The multiscale finite element method for nonlinear continuum
localization problems at full fine-scale fidelity, illustrated through
phase-field fracture and plasticity

Lam H. Nguyen*, Dominik Schillinger

Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Twin Cities, USA

Abstract

The residual-driven iterative corrector scheme recently presented by the authors for linear problems
has opened a pathway to achieve the best possible fine-mesh accuracy in the multiscale finite element
method (MsFEM). In this article, we focus on a series of algorithmic and variational extensions
that enable efficient residual-driven correction for nonlinear localization problems. These include a
synergistic combination of Newton and corrector iterations to reduce the algorithmic complexity,
the use of corrector degrees of freedom in the Galerkin projection to eliminate the repeated
recomputation of multiscale basis functions during Newton iterations, and a natural residual-based
strategy for fully automatic fine-mesh adaptivity. We illustrate through numerical examples from
phase-field fracture and plasticity that the MSFEM with residual-driven adaptive correction achieves
full fine-scale fidelity while also being computationally more efficient than the pristine MsFEM.
We also show that for localization problems, it significantly increases accuracy and robustness over
standard oversampling.

Keywords: Multiscale finite element method, nonlinear localization, residual-driven iterative
correction, phase-field fracture, plasticity

*Corresponding author;
Lam H. Nguyen, Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury
Drive S.E., Minneapolis, MN 55455; E-mail: nguy2451 @umn.edu

Preprint submitted to Journal of Computational Physics November 7, 2018



Contents

6

Introduction

Phase-field fracture and plasticity: two examples of continuum localization

2.1 Variational phase-field fracture . . . . . . . . ... ... oL L.
2.1.1 Phase-field approximation and tensile strain energy degradation . . . . .
2.1.2  Weak form of the coupled multifield problem . . . . . .. ... ... ...
2.1.3 TIrreversibility and staggered solution procedure . . . . . ... ... ...

2.2 Plasticity: weak form and Newton-Raphson procedure . . . . .. ... .. ...

The multiscale finite element method with interelement correction

3.1 Multiscale solution procedure . . . . . . ... ... ..o

3.2 Oversampling . . . . . . . . .. e

3.3 Residual-driven iterative correction . . . . . . . . . ... Lo
3.3.1 Thelocal corrector problem . . . . . .. ... .. ... ... ......
3.3.2 Local imposition of global Dirichlet boundary conditions . . . . . . . ..
3.3.3 Iterative algorithm, automatic adaptivity and robust parallelization . . . .

Extension to multifield and nonlinear problems

4.1 Multifield MsFEM, illustrated for phase-field fracture . . . . . . . .. ... ...
4.1.1 General procedure . . . . . . .. .. ...
4.1.2 Oversampling of the phase-field bubblepart . . . . . ... ... .....
4.1.3 Residual-driven correction for phase-field fracture . . . . ... .. .. ..

4.2 Nonlinear MsFEM, illustrated for plasticity . . . . . . ... ... ... .....
4.2.1 General procedure . . . . . ... ..o
4.2.2 Residual-driven correction for plasticity . . . . . . . .. ... .. ....

4.3  Orthogonality of multiscale, bubble and corrector basis functions . . . . . . . ..

Numerical examples

5.1 Fracture of a single edge notched specimen . . . . . . ... ... ... .....

5.2 Tension test with plastic shear band formation . . . . . . ... ... ... ... ..

5.3 Fracture of an L-shaped specimen with random defects . . . . . ... ... ...

5.4 Imaging-based failure analysis of a metal foam structure . . . . . ... ... ...

Summary and conclusions

Appendix A

PRV, I SN *N w

oo o0

10
10
12
13
14
15
15

18
18
18
19
21
22
24
25
26

27
29
31
34
37

38

39



1. Introduction

In the computational modeling of heterogeneous materials such as bone, composites or soils,
the interaction of multiple scales needs to be taken into account. One can use assumptions such as
scale separation and periodicity to derive continuum homogenization methods [1-8]. In situations
where these assumptions do not hold, for instance in localization problems in plasticity or fracture,
one possibility to obtain accurate results is to fully resolve all scales [9, 10]. The computational
cost associated with full scale resolution, however, easily exceeds current computing resources,
even with today’s rapid development in supercomputing. Therefore, there is a demand for multi-
resolution methods not based on scale separation or periodicity that are significantly less expensive
and achieve comparable accuracy with respect to full resolution [11, 12]. Approaches that have
been explored include the combination of strong discontinuities with the variational multiscale
method [9, 13, 14] and with microscale regularized damage models [15—-17], and variational scale
interaction mechanisms in multi-resolution meshes [18-21].

The multiscale finite element method (MsFEM) originally introduced by Hou and Wu [22]
directly transfers localized fine-scale kinematics to the macroscale via a so-called multiscale basis
[23-27]. The solution of the macroscale system requires significantly less memory compared to the
full-resolution mesh, while the computation of multiscale basis functions can be efficiently carried
out in parallel in an offline step [28]. The MSFEM, however, is currently not associated with the
efficient solution of localization problems, as its accuracy is adversely affected by local constraints
imposed at the interfaces of coarse-scale elements. These constraints prevent accurate solutions
when localized features are crossing element interfaces, such as propagating cracks or plastic bands
[9, 13, 21]. To counteract this issue, oversampling methods have been proposed that improve
accuracy at element interfaces [22, 29-32]. For localization problems, however, oversampling does
not always guarantee accurate solutions, which we will illustrate as part of this work.

In a recent article [33], the authors introduced a local corrector scheme that restores the best
possible fine-mesh accuracy, while preserving the core computational advantages of the MsFEM.
It is based on a series of corrector problems, each associated with one multiscale basis function
and defined locally on its support. The corrector problems are driven by the local residual of the
previous multiscale solution [26, 28, 34]. When cast into an iterative scheme, the MsFEM with
residual-driven correction converges with a few iterations to the same solution as obtained by full
scale resolution, irrespective of the ratio between fine-scale and coarse-scale meshes. In addition,
it is simple to implement and can be efficiently parallelized due to the locality of the corrector
problems. What remains to be clarified, however, is whether and how residual-driven iterative
correction can be extended efficiently to nonlinear problems, in particular since integrating nested
corrector loops in the Newton-Raphson algorithm seems an undue computational burden.

In this article, we focus on a series of non-trivial algorithmic and variational extensions that
enable efficient residual-driven correction for nonlinear localization problems. Our main idea is
to synergistically combine Newton and corrector iterations in the sense of a predictor-corrector
scheme [35]. In other words, only one corrector iteration is carried out per Newton iteration instead
of a full corrector loop. Given n;;, Newton iterations and n.,, corrector iterations, this reduces the
algorithmic complexity from O(n;y,. - Neor) to O(max(nig, Neor)). This opens the door for fully
accurate MSFEM analysis at practically the same cost as the pristine MSFEM.
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We discuss a number of additional ideas that further reduce the computational cost. We show that
multiscale basis functions need to be computed only once, when we update the multiscale solution
throughout the Newton-Raphson procedure by corrector solutions and their degrees of freedom at
coarse-scale nodes. To prevent errors due to the loss of orthogonality between the harmonic and
bubble parts of the multiscale solution in certain situations, we re-introduce a few coupled bubble
degrees of freedom in the macroscale Galerkin projection. In the scope of localization problems,
we also describe a residual-based strategy for automatic mesh refinement that naturally reuses the
local residual computed by the corrector scheme to automatically drive fine-mesh adaptivity.

We cast all of these developments into MSFEM algorithms whose accuracy and computational
efficiency are illustrated through numerical examples from phase-field fracture [36—-38] and plas-
ticity [39]. We illustrate, first for the staggered multifield case and then for the fully nonlinear
case, that the MSFEM with residual-driven adaptive correction not only achieves full fine-scale
accuracy, but also is computationally less expensive than the pristine MSFEM. We also show that
for localization problems, residual-driven correction significantly increases accuracy and flexibility
over standard oversampling. We emphasize that our nonlinear MSFEM framework is general and
can be applied to any other multiscale continuum localization model such as gradient damage
[40—43], strain softening laws [44, 45], or cohesive zone models [46, 47].

Our article is organized as follows: In Section 2, we briefly review phase-field fracture and
plasticity as two representative examples of continuum localization. In Section 3, we briefly outline
the MsFEM, the classical correction based on oversampling, and discuss the residual-driven iterative
corrector scheme introduced in [33]. Section 4 focuses in detail on the algorithmic and variational
extensions that enable efficient residual-driven correction for nonlinear problems. We also briefly
address what seems to be a novel oversampling variant that enables its application to phase-field
fracture. Section 5 presents numerical examples that assess the accuracy of the MsFEM with
different interelement correctors, demonstrate the efficiency gains due to synergistically combining
Newton and corrector iterations and due to residual-based automatic fine-mesh adaptivity, and
illustrate the significant memory and computing time savings with respect to full scale resolution.
Finally, we summarize and draw conclusions in Section 6.

2. Phase-field fracture and plasticity: two examples of continuum localization

We start by reviewing the variational formulations of phase-field fracture and plasticity that
we use throughout this work as representative examples of multifield and nonlinear continuum
localization problems. Since our presentation of the multiscale finite element method will largely
rely on these two examples, we review the material with sufficient depth. Readers with a firm
background in these topics are therefore encouraged to skip this section.

2.1. Variational phase-field fracture

This subsection largely follows the presentations in [48, 49]. We consider the domain 2 C R¢
(with d € {1;2;3}) with external boundary 0f? and fracture surface I" (see Fig. 1a). We assume
small strain isotropic linear elasticity, where the symmetric infinitesimal strain tensor &(x, t) is

€ = % (Vu + Vu') (1)
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Figure 1: The concept of phase-field fracture as an example of a continuum localization problem: (a) a solid body 2
with internal discontinuity boundary I' that represents a crack, (b) phase-field approximation of I'.

where u(x, t) is the displacement at point x € (2 at pseudo-time ¢. The elastic energy density is

o(e) = %)\ tr(e)* +pue:e 2)

in which A and p are the Lamé constants. The stresses are obtained as
o =0:00(e)=Atr(e) I +2ue 3)

where I is the unit tensor. In the scope of this work, we focus on quasi-static scenarios, in which
we assume that loads are applied infinitely slowly. Following Griffith’s theory of brittle fracture,
the crack will propagate if the computed strain energy release rate G is higher than the critical rate
G.. The total internal potential of the body is

U(e,T) = /Q vole) A + /F G, dI @

The first term represents the elastic energy stored in the continuum part of the body and the second
term expresses the work necessary to create the current fracture surface I'.

2.1.1. Phase-field approximation and tensile strain energy degradation

To predict nucleation, propagation and interaction of cracks, Francfort and Marigo [50] proposed
to find a global minimizer of (4) for a given load. Solving the associated variational problem,
however, is not trivial, since the crack path I' evolves with (pseudo-)time. To alleviate this issue,
Bourdin et al. [36, 51] transferred the surface integral in (4) into a volumetric integral,

[o.ar~ [g.roar )
r Q
and defined the crack density function I'. as
1
.= 0 [(c = 1)* 4+ 43 |Ve]?] (6)
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with a length-scale parameter ly. The scalar-valued phase-field, ¢ € [0; 1], represents the crack,
assuming a value of one away from the crack and zero at the crack (see Fig. 1b). To account for the
effect of cracks on the behavior of the elastic body, the energy density in (4) is redefined as

U(e, c) = (* + k) Yo(e) (7)

When the phase-field is equal to zero, the elastic energy density in the localization zone is completely
penalized. The numerical parameter x < 1 prevents the full degradation of the stored energy at the
fully-broken state ¢ = 0.

To maintain resistance in compression during crack closure, the stress degradation should act in
tension only. To this end, Miehe et al. [37, 52] redefined the elastic energy density as

U(e,0) = [(1 = k) + k] ¥ (€) + ¥g (€) (8)

where 1 and v, are the tensile and compressive parts of 1), defined as

U (e) = %)\ ((tr(€)>+)2 +pet et and Yy (e) = %)\ ((tr(:»:)}f)2 +pe em (9

In (9), the tensile and compressive modes of the strain tensor, € = €™ + €™, can be computed
based on the spectral decomposition

d d
et = Z (e)"mi®n; and e = Z (e)” m; @ mn, (10)

i=1 =1

where ¢; and n; are eigenvalues and eigenvectors of the strain tensor, respectively. The bracket
operators are defined as follows

if if
() = 01‘x<0 and (z) = x'1x<0 (11
z ifx >0 0ifx>0

The derivatives in (10) with respect to the total strains
Pt=0.et and P =0.e =1-P" (12)

define fourth-order tensors that project the total strains onto its positive and negative parts, i.e.
ef =P :eande” =P :e.

2.1.2. Weak form of the coupled multifield problem

We derive the variational form of the phase-field fracture problem from an incremental varia-
tional principle that balances the rate of different energy terms. The balance that includes the rates
of the stored energy, the dissipated energy due to the work done by fracture, and the energy caused
by external forces can be expressed as

gint + ‘/T.'-frac - Pext =0 (13)
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The rate of the stored energy is the time derivative of the integral of the energy density (8),

S'int:i/zde:/(a++a—):e‘dQ+/2(1—n)¢o+cch (14)
dt Jq N

Q

where the tensile and compressive parts of the stress tensor are

ot =D":e=[(1-r)+k]Otpy = [(1 — k)P + k] (Atr(e))" I +2ue™) (15)
o =D :e=00; =Atr(e))” I +2ue” (16)

Using the two projectors in (12), the corresponding fourth-order material tensors are

(1 — k) + K] (D — 2uP™) _ 2uP~ if tr(e) > 0
. _
b= {[(1 — k) + K] 2P and D= {]D _oupt ifu(e) <0 O

where D is the undamaged material tensor. With (5) and (6), the rate of the dissipated energy is

: d c . .
Fhrae = / chc,Q dQ) = g_<c - 1)C dQ + / QQCZOVC - Ve d§2 (18)
dt Jo a 2l 0
The rate of energy due to the work done by external forces is
ﬁext:/ﬁudmr/ t- 4 doQ (19)
Q I'n

in which f and ¢ denote body forces and boundary tractions, respectively. We can now substitute
(14), (15), (16), (18) and (19) into (13) and separate the rate of energy functional into a phase-field
part and an elasticity part, based on the observation that the balance (13) must hold for arbitrary w
and ¢. This results into the following coupled variational equations,

/Vu:(D++D‘):Vud9:/f-ud9+/ t-u doQ (20)
Q Q r

N

. +
/(M+1)céd9+/4[8Vc-Vc'dQ:/c’dQ @1
g G. o o

where we identify w and ¢ as test functions.

2.1.3. Irreversibility and staggered solution procedure
In (21), the tensile part of the strain energy, 1, drives the crack evolution. To prevent cracks
from healing, if loads are removed and v; decreases, the tensile strain energy ¢; in (21) is replaced
by the following local history field [37],
H(,t) = max v (e(x, s)) (22)
s€[05t]
In the unloading case, the maximum value of H is preserved such that cracks cannot heal. From

a computational viewpoint, this irreversibility concept facilitates the staggered approach for the
iterative solution of the phase-field fracture problem [37], summarized in Algorithm 1.
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Algorithm 1: Staggered scheme for phase-field fracture
Result: Phase-field c and displacements u
if initial crack then
\ Solve (21) with initial H for the initial phase-field c;
end
while load < maxload do
90 Multifield staggered iterations;
while c and u not converged do
Solve (20) for displacements w;
Solve (21) for phase-field c;
Check residuals derived from (20) and (21);
end
Update the history value H;
Load increment load++;
end

o 0 NN A Ut R W N =

-
| S 1

o
(5]

2.2. Plasticity: weak form and Newton-Raphson procedure
We consider the plasticity problem defined by the following boundary value problem

—V.o(a,u) = f(z), zc (23)
ulp, =g (24)
o-nl., =t (25)

on the domain © C R? (with d € {1;2;3}). The stress tensor,
oc=D(a,u): Vu, (26)

depends on the nonlinear material tensor [, which is now a function of a general set of internal
variables o and the displacement vector w. In this work, we focus on von Mises plasticity, based

on the von Mises failure criterion
3
58 s <oy, 27)

where s and o, are the deviatoric stress tensor and the yield stress, respectively. We assume the
standard associated flow rule and no hardening (perfect plasticity) to support localization.

Following the presentation in [39], based on the principle of virtual work, equation (23) can be
cast into the following weak from,

/6s:adQ:/5u-fdQ+/ Su - £ doQ (28)
Q Q Cn

where the virtual strain tensor de follows from the variation of (1). We assume that equation (28) is
discretized by a finite element approach [39] with a set of basis functions that are contained in the
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vector IN. The solution of the resulting set of equations that is nonlinear and path-dependent can
be obtained with the Newton-Raphson scheme [39, 53]. In this context, the nonlinear system of
equations is typically reformulated in residual form,

r = fext o fint ) (29)

The residual r is defined as the difference between the external force vector,
fort = / NTfdQ + / NTtdoQ, (30)
Q 'y
and the internal force vector,
firt = / Blo(a,u) d, (31)
Q

where B denotes the standard strain-displacement matrix.
In the Newton-Raphson scheme, equation (29) is linearized at the current displacement solution
uy, which gives rise to the following incremental format,

KAt = r(uy), (32)

where the vectors u; and Aw contain the coefficients of the current displacement approximation
and its increment, respectively. The tangent stiffness matrix K; can be computed as

Kt:aTR

u

= / BTDB dQ, (33)
Oty Q
where D is the consistent tangent matrix that can be obtained as detailed in Appendix A. Solving the

linearized system (32), we can find the coefficient vector of the updated displacement approximation,
Ui+ = Uy + Awu. This gives rise to the iterative procedure, summarized in Algorithm 2.

Algorithm 2: Newton-Raphson procedure for plasticity
Result: Displacements u

1 while load < maxload do

2 % Newton iterations;

3 while u not converged do

4 Compute 7 from (29), check convergence;

5 Compute K; from (33);

6

7

8

9

Solve (32) for Au;
Update displacement solution;
end
Update internal variables «;
10 Load increment load++;
11 end




08,

Figure 2: Multiscale discretization of the domain 2.

3. The multiscale finite element method with interelement correction

In the next step, we review the multiscale finite element method (MsFEM) for the analysis
of multiscale vector problems. The pristine MSFEM applies simple local constraints based on
linear interpolation that precludes fine-scale accuracy across coarse-scale element interfaces. In this
section, we therefore focus on correction procedures that improve interelement accuracy, which
is decisive for the accurate analysis of localization phenomena. We first discuss the standard
oversampling method and then present an alternative residual-driven corrector scheme that we
recently introduced in [33] for linear problems.

3.1. Multiscale solution procedure

The fundamental ideas underlying the multiscale finite element method were firstly introduced
by Hou and Wu [22] for scalar-field elliptic problems. In this work, we directly consider vector-field
problems, where we follow the displacement-based MsFEM formulation for elasticity derived
in [54]. To fix notation, we simplify the boundary value problem (23) to (25) to the following
two-dimensional elasticity problem,

—V-(D:Vu(x)) = f(x), € (34)

u(z)50 = 9(x), (35)

with the elastic material tensor ID and the vector solution u = (u, uy)T, whose components u, and
u,, are displacement functions in z- and y- directions, respectively.

As illustrated in Fig. 2, the domain (€ is discretized by coarse-scale elements, 2 = U,{2;,

with element size H, and by an underlying fine-scale mesh of element size h. The coarse-scale
interpolation of the displacement vector is

) =3 (G )uee 0 (G )= Y+ ) G0
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where m is the number of coarse-scale nodes. The vectors ¢;, and ¢;, are the two multiscale basis
functions corresponding to z- and y- directions at node ¢. The two components ¢;,, and ¢;, of
multiscale basis function ¢;,, for instance, represent the multiscale displacement in x-direction
and the associated multiscale Poisson effect in y-direction, respectively. u;, and u;, are the nodal
displacement coefficients in z- and y- directions at node <.

To find the two multiscale basis function vectors ¢;, and ¢;,, we firstly consider the decompo-
sition of the solution u [26, 27],

u(x) = uy(x) + up(x) . (37)

The harmonic part u,, is the solution of the following local boundary value problem:
—V-(D:Vsu,(x) =0, € Q (38)
Uq ()] go, = w(T)pg, (39)

and the bubble part u,, is the solution of the following local boundary value problem:

V- (D:Vup(x)) = f(x), € (40)

ub(w)|aﬂi =0. 41

The two local problems are defined individually on each coarse-scale element domain €2;. The
boundary conditions for u, are the exact (unknown) solution components on element interfaces,

while homogeneous boundary conditions are imposed on u,. It is straightforward to show that u,
and u;, are orthogonal [26], satisfying

/Vub:]D):V'u,adQ:O. 42)
Q;

Substituting the approximation of u, based on (36) into (38), we obtain

m

> (V- (D: Vi) taje) — Y (V- (D2 Vidyy) ty) =0, T € (43)

j=1 Jj=1
At each node of the coarse-scale mesh, we can determine the two multiscale basis functions by
solving the following element-wise boundary problems:

—V-D:Vs¢j,) =0 and —V-(D:V,¢,,) =0, =€, (44)

using the fine-scale mesh and simple boundary conditions illustrated in Fig. 3. For the multiscale
basis function ¢, = (¢ gzﬁjzy)T, we set ¢j,, to the corresponding standard basis function with
a unit displacement in z-direction at node j while fixing ¢;,, to zero on element interfaces. The
equivalent procedure is applied for ¢;,.

Using the multiscale basis ¢, and ¢;, with j = 1, ..., m, the MSFEM searches the numerical
solution w’ € V* such that

a(ull (z),v(z)) = (f(x),v(x)), forallv(z)e V" (45)
VH = Span {¢1x($)7 ¢1y(m)a ¢2x(m)v ¢2y(m)’ ey ¢m9&(m)’ d)my(m)} - Hé(Q) )
11



¢]axv - N ¢jxy =0

¢jry = 0 No’dej ¢jyy = Nj No’dej
Pjax = Nj Pjax = Nj Pjey =0 Pjay = 0
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Gjza = N Pjay =0
¢jxy =0 Pjyy = Nj

Figure 3: Local boundary conditions of the multiscale basis functions at node j in a coarse-scale element.

where a (u,v) = [, Vu(z) : D: Vo(z) dQ and (f,v) = [, f( ) dQ2.

The bubble part u;, is found by solving (40) separately in each coarse-scale element domain.
The complete multiscale finite element solution, u, is obtained by adding the local bubble part u,
to the multiscale solution w’

a(x) = ul (x) + uy(x). (46)

We note that this procedure directly extends to three dimensions and can be readily adapted to
other vector problems. We emphasize that a proper MsFEM implementation uses extraction-type
coefficient matrices to assemble global entities entirely from element-wise entities [23, 33].

3.2. Oversampling

Already in the first publications on the MSFEM [22, 55], it was shown that local constraints on
coarse-scale element boundaries have a significant impact on the accuracy of the multiscale solution
(46). It turned out that the error can be particularly high in the thin layers along the boundaries
of each local element domain, a phenomenon that was termed scale resonance. To improve the
solution accuracy with respect to the boundary conditions in Fig. 3, the oversampling technique
was proposed. The basic idea of oversampling is to first construct multiscale basis functions for
each coarse-scale element on a larger domain that exceeds the element, called the oversampling
domain. These multiscale basis functions are then restricted to the actual element domain.

We again illustrate the procedure for the two-dimensional case. Figure 4 illustrates the oversam-
pling domain for one coarse element §2; marked in red. To construct the multiscale basis functions,
we consider the oversampling domain €2, extended by length d,¢ from the original element domain
(2;. We firstly compute temporary multiscale basis functions ®,, and ®,,, j = 1, ..., m,, defined
on (... Here, m, is the number of coarse nodes in each coarse-scale element. We then construct
the actual multiscale basis functions ¢;,, j = 1, ..., m,, defined on the coarse-scale element. This
is achieved by the linear combination

Me

¢jx = Z (éjxkzékx + éjykéky) > (47)

k=1

12



Figure 4: Oversampling domain.

where ¢, and ¢;,;, are constants that we can determine by enforcing the condition

¢jx($k) = (5jk:a O)T- (48)

The location x;, refers to the position of the k" coarse-scale node. The same procedure can be
applied for ¢;, with the constants ¢, and ¢;, that follow from the condition ¢, (x) = (0, d;1)”.

3.3. Residual-driven iterative correction

The oversampling method improves accuracy across coarse-scale element interfaces, but does
not enable the best possible accuracy. An alternative is the residual-driven corrector scheme recently
introduced by the authors in [33]. It iteratively improves the accuracy of multiscale basis functions
until they are able to represent the best-possible fine-mesh solution at element interfaces.

3.3.1. The local corrector problem

Let us consider the support Q; of the multiscale basis function ¢; with node i and boundary
0, illustrated as the gray-shaded region in Fig. 5. To improve the accuracy of this basis function,
we introduce a corrector solution u. which can be determined from the following local boundary
value problem:

—V - (D: Viu(x)) =r(x), zec (49)
Ue()|p5, =0, T € 0. (50)

We observe that the corrector solution is directly driven by the local residual defined as

r(z) = f(x) - f(x), (51)

where

f@)=—V-(D: V() | (52)
13
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Figure 5: Local corrector region that corresponds to the support Q; of the multiscale basis function ¢;.

with u being the current solution to be corrected. The corrector solution of each local corrector
problem can be found via finite element discretizations in a straightforward way. To this end, we
cast (49) and (50) into the following variational form:

/vvh:D:qudQ:[vh-fdQ—[vvh:D;vath, (53)
where v" and u” are finite element approximations of the test functions and the corrector solution
for the coarse-scale node . They are represented on the corresponding local corrector region
(), by the fine mesh available in each coarse-scale element in the sense of Fig. 2. The current
approximation of the multiscale solution %" comes from previous MsFEM computations, where the
initial solution is delivered by the pristine MSFEM. Since local constraints are acting on element
interfaces, the residual 7 in (51) is nonzero only on element interfaces.

The corrector solution can now be used to improve accuracy of the multiscale basis functions.
For the elasticity problem, however, there is no mechanism in the formulation that specifies how to
distribute a single corrector solution onto multiple basis functions in an optimal way. To resolve
this issue, we employ the concept of corrector degrees of freedom that are introduced at each
coarse-scale node as illustrated in Fig. 6. At each coarse-scale node ¢, this new degree of freedom,
U; cor» absorbs the corrector solutions during corrector iterations. The correction effect is thus
incorporated automatically and optimally in the Galerkin sense.

Remark 1: It is interesting to note that in scalar problems, we can obtain a new multiscale basis
function ¢]"“ at node 7 by directly adding the corrector solution to the current basis function:

oY = diu; + U, (54)

where ¢; and u; are the scalar multiscale basis function at node 7 and its solution coefficient,
respectively. We note that one has to immediately set u; to one after the update (54) [33].

3.3.2. Local imposition of global Dirichlet boundary conditions
In the pristine MsFEM, Dirichlet boundary conditions are imposed via the coarse-scale nodes
only. The accuracy of the boundary interpolation therefore directly depends on the local constraints

14



Figure 6: The concept of corrector degrees of freedom leads to one additional degree of freedom at each vertex node.

| I‘el FeQ

)

Figure 7: Corrector problem involving the global Dirichlet boundary.

on coarse-scale element boundaries. As a consequence, the interpolation at the global domain
boundary only converges to the fine-mesh solution when we correct boundary multiscale basis
functions to satisfy the correct Dirichlet boundary conditions at the fine-scale mesh.

To this end, we consider the corrector region shown in Fig. 7, where r p =11 UI.1s apart
of the global boundary OS2 with Dirichlet boundary conditions. In the fine-mesh discretization of
the corrector problem corresponding to node 7, we impose the following boundary condition

u.(z) = g(a) —a(x), x € Tp (55)

At all other interior boundaries of the local corrector domain, homogeneous boundary conditions
according to (50) are imposed.

3.3.3. Iterative algorithm, automatic adaptivity and robust parallelization

At this point, all components are in place to establish the iterative corrector scheme. The
computational procedure is summarized in Fig. 8 and Algorithm 3. There are two important aspects
that need to be discussed in conjunction with the iterative algorithm. First, the availability of
the residual throughout the computational procedure opens the door for an automatic and natural
adaptivity strategy. Since the corrector scheme is driven by the residual, it automatically detects
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Figure 8: Iterative corrector scheme

Algorithm 3: Iterative corrector scheme
Result: Complete multiscale solution u
Solve (40) for the bubble part u;;
Solve (44) for the initial multiscale basis functions;
while ||ﬁk — ﬁk_1|| > tol. do
Solve macroscale problem (45) for uZ ;
Update multiscale solution ), = u?, + wy;
for i = 1 — numberOfCorrectorProblems do
Compute r, being the right-hand side of (53);
9 Automatic fine-mesh adaptivity;
if ||7|| > tol. then

Solve corrector problem (53) for u,;

Use local corrector solution u,. to update uy;
end
13 end

14 end

o 0 N A AW N -

-
N = O

regions with high residuals where localization occurs, for instance fracture regions or plastic shear
bands, and locally improves the accuracy of the multiscale solution. Regions where the residual is
small are automatically excluded from the computation. This mechanism reduces the computational
cost significantly, which is especially important in the presence of localization phenomena, where
the error can be expected to concentrate in a few coarse-scale elements. We will illustrate and
further examine this important aspect in Section 5 via numerical examples.

The second aspect concerns the parallelization of Algorithm 3. We first note that updating a
multiscale basis function changes the multiscale solution % in the local support of that multiscale
basis function. To avoid race conditions in a parallel corrector scheme, we group multiscale basis
functions and associated nodes in such a way that the corrector regions of each group do not overlap
and multiscale basis functions of each group do not directly affect each other’s supports. The
grouping procedure has been coined corrector patterning in [33]. Figure 9 illustrates four possible
corrector patterns of a two-dimensional mesh with 4 x 4 elements. We can work on all nodes in one
pattern in parallel and then move to the next pattern. This guarantees that no overlapping corrector
regions are being considered at the same time. For an extension of the idea of corrector patterns to
three-dimensional problems and a simple algorithm to create these patterns, we refer to [33].
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Figure 9: Four corrector patterns in 2D (the red lines show the local boundaries of non-overlapping corrector regions).

4. Extension to multifield and nonlinear problems

In this section, we introduce algorithmic and variational concepts that allow the efficient
extension of the multiscale finite element method to nonlinear problems. We demonstrate that
for MSFEM analysis of problems beyond linear scalar-field equations a number of additional
aspects need to be taken into account. We first focus on the somewhat simpler multifield case
before proceeding to full nonlinearity, using phase-field fracture and plasticity as model problems.
Since both involve localization, constraints at coarse-scale element interfaces significantly affect
accuracy, requiring effective interelement correction. For each of the two cases, we first discuss a
general MsFEM procedure and then focus on particular aspects with respect to the extensions of
oversampling and residual-driven iterative correction.

4.1. Multifield MsFEM, illustrated for phase-field fracture

In order to apply the MsFEM to a multifield problem, we require several different multiscale
bases, each specifically tailored to one of the multiple solution fields. For the example of phase-field
fracture, this requires an extension of Algorithm 1.

4.1.1. General procedure
For the pristine MSFEM, we suggest the algorithmic approach outlined in Fig. 10. In each
multifield staggered iteration, we determine multiscale basis functions from element-wise local
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Figure 10: Computational procedure for the solution of a phase-field fracture problem with the pristine MSFEM
without interelement correction and the MsFEM with oversampling. In each multifield iteration, a new set of multiscale
basis functions must be computed.

problems and then find the new solution from the macroscale problem for the displacements w and
the phase-field c independently. We repeat the staggered iterations at constant load, until both fields
have sufficiently converged (see also Algorithm 1).

To determine the multiscale basis functions for the displacements w, we derive the following
local variational problem from (20):

/ Vo;: (DT +D7) : Vig; d2 =0, (56)
Q.

k3

with boundary conditions according to Fig. 3, where d¢; are the virtual multiscale basis functions at
node j. We emphasize that ¢»; can be either ¢;, or ¢;,. The bubble part of the multiscale solution
in each coarse-scale element can be determined from the following local variational statement:

/VUbZ<D++]D)_)ZV5UbdQ:/f'(S’U,bdQ'i‘/ f-&ubdQ, 57
Q; Qi (')

where duy, is the virtual displacement of the bubble part and (I'y); is the part of the element
boundary that coincides with the global Neumann boundary.

For the phase-field ¢, we employ the same procedure. Using the simple boundary conditions
of Fig. 3, we can determine the multiscale basis functions ¢.; in each coarse-sale element as the
solution of the following local variational problem:

/ (Z%(lg;ﬁm + 1) Gej Ope A+ / 45 Vbej - Vie; 42 =0, %)
Q c i

in which 0¢.; represents the virtual multiscale basis function at node j. Using homogeneous
boundary conditions at element boundaries, we can determine the bubble part ¢, of the phase-field
as the solution of the following local variational problem:

4p(1 —
/ (—lo( G rH + 1) cp Oy, dQ2 -I—/ Al§ Ve, - Ve, dQ = / ocy €2 (59)
Q . Q. Q;

7
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where d¢y is the virtual bubble part of the phase-field. We note that the variational statements (58)
and (59) can be easily derived by transforming the phase-field equation (21) into its strong form
[48, 49] and following the same steps that are detailed in Section 3.1 for the elasticity equation.

We observe that the variational statements (56) through (59) change in each multifield staggered
iteration, since they either depend on the displacements w or the phase-field c that are continuously
updated as the solutions of the two decoupled macroscale problems. Therefore, in the pristine
MSsFEM the multiscale basis functions need to be recomputed in each multifield iteration. The
computation of multiscale basis functions (offline step) can be efficiently parallelized, but still
constitutes a computational burden when repeated many times.

4.1.2. Oversampling of the phase-field bubble part

For the MSFEM with oversampling, the algorithmic approach of Fig. 10 holds in the same
way. When applying the oversampling method for interelement correction in phase-field fracture,
however, the following issue needs to be addressed. In the completely undamaged state, the history
field H is zero and the equation (21) can be rewritten as

/Q%(c—l) 50dQ+/Vc-V§ch:0. (60)
0 Q
Its exact solution ¢ = 1 can be easily found by inspection. Based on this observation, we require
that all multiscale basis functions and the bubble part can sum up to one, such that the complete
multiscale solution of the phase-field is able to represent the undamaged state exactly.

Following (60), we can find multiscale basis functions in the undamaged state by solving the
following local variational problem:

| 3 65 =1 80500+ [ Vo, Vea, a2 =0 (61)
0 Q

on each coarse-scale element domain. If we employ the oversampling technique, we firstly solve

(61) with the simple boundary conditions on the oversampling domain 2,,. We then construct the

actual multiscale basis functions by a linear combination in analogy to (47).

In the case of [y < 1, the first term in (61) drives the solution to zero inside the oversampling
domain. Therefore, the values of the actual multiscale basis functions are close to zero on element
interfaces (except at the corresponding coarse-scale node). Figure 11a illustrates the shape of these
basis functions by a two-dimensional example. We note that the multiscale basis function plotted
on the coarse-scale element domain was computed on the oversampling domain shown in Fig. 4
and scaled to one at the corresponding coarse-scale node according to (47).

The solution of the bubble part in the undamaged state can be obtained by solving the following
local variational problem:

1

/ E (Cb — 1) 5cb dQ + / VCb : Vécb dQ2=0 (62)
Q; 0 Q;

on each coarse-scale element domain with homogeneous boundary conditions on element interfaces.

The bubble solution is driven to ¢, = 1 inside the element domain by the first term in (62).

Figure 11b illustrates the shape of the bubble part, plotting it over the coarse-scale element domain.
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Figure 11: Phase-field oversampling: (a) one multiscale basis function; (b) bubble part of the solution computed on
the coarse-scale element domain; (c) bubble part computed on the oversampling domain; (d), (e) sums of multiscale
basis and bubble part for each variant. Note that all functions are plotted on the coarse-scale element domain.

When adding all multiscale basis functions and the bubble part together, we obtain the result
plotted in Fig. 11d. We observe that we obtain the correct solution inside the element domain, but a
significant deviation from one near the element boundaries. The reasons for this deviation can be
summarized as follows: (i) the mass term in (60) is multiplied by a large penalty-type parameter
when [y < 1; and (ii) the multiscale basis functions are constructed based on the oversampling
domain while the bubble part must be computed only on the element domain.

To overcome this issue, we suggest that we firstly construct the bubble solution on the oversam-
pling domain and then extract the actual bubble part ¢, from the following relation:

G =0y — > Dy(i)pr, @€ Q. (63)

k=1

Here, the bubble solution @, is obtained on the oversampling domain and the multiscale basis
functions ¢y, are obtained by the oversampling technique for scalar-field problems in analogy to
(47). Figure 11c illustrates the shape of the new oversampled bubble part plotted on the coarse-scale
element. Figure 11e demonstrates that when we add all multiscale basis functions and the bubble
part, we obtain a constant sum of one. Therefore, the undamaged state can be represented exactly.

4.1.3. Residual-driven correction for phase-field fracture
The displacements w and the phase-field c are vector and scalar fields, respectively. For both
fields, we apply the concept of additional corrector degrees of freedom described in Section 3.3.1.
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Figure 12: Computational procedure for phase-field fracture with MSFEM and residual-driven correction.

The residual-driven corrector scheme described in Section 3.3 requires an additional set of nested
corrector iterations. When we combine multifield staggered iterations and multiscale corrector
iterations in a naive way, we therefore arrive at an algorithmic complexity of O(n.o - M), Where
N and N, are the characteristic numbers of multifield staggered iterations and multiscale corrector
iterations, respectively.

We now introduce the following algorithmic ideas summarized in Fig. 12 and Algorithm 4 that
significantly improve the computational efficiency. The first idea is to synergistically combine mul-
tifield staggered iterations and multiscale corrector iterations, carrying out both iterative procedures
concurrently. Thus, we do one multiscale corrector iteration per multifield staggered iteration (and
vice versa), so that the algorithmic complexity is reduced to O(max (7o, nit-) ). The second idea
is to maintain the initial multiscale basis functions throughout the staggered procedure. Thus, the
modification of the displacement and phase-field solution is completely up to the corrector and the
associated degrees of freedom. At each coarse-scale node, we only have one corrector degree of
freedom irrespective of the dimensionality of the problem. Therefore, the localization caused by
crack propagation is solely provided by the corrector basis functions. This completely eliminates
the computation of multiscale basis functions from the iterative procedure and the offline step to be
repeated only consists of the residual-driven corrector scheme.

Remark 2: For a scalar field, we can directly add corrector solutions to update multiscale basis
functions as mentioned in Remark 1, eliminating the corresponding corrector degrees of freedom.
In the present case, this could be employed for the phase-field, with the advantage that the number
of degrees of freedom of the phase-field macroscale problem would be reduced by half.

Remark 3: We emphasize again that in each multifield staggered iteration, we employ residual-
based fine-mesh adaptivity, only finding corrector solutions for those corrector patches, for which
the norm of the local residual is above a user-defined threshold. The effectiveness of this approach
for propagating localization phenomena such as phase-field fracture will be illustrated in Section 5.3.

4.2. Nonlinear MsFEM, illustrated for plasticity

In the next step, we transfer these ideas to fully nonlinear problems, where the multifield
staggered scheme must be replaced by consistent linearization and the Newton-Raphson algorithm.
To outline the MSFEM solution procedure for a plasticity problem, we consider the nonlinear
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Algorithm 4: Staggered multiscale corrector scheme for phase-field fracture

o 0 NN N Ut R W N -
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Result: Displacements u, phase-field ¢
Solve (58) for initial multiscale basis functions ¢.; of the phase-field;
Solve (59) for bubble part c;;
if initial crack then
‘ Solve (21) with initial H using Algorithm 3, current ¢.; and c;

Solve (56) for initial multiscale basis functions ¢; of the displacements;
Solve (57) for bubble part wy;

while load < maxload do

90 Multifield staggered iterations;

while c and u not converged do

Solve macroscale problem (68) to determine multiscale displacement solution;
% One multiscale corrector for w;
for i = 1 — numberOfCorrectorProblems do
Compute displacement residual 7, on corrector domain (right-hand side of (53));
9 Automatic fine-mesh adaptivity;
if ||7.|| > tol. then
\ Solve (53), use corrector solution to update multiscale displacement solution;
end
end
Solve macroscale problem (68) to determine multiscale phase-field solution;
% One multiscale corrector for c;
for i = 1 — numberOfCorrectorProblems do
Compute phase-field residual 7. on corrector domain;
9 Automatic fine-mesh adaptivity;
if ||r.|| > tol. then
\ Find corrector in the sense of (53), update multiscale phase-field solution;
end
end

end
Update history variable #;
Load increment load++;

equation that can be obtained by combining (23) and (26), together with the set of boundary
conditions (24) and (25).

4.2.1. General procedure

We first consider again the case of the pristine MsFEM with simple interface constraints. To

solve the nonlinear boundary value problem numerically, the general computational procedure (for
any finite element method) is illustrated in Algorithm 2. We can observe that after each Newton
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Figure 13: Computational procedure for the solution of a nonlinear plasticity problem with the pristine MSFEM
without interelement correction and the MSFEM with oversampling. In each Newton iteration, a new set of multiscale
basis functions must be computed in the plastic zone.

iteration, the material tensor D(wu, ) changes due to the update of the displacement vector u and
the state variables ac. The potential change of I, however, requires that makes that in each Newton
iteration, the multiscale basis functions in the plastic zone need to be recomputed again.

Based on this observation, we adapt the MSFEM algorithm presented in [23, 56] as illustrated
in Fig. 13. Using (32), we first compute multiscale basis functions as the solution of the following
local variational problem on each coarse-scale element domain,

/ B'"DB dQ ¢; =0, (64)
Q;

with the simple boundary conditions shown in Fig. 3 and the consistent tangent matrix D that can
be obtained as detailed in Appendix A. The vector q~§j contains the discrete coefficients of the
multiscale basis function ¢; at node j, which can be either ¢, or ¢;,. Having obtained multiscale
basis functions, we can use (45) to find the increment Au’_ in the current iteration. We then
proceed to compute the bubble part of the solution from the following local variational problem in
each coarse-sale element domain,

/BTDB dQ Aﬁb:/ NdeQ+/ NTidaQ—/ BTo(a,u) dQ,  (65)
Q; Q; T Q;

with homogeneous boundary conditions on element interfaces. The vector Awu,, contains the discrete
coefficients of the increment of the bubble part Aw,,. With these two parts of the solution, we can
obtain the complete multiscale solution and proceed to updating the state variables.

Remark 4: The computational procedure introduced in [23, 56] is slightly different from the
algorithm we illustrate here. In that approach, one first computes and stores multiscale basis
functions with some predefined state variables. In each iteration, one then obtains the current
state variables and finds the current multiscale basis functions by interpolating between the stored
multiscale basis functions. In localization problems, however, this approach is difficult to apply and
likely to lead to inaccurate results.

4.2.2. Residual-driven correction for plasticity
For the MsFEM with residual-driven correction, we follow the same arguments as in Sec-
tion 4.1.3 for phase-field fracture, arriving at the multiscale Newton-Raphson procedure summarized
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Figure 14: Computational procedure for nonlinear plasticity with the MsFEM and residual-driven correction.

Algorithm 5: Newton-Raphson algorithm for plasticity
Result: Displacements u

1 Solve (64) and (65) with D¢ for the multiscale basis functions and bubble solution;
2 while load < maxload do

3 % Newton iterations;

4 while u not converged do

5 Compute macroscale r from (29), check convergence;

6 Compute K; from (33), using the multiscale basis of (68);

7 Solve linearized macroscale system for Awu;

8 for : = 1 — numberOfCorrectorProblems do

9 Compute displacement residual r,, on corrector domain from (66);

10 %0 Automatic fine-mesh adaptivity;

11 if ||r,|| > tol. then
12 \ Find Awu, by solving K" Au, = r,, update the multiscale solution;
13 end

14 end

15 end
16 Update internal variables o;

17 Load increment load++;

18 end

in Fig. 14 and Algorithm 5. We firstly compute the initial multiscale basis functions with the
initial elastic material tensor D®. The multiscale basis functions remain unchanged during the
complete loading history. Thus, the modification of the displacement solution relies on the corrector
solutions and their degrees of freedom. In particular, any localization caused by the perfect
plasticity model is solely concentrated in the corrector solution. This completely eliminates the
computation of multiscale basis functions from the Newton iterations and the offline step contains
only the residual-driven corrector scheme. We again synergistically combine Newton and multiscale
corrector iterations to circumvent the additional set of nested iterations. We thus apply only one
corrector iteration per Newton iteration (or vice versa), reducing the algorithmic complexity from
Oty * Neor) to O(max(ngy, Neor ) ), Where ny,. and n..,, denote now the characteristic numbers of
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Newton and corrector iterations, respectively. In this context, we note that the local residual 7, in
the corrector domain is computed as

r, = fext _ fint _ KgorAﬁcor (66)

cur

with the tangent stiffness matrix K;°" and the current corrector solution Auo.

Remark 5: Algorithm 5 again relies on the natural mechanism for automatic fine-mesh adaptivity,
computing fine-mesh solutions via the correction scheme only in corrector domains where the norm
of the local residual is above a user-defined threshold.

4.3. Orthogonality of multiscale, bubble and corrector basis functions

We recall that in the pristine MSFEM, each bubble basis function is orthogonal to all other
multiscale basis functions (see (42) in Section 3.1). The corresponding degrees of freedom can
be determined independently from decoupled element-wise problems. Therefore, the macroscale
Galerkin projection (45) only considers the multiscale basis functions at vertex nodes to find the
harmonic part. To obtain the complete multiscale solution, both parts are added together.

Orthogonality, however, cannot always be guaranteed. In this work, one case is the MSFEM
with oversampling for the phase-field equation (see Section 4.1.2). It is straightforward to see in
Fig. 11c that the bubble part computed on the oversampling domain cannot be orthogonal to the
multiscale basis, as it does not satisfy homogeneous Dirichlet boundary conditions at coarse-scale
element boundaries. Without orthogonality, however, the harmonic and bubble parts cannot be
treated separately without introducing an error. We can resolve this issue by introducing one
additional bubble degree of freedom in each coarse-scale element. The basis function of each
bubble coefficients, ¢, is the initial bubble solution in the 4™ coarse-scale element. To find the
complete multiscale solution u, we employ all multiscale basis functions in the macroscale Galerkin
projection as follows:

a(u(z),v(x)) = (f(x),v(x)),forallv(x) € V¥ (67)
V= span {¢1.(x), $1(), .., P (T), Py (%), 11 (), ..., Prn, ()} C Hy(Q)

where n, denotes the number of coarse-scale elements.

We then move on to the MSFEM with residual-driven correction, where we consider independent
corrector degrees of freedom. Their multiscale basis functions are identified as the solutions of the
local corrector problems. Since they are in general not orthogonal to the multiscale basis, they need
to be independently considered in the macroscale Galerkin projection (67) that follows as:

a(a(x),v(x)) = (f(x),v(x)),forall v(x) € VI (68)
VI = span {1, (), $1y(2), ..., Pua(T), Py (®), rcor (), .., Prncor ()} € Hy (D),

in which ¢ ., is the multiscale corrector basis function at node j.
We emphasize that (68) does not include bubble basis functions. In linear problems, the
bubble basis functions are orthogonal to all other basis functions [33], and therefore do not have
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Figure 15: Geometry and boundary conditions for a notched specimen under uniform displacement constraints.

to be included in (68). In nonlinear problems, the multiscale basis functions and the bubble
part are constructed with the initial material matrix, but this material matrix changes during
nonlinear iterations. Therefore, orthogonality does not generally hold. However, the fine-mesh basis
functions that represent the corrector solutions contain the bubble part as a subspace. Since they are
recomputed in each Newton iteration, the corresponding corrector basis functions automatically
cover the missing bubble part with full accuracy.

Remark 6: It is worthwhile to note that in problems without body forces, we can neglect all bubble
degrees of freedom.

Remark 7: For linear problems, the residual is nonzero only on element interfaces (see Sec-
tion 3.3.1). In our MSFEM framework for nonlinear problems, the residual is nonzero everywhere
in local corrector regions, since corrector solutions also cover changes in the bubble part.

5. Numerical examples

In this section, we illustrate the methods discussed above with four numerical examples,
covering both phase-field fracture and plasticity benchmarks. We place particular emphasis on
demonstrating the computational efficiency of residual-driven correction in the context of nonlinear
localization and highlight its significant advantages over the standard FEM, the pristine MsFEM
with simple boundary conditions and the MsFEM with oversampling. We finally illustrate the
applicability of the MsFEM with residual-driven correction to large-scale problems of practical
relevance by a failure analysis of a complex foam structure given by imaging data.

5.1. Fracture of a single edge notched specimen

We start with the classical benchmark for phase-field fracture, a plane-strain square domain
with a horizontal notch as illustrated in Fig. 15, on which uniform vertical displacement boundary
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Figure 16: Phase-field, displacement, and von Mises stress solutions after the first load step: (a) standard fine-mesh
FEM (reference), (b) pristine MSFEM with simple boundary conditions, (c) MSFEM with oversampling (dashed green
line = oversampling domain), and (d) MSFEM with residual-driven correction.
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Figure 17: Multiscale corrector basis functions of the coarse-scale element that contains the crack tip, representing the
displacement solution. The red-to-blue color scale refers to their magnitude.

conditions are imposed. The model parameters are Young’s modulus £ = 1.0, Poisson’s ratio
v = 0.3, the critical energy release rate G, = 5 x 1074, and the length-scale parameter [, = 6 x 1073.
To achieve a resolution sufficient for this length scale, we target a fine-scale mesh of 250 x 250
linear finite elements. Applying the staggered algorithm, we increment the top displacement by
Au = 1.5 x 10~ in each load step.

In the following, we compare the results of four different approaches: (a) the standard FEM
using the full fine mesh, (b) the pristine MSFEM with simple boundary conditions at coarse-scale
element interfaces, (c) the MSFEM with the oversampling technique, and (d) the MsFEM with
residual-driven correction. All MsFEM solution are computed with 5 X 5 coarse-scale elements,
each of which contains 50 x 50 fine-scale elements, leading to an equivalent fine-scale mesh of
250 x 250 elements for the complete domain. Oversampling is based on an extension of d,; = 0.12,
which corresponds to 60% of the coarse-scale element size /. Figure 16 plots the phase-field,
displacement and von Mises stress solution for all four methods.

Figure 16a plots the standard fine-mesh FEM results, which serve as a reference. Figure 16b
plots the solutions obtained with the MsFEM and simple boundary conditions. We observe that
the associated local constraints significantly affect the accuracy of the solution, preventing the
representation of localized features across coarse-scale element interfaces. In Fig. 16c, we observe
that the oversampling technique can improve the solution quality, but still provides inaccurate stress
results near element interfaces, in particular in coarse-scale elements near the domain boundary.
The solid and dashed green lines in Fig. 16c¢ illustrate a coarse-scale element and its oversampling
domain, respectively.
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Figure 18: Phase-field solutions at top displacement v = 0.03: (a) standard fine-mesh FEM (reference), (b) pristine
MsFEM, (c) MsFEM with oversampling, and (d) MSFEM with residual-driven correction. The MsFEM solutions are
based on 50 x 50 coarse-scale elements, each of which holds 5 x 5 fine-scale elements.

The results plotted in Fig. 16d are indistinguishable from the reference solution, indicating that
the residual-driven corrector scheme achieves full fine-mesh accuracy. In particular, the results
accurately represent localized features across coarse-scale element interfaces up to the fine-mesh
resolution. Since we keep the initial multiscale basis functions the same during the computation,
the corrector solution alone is responsible for representing localized solution features near element
interfaces. This aspect is illustrated by Fig. 17 that plots the multiscale corrector basis functions of
the displacement solution, taken from the coarse-scale element that contains the crack tip.

In the next step, we decrease the ratio between coarse-scale and fine-scale mesh sizes, consid-
ering a coarse-scale mesh of 50 x 50 elements, each of which covers 5 x 5 fine-scale elements.
Figure 18 plots fracture patterns obtained with each of the four approaches for a top displacement
of u = 0.03, where the standard fine-mesh FEM solution in Fig. 18a serves again as our reference.
In Fig. 18b, we observe that the pristine MsFEM with simple boundary conditions fails to properly
represent crack propagation across element interfaces. When taking a close look at the damage
region, we can see oscillations in the phase-field caused by the local constraints. For this mesh ratio,
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Figure 19: Comparison of accuracy and computational efficiency in terms of load-displacement behavior and number
of staggered iterations for the notched specimen example.

we encounter the same situation in Fig. 18c for the MSFEM with oversampling. More importantly,
in both methods, the crack represented by the phase-field solution does not freely propagate. This
indicates that the local constraints lead to spurious stiffening of the solution behavior. In Fig. 18d,
we see that the residual-driven corrector scheme completely removes these limitations. At any
given top displacement, it yields the same fracture pattern as the standard fine-mesh FEM, allowing
the crack to freely propagates across element interfaces.

The superior accuracy of the MSFEM with residual-driven correction is confirmed by Fig. 19a
that plots the load-displacement curves obtained with the standard fine-mesh FEM (reference), the
pristine MSFEM with simple boundary conditions, the MsFEM with oversampling, and the MsFEM
with residual-driven correction. All MSFEM schemes use 50 x 50 coarse-scale elements with 5 X 5
fine-scale elements per coarse-scale element. We observe that the pristine MsFEM is significantly
stiffer than the reference solution. The oversampling technique reduces the stiffening error, but its
load-displacement curve still shows a significant increase in stiffness with respect to the reference.
The curve obtained with the MSFEM with residual-driven correction lies on top of the reference
curve in the complete loading range. This excellent solution behavior does not depend on the mesh
size ratio between coarse-scale and fine-scale meshes. This is illustrated by varying the mesh size
ratio to 125 x 125 and 25 x 25 coarse-scale elements with just 2 x 2 and 10 x 10 fine-scale elements
in each coarse-scale element, respectively. In Fig. 19a, the corresponding load-displacement curves
are still exactly reproducing the fine-mesh reference solution.

In the next step, we quantify the computational efficiency of the residual-driven iterative
corrector scheme that we implement based on Algorithm 4. Here, we stop the multifield staggered
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Figure 20: Geometry and boundary conditions of the two-dimensional plane-strain tension test.

iterations in each load step as soon as the relative error measure

[wrsr — i

Relative error =
|

(69)

falls below 1072, with u;,; and u;, being the discrete displacement solution coefficients of the k"
and (k + 1)*" multifield staggered iteration, respectively. We note that equation (69) is computed
for coefficients of the fine-scale basis that can be efficiently evaluated from macroscale quantities
through coefficient matrices, see for instance [23, 33]. We recall that we only do one residual-driven
corrector step in each multifield staggered iteration to limit the increase in the total number of
iterations. We observe in Fig. 19b that in almost all load steps, the standard fine-mesh FEM
and the MsFEM with residual-based correction require the same number of multifield staggered
iterations. This confirms that the synergistic combination of residual-driven correction with
multifield staggered iterations does not significantly increase the total number of iterations.

5.2. Tension test with plastic shear band formation

The next example consists of the plane-strain elastoplastic domain shown in Fig. 20 with
Young’s modulus £ = 100, Poisson’s ratio v = 0.3, yield stress o, = 2, and the dimensions given
in Fig. 20. We apply a uniform displacement Aw in vertical direction at the top and bottom edges
of the specimen. Due to symmetry, we only consider one quarter of the complete domain. In each
load step, we apply a displacement increment of 1.75 x 1073, In the analysis, we employ a uniform
fine mesh with 200 x 300 four-node quadrilateral elements, in which the maximum number of
elements in the horizontal and vertical directions are 200 and 300, respectively.

Figure 21a plots the evolution of the plastic strains and shear band formation for different
load levels. We computed these results with the MSsFEM with residual-driven correction on a
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Figure 21: (a) Shear band formation through localized plastic strain, and (b) local corrector regions based on automatic
residual-based adaptivity (marked in red).
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Figure 22: Accuracy and computational efficiency with different coarse-scale meshes for the 2D tension test example.
We note that all MSFEM meshes and the FEM mesh have the same fine-mesh resolution.
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coarse-scale mesh with 40 x 60 linear elements, each of which contains 5 x 5 fine-scale elements.
As expected, we obtain exactly the same results as with the fine-mesh FEM. In both computations,
we stop the Newton iterations as soon as the relative error of the macroscale problem defined in
(69) is less than 1073, We only solve a local corrector problem when the norm of the corresponding
local residual is ||r,|| > 107°. This automatically drives fine-mesh adaptivity, where corrector
basis functions are only evaluated in regions of high residual. The corresponding active local
corrector regions are plotted in Fig. 21b for different load levels. The corrector scheme thus offers
an attractive adaptive strategy for localization problems. We will further investigate this aspect in
the following examples.

Table 1: Number of iterations in each load step: comparison of different coarse-scale meshes and the standard FEM
(all at the same fine-mesh resolution). The numbers in the brackets show the difference to the fine-mesh FEM.

Load step | FEM MSsFEM (different coarse-scale mesh size)
200 x 300 | 100 x 150 ‘ 40 x 60 ‘ 20 x 30 ‘ 10 x 15

1 2 2 3(+1) 3(+1) 3(+1)
2 2 2 2 2 3(+1)
3 2 2 2 3(+1) 3(+1)
4 2 2 2 3(+1) 3(+1)
5 2 2 2 3(+1) 3(+1)
6 2 2 2 3(+1) 3(+1)
7 3 3 3 3 3
8 3 3 3 3 3
9 3 3 3 3 3
10 3 3 3 3 3
11 3 3 3 3 3
12 3 3 3 4(+1) 4(+1)
13 3 3 4(+1) 4(+1) 4(41)
14 3 3 4(+1) 4(+1) 4(+1)
15 4 4 4 4 5(+1)
16 5 5 5 6(+1) 7(+2)
17 5 4(-1) 3(—2) 5 5
18 5 5 3(-2) 5 5
19 5 5 4(-1) 5 5
20 5 5 3(-2) 5 6(+1)

We now focus on assessing the number of iterations of the MSFEM with residual-driven
correction, when a fully nonlinear problem is considered. In particular, we are interested in
whether we need significantly more iterations to obtain the same accuracy level as the fine-mesh
FEM solution. For our MsFEM calculations, we employ the following four coarse-scale meshes:
100 x 150, 40 x 60, 20 x 30, and 10 x 15 elements. Each contains a local fine mesh of 2 x 2, 5 x 5,
10 x 10, and 20 x 20 elements, respectively. Using the same parameters as before, we plot the
load-displacement curves for all meshes in Fig. 22a. We observe that all of the results are practically
indistinguishable from the load-displacement curve obtained with the full-resolution FEM.
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Figure 23: L-shaped specimen with randomly distributed fine-scale defects: (a) Geometry and boundary conditions
and (b) coarse-scale MSFEM mesh. The numbers in (a) refer to the dimensions of the specimen, the numbers in (b)
refer to the number of coarse-scale elements along each side.

Figure 22b and Table 1 report the number of Newton iterations for each load step that is required
for convergence. In the table, the numbers in the brackets show the difference between the MSsFEM
with residual-driven correction and the standard FEM. We observe that the synergistic combination
of Newton and corrector iterations does not lead to a significant increase in the total number of
iterations. In most load steps, we converge with the same number of iterations as (and in some cases
even with a smaller number of iterations than) the standard full-resolution FEM. The maximum
increase is two iterations. We notice that as a general rule, slightly more iterations are required for
larger coarse-scale elements that cover more fine-mesh elements.

5.3. Fracture of an L-shaped specimen with random defects

In the next step, we assess the effectiveness of residual-driven adaptivity and the computational
cost of the MSFEM with residual-driven correction by considering the three-dimensional L-shaped
specimen shown in Fig. 23a. As boundary conditions, we fix all displacements at the base and
apply the vertical displacement Aw at the cantilever edge. Assuming the phase-field fracture model,
we consider a number of randomly distributed fine-scale defects (marked as red circles) that will
influence the propagation of the crack path. Material properties are: Young’s modulus F~ = 1.0,
Poisson’s ratio v = (.3, a critical energy release rate G. = 0.001, and a length-scale parameter
lo = 5. The spherical defects with radius [, are generated by randomly assigning initial values to
the history field H.

We use a coarse-scale discretization with 12, 000 hexahedral elements as illustrated in Fig. 23b.
Each coarse-scale element contains a local fine-scale mesh with 5 x 5 x 5 hexahedral elements.
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Figure 24: Von Mises stress plotted on the center plane of the deformed body at Au = 6.25: (a) the fine-mesh FEM,
and (b) the MSFEM with residual-driven correction. We note that the domain around the diffuse crack where the
phase-field value is below 0.65 is not visualized.

Therefore, the equivalent full fine-scale mesh has 1.5 million elements with 4, 651, 353 degrees of
freedom for the displacement field and 1, 550, 451 degrees of freedom for the phase-field solution.
In each load step, we increase the vertical displacement Awu by an increment of 0.125. We prevent
crack propagation in the area where the displacement load is applied. The staggered iterations in
each load step are stopped when the relative error defined in (69) falls below 1073, In addition, we
restrict the maximum number of staggered iterations per load step to 20.

For the vector-field displacement solution, we use the local corrector solutions as macroscale
basis functions with independent degrees of freedom as given in (68). For the scalar phase-field
solution, we update the multiscale basis functions in each iteration by the corrector solution (see
Remark 2 and [33]). As a result, the macroscale system for the displacements has 56, 364 degrees of
freedom, while the macroscale system has only 14, 091 degrees of freedom. Furthermore, we apply
different tolerance criteria to control residual-based adaptivity. In this example, we solve a local
corrector problem when ||r.|| > 1072 for the phase-field and ||, || > 1072 for the displacements,
where 7. and r,, are the local residual vectors for each case. When the norms of the residuals are

Table 2: Percentage of the domain covered by corrector regions with respect to the total L-shaped domain.

Displacement | For phase-field system [%] | For displacement system [%]
load Istiter. 39iter. 5Miter. | 1%iter. 3Yiter. 5" iter.
Au = 5.75 50.2 36.7 34.9 22.4 22.0 21.2
Au = 6.25 25.0 18.3 18.8 11.7 114 11.1
Au=17.5 21.5 17.0 16.3 9.9 9.2. 9.4
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Figure 25: Corrector regions (marked in purple) for phase-field at three different loading states: (a) Au = 5.75, (b)
Au = 6.25, (c) Au = 17.5.
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Figure 26: Corrector regions (marked in purple) for the displacements at three different loading states: (a) Au = 5.75,
(b) Au = 6.25, (c) Au = 7.5.

below these criteria, we skip the corresponding corrector problem. Figure 24 plots the von Mises
stress obtained with the fine-mesh FEM and the MsFEM with residual-driven correction. We see
that the stress field and the fracture pattern are exactly the same. In particular, we can observe
that the effect of the fine-scale spherical defects that results in a slightly bent crack path are fully
captured in the MsFEM solution.

We first focus on the effectiveness of residual-driven adaptivity in the corrector scheme. Table 2
reports the percentage of the total L-shaped domain that requires local correction for different
loading states and for the phase-field and displacement solutions. Figures 25 and 26 plot the local
corrector regions active in the last iteration of different load steps during crack propagation for both
the phase-field and displacement solutions. It is obvious that the residual-based adaptive strategy
automatically reduces the number of corrector regions, effectively limiting the computational cost
of the corrector scheme.
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Beyond this basic aspect, the adaptive corrector scheme provides additional advantages. When
the crack is about to propagate, both solution fields still change significantly in areas further away
from the crack. When the crack is propagating, significant changes happen predominantly near the
localization regions. We observe in Figs. 25 and 26 that the corrector scheme is able to automatically
adapt to this phenomenon, detecting a larger corrector region at the onset of crack propagation and
restricting the corrector region to the vicinity of the crack later on. We note that this differs from
phase-field driven adaptivity, where refinement is a-priori concentrated only in the localization
region (see e.g. [57-59]). In many adaptive multifield discretization methods, the same adaptivity
pattern must be applied to all fields and tailoring adaptivity to the specific features of each field is
not possible. Adaptive residual-driven correction allows to adjust the residuals r. and r,, so that
adaptivity can be controlled for each field independently, although both fields are still represented
on the same mesh. This property constitutes a significant strength for the efficient discretization of
multifield diffuse interface methods in general (see for instance [60, 61]).

We now focus on the computational cost advantage of the MsFEM with residual-driven cor-
rection with respect to the pristine MSFEM and the full-resolution FEM. To this end, we compare
the memory usage and computational time of the three methods for the following three different
mesh densities. For the MsFEM schemes, we consider 10 x 10 x 2, 20 x 20 x 5, and 40 x 40 x 10
coarse-scale elements, with respect to the element numbering given in Fig. 23b, each of which
contains 5 X 5 x 5 fine-scale elements. For standard FEM, this results in full-resolution meshes with
50 x 50 x 10, 100 x 100 x 25, and 200 x 200 x 50 linear hexahedral elements. The total number
of degrees of freedom for the fine-mesh FEM corresponds to the numbers given at the beginning of
this subsection. All methods were implemented within the same in-house finite element code that
was run on the same machine'! provided by the Minnesota Supercomputing Institute (MSI) with
a shared memory parallelization based on OpenMP [62]. For the solution of the local and global
linear systems in the MSFEM, we use the direct solver Pardiso provided by Intel’s MKL Library?.
For the solution of the global linear system in the full-resolution FEM, we employ either the same
direct solver or an iterative CG solver with ILU preconditioning provided by the Trilinos library?.

Figure 27a plots the memory usage for different MSFEM variants and the full-resolution FEM.
We observe that all MSFEM variants require only half the memory than the standard FEM with
the iterative CG solver. Our numerical experiments with the full-resolution FEM confirm that
for problems with more than a few million degrees of freedom, using a direct solver leads to
prohibitively large memory requirements. We note that for the coarsest discretization, the maximum
memory required depends on the size of the local problem. For small discretizations, the pristine
MSsFEM therefore requires less memory than the MsFEM with residual-driven correction, since it
considers the fine mesh in one coarse-scale element only, while the corrector scheme considers the
fine mesh in a patch of several coarse-scale elements. For the larger discretization, the memory
required mainly depends on storing multiscale basis functions and element matrices and assembling
the global matrix, such that all MSFEM variants require the same memory.

The computing time of all methods is illustrated in Fig. 27b. We notice that for the coarsest

12 processes (Intel Haswell E5-2680v3) with 512 RAM on MST’s cluster Mesabi; https://www.msi.umn.edu/
%Intel Math Kernel Library (MKL); https:/software.intel.com/en-us/mkI
3The Trilinos project, developed at Sandia National Labs; https:/trilinos.org/

37


https://www.msi.umn.edu/
https://software.intel.com/en-us/mkl
https://trilinos.org/

(=)
=)

S
~

)
E
) 6
= 10
Z10°
St
]
3
5
g;n O 10
4 104 [}
o £
S =4
= 10
0
g .
3 o REAP
§ 10 —+—FEM + direct solver | 3 . —+~FEM + direct solver
g -v-FEM + iterative solver I 10 -v-FEM + iterative solver
o l —+MSsFEM + correction + adapt. —+—MSsFEM + correction + adapt.
=S —>-MsFEM + correction + no adapt.| =-MsFEM + correction + no adapt.
) -4~ Pristine MSFEM ) -4 Pristine MSFEM
10 o 5 ‘ ‘ 6 ‘ 7 10 o 5 ‘ L 6 ‘ ‘ 7
10 10 10 10 10 10
#degrees of freedom #degrees of freedom
(a) Memory usage. (b) Computing time.

Figure 27: Computational cost of the MsFEM with residual correction as compared to the pristine MsFEM and the
full-resolution standard FEM.

discretization, the computing time of all methods remains within the same order while for the larger
discretizations the differences become significant. We observe that the MsFEM with the corrector
scheme enables significant savings in computing time. For the largest discretization, the MsFEM
with residual-driven adaptive correction is approximately 15 times faster than the full-resolution
FEM with the iterative solver and 50 times faster the full-resolution FEM with the direct solver.
Focusing on the MSFEM with residual correction, we observe that the residual-based adaptivity in
the corrector scheme decreases the overall computing time by almost a factor of three.

A core observation is that the MSFEM with residual correction is faster than the pristine MSFEM
when an iterative computational solution procedure such as the staggered algorithm or a Newton-
Raphson method needs to be applied. In the pristine MsFEM, all multiscale basis functions in
each iteration have to be recomputed, where each node has three degrees of freedom and therefore
requires the solution of three local problems. In the algorithmic framework for residual-driven
correction that we introduce in this work, we do not recompute multiscale basis functions, but use
the corrector solutions as basis functions during the iteration. This is significantly less expensive, as
each node requires the computation of only one local problem. We can therefore conclude that for
nonlinear problems, the MSFEM with residual-driven correction yields the best possible accuracy
and is computationally more efficient than the pristine MsFEM.

5.4. Imaging-based failure analysis of a metal foam structure

The last example considers the failure analysis of a metal foam whose geometry is given by
microCT scans, demonstrating the applicability of our approach for a more complex engineering
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Figure 28: MicroCT-based foam structure: (a) geometry given by imaging data; (b) the full-resolution voxel mesh.

(b)

Figure 29: MsFEM discretization: (a) coarse-scale mesh and (b) fine-scale voxel meshes.

problem. The microCT-based foam structure that was extracted from the original imaging data
via variational segmentation (see [63] for further details) is illustrated in Fig. 28a. The embedding
cube consists of 256 volumetric pixels (voxels) in each direction, where the size of each voxel in
each spatial direction is A, = A, = A, = 75um. The material properties are: Young’s modulus
E = 100 GPa, Poisson’s ratio v = 0.3, and the yield stress o, = 1 GPa. Considering the color
value in each voxel, we can determine whether it belongs to the foam or is void. Deleting all voxels
that are outside the physical domain and identifying each voxel as one hexahedral element, we can
construct the voxel (fine) mesh shown in Fig. 28b [64-67]. It consists of 2,077, 685 eight-node
hexahedral elements with 2, 384, 192 nodes (or 7, 152, 576 degrees of freedom for the displacement
field). We fix all components of the displacement at the bottom of the structure while applying the
vertical displacement Aw at the top, leaving the other two components unconstrained. In each load
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Figure 30: Results obtained with the full-resolution FEM at a top displacement of Au = 0.8: (a) magnitude of the
displacement field and (b) plastic strains (visualized only for plastic strains larger than 0.1).
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Figure 31: Results obtained with the MSFEM and residual-driven correction at a top displacement of Au = 0.8: (a)
magnitude of the displacement field and (b) plastic strains (visualized only for plastic strains larger than 0.1).
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Figure 32: Load-displacement behavior of the foam structure under uniform top displacement.

step, we apply a vertical displacement increment of 20 pm.

For MsFEM analysis with residual-driven correction, we employ a coarse-scale mesh with
8, 342 hexahedral elements and 14, 946 nodes (see Fig. 29a), corresponding to 68, 126 degrees
of freedom for the displacement field. We can see that the size of the macroscale problem is
significantly smaller than the size of the full-resolution voxel mesh. Each coarse-scale element
contains a fine mesh with 8 x 8 x 8 hexahedral elements. Since we eliminate all void voxels, the
number of fine-scale elements depends on the location of the coarse-scale elements. Figure 29b
shows the non-void voxel domain embedded in the coarse-scale mesh.

We use the same computer system described in Section 5.3. For the full-resolution voxel
FEM, we employ the parallelized CG solver with ILU preconditioning to solve the global system.
For the MsFEM with residual-driven correction, we employ the direct solver for both local and
global systems. Figures 30 and 31 plot the displacement solution and the plastic strains for the
displacement load Au = 0.8 obtained with voxel FEM and the MSFEM. We observe that both
displacement and strain solutions are indistinguishable between the two methods. This is confirmed
by Fig. 32 that plots the load-displacement curves for both methods. Figure 33 illustrates the
importance of residual-based fine-mesh adaptivity for the efficiency of the corrector scheme. In
this example, correction is only initiated if the norm of the local residual in each corrector region
satisfies |7, || > 107°. One can see in Fig. 33 that the corrector scheme automatically focuses on
localization areas to improve the accuracy in these regions.

Considering the associated computational cost, the voxel FEM requires 308.3 hours with a
maximum memory usage of 45.5 GB of memory, while the MSFEM requires only 19.5 hours
and 32.4 GB of memory. We conclude that the MSFEM with adaptive residual-driven correction
yields the same fine-scale fidelity as the full-resolution voxel FEM, but at a significantly reduced
computational cost. As in the previous example, the MSFEM is about fifteen times faster than the
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Figure 33: Adaptive corrector regions (marked in red) at the last load step (top displacement Au = 0.8).

voxel FEM with the iterative solver.

6. Summary and conclusions

In this article, we discussed a series of algorithmic and variational extensions that enable efficient
residual-driven correction for multifield and nonlinear localization problems. The core contributions
of this article are threefold: First, we showed that the synergistic combination of n;, staggered or
Newton iterations and n.,, corrector iterations successfully reduces the algorithmic complexity
of staggered multifield or Newton-Raphson procedures from O(n;, - Neor) to O(max(nigr, Neor ) )-
Second, we introduced the concept of corrector basis functions and associated degrees of freedom in
the macroscale Galerkin projection. This idea eliminates the repeated recomputation of multiscale
basis functions during staggered or Newton iterations, while preserving the ability to achieve full
fine-mesh accuracy. Third, we discussed the opportunistic use of the local residual as an error
indicator that is available as part of the corrector scheme. This enables fully automatic corrector
adaptivity that further decreases the computational cost of residual-driven correction.

We illustrated through examples from phase-field fracture and plasticity that the MsFEM
with residual-driven adaptive correction not only achieves full fine-scale accuracy, but also is
computationally more efficient than the pristine MSFEM. The method is general and can be applied
to any other continuum localization model such as gradient damage or strain softening laws. Our
results therefore open a new pathway for the effective application of the multiscale finite element
method to a wide range of multiscale problems that combine interacting mechanisms across multiple
scales, missing scale separation, nonlinearity and localization. Our numerical experiments also
confirmed that for this class of problems, standard oversampling does not guarantee accurate results
in the pristine MsFEM.
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A competitive implementation of the multiscale finite element method on modern heterogeneous
architectures is based on a hybrid concept [68, 69]. The macroscale system is solved with an efficient
preconditioned iterative solver across distributed memory compute nodes, while shared memory
parallelism is employed locally on each multicore node to compute multiscale and corrector basis
functions for clusters of macroscale elements. We are confident that the computational advantages
demonstrated in this article will transfer to this setting, which will be a target of future work.
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Appendix A.

In the context of the Newton-Raphson method, we would like to find the solution at load step
n + 1, where the elastic strain ¢ from the previous load step n is known. At each quadrature point,
we compute the current state variables at the Newton-Raphson iteration k + 1 with Ae from the
previous iteration k:

1. Evaluate elastic trial state

gel trial L= SZZ + Ag

n+1,k+

trial o e trial
pn—i—l k+1 — K €y n+1,k+1

trial o el trial
Snitit1 = 2G €q 04 k1

tmal trial tmal
Qnit1 k1 = \/1 O Syl ki1 " Snalkt1
2. Check plastic admissibility

trial
If g5 k1 — 0y <O

ol z
Then set (-)ny1h41 = (-)n4isy1 and D = D€
3. If the above is not the case, solve the equation

O(Ay) = i — 3G Ay —0, =0
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for A~ and update the state variables

trial

Pn+1k+1 = Ppat ket
_ (1 A1C ) ia
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In the above equations, ¢, &?il, and ggl represent the strain tensor, the volumetric strain tensor, and
the deviatoric strain tensor, respectively. & and G are the bulk and shear modulus. p, s, g, o, are
the volumetric stress tensor, the deviatoric stress tensor, the von Mises equivalent stress, and the
yield stress, respectively. v is the plastic multiplier and / is the hardening modulus, which we
assume to be zero in the scope of this paper. I is the second-order identity tensor and I is the
deviatoric projection tensor. IV is the unit plastic flow tensor. D®P is the infinitesimal elastoplastic
consistent tangent operator and D¢ is the infinitesimal elasticity tensor. We refer the interested
reader to [39] for more details.
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