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Abstract—Protein-protein interaction (PPI) network 
alignment has been motivating researches for the comprehension 
of the underlying crucial biological knowledge, such as conserved 
evolutionary pathways and functionally conserved proteins 
throughout different species. Existing PPI network alignment 
methods have tried to improve the coverage ratio by aligning all 
proteins from different species. However, there is a fundamental 
biological justification needed to be acknowledged, that not every 
protein in a species can, nor should, find homologous proteins in 
other species. In this paper, we propose a novel approach for 
multiple PPI network alignment that tries to align only those 
proteins with the most similarities. To provide more 
comprehensive supports in computing the similarity, we integrate 
structural features of the networks together with biological 
characteristics during the alignment. For the structural features,
we apply on PPI networks a representation learning method, 
which creates a low-dimensional vector embedding with the 
surrounding topologies of each protein in the network. This 
approach quantifies the structural features, and provides a new 
way to determine the topological similarity of the networks by 
transferring which as calculations in vector similarities. We also 
propose a new metric for the topological evaluation which can 
better assess the topological quality of the alignment results across 
different networks. Both biological and topological evaluations 
demonstrate our approach is promising and preferable against 
previous multiple alignment methods.
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I. INTRODUCTION 

A. PPI Network Alignment 

Network alignment as one of the most effective comparative 
analysis method has been successfully applied in variety of 
fields such as computer vision [1], social network [2, 3],
biological networks [4-7] etc. Especially in biological 
applications, protein-protein interaction (PPI) network 
alignment facilitates the constructive explorations of the 
complex biological processes across different species and 
provides many important outcomes in identification of 
functional modules, detection of evolutionary pathways, 
discovery of functionally conserved complexes etc [8, 9].  By 
mapping proteins with corresponding maximized similarities in 
different PPI networks, network alignment is able to find 
conserved motif representing the subnetworks that have 
patterns of orthologous proteins with conserved interactions 

and activities, and utilize which in the prediction of protein 
functionalities as well [6].  

The alignment of PPI networks across different species 
bridges the biological knowledge by transferring which from 
well-studied species to poor-studied species [4]. This is very 
beneficial and vital especially when the experimental studies of 
the poor-studied species are very costly or even impractical,
such as knowledge transferring from Saccharomyces cerevisiae 
(yeast) or Caenorhabditis elegans (worm) to Homo sapiens 
(human), leading to new discoveries in evolutionary biology, 
drug targets, disease causing genes etc. In addition to the 
transfer of substantial knowledge, similarities between the 
networks determined through the alignment can also be used to 
infer phylogenetic relationships of different species [9].

Existing network alignment approaches can also fall into a
categorization as aligning either locally or globally. Local 
network alignment aims to find smaller subnetworks with high 
local similarity irrespective of the overall similarity among the 
participating networks [4]. Since the subnetwork can overlap, a 
protein from one network can be mapped to several proteins in 
other networks, and hence generate a many-to-many local 
mapping. However, network alignment methods focusing on 
local alignment are generally not capable of finding global one-
to-one mappings that maximize the overall similarity of the 
entire networks in a global network alignment [10].

This paper focuses on aligning multiple PPI networks 
globally, with local topological information integrated, to 
improve the performances of network alignment. 

B. Motivations 

Although continuous progress has been made in the field of 
PPI network alignment, there are two important problems 
remain unsettled with no satisfactory solutions:  

(1) How to better represent and quantify the topological 
property of a protein in different network of species? 

Previous researches once focused only on biological 
characteristics of proteins, such as the amino acid sequences, to 
align proteins with similarity and relevancy biologically. After 
topological properties that exclusively extracted from the PPI 
network structure gradually showed its advantages over the 
biological information, current network alignment methods 
tend to combine both sources of information to promote their 
alignment processes [4, 11].



137

However, the metric used to capture the structural topology 
of a network and its proteins varies, an always focus on single 
attribute of edge or node, such as degree, centrality, eccentricity, 
betweenness etc. Alignment results may be optimized or not by 
one of these topological extractions than the others, according to 
various situations. In this paper, we propose to describe the 
characteristic of a node from multiple topological perspectives 
and apply node embedding method to generate  low-dimensional 
vectors in representing the proteins together with their 
connectivity patterns. The topological properties of one protein 
are preserved to the great extent from its network, and which is 
also in the preferable quantified format of vector for further 
computation. 

(2) How many proteins should be aligned towards a better 
alignment? 

While no consensus exists on which evaluation measures 
should be used for different situation, consistency and coverage 
are the two most considered in evaluating the quality of network 
alignment results. Functional consistency is determined as 
measuring the common biological functionality shared by 
aligned proteins. Coverage on the other hand, serves as the 
topological measure in inspecting the total amount of proteins 
being aligned across networks by an alignment method.  

The pursue of aligning more proteins in order to increase the 
overall coverage is unfortunately the most concern for many 
network alignment methods. Besides achieving high 
consistency, the topological measure for the quality of alignment 
should not simply focuses on the coverage for improvement. It 
is rooted on an intuitive reason: not all proteins from different 
networks should be attempted to get aligned, which is precisely 
due to they are different species, and quite many proteins are 
supposed not to be homologous. To break the conventional
limitation, we propose a partial alignment approach that only 
aligns those proteins with the most similarity across species 
while achieving balanced high consistency at the same time. 

C. Contributions 

In this paper, we propose a new approach to align multiple 
PPI networks. The main contributions are as follows:

� To improve the description of topological properties
during the alignment, we propose to adopt
representation learning method to embed protein node
as vector while capturing enriched structural features
such as triangle motifs. The topological similarity can
consequently be quantified and transferred directly as
similarity of vectors for computation.

� We propose a partial alignment approach which focus
on only mapping proteins with the most similarities and
those supposed to be aligned, instead of aiming at
increasing overall coverage by attempting to align all
the proteins.

� A more comprehensive topological evaluation called
mean neighbor similarity (MNS) is introduced. It
measures topological quality of alignment result in
replacing the conventional measure of overall
coverage.

II. RELATED WORKS

The general idea behind PPI network alignment is to obtain 
the similarities between proteins through the mapping of 
different networks and determine among them the alignment 
with the highest score of similarity. To decide protein similarity, 
many current network alignment algorithms adopt a node cost 
function that combines together the biological information and 
structural information [10]. For network structural properties, 
representation learning is a recent popular and more 
comprehensive approach in reflecting the topology than 
conventional parameters such as degree. In this section, we 
review the related researches in PPI network alignment and 
representation learning.

A. Alignmet of PPI Networks 

Previous network alignment methods could fall in either or 
combined categories of local or global, pairwise or multiple [4, 
6, 10, 12], and each of them has its own features in attempting 
to achieve an optimal alignment result.  

For pairwise PPI networks, IsoRank is one of the most 
classic and referred alignment method in the field. It is a typical 
pairwise global alignment algorithm for biological networks 
[12]. The idea of PageRank algorithm is used for reference in 
computing the similarity of protein pairs according to their 
neighboring topology. Intuitively, if neighbors of two nodes 
from different networks are similar, the two nodes are also 
considered as similar. Based upon which, IsoRank assigns 
pairwise functional similarity scores for node pairs and screens 
out the candidate pairs to construct similarity matrix for the 
search of global alignment results with greedy strategy. 
MAGNA is another method recently proposed for pairwise and 
global network alignment. It relies on genetic algorithm in 
choosing alignment results with high scores according to an 
objective function that combines topological and biological 
factors [4]. 

More recent research interests shift to the alignment on 
multiple networks, such as IsoRankN, SMETANA, NetCoffee, 
and BEAMS. Extended from IsoRank, IsoRankN [12] applies 
spectral clustering on multiple networks, which improves the 
global network alignment and produces aligned clusters as the 
result. Each of the clusters could consist of multiple proteins 
from a same network. SMETANA [13] tries to effectively find 
among large networks the maximum global alignment. It aligns 
multiple networks in two stages. It first applies a semi-Markov 
random walk model with its cost function in order to calculate 
similarities between nodes, which serves as a probabilistic 
index; Then, a greedy approach is used in producing alignment 
results with the maximum expected accuracy. NetCoffee is 
another global multiple aligner proposed recently that combines 
sequence and topological similarity together in its scoring 
function [6]. It is the first multiple network aligner that weights 
score of protein pairs according to not only pairwise sequence 
similarity, but also a triplet extension across multiple networks. 
This topological approach is similar to the multiple sequence 
aligner T-Coffee. Alken et al., proposed a heuristic approach 
based on the strategy of backbone extraction and merge in the 
alignment algorithm of BEAMS [14] to globally align multiple 
PPI networks. They break down the alignment process into two 
phases. In the first phase, a partite node similarity graph is 
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constructed from the given networks to determine backbones by 
identifying a set of disjoint cliques that maximizes the number 
of conserved edges between each pair of cliques. Once all the 
backbones are determined, the cliques are repeatedly merged 
during the second phase of backbone merging to form aligned 
node clusters until the alignment score reaches to its maximum.  

B. Representation Learning   

Current literatures of node embedding technique mainly 
define the nodes similarity in terms of proximity or 
neighborhood structure. Representation learning is the approach 
works by making similar nodes have more similar embedding. 

Deepwalk [15] is one of the representation learning 
algorithms inspired by the word2vec algorithm from language 
modeling. It aims at learning adaptable social representations for 
the nodes in a network and generates sequences from a stream 
of truncated random walks on the network, which effectively 
maps local features into a lower dimensional embedding. 
Deepwalk has drawn many interests in the machine learning 
community as it conveyed the idea of representation learning 
from word2vec to the realm of networks, spurring extended and 
fruitful discussions. In order to capture the diverse patterns of 
connectivity observed in networks, node2vec [16] is proposed 
as an algorithmic framework to learn for nodes the 
representation of continuous features. It generates node mapping 
in a low-dimensional space that maximizes the likelihood of 
preserving neighborhood features of nodes. Node2vec defines a 
flexible notion of network neighborhoods and designs a biased 
random walk procedure that can explores neighborhoods 
diversity efficiently. Struc2vec [17] is another rising 
representation learning framework with great novelty and 
flexibility, which learns latent representations of nodes for their 
structural identities with a hierarchy measures of nodes at 
different scales for similarity. It constructs a multilayer graph to 
encode topological similarities and generate structural context 
for the nodes in the network. 

Recent advances in representation learning promote the node 
embedding which is very promising and could be used in many 
downstream tasks (e.g., link prediction), but typically has not 
been extended beyond a single network, especially for multiple 
biological networks. 

III. METHODS AND ALGORITHMS 

To achieve optimal alignment result with enhanced supports, 
we establish a scoring function that could reflect 
comprehensive information from both functional and structural 
aspect of the participating species and their networks. 
Biological characteristics and topological features are well 
quantified and integrated in our similarity scoring function to 
guide the aligning process. All match connections with high 
scores between proteins across networks form a candidate pool 
for a heuristic searching procedure to be later conducted and 
generate the final optimized alignment result which only 
consists of proportional proteins with the most overall 
similarities.  

If we can quantify and denote the biological similarity 
between two proteins and  as , and the topological 

similarity of which as . Then our scoring function 
integrating both features can be formulated as following: 

          (1) 
where  is a controllable parameter to weight and balance the 
contribution of and  towards the overall 
similarity score .    

A. Protein Node to Vector 

Proteins with similar structural patterns of interactions are 
often conserved across species and have similar functions [18]. 
Conventional approaches describe the structural features of 
proteins mainly with metrics of topology such as degree. We 
apply in this paper an alternative approach to represent proteins 
in the PPI network as a vector, utilizing more comprehensive 
structural features. As struc2vec builds its algorithm based on an 
intuitive assumption that two proteins should be deemed 
structurally similar if their neighbors also share same degrees, 
we propose to consider more protein structure pattern that is 
specifically meaningful in PPI networks. The over-represented 
triangle motifs (fully connected 3-node subgraph) often act as 
basic building block and essential functional units of biological 
processes [19].          

Denote  as a considered PPI network with node 
set  and edge set . We compute in the first step a hierarchic 
variance  as follows: 

 (2) 

where  or  denotes a node set at k hop away from  or 
 in ,  denotes the ordered sequence of degree of a node 

set.  denotes the sequence of number of triangle motif 
composed with node set k-1 hop away. The function  
measures the distance between two sequences. The design of 
this hierarchy is able to capture structural characteristic of node 
with both neighbor degrees chain and motif features for every 
two nodes. 

In second step, a weighted k-layer complete graph is 
constructed for a biased random walk to generate context 
sequences for each node. The weight on the edge of two nodes 
in the th layer is assigned as its normalized hierarchic variance 
on the total variances of that layer:    

                        (3) 

The weights on the connection of a node  to its upper and 
lower layers are assigned  and  separately by: 

                      (4) 

                                                 (5) 

where  is the lower quartile of all edge weights of the 
complete graph in the th layer. Then the biased random walk 
similar to node2vec is applied on the k-layer graph instead of 
one, with the in-layer moving probability as and cross-
layer moving probability as  and , to create 
neighbors in sequences as its context. 

 Once the context sequences are generated, we apply 
word2vec model to effectively learn from the sequences a node 
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embedding and get the latent representations as a low-
dimensional vector for each of the protein nodes. With the 
structural property quantified in vector, topological similarity 

 can be readily transformed by calculating vector 
similarity with various choice of coefficient such as cosine 
measure.        

B. Protein Sequence to Index  

Besides structural features of interactions in a network, 
protein has its biological identity, such as the amino acid 
sequences, that can be used to assess its homology relationships 
with others. High similarity between protein sequences indicate 
greater likelihood of them having similar molecular functions 
[8]. 

We take biological similarity into consideration to support 
and complement our scoring function in guiding the alignment 
process to a more compelling result. We determine the 
biological similarity  between proteins as our previous 
works [20] by comparing their biological significance of 
homology, which is quantified as a statistical index called 
Expect values (E-value). The all-against-all sequence 
comparison Protein to Protein Basic Local Alignment Search 
Tool (BLASTP) [21] is applied to calculate the E-value, which 
describes the number of hits that can be expected to get by 
chance in a pairwise comparison.     

For a pair of proteins, the lower the E-value the more their 
similarity is statistical significant. We utilize such index of 
significance to quantify biological similarity of each protein pair 

, which is to be assigned a score se if its E-value is within 
a set threshold cutoff accordingly:  

  (6) 

C. Heuristic Searching to Optimum Matchset 

Unlike previous works that attempted to align every proteins 
from one PPI network to others, we propose to against which 
by only focusing on just proportion of those proteins that are 
deserved to be aligned to their homologues in other species. 
Under this guiding principle that we deem is naturally more 
rational, new strategy is applied accordingly in our heuristic 
alignment procedure. 

A candidate pool can be firstly constructed by protein pairs 
with high overall similarity score  determined from our 
integrated scoring function. Maximum weighted bipartite 
matching method is then applied on all pairs, which searches 
for a maximum number of pairs whose sum of  is as large as 
possible. The outcome form a candidate pool where each 
protein pair is aligned by a virtual link called match connection 
with their similarity score. The candidate pool contains less 
number of pairs while prior qualities of quantified similarities 
of the networks are well preserved. During the alignment 
process, matchsets will be created and updated from the 
candidate pool. Each matchset will contain proteins from 
multiple networks and all aligned together with match 
connections.  

Instead of considering all proteins, we start the alignment by 

randomly select in a source network from the participating 
multiple networks a percentage of proteins to create the initial 
matchsets, where each protein form one matchset. In each of 
the repeated step of the alignment procedure, a candidate match 
connection from the candidate pool will be randomly selected 
with replacement. It is attempted to be linked with the proteins 
in one of the existed matchsets. The effected matchset will be 
updated according to a merging rules, where the proteins of the 
match connection could either:  

1) Being fully merged into an existing matchset and expand 
the size of the matchset, if the one or both of the proteins in the 
selected match connection can be found in only one of the 
existed matchsets; 

2) Replacing one or more proteins in one or both of the 
matchsets and adjust the protein composition of affected 
matchsets accordingly, either change the matchset size or delete 
the matchset when no alignment hold on remaining proteins, if 
proteins in the selected match connection exist in different 
matchsets; 

3) Creating a new matchset on its own and substitute for one 
of the existed matchsets as a whole, if whose current alignment 
score ranks the last;  

The alignment score S(M) for the current alignment results 
consist of matchsets M, are calculated along with each update 
step. To obtain S(M), the score of each matchset  will first be 
calculated with function : 

                                   (7) 

where  is the number of match connections in that matchset. 
Then the alignment score function H for the alignment results 
with all the matchsets can be formulated as:  

                                      (8) 

where is a matchset connection in the matchsets M, and 
is the number of matchset in M. 

To solve the computationally intractable (NP-hard) issue of 
network alignment, we apply the approach of Simulated 
Annealing (SA) [11] to heuristically search for an alignment 
result whose matchsets hold the global maximum alignment 
score. Match connection in the candidate pool is incrementally 
selected in the update procedure until the alignment result 
reaches to its highest possible score , which is then the 
best alignment of multiple networks.   

IV. EXPERIMENTS AND RESULTS  

A. Dataset Preparations 

To evaluate the quality of alignment results, we collected 
real PPI networks from five species to test our proposed 
alignment approach in experiments. Five eukaryotic species 
were included: Homo sapiens (human), Mus musculus (mouse), 
Dorsophila melanogaster (fruit fly), Caenorhabditis elegans 
(worm) and Saccharomyces cerevisiae (yeast). They were 
retrieved from public molecular interaction database IntAct 
[22].  



140

After data cleaning and filtering, we eventually obtained 
from five species a total of 21472 proteins and 87310 
interactions in constructing five PPI networks. Details about the 
number and interactions of proteins for each network are listed 
in Table I. Amino acid sequence of each protein is further 
retrieved from UniProtKB/Swiss-Prot database [23].      

Based upon these PPI networks from various species, we 
applied our approach on datasets of multiple networks 
containing number of networks scaling from 3 to 5, to 
examine the robustness of our proposed method. We also 
compare our alignment results against those from other three 
widely acknowledged global multiple PPI network 
alignment methods from previous researches on the same 
datasets. The three Datasets A,B,C are composed of 
increasing number of PPI networks in 3, 4, and 5 
respectively, and they are described in Table I with more 
details.   

TABLE I. DATASETS

PROTEINS AND INTERACTIONS OF FIVE SPECIES AND THE COMPOSITION OF
THREE DATASETS A,B, AND C. “ ” INDICATE THE SPECIES INCLUDED IN THE 
ACCORDING DATASET, E.G. DATASET-A CONTAINS PPI NETWORKS FROM 
H.SAPIENS, M.MUSCULUS, AND D.MELANOGASTER. 

Species #Proteins #Interactions Dataset
A B C

H.sapiens 8828 37956
M.musculus 1569 3129
D.melanogaster 1547 3292
C.elegans 784 1493
S.cerevisiae 5744 41440

Besides a novel topological quality measure first proposed 
in this paper, we also evaluated the biological quality of 
alignment results under commonly applied criteria. For the 
purpose of biological evaluations, Gene Ontology (GO) of 
proteins were retrieved accordingly from Uniprot-GOA 
database [24]. 

B. Experiment setups 

For the biological similarity in the score function, we 
calculate the E-values between proteins by BLASTP. The cutoff 
value was set as 1e-7 to filter all the E-values and keep only the 
match connections with more potential homologous in every 
bipartite network. The remaining match connections are all 
assigned a biological score of  with their normalized E-
value.  

The integrated score of each match connection are then 
obtained by combining both  and  on the 
customizable coefficient α, which we set  as 0.5 for generality, 
to equally distribute the contributions from both biological and 
topological similarities from the participated networks. We also 
tested α assigned with different values and discussed the 
corresponding influences on the alignment results. For the 
alignment procedure, we set the percentage of aligning best 
matching proteins from the source network to the target 
networks as 30%. We also discuss the effect of choosing 
different percentages on the alignment results. 

To compare our alignment results against others, we applied 
three widely accepted multiple alignment methods: IsoRankN 
[12], SMETANA [13], and BEAMS [14]. They are all executed 

with their recommended parameters from the original papers on 
the same datasets as we evaluate our proposed method with. 

C. Evaluations 

1) Biological measures
To evaluate the biological quality of the alignment results, 

we applied the commonly adopted measures of mean entropy 
(ME) to assess the functional homogeneity. The idea is based on 
an intuitive assumption that if all the proteins of a matchset from 
the alignment results have Gene Ontology (GO) annotations that 
correspond to a set of genes with the same function, then that 
matchset possesses a biological consistency to a certain degree. 
The higher the consistencies possessed in all matchsets 
generated by an alignment, the better the alignment method. 

The consistency in a matchset can be measured by entropy 
E(M) defined as follows:

� � ����

where  is the percentage of all proteins with the annotation
GOi in a matchset, and d represents the total number of different 
GO annotations in that matchset. A matchset with more within-
cluster consistency will hold lower entropy.   

The mean entropy (ME) is then the evolution on the whole 
alignment by calculating the average of the entropies of all 
generated matchsets. Accordingly, the lower the ME of an 
alignment, the higher consistency it could obtained, which 
indicates a better biological quality.  We can see in Fig. 1 that in 
general our method obtains better alignment results in terms of 
biological evaluation on all datasets. The only exception is that 
BEAMS achieved lower ME than ours, but only on four and five 
networks alignments.  

2) Topological measure
We propose a novel measure of topological quality of the 

alignment result, called mean neighbor similarity (MNS). Our 
idea is based on a very nature assumption that if two proteins 
from different networks are very similar or functionally 
homologous, they should share a very similar topological 
structures of the protein interactions in their respective network 
of species. In another word, two well aligned proteins from 
different networks should have very similar neighbor structure 
pattern. With such guidance assumed, we design to use a degree 

Fig. 1. Illustration and comparisons of the biological evaluation
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sequence of the neighbors of a protein in a network to represent 
that protein.  

For each protein in a matchset of an alignment, we first 
obtain the degree sequence of all its neighbors, and then unify 
the sequence length to the maximum length in the matchset by 
making up with zeros and later sort the values in every sequence. 
Then the distances between each two degree sequences are 
calculated. The average value of all distances is hence the MNS. 
The lower the MNS means the better the similarity of topology 
in the alignment results. This measure with topological feature 
embedded does not have any number limit for the participating 
networks in the alignment, and also avoid the improper pursuing 
of the coverage as a whole.  

The Fig. 2 shows the comparison illustration of the 
alignment results on all datasets by all methods in terms of 
topological evaluation. It is obvious that our method outperform 
the other three methods and achieves much lower MNS.

V. CONCLUSIONS

In this paper, we propose a new PPI network alignment 
method with representation learning on the networks. It 
transforms and quantifies the structural features of proteins into 
low-dimensional vectors. Topological similarity can thus be 
computed through the corresponding vectors. Along with the 
biological similarity, the proposed method aligns multiple PPI 
networks without requiring all proteins to be aligned, which is 
more efficient to find only most ���������	
 proteins across 
multiple species. Besides biological evaluation measures, we 
also proposed a new measure to better evaluate topological 
quality of the alignment results.
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Fig. 2. Illustration and comparisons of the topological evaluation
(MNS) on the alignment results from four alignment methods.
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