—1, provided
that C3 is not too small. By deﬁmtlon, every ¢ > &Y(fo)
satisfies &~ (2+d/@) fo(€) < n/log®n for some large constant
® > 5+ d/a. Subsequently,

[ fo(260—1)] 7 ng 7 log?

<26, in%Hd log EH pong P70 login  (45)
(o—5—d/a)a
< er—1/[logn] ™ 2eFd (46)

Because w > 5 + d/a, the right-hand side of (46) is
asymptotically dominated ® by ¢, . In addition, ny 1/2 logn
is also asymptotically dominated by e, because ¢, 1 >
Cin~1/2 log® n. Therefore, for sufficiently large n we have

max nh (x),0(x) S er—1/4. 47)
XES; —
Lemma 3 is thus proved. O

OWe say {a,} is asymptotically dominated by {b,} if limy—q
lan|/|bn| = .

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010



1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1) Proof of Lemma 4:

Proof. We first show that the first property holds almost surely.
Recall the definition of yy ,, we have that 1 < ||yy.n(z)]2 <
D - [maxi<j<ah '|z; — x;|]*. Because |z — x|o < h for
all z € B,(x), sup.epo(y) llww.n(2)]2 < O(1) for all & > 0.
Thus, sup;,~o sup.ep>(y) [Wxn(z)|2 = (1) for all x € G,.
For the second property, by Hoeffding’s inequality
(Lemma 9) and the union bound, with probability 1 — O(n~!)

we have that
logn
_px(zeB;;O(x))‘ < e g
|Gl

In addition, note that Px(z € BF(x:X)) =
PABP(x: X)) 2 kY and Px(z € BP(x: X)) <
PoA(BP(x; X)) < hd, where A(-) denotes the Lebesgue
measure on X. Subsequently, |B,°(x; G,)| is lower bounded
by Q(h?G,| — +/|Gn|logn) and upper bounded by
O(h?|Gp| + +/|Gn|logn). The second property is then
proved by noting that iy > n—? and |Gn| 2 p3d/min(a,1),

We next prove the third property. Because p < px (z) € Py
for all z € X, we have that

|B;O(x§ Gyl
|Gl

max
x,h

Boj \ V’x,h(Z)V/x,h(Z)Tde,h(z)
B°(x;X)

h

1
<E |- D1 wen(@wan(2) " (49)

zek!

h,m

ﬁof ) wen (2 wen(z) U (), (50)
B (x:X)

IA

where Uy ;, is the uniform distribution on B;°(x; X). Note
also that

[RBEIERTE
<[ @@ 6D
B (x;X)

<2 L Yo, (2)wo.1(c) TdU(R) (52)

where U is the uniform distribution on & = [0, 1]¢. The
following proposition upper and lower bounds the eigenvalues
of {1 wo,1(z)wo,1(z) 'dU(z), which is proved in the appendix.

Proposition 7. There exist constants 0 < ywo < Yo < ®©
depending only on d, D such that

wo Ipxp < L wo.1(2)wo0.1(z) 'dU(z) < Wolpxp. (53)

Using Proposition 7 and Egs. (51,52), we conclude that

1

Q1) Ipxp<E | — D ven@ (@)’

t
€K,

SO(I)-IDXp.

(54)
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Applying matrix Chernoff bound (Lemma 11) and the union
bound, we have that with probability 1 — O(n~!),

! T
Jmax - D0 vea(@)va(2)
zGK,f!m(x)
logn
—E [ll/x,h(Z)ll/x,h(Z)T|ZEB;;O(x)] <\ /2B
op m

Combining Eqgs. (54,55) and applying Weyl’s inequality
(Lemma 12) we have

Q(1) — 0(y/logn/m) < omin(Kj ,,(x))
< O(1) — O(4y/logn/m). (55)

The third property is therefore proved. O

2) Proof of Lemma 5: Proof. We use induction to prove this
lemma. For the base case of 7 = 1, we have §0 =Sy = Gy,
and therefore V;_; = 1. Furthermore, applying Lemma 4 we
have that for all & = j/nz,

logn
brs(x) =h*, sps(x) =4/ Hng’

Thus, for h selected according to (18) as the largest bandwidth
of the form j/nz, J € N such that by s(x) < sp5(x),
both by s5(x), sp,6(x) are on the order of nal/(2a+d) up to
logarithmic terms of n, and therefore one can pick appropriate

constants C1,C2» > 0 such that Cln(;l/(za“) < o1(x) <

Cznal/(2a+d) logn holds for all x € G,.

We next prove the lemma for ¢ > 1, assuming it holds
for t — 1. We first establish the lower bound part. Define
p¥_, = mings,_, 0:—1(z). By inductive hypothesis, p* | >
C1[V; _ano]~V/Catd) _ (7 —1)/n. Note also that ¥, | =V, »
because §771 c §172, which holds because S; | € S;_»
and 0;—1(z) < 0r—2(z) for all z. Let A be the smallest
number of the form j*/n%, j* € [n?] such that h} >
Cl[ﬁf_lno]_l/(z‘”‘d) — 7/n. We then have h} < p*_| and
therefore query points in epoch 7 are uniformly distributed in
B;:i (x; Gp). Subsequently, applying Lemma 4 we have with

probability 1 — O(n~") that

(56)

logn
bh,*,é(x)gcl[h;k]a» 5h,*,5(x)>C” ThE %, i’ (57)
where C’,C” > 0 are constants that depend on

d,a, M, p,. Po and C, but not Cy, Ca, 7 or h}. By choosing
C appropriately (depending on C’ and C") we can make
bh,*,&(x) < 5h,*,()‘(x) holds for all x € S;_1, thus establishing
0 (x) = min{oc—1(x), A} > C1[Fr_ino] /@) — ¢/,

We next prove the upper bound part. For any s, = j; /n2
where j, € [n?], invoking Lemma 4 we have that

N . 1
bn.s(x) = C'h%, sps(x) < c”\/ ogn

min{h, p¥ |} -V _ino’
(53)
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where C’ and C” are again constants depending on
d,a, M,Eo,ﬁo and C, but not C1, C. Note also that p¥ | >
Cl[gr_zno]—l/(Za-t-d) i (T i 1)/n > Cl[]jr_lno]—l/(Z(x-i-d) i
7/n, because V; | = V;_o. By selecting constant C; >
0 carefully (depending on C’,C” and Ci), we can ensure
bps(x) > sps(x) for all b = Ca[V; 1no}_l/(2a+d) + 7/n.
Therefore, g, (x) < h(x) < Ca[V; _1no] /24D 4 ¢ /n. O

C. Proof of Theorem 2

In this section we prove the main negative result in Theo-
rem 2. To simplify presentation, we suppress dependency on
a,d,coand Cp in <, 2, =, O(+) and Q(+) notations. However,
we do not suppress dependency on Cp or M in any of the
above notations.

Let ¢o : [-2,2]Y — R* be a non-negative function
defined on X such that @9 € Z,[a](l) with k = oo,
sup,ex ®o(x) = Q(1) and ¢o(z) = 0 for all |z|> > 1. Here
[a] denotes the smallest integer that upper bounds a. Such
functions exist and are the cornerstones of the construction of
information-theoretic lower bounds in nonparametric estima-
tion problems [50]. One typical example is the “smoothstep”
function (see for example [54])

Lo $ (VI ()

N=0,1,2,...,

SN(X) =

where Z > 0 is a scaling parameter. The smoothstep function
Sy is defined on [0, 1] and satisfies the Holder condition in (6)
of order & = N on [0, 1]. It can be easily extended to Sy g :
[-2,2]¢ > R by considering Sn.a(x) == 1/Z — Sy(a|x|1)
where |x[1 = [x1] + ... + |xq| and a = 1/(2d). It is easy
to verify that, with Z chosen appropriately, Sy,a € =N (1),
Sup,cy Sn.a(x) = 1/Z = Q(1) and Sy q(z) = 0 for all
[z]2 = 1, where M > 0 is a constant.
For any x € X and h > 0, define ¢, p : X — R* as

Mh* 7—x

) %0 ( h ) .
It is easy to verify that ¢, € £% (M/2), and furthermore
SUp.ey ¢x,n(2) =< Mh* and ¢y 5(z) = 0 for all 7 ¢ BP(x).

Let L, (e5(fo)) be the level-set of fy at e-(fo). Let H, €
Ly, (¢5(f0)) be the largest packing set such that B;°(x) are
disjoint for all x € H,, and Uer BP(x) S Ly (e5(fo)).
By (A2’) and the definition of & ( Jo), we have that

pxn(z) =1z € B°(x)] -

(59)

|Hal = M(L gy (2 (f0)), 2V/dh)
2 wpy(en(fo) -h= = [eg ()T - nh ™. (60)
For any x € H,, construct fy : X —» R as
fx(2) = folz) — pxn(2). (61)
Let F, := {fx : x € Hy} be the class of functions indexed

by x € H,. Let also i = (e-(fo)/M)"/* such that ¢, )00 =
2¢L(fo). We then have that | f; — fo|oo < 265(fo) and fy €
2% (M), because fo, px.n € % (M/2).

The next lemma shows that, with n adaptive queries to the
noisy zeroth-order oracle y; = f(x;) + wy, it is information
theoretically not possible to identify a certain f, in F, with
high probability.

Lemma 6. Suppose |F,| = 2. Let Ay = (x1,--s Xn>Pn)
be an active optimization algorithm operating with a sample

. . . r—1
budget n, which consists of samplers y¢ : {(x;i, yi)};Z; + x¢
and an estimator ¢, : {(x;, yi)}!_, = fx € Fn, both can be
deterministic or randomized functions. Then

1 n-sup e, || fx = foll3
1nf sug: Pr[fx7éfx:|/§—\/ f62|]: |x 00.
An Jx€ n
(62)

Lemma 7. There exists constant M > 0 depending on
a,d,co, Co such that the right-hand side of (62) is lower
bounded by 1/3.

Lemmas 6 and 7 are proved at the end of this section.
Combining both lemmas and noting that for any distinct
fes fo € Fy and z € X, max{€(z: ), £(z: fir)} > (o),
we proved the minimax lower bound formulated in Theorem 2.

1) Proof of Lemma 6: Our proof is inspired by the negative
result of multi-arm bandit pure exploration problems estab-
lished in [51].

Proof. For any x € H,, define

ny =Ky, lZ I[x e Bfl’o(x)]] .

i=1

(63)

Because B;°(x) are disjoint for x € Hy, we have > oy ny <
n. Also define, for every x € H,,

gm=%M=A] (64)

Because ), . u, £x = 1, by pigeonhole principle there is at
most one x € H, such that @, > 1/2. Let x1,x2 € H,
be the points that have the smallest and second smallest 7.
Then there exists x € {xj,x2} such that ¢, < 1/2 and
ny < 2n/|F,|. By Le Cam’s and Pinsker’s inequality (see,
for example, [4]) we have that

g{ﬁ=ﬁ]Pﬂﬂ—ﬂ+wa“w“) (65)
Ay
Pr[fx— |+ —KL APy (66)
1
= ox +4/5KL L(P7|[PfY) (67)
I R
< 5+ SKLPA PR, (68)

It remains to upper bound KL divergence of the active
queries made by .4,. Using the standard lower bound analysis
for active learning algorithms [50], [55] and the fact that
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fx = fo on X\B;°(x), we have

(69)

KL(P7"|PP") = Ejy 4, [log M]

Pfl A, (xl n> Y1 n)

L1721 Pro(vilxi) Pa, (xi |x1:(i71)> ))1:(1‘71))
= Hﬂjb,fin 1()g n
L Ii—1 P (ilxi) Pa, (xi|x1:(i—1)> yl:(i—l))
(70)
[ 11 Pro (inXi)]
=E, log =——————~ (71)
e [ T, Py o)
Pe (yilxi
=Epa, | D, log —Pf OE f‘xf; (72)
| xi€B°(x) e Vi |Xi
Sne- o sup KL(Pg(+[2)] P (-]2)) (73)
2€B (1 X)
e fo = el (74)
Therefore,
> 1 1 1 nl|.fe = fol%
Prif = fi] <5 +4fqmeed <5 +4 [T (05
ff fx fx ) + 4nx5n ) + 2|-7:n| (75)
2) Proof of Lemma 7:
Proof. By construction, nsupy cr, | fx — fol%, < M? nh?

and |Fy| = |Ha| 2 [C,e5(fo)?*¥/*nh—?. Note also that

h = (8/M)1/“ = (C,en(fo)/M)'/* because | fx — folloo =
e = C,e-(fo). Subsequently,
nSup ¢ er, I fx = fOH%o ”[Qggl'(fo)]z _ pmdle
2/ 7] " n[C,e5(fo) P - Ml
(76)

By choosing the constant M > 0 to be sufficiently large,
the right-hand side of the above inequality is upper bounded
by 1/36. The lemma is thus proved. O

D. Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of The-
orem 2, but is much more standard by invoking the Fano’s
inequality [4]. In particular, adapting the Fano’s inequality on
any finite function class F;, constructed we have the following
lemma:

Lemma 8 (Fano’s inequality). Suppose |F,| > 2, and
{(xi, yi)}!_, are i.i.d. random variables. Then
inf sup Pr|f # /i
fr f€Fy I
log2 +n-supy ; er, KL(Ps [Py,
>1- S for €Fn ( i ” fx )’ (77)

log | F|
where Py, denotes the distribution of (x,y) under the law

of fx.

Let F, be the function class constructed in the previous
proof of Theorem 2, corresponding to the largest packing
set Hy, of Ly (2h) such that B(x) for all x € H, are
disjoint, where h = (£5/M)"/* such that |p, 1|00 = 28 for
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all x € H,. Because foy satisfies (A2’), we have that |F,| =
|Hy| 2 1, (F5)h=?. Under the condition that £Y(fo) < &L, it
holds that u 5, (85) > [¢5]2+4/*n. Therefore,
Fal 2 P nh ™ 2 B M (78)
Because log(n/z5) > logn and M > 0 is a constant, we have
that log | 7| = clogn forall n > N, where ¢ > 0 is a constant
depending only on a,d and N € N is a constand depending
on M.
Let U be the uniform distribution on X. Because x ~ U

and fy = fu on X\B;°(x), we have that

KL(P;, |Py,) = f 4G - fu@PdUE)  (19)
<21;[zeBh ()] I fe = follse (80)
< SHBR() [P 81)
< hEL? < [P mle, (82)

By choosing M to be sufficiently large, the right-hand side
of (77) can be lower bounded by an absolute constant. The
theorem is then proved following the same argument as in the
proof of Theorem 2.

APPENDIX A
SOME CONCENTRATION INEQUALITIES

In this section, to ease readability of our paper, we provide
some concentration inequalities and other standard results that
we use extensively.

Lemma 9 ( [56]). Suppose X1,...,X, are iid. random
variables such that a < X; < b almost surely. Then for any

t >0,
>t <2 ni?
<2exp{—— .
P12 —ap2

Lemma 10 ( [57]). Suppose x ~ Ny (0, Iyxq) and let A be
a d x d positive semi-definite matrix. Then for all t > 0,

ZX —EX

l_l

Pr [xTAx > tr(A) +24/tr(A%) + 2|A|opt] <e .

Lemma 11 ( [58], simplified). Suppose Ai,...,A, are
i.i.d. positive semidefinite random matrices of dimension d and
|Aillop < R almost surely. Then for any t > 0,

nt?

8R2 "

1 n

— > Ai—EA

n

i=1 op

Lemma 12 (Weyl’s inequality). Let A and A + E
be d x d matrices with o1,...,04 and 01',...,0‘; be
their singular values, sorted in descending order. Then
— /] < || Elop-

>t <2exp{—

maxi<;<d |0i
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APPENDIX B
ADDITIONAL PROOFS

Proof of Proposition 1. Consider arbitrary x* € X such

that f(x*) = infyey f(x). Then we have that £(%,; f) =
FGn) = F&*) < [aEa) + o = Flloo] = [ala®) = o =
Flloo] < 2] fu—f |0, where the last inequality holds because

fn(xn) fn(

Proof of Example 2. Because fo € £2(M) is strongly convex,
there exists ¢ > 0 such that V> fy(x) > o for all
x € Xpy e, Where Xp « := Ly, (x) is the x-level-set of f.
Let x* = argmin,ey fo(x), which is unique because fy is
strongly convex. The smoothness and strong convexity of fy
implies that

*) by optimality of X,,. 0

o
[+ =25 < folo) < fg' + —le—X*II2 Vx € Xy,

(83)

Subsequently, there exist constants cg, C1, C2 > 0 depending
only on o, M, x and d such that for all € € (0, co],

C1\/_( X)s Lple) s B?;\/g

The property uf,(€) < €’ holds because u(L 4 (€)) <
y(Bg:\/e-(x*;X)) < €2 To prove (A2), note that

N(Lfy(€).0) < N(BE (x*: X),0) S1+(/e/o)!

e? < u(L s, (€ )) 1, (€), we conclude that
N(Ly(€),0) S140~ #,fo( €) and (A2) is thus proved. O

Proof of Proposition 4. Consider fy = 0if f = 0and fy(z) :=
ao [z} + ...+ 2] forall z = (z1,...,24) € [0,1]%, where
ap > 0 is a constant depending on a, M, and p = d/f for
p € (0,d/a]. The p = 0 case where fy = O trivially holds.
So we shall only consider the case of f§ € (0,d/a].

We first show fy € Z¢(M) with k = co, provided that ag is
sufficiently small. For any j <k = |a|and a1 +...+aqg = J,

(x™; X). (84)

. Because

we have
o/ aoj!- 2P ifar = j ¢ e [d];
e — = [ s
oxyt. L oxg! fo@) {O otherwise.
(85)
Because z1,...,z4 € [0,1] and p =d/f = a > j, it’s clear

that 0 < ¢/ fo(z)/0x]" ... 0x5" < ap j!. In addition, for any
7,7/ €[0,1]¢ and a¢ =k, ¢ € [d], we have

ak ak
mﬁ)(z) —m.fo(zl)
<aok!- |[ze]P F = [2]P K| (86)
<apk! - |20 — ™R (87)

where the last inequality holds because x is min{z, 1}-Holder
continuous on [0,1] for r+ > 0. The |z — z2|mi“{f"_k’l}
term can be further upper bounded by |z — z/|% ¥, because
p =d/f = a. By selecting agp > 0 to be sufficiently small
(depending on M) we have fy € T (M).

We next prove fo satisfies u f,(€) = €# with parameter f
depending on ap and p. For any € > 0, the level-set L 7, (€) can

be expressed as Ly (€) = {z € [0, 1] : 2/ +...+2]

Subsequently,

l(), (%Ld>1/pr Lo lo, (ai())l/p]d

Therefore,

< E/a()}.

(88)

[e/(aod)]" [e/a0]

Because agp,d are constants and dp = f, we established
gy (€) < €P for p =dp.

Finally, note that for any € > 0, Ly (e) is sandwiched
between two cubics whose volumes only differ by a constant.
This proves (A2) and (A2’) on the covering and packing
numbers of Lz, (€). O

<tple) < (89)

Proof of Proposition 5. By the Chernoff bound and the
union bound, with probability 1 — O(n~!) uniformly over all
x € Gy, there are Q(\/nglog? n) uniform samples in
B,o(x; X). Because hg < ¢ for sufficiently large ng (¢ is

defined in condition (A1)), by Lemma 1 it holds that

|J};(xl) _ fx(-x,)| <hE 4 n(;l/4 < ng —a/2d n n(;l/4,
Vx € Gy, x' € BO(x; X). (90)
Also, using the standard Gaussian concentration inequality,
with probability 1 — O(n~!) we have

—1/4

inf f(x)—0(n, ")

x’eB,‘fO'(x;X) ’

<T@ < sup f)+0mg"Y)  vxeG, O

x er(x X)

Let x* be the minimizer of f on X and x € G, such
that |x — x*|o < ho. By (90), we have with probability

1 - 0( 71) that infx’er(x;X)]};(x’) f* + 0(}’!0 (X/Zd i
1/4) 0

n < f* 4+ 1/2logn, where f* = f(x*). Now consider
arbitrary z € G, such that B;S(z; X) n Ly(k/2) = O,
meaning that for all z/ € X, |2/ — z|w < ho, f(Z') >
K/2. By (90), T(z) = x/2 — O(ng"*) = x/2 — 1/2l0gn.
Hence when ng is sufficiently large, z ¢ S(’), which is to be
demonstrated. O

Proof of Proposition 7. The upper bound part of (53) triv-
ially holds because the absolute values of every element in
wo.1(z)wo.1(z)" for z € X = [0,1]¢ is upper bounded by
O(1). To prove the lower bound part, we only need to show
§3 w0,1(z)wo,1(z) "dU(z) is invertible. Assume the contrary.
Then there exists v € RP\{0} such that

o7 [ . wo,l(zwo,l(z)TdU(z)] .
:L|y/0,1(z)To|2dU(z) —0. (92)

Therefore, {yo,1(z),v) = 0 almost everywhere on z €
[0,1]¢. Because & > 0, by re-scaling with constants this
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implies the existence of non-zero coefficient vector ¢ such

that
2

o1 +... o, <k

P(Z1>°'-9Zm) = é’al,_,_,(xmz(lll Z;,X,lm ==

almost everywhere on z € [0, 1]‘1.

We next use induction to show that, for any degree-k
polynomial P of s variables zi,...,zs that has at least
one non-zero coefficient, the set {z1,...,z; € [0, 1]d
P(z1,...,2s) = 0} must have zero measure. This would then
result in the desired contradiction. For the base case of s = 1,
the fundamental theorem of algebra asserts that P(z;) = 0 can
have at most k roots, which is a finite set and of measure 0.

We next consider the case where P(zj,...,zs) takes on s
variables. Re-organizing the terms we have

P(zi,...r25) = Po(z1, -+ -s25—1) + 25 P1(21s - o5 25—1)
o Pz ), (93)
where Pi,..., Py are degree-k polynomials of zy,...,z5—1.

Because P has a non-zero coefficient, at least one P; must
also have a non-zero coefficient. By the inductive hypothesis,
the set {z1,...,2s—1 Pj(z1,...,2z5—1)} has measure O.
On the other hand, if P;(z1,...,zs—1) # O, then invoking
the fundamental theorem of algebra again on z; we know

that there are finitely many z; such that P(zy,...,z5) = 0.

Therefore, {z1,...,2s : P(z1,...,2s) = 0} must also have

measure zero. []
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