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Abstract

We describe a local iterative corrector scheme that significantly improves the accuracy of the
multiscale finite element method (MsFEM). Our technique is based on the definition of a local
corrector problem for each multiscale basis function that is driven by the residual of the previous
multiscale solution. Each corrector problem results in a local corrector solution that improves the
accuracy of the corresponding multiscale basis function at element interfaces. We cast the strategy
of residual-driven correction in an iterative scheme that is straightforward to implement and, due to
the locality of corrector problems, well-suited for parallel computing. We show that the iterative
scheme converges to the best possible fine-mesh solution. Finally, we illustrate the effectiveness of
our approach with multiscale benchmarks characterized by missing scale separation, including the
microCT-based stress analysis of a vertebra with trabecular microstructure.
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1. Introduction

Heterogeneous materials such as bone [1–3], composites [4, 5] or soils [6–8] involve interaction
between multiple scales. When modeling their behavior, one has to incorporate rapidly varying
material properties on the fine scales, since they can significantly affect the macro-scale response.
Specific assumptions such as scale separation or periodicity can be used to simplify modeling
and reduce computational cost, which has been the basis for developing a number of successful
homogenization methods [5, 9–21], see also the recent reviews in [22, 23]. When these assumptions
do not hold, for example for random microstructures with unclear scale separation or localization in
plasticity, fracture and damage, one possibility to obtain accurate results is to fully resolve all scales
[24, 25]. The computational cost, however, associated with the full resolution of contemporary
multiscale problems involving heterogeneous materials, e.g. in biomedical applications, easily
exceeds current computing resources, even with the rapid development in supercomputing [18,
26, 27]. Therefore, there is a demand for alternative multi-resolution methods not based on scale
separation or periodicity that are significantly less expensive and achieve comparable accuracy with
respect to full resolution.

One attractive class of methods in this direction is based on appropriately enriching the coarse-
scale solution in the variational formulation [28–34]. One example of this type is the variational
multiscale method [29, 30], which splits the variational form into a coarse-scale and a fine-scale
problem. The core idea is to use the fine-scale problem to find an (inexpensive) approximation of
the fine-scale solution that can then be inserted into the coarse-scale problem to represent the impact
of fine-scale features on the macro-scale behavior. To reduce computational cost, the fine-scale
solution is typically assumed to vanish on the boundaries of coarse-scale elements. This assumption,
however, becomes a significant obstacle in situations that involve localized features that are crossing
element interfaces, such as cracks or plastic bands [24, 35–37].

Another example of this type is the multiscale finite element method (MsFEM), originally
introduced by HOU and WU [28] and further elaborated by EFENDIEV, HOU and collaborators
[26, 38–41]. The basic idea of MsFEM is to incorporate the fine-scale information into the
coarse-scale basis functions, creating a so-called multiscale basis. The solution of the multiscale
system requires significantly less memory compared to a fully resolved discretization, while the
computation of multiscale basis functions can be carried out efficiently in parallel. HOU et al.
[28, 42] showed, however, that the accuracy of the approach can be adversely affected by the
local boundary conditions that are imposed on the multiscale basis functions at the interfaces of
coarse-scale elements. When multiscale basis functions are constrained at element interfaces to
the standard basis functions of the conforming coarse-scale mesh, MsFEM can be interpreted as
a special case of VMS, yielding similar results and suffering from the same restrictions [18]. To
counteract this problem, several techniques have been proposed to improve the fine-scale accuracy
at element interfaces [28, 38, 39, 43–50], many based on the idea of oversampling. The MsFEM
has also been influenced by ideas from model order reduction [40, 51–53].

In this paper, we focus on MsFEM and attempt to devise a technique that enables the best
possible fine-mesh accuracy, while preserving the core computational advantages of MsFEM. The
core idea of our approach is based on the definition of a local corrector problem for each multiscale
basis function that mitigates the error introduced by local boundary conditions. Each corrector
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Figure 1: Discretization of the domain Ω.

problem is driven by the local residual of the previous multiscale solution [38, 40, 41]. As the
associated corrector regions, we identify the local support of each multiscale basis function, which
typically extend over a few coarse-scale elements. It can be expected that the corrected multiscale
basis significantly improves the accuracy at coarse-scale element interfaces. When cast into an
iterative scheme, the residual-driven correction of multiscale basis functions combines a number of
attractive properties. First, the MsFEM solution converges to the same solution as a fully resolved
discretization irrespective of the ratio between fine and coarse scales, on any small region of interest.
Second, the residual of the multiscale solution is the optimal driver for correction that achieves
the full accuracy of the fine-mesh resolution with a few iterations. Third, the scheme is simple to
implement and can be efficiently parallelized due to the locality of the corrector problems.

Our paper is organized as follows: In Section 2, we briefly review the basic concepts and
implementation of standard MsFEM. In Section 3, we introduce our corrector approach for a scalar
Laplace equation and discuss convergence and parallel implementation aspects. In Section 4, we
extend our corrector scheme to vector equations, focusing on elasticity, and introduce the concept
of additional corrector degrees of freedom. In Section 5, we present a series of numerical examples
in two and three dimensions that illustrate accuracy and computational efficiency of our approach.
Finally, we draw conclusions in Section 6.

2. The multiscale finite element method

We begin with a brief review of the standard multiscale finite element method (MsFEM). To
this end, we consider an elliptic equation with a highly oscillatory coefficient a(x),

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω (1)
u(x)|∂Ω = g(x) (2)

The domain Ω is discretized by coarse elements, Ω = ∪iΩi, with mesh sizeH , and by an underlying
fine mesh of size h (see Fig. 1).
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2.1. Multiscale basis functions
In MsFEM, we consider the following decomposition of the solution u [38, 39],

u(x) = ua(x) + ub(x) (3)

The first component, ua, is a(x)-harmonic and satisfies the homogeneous differential equation on
the element domain Ωi,

−∇ · (a(x)∇ua(x)) = 0, x ∈ Ωi (4)
ua(x)|∂Ωi

= u(x)|∂Ωi
(5)

with Dirichlet boundary conditions that correspond to the exact (unknown) solution. The second
component, ub, represents the solution of a local bubble problem on each element domain,

−∇ · (a(x)∇ub(x)) = f(x), x ∈ Ωi (6)
ub(x)|∂Ωi

= 0 (7)

with homogeneous boundary conditions. It is straightforward to show that ua and ub are a(x)-
orthogonal,

∫
Ωi
∇ub · a(x)∇ua dΩ = 0 [38]. Based on this property, the multiscale basis functions

φi ∈ H1
0 (Ω) are defined as a(x)-harmonic functions on the element domain Ωi,

−∇ · (a(x)∇φi(x)) = 0, x ∈ Ωi (8)

With appropriate local boundary conditions, equation (8) can be solved analytically or numerically.
It is shown in [38] that multiscale basis functions achieve the same performance in terms of accuracy
and convergence as a set of standard basis functions defined on the coarse-scale mesh, given they
are the same at element interfaces and only O(H) accuracy in the energy norm is desired. With the
multiscale basis φi, i = 1, ..., n, MsFEM searches the numerical solution uHms ∈ V H , such that

a
(
uHms(x), v(x)

)
= 〈f(x), v(x)〉 , for all v(x) ∈ V H (9)

V H = span {φ1(x), φ2(x), ..., φn(x)} ⊂ H1
0 (Ω) (10)

where

a (u(x), v(x)) =

∫
Ω

∇u(x) · a(x)∇v(x) dΩ, 〈f(x), v(x)〉 =

∫
Ω

f(x)v(x) dΩ (11)

We add the local bubble part ub to the multiscale solution uHms to obtain the complete multiscale
finite element solution, ū, as

ū(x) = uHms(x) + ub(x) (12)

When using the finite element method to find the multiscale basis and the bubble part, the solution
ū in (12) is represented by the underlying fine mesh. If V h and uh are denoted as the space of
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piecewise basis functions on the fine mesh and the Galerkin numerical solution using this space,
the accuracy of the solution ū is bounded by the fine-mesh solution uh [38, 39],

‖ ū(x)− u(x) ‖E ≥ ‖ uh(x)− u(x) ‖E (13)

where the energy norm is defined as

‖ u(x) ‖2
E = a(u(x), u(x)) (14)

Therefore, the fine mesh is required to resolve all fine-scale features of the multiscale problem,
represented here by the variation of the highly oscillatory coefficient a(x). We emphasize that in
this paper we do not distinguish between the exact solution u and the fine-mesh solution uh, since
the latter is the best possible accuracy we can achieve with a full resolution disretization due to
(13). To keep the paper self-contained, we briefly outline relevant aspects of finding fine-scale finite
element approximations of the local problems (6) and (8) in Appendix A.

2.2. Boundary conditions for the multiscale basis
To determine multiscale basis functions, the local boundary value problems (8) must be closed

by appropriate local boundary conditions. Since we do not know the exact solution u in advance,
we have to impose boundary conditions based on assumptions. This step plays a crucial role
for the performance of MsFEM, since appropriate boundary conditions can alleviate the error at
element interfaces and improve the accuracy of MsFEM [28]. There are different techniques to
find appropriate local boundary conditions for the multiscale basis functions, which we briefly
summarize in the following.

The simplest option is to use standard polynomial basis functions defined on the coarse mesh as
the boundary conditions for the multiscale basis functions on element interfaces [26],

φi(x) = Ni(x), x on ∂Ωi (15)

where Ni denotes a polynomial function associated with the same coefficient i on the coarse mesh
that can be part of a Lagrange, Bézier or hierarchical basis. This approach, however, neglects
fine-scale heterogeneous variations of the true multiscale solution on element interfaces. This can
lead to large errors, in particular caused by resonance effects that typically occur when the element
size H of the coarse mesh and the characteristic length scale of the fine-scale variation are of the
same order [26, 28].

An alternative option that counteracts resonance effects is the oversampling method, originally
proposed in [28]. The error caused by resonance concentrates at element interfaces and decays
quickly as we move away from the interfaces. Based on this observation, the oversampling method
uses the interior information of a larger domain to construct multiscale basis functions. Hou
and collaborators [28] showed that this approach can significantly reduce resonance errors. A
disadvantage of oversampling, however, is that the multiscale basis functions are not conforming
across element interfaces, which may want further considerations [46, 54].

To improve the accuracy of the local boundary conditions of the multiscale basis, global
information of the solution can be used in such a way that the multiscale basis from the oversampling
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method can be iteratively modified to obtain a conforming basis [43, 44]. Although the iteration
converges, the multiscale solution does not approach the fine-mesh solution [39]. Multigrid
algorithms have been applied to improve the MsFEM solution [39, 45], where the smoothing step
is performed with the full resolution system for a certain number of iterations. The information
can then be used to update the multiscale basis. The multiscale solution converges to the fine-mesh
solution, but at the cost that a full fine system is assembled and iteratively processed.

Remark 1: It is instructive to notice that MsFEM can be interpreted as a special case of the
variational multiscale method (VMS) [29]. To illustrate this relation, we decompose the solution
and weighting functions, y and w, in coarse- and fine-scale parts,

y = y1 + y2 (16)
w = w1 + w2 (17)

where y1 ∈ V H ⊂ H1(Ω), y2 ∈ V h ⊂ H1(Ω), w1 ∈ V H ⊂ H1
0 (Ω), and w2 ∈ V h ⊂ H1

0 (Ω).
Substituting (16) and (17) into the Galerkin projection, see for instance (9), we have

a(w1 + w2, y1 + y2) =
〈
f, w1 + w2

〉
(18)

We can find y1 and y2 by solving the following coupled system,

a(w1, y1) + a(w1, y2) =
〈
w1, f

〉
(19)

a(w2, y1) + a(w2, y2) =
〈
w2, f

〉
(20)

Due to the coupling terms in (19) and (20), we need to solve two equations together or resort to a
staggered approach. However, if we choose the function spaces V h and V H to be a(x)-orthogonal,
we automatically eliminate the coupling terms in (19) and (20). Therefore, the two systems become
independent of each other,

a(w1, y1) =
〈
f, w1

〉
(21)

a(w2, y2) =
〈
f, w2

〉
(22)

and can therefore be solved independently. Based on the a(x)-orthogonal property of its multiscale
basis functions, the MsFEM can therefore be interpreted as a special VMS procedure that leverages
a(x)-orthogonality to independently solve the coarse-scale and fine-scale variational problems
in the sense of (21) and (22). In MsFEM, we apply local boundary conditions according to (15),
which in the VMS framework translates to

y2 = 0 on ∂Ωi (23)

at coarse-scale element interfaces. We note that the same constraint (23) is also imposed in many
VMS methods to enable the local solution of (22).
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Figure 2: Local corrector region that corresponds to the support Ω̃i of the multiscale basis function φi.

3. An iterative local corrector scheme

In the folllowing, we establish an iterative local corrector scheme for MsFEM that removes the
error in the multiscale basis functions due to the assumptions involved in choosing local boundary
conditions, restoring the full fine-mesh accuracy at coarse-scale element interfaces. In this section,
we focus on scalar multiscale problems first, using (1) and (2) as a model problem, before extending
the corrector scheme to vector problems in the next section. In the scope of this paper, we illustrate
and derive the corrector scheme for quadrilateral and hexahedral elements. We note, however, that
it can be directly generalized for other types of elements, such as triangles and tetrahedra.

3.1. A series of residual-driven local corrector problems
Let us consider the support Ω̃i of the multiscale basis function φi with node i and boundary

∂Ω̃i, illustrated as the gray-shaded region in Fig. 2. We write a local variant of the elliptic model
problem (1) and (2) with the multiscale solution ū defined in (12) as

−∇ · (a(x)∇ū(x)) = f̄(x), x ∈ Ω̃ (24)

ū(x) = ū(x)|∂Ω̃ , x ∈ ∂Ω̃ (25)

Note that the right-hand side of (24) does not represent the exact source term f , since the multiscale
approximation of the true solution at the local boundaries in (25) in general causes an error. We
now assume that we know the exact solution, so that we can write the local variant of (1) and (2) on
the support Ω̃i of the multiscale basis function as

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω̃i (26)

u(x) = u(x)|∂Ω̃ , x ∈ ∂Ω̃i (27)

We now define uc as the local corrector for ū, such that

−∇ · (a(x)∇ (ū+ uc)) = −∇ · (a(x)∇u) = f(x), x ∈ Ω̃i (28)

where f is the source term that corresponds to the exact solution u of the problem. Since the
multiscale basis function we would like to correct must be zero on the boundary of its support
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region Ω̃, the difference between the multiscale solution ū and the exact solution u at the local
boundary cannot be corrected by that basis function. We therefore assume that

|ū(x)− u(x)| ≈ 0, x ∈ ∂Ω̃i (29)

such that the corrector solution uc is zero at the boundary ∂Ω̃i. Subtracting (24) from (28) and
using (29), we obtain the following local problem that determines the corrector,

−∇ · (a(x)∇uc(x)) = r(x), x ∈ Ω̃i (30)

uc(x) = 0, x ∈ ∂Ω̃i (31)

We observe that the corrector solution is directly driven by the local residual defined as

r(x) = f(x)− f̄(x) (32)

The corrector solution of each local corrector problem can be found via a finite element
discretization in a straightforward way. To this end, we cast (30) and (31) into the following
variational form∫

Ω̃i

∇vh · a(x)∇ui,hc dΩ =

∫
Ω̃i

vhf dΩ−
∫

Ω̃i

∇vh · a(x)∇ūh dΩ (33)

where vh and ui,hc are finite element approximations of the test functions and the corrector solution
for the coarse-scale node i. They are represented on the corresponding local corrector region Ω̃i

by the fine mesh available in each coarse-scale element in the sense of Fig. 1. The finite element
approximation of the complete multiscale solution ūh to be corrected is known from the previous
MsFEM computation. We refer readers interested in more details to Appendix A.

Figure 3: Iterative corrector scheme

3.2. Iterative algorithm
Equations (30), (31) and (32) and their finite element treatment can now be used to set up a

straightforward corrector scheme. We first define a local corrector region for each multiscale basis
function φi in the domain that we want to correct. In this work, we choose the local support Ω̃i of
each basis function. We then compute a series of local corrector problems to iteratively improve
the accuracy of multiscale basis functions until the MsFEM solution ū matches the full fine-mesh
solution to the desired level of accuracy.

The resulting iterative corrector algorithm can be summarized as follows (see Fig. 3 for a
graphical illustration):
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Figure 4: Illustrations of different corrector regions in (a) two and (b) three dimensions.

1. Standard MsFEM
(a) Compute the initial basis functions with some assumed local boundary conditions

2. Corrector scheme
(a) Obtain a solution on the coarse mesh with the current multiscale basis
(b) Compute the residual r in local corrector regions
(c) Solve local corrector problems where ‖r‖ > tolerance (user-defined)
(d) Update the current multiscale basis functions and return to step (a)

Depending on the location of a corrector node, we can differentiate between different corrector
regions, which are illustrated in Fig. 4a for a two-dimensional mesh. In addition to regular corrector
regions in the interior of the mesh, we also obtain regions on the edge with two elements and corner
regions with only one element. We note that edge and corner regions require an adaptation of the
corrector scheme to incorporate given boundary data, which we discuss below. The notion of a
corrector region directly transfers to three dimensions. A typical corrector region from the interior
of a 3D hexahedral mesh is shown in Fig. 4b, where the faces to be corrected are highlighted.

3.3. Updating multiscale basis functions
It is important to note that the residual (32) is nonzero only on element interfaces Γc (see Fig. 2).

Within the element domains, the residual must be zero, since f̄ is computed from ū, which includes
the bubble solution ub. This means that

−∇ · (a(x)∇uc(x)) = 0, x ∈ Ωi (34)

In addition, the corrector solution uc is also a(x)-orthogonal with respect to the bubble solution ub,

aΩi
(uc(x), ub(x)) =

∫
Ωi

∇uc(x) · a(x)∇ub(x) dΩ = 0, x ∈ Ωi (35)

Due to (35), the current multiscale basis function φi can be updated by simply adding uc to its
current value. The new basis function will be used as part of the updated multiscale basis in the
next iteration.
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Figure 5: Corrector problem involving the global Dirichlet boundary.

The updating of basis functions is carried out in the following way. Let φi, ci, and uc,i denote
the multiscale basis function at node i, its corresponding solution coefficient in the current MsFEM
solution, and its corrector solution, respectively. The new multiscale basis function at node i, φnew

i ,
should satisfy

φnew
i ci = φici + uc,i (36)

Therefore, the new basis function can be computed as

φnew
i = φi +

uc,i
ci

(37)

It is straightforward to see that (37) is not well-defined in the case of zero-valued coefficients in
the multiscale solution. To avoid this issue, we propose to blend the coefficient into the new basis
function, using the new contribution of node i as the new basis function. The new basis function is
thus computed as

φnew
i = φici + uc,i (38)

Since we need to update the solution ū when we construct subsequent corrector problems for other
basis functions, we immediately set ci to one after the update (38).

Remark 2: The initial set of multiscale basis functions that are computed by imposing the standard
coarse-scale basis functions as boundary conditions satisfy a partition of unity. After updating
by corrector solutions, the new multiscale basis does in general not satisfy a partition of unity.
We can, however, restore this property for the multiscale basis, if needed. We emphasize that for
convergence, it is only important that the basis of the fine mesh satisfies a partition of unity.

3.4. Local imposition of global Dirichlet data
Dirichlet boundary data on the coarse mesh can only be imposed via coarse-scale nodes.

The solution at the boundary segments between fixed coarse-scale nodal values is obtained by
interpolating with multiscale basis functions determined with local boundary conditions in (8).
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Therefore, the multiscale solution ū will only converge to the fine-mesh solution if we impose the
correct global Dirichlet boundary data in corrector problems that involve the Dirichlet boundary of
the global domain.

To illustrate this, we consider the corrector region shown in Fig. 5, where Γ̃D = Γe,1 ∪ Γe,2 is
a part of the global boundary ∂Ω with Dirichlet boundary conditions. In the corrector problem
corresponding to node i, we impose the following boundary condition

uc(x) = g(x)− ū(x), x ∈ Γ̃D (39)

We call (39) global-local condition, since global boundary information is used for imposing
constraints in local corrector problems. When we compute the multiscale solution using the new
multiscale basis, the coefficients of all multiscale basis functions affected by the global-local
condition (39) are set to one. Due to (38), the value of each boundary basis functions at its node is
equal to the value of the global Dirichlet boundary data at that specific point.

Remark 3: In the case of a homogeneous Dirichlet data, that is g = 0, we still set the coefficients of
the new basis functions affected by the global-local condition to one. This naturally accommodates
situations where a multiscale basis function has support on boundary sections with both zero and
non-zero Dirichlet data.

Remark 4: Since our corrector scheme based on (30) is driven by the residual, it automatically
improves the solution at the Neumann boundary. We therefore do not need any special treatment
for global Neumann boundary data.

3.5. Convergence aspects
In this subsection, we show that the residual is the optimal choice for driving corrector solutions

and that the sequence of solutions of the iterative scheme converges to the fine-mesh solution. In
what follows, we always consider only one local corrector region Ω̃i that corresponds to a single
multiscale basis function at an arbitrary coarse-scale node i. This point of view does not limit the
generality of our analysis, as we could apply the same considerations consecutively to all multiscale
basis functions and associated corrector regions.

3.5.1. Optimality of residual-driven correction
Let us assume that we are in the q-th iteration of the corrector scheme, updating the current

multiscale basis function φi to the new multiscale basis function φnewi , using the corrector solution
uc,i on the corrector region Ω̃i. Let V H

q+1 = V H
q − span{φi} + span{φnewi } be the multiscale

approximation space at the (q + 1)-th iteration, ūq+1 be the corresponding solution of the Galerkin
projection on V H

q+1, and (again) uh be the fine-mesh solution. According to Céa’s lemma, we know

‖uh − ūq+1‖2
E = inf

v∈V H
q+1

‖uh − v‖2
E (40)

with the energy norm defined in (14). Following the definition of φnewi in (38), one possible choice
for v is v = ūq+uc,i. Let us further assume for the moment that the corrector solution uc,i ∈ H1(Ω̃i)
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can be any function in Ω̃i. Substituting our choice of v into (40), we find

‖uh − ūq+1‖2
E ≤ ‖uh − ūq − uc,i‖2

E = ‖uh − ūq‖2
E −

(
2aΩ̃i

(uh − ūq, uc,i)− aΩ̃i
(uc,i, uc,i)

)
(41)

in which aΩ̃i
(u, v) =

∫
Ω̃i
∇u · a(x)∇v dΩ. The optimal choice for uc,i is the function that reduces

the error at the q-th iteration the most. According to the final expression in (41), this is the function
that maximizes the following functional

I(uc,i) =
(

2aΩ̃i
(uh − ūq, uc,i)− aΩ̃i

(uc,i, uc,i)
)

(42)

We note that we still impose the constraint uc,i|∂Ω̃i
= 0. To find the stationary solution, we set the

functional derivative of (42) to zero, leading to the following variational form,

aΩ̃i
(uc,i, δuc,i) = aΩ̃i

(uh − ūq, δuc,i), ∀ δuc,i ∈ H1
0 (Ω̃i) (43)

where δuc,i is the variation of uc,i. Since the fine-mesh solution uh satisfies

aΩ̃i
(uh, δuc,i) = 〈f, δuc,i〉Ω̃i

, ∀ δuc,i ∈ H1
0 (Ω̃i) (44)

we can rewrite the right-hand side of (43) in the following way

r = 〈f, δuc,i〉Ω̃i
− aΩ̃i

(ūq, δuc,i) (45)

which can be easily identified as the residual in the corrector region Ω̃i. Therefore, the solution of
the residual-driven corrector problem that we defined in (30) to (32) is indeed the maximizer of
(42) under the given constraint uc,i|∂Ω̃i

= 0, thus being the optimal corrector solution. A similar
analysis leading to this optimal choice was made for generalized MsFEM, where additional reduced
order basis functions can be found, driven by the residual [41, 55].

Remark 5: Due to the constraint uc,i|∂Ω̃i
= 0, the corrector solution uc,i obtained from (43) will

not be able to recover the fine-mesh solution in one step. In turn, if we knew the fine-mesh solution
on the boundary of the corrector region Ω̃i, the iterative scheme would converge to the fine-mesh
solution with a single corrector iteration. If we take the complete domain of the boundary value
problem as our corrector region, all boundary values are given as data, so that the corrector solution
uc,i obtained from (43) will be able to recover the fine-mesh solution in one single step.

3.5.2. Convergence to the fine-mesh solution
Having obtained uc,i from (43), we can write Céa’s lemma (41) as

‖uh − ūq+1‖2
E ≤ ‖uh − ūq‖2

E − ‖uc,i‖2
E (46)

If we discretize (43) by the fine mesh such that {uc,i, δuc,i} ∈ V h
Ω̃i
⊂ H1

0 (Ω̃i), we can solve for uc,i
as the Galerkin projection of uh− ūq on the space of piecewise basis functions in V h

Ω̃i
. There exists

a function u′c ∈ H1(Ω) in the global domain, which satisfies

uc,i + u′c = uh − ūq (47)
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Combining (43) and (47), we also know that

aΩ̃i
(uc,i, u

′
c) = 0 (48)

due to Galerkin orthogonality. Using (47), (48) and Pythagoras’ theorem, we have

‖uh − ūq‖2
E = ‖uc,i + u′c‖2

E = ‖uc,i‖2
E + 2aΩ̃i

(uc,i, u
′
c) + ‖u′c‖2

E = ‖uc,i‖2
E + ‖u′c‖2

E (49)

We observe from (49), that the corrector solution uc,i mitigates part of the current error, where the
improvement can lie anywhere between the complete error (‖u′c‖2

E = 0) and an arbitrarily small
portion of it (‖u′c‖2

E → ‖uh − ūq‖2
E). Using a constant α ∈ R, we can therefore re-express (49) as

‖uc,i‖2
E = α‖uh − ūq‖2

E, 0 < α < 1 (50)

Substituting (50) into (46), we find

‖uh − ūq+1‖2
E ≤ (1− α)‖uh − ūq‖2

E (51)

Since 1− α < 1, we conclude that the sequence of solutions produced by our corrector scheme
must converge to the fine-mesh solution uh. In addition, the more local corrector problems are
solved, the better is the solution in the next iteration step. We note that in our analysis, we have
neglected the solution of the coarse-scale problem with the new multiscale basis. We emphasize
that without this coarse-scale solve (only using the corrector solutions in the local corrector regions),
the convergence of the multiscale solution to the fine-mesh solution will be slower.

3.6. Parallel implementation
Each corrector problem is driven by the current residual and therefore relies on the computation

of the source term f̄ of the current multiscale solution ū. Updating a multiscale basis function to
its new form φnew

i , however, leads at the same time to a change of ū over the local support of that
multiscale basis function. In a parallel implementation, corrector problems defined on overlapping
corrector regions cannot be processed at the same time without creating race conditions. Therefore,
a trivial parallel implementation of the corrector procedure is not possible.

3.6.1. Patterning nodes with non-overlapping corrector regions
The first idea to circumvent this issue is to group multiscale basis functions and associated

nodes in such a way that the corrector regions of each group do not overlap and multiscale basis
functions of each group can be corrected in parallel. This idea gives rise to so-called corrector
patterns that are formed by the nodes of each group of corrector problems. Figure 6 illustrates four
possible patterns for a two-dimensional mesh with 4× 4 elements. This results in the following
parallel corrector procedure: work on all nodes in one pattern in parallel, then move to the next
pattern. We work on all four patterns to improve the accuracy of all basis functions. This guarantees
that no overlapping corrector regions are being considered at the same time.

This principle directly extends to meshes in 3D. Figure 7 shows a possible corrector pattern for
a structured hexahedral mesh. Using this pattern, local correction for all nodes of the same type (I,
II, III, or IV) is performed in parallel. The procedure is repeated in parallel for the nodes of each
group. For general unstructured meshes, a simple algorithm to establish similar patterns is given in
Appendix B. All numerical examples in this paper are computed in parallel based on this idea.
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Pattern a Pattern b

Pattern c Pattern d

Figure 6: Four patterns in 2D (the red lines show the local boundaries of nonoverlapping corrector regions).

Layer B

Layer A

Layer A:

Layer B:

Node I

Node II

Node III

Node IV

Figure 7: One possible corrector pattern in a 3D example.
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Multiscale basis node

Bubble node

Edge corrector node

n1 n2 n3

n4 n5 n6

n7 n8 n9

Figure 8: A coarse quadrilateral element with edge corrector nodes.

n2 n4 n6 n8

Figure 9: Corresponding corrector regions for the four edges nodes.

3.6.2. Adding coarse-scale edge and face nodes
An alternative strategy to enable simple parallelization is to add nodes on each edge to be

corrected [38], illustrated in Fig. 8 for a quadrilateral element. For computing the multiscale basis
functions of the additional nodes, standard quadratic polynomial basis functions can be used as
local boundary conditions. Figure 9 shows the corresponding local corrector regions of these nodes.
We emphasize that correcting the multiscale basis functions of the edge nodes is sufficient and the
multiscale basis functions of the vertex nodes do not need to be touched. Since each edge node
deals with the correction of its edge only, the associated corrector problems can be performed at
once and in parallel. In addition, the reduced support of the edge modes leads to a smaller size of
the corrector regions compared to the vertex nodes.

We note that this strategy directly extends to meshes in three dimensions. Individual nodes
can be added to the edges and faces to be corrected, with the same beneficial effect on the
properties of locality and parallelizability of associated corrector problems. Figure 10 illustrates
the additional nodes for a hexahedral element. In the scope of this paper, we did not thoroughly test
the opportunities of this strategy with respect to parallel efficiency, which will be the subject of
future work.

Remark 6: In case a partition of unity is required for some reason, one can add coarse-scale edge
or face nodes and impose local boundary conditions for multiscale basis functions in the sense
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Multiscale basis node

Edge corrector node

Surface corrector node

Figure 10: A hexahedral element with additional corrector nodes on edges and faces for localized corrector problems.

of hierarchical basis functions. The basis functions associated with the vertex nodes stay linear
functions, guaranteeing a partition of unity, while the edge nodes absorb all correction terms.

4. Extension of the corrector scheme to vector problems

In the next step, we briefly illustrate the MsFEM formulation of vector problems for the example
of linear elasticity and discuss how the corrector scheme can be extended to vector problems. In
particular, we address ways to distribute the components of the corrector solution on several
multiscale basis functions that occur in the MsFEM discretization of vector problems.

4.1. MsFEM for elasticity
In this work, we follow the displacement-based MsFEM formulation for elasticity derived in [56].

To this end, we first consider a two-dimensional problem with the solution vector u =
(
ux uy

)T ,
where ux and uy are functions of displacements in x- and y-directions, respectively. In MsFEM, due
to the Poisson effect in elasticity (Poisson’s ratio ν 6= 0), the multiscale contributions of each basis
function of one displacement direction in the other displacement directions need to be explicitly
taken into account. Therefore, the coarse-scale interpolation of the displacement vector is

u(x) =
m∑
i=1

(
φixx
φixy

)
uix +

m∑
i=1

(
φixy
φiyy

)
uiy =

m∑
i=1

(φixuix + φiyuiy) (52)

At node i, the multiscale basis functions φixx and φixy, for instance, represent the multiscale
displacement in x-direction and the associated multiscale Poisson effect in y-direction, respectively.

We now consider again a multiscale discretization in two dimensions as shown in Fig. 1. To
define multiscale basis functions, we go through a similar procedure as in Section 2, but now using
the vector equation of linear elasticity,

−∇ · (D : ∇su(x)) = f(x) (53)
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where D is an elasticity matrix (e.g., for plane stress) and ∇s is the symmetric gradient operator.
We first decompose the solution in analogy to (3) as

u(x) = ua(x) + ub(x) (54)

In analogy to (4) and (6), the harmonic part ua is the solution of the local boundary value problem:

−∇ · (D : ∇sua(x)) = 0, x ∈ Ωi (55)
ua(x)|∂Ωi

= u(x)|∂Ωi
(56)

and the bubble part ub is the solution of the local boundary value problem:

−∇ · (D : ∇sub(x)) = f(x), x ∈ Ωi (57)
ub(x)|∂Ωi

= 0 (58)

The boundary value problems (55) through (58) are defined on each coarse-scale element domain
Ωi. Substituting the approximation of ua based on (52) into (55), we obtain

−
m∑
i=1

(∇ · (D : ∇sφix) ua,ix)−
m∑
i=1

(∇ · (D : ∇sφiy) ua,iy) = 0, x ∈ Ωi (59)

The vectors φix and φiy contain all multiscale basis functions that depend on the corresponding
nodal displacements in x- and y-directions at node i, respectively. Using the fine-scale mesh, we
can discretize and solve for the multiscale basis functions in x- and y-directions at node i from the
following element-wise boundary values problems

−∇ · (D : ∇sφix) = 0 and −∇ · (D : ∇sφiy) = 0, x ∈ Ωi (60)

To close (60), we apply simple boundary conditions, which are illustrated in Fig. 11. For the
multiscale basis function φix at node i, we fix all solution components in y-direction and impose
the standard basis function on the displacement solution in x-direction at the element boundary.
We can apply the same procedure for φiy. Having obtained the complete set of multiscale basis
functions, we can find the multiscale solution as discussed in Section 2. The bubble part of the
solution, ub, can be approximated separately on each coarse element from (58). We note that this
procedure directly extends to three dimensions and can be readily adapted to other vector problems.

4.2. A residual-driven corrector scheme for elasticity
We now adapt the iterative corrector scheme introduced in Section 3 to linear elasticity. To

this end, we define local corrector problems over the support Ω̃i of the group of multiscale basis
functions at node i. This results in

−∇ · (D : ∇suc(x)) = r(x), x ∈ Ω̃i (61)

uc(x)|∂Ω̃i
= 0, x ∈ ∂Ω̃i (62)
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φixx = Ni

φixx = Ni

φixx = Ni

φixx = Ni

φixy = 0

φixy = 0

φixy = 0

φixy = 0

φixy = 0

φixy = 0

φixy = 0

φixy = 0

φiyy = Ni

φiyy = Ni

φiyy = Ni

φiyy = Niiy

Figure 11: Local boundary conditions of the multiscale basis functions at node i in a coarse element.

from which corrector solutions uc can be locally determined. The corrector problem of (61) and
(62) is again driven by the local residual force vector,

r(x) = f(x)− f̄(x) (63)

that is defined as the difference between the external force vector, f(x), and the current internal
force vector computed as

f̄(x) = −∇ · (D : ∇sū(x)) (64)

where ū is the current multiscale solution. Following Section 3.4, we emphasize again that for
corrector problems with support at the global Dirichlet boundary, global Dirichlet data g needs to
be imposed through the following global-local condition

uc(x) = g(x)− ū(x), x ∈ Γ̃D (65)

where Γ̃D denotes the boundary of Ω̃i that coincides with the global Dirichlet boudnary.
In a vector problem, the main source of difficulty is the fact that there are generally more

multiscale basis functions than corrector solutions. Let us again focus on the example of 2D
elasticity. There are two multiscale basis vector functions at each node, while there is only one
vector function arising from the solution of the corrector problem. This raises the question of how
to distribute the corrector solution. In the following, we discuss two possible strategies.

4.2.1. Weighted corrector distribution
The first strategy is to find a suitable way of splitting the corrector solution into several parts

that correspond to the available multiscale basis functions to be corrected. Before motivating a split,
it is helpful to recall two conditions that the updated multiscale basis functions need to satisfy:

• After each correction step, the new solution component of node i, represented by the sum of
the updated multiscale basis functions times the new coefficients of node i, needs to be equal
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Figure 12: One additional corrector degrees of freedom at vertex nodes in the 2D and 3D case.

to the old solution component of node i plus the corresponding corrector solution, associated
with node i. This requirement can be summarized as

φnew
ix u

new
ix + φnew

iy u
new
iy = uc,i + φixuix + φiyuiy (66)

where uc,i is the corrector solution associated with node i, φnew
ix and φnew

iy are the two updated
multiscale basis functions in x- and y-directions, and unew

ix and unew
iy are the corresponding

new nodal coefficients.

• The new multiscale basis functions need to be orthogonal to the bubble part of the solution.

We assume that the solution component in the current multiscale solution which has a larger
displacement should receive a larger portion of the corrector solution. To this end, we propose the
following splitting rule. First, we compute a normalized weight for each direction,

wx =
|ux(xi)|

|ux(xi)|+ |uy(xi)|
and wy =

|uy(xi)|
|ux(xi)|+ |uy(xi)|

(67)

such that the weights sum up to one. We can then use these weights to determine a distribution of
the corrector solution to the available multiscale basis functions as follows

φnew
ix u

new
ix = uc,iwx + φixuix (68)

φnew
iy u

new
iy = uc,iwy + φiyuiy (69)

Following the discussion in Section 3.3, we can then use the results of (68) and (69) as the new
multiscale basis functions, setting the new coefficients unew

ix = unew
iy = 1. It is straightforward to

verify that the new multiscale basis functions satisfy the above two conditions, since wx + wy = 1
and uc,i is orthogonal to the bubble part of the solution.

4.2.2. Corrector degrees of freedom
The core idea of the second strategy is to introduce additional corrector degrees of freedom at

the nodes of the coarse mesh. As illustrated in Fig. 12, there is only one additional corrector degree
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of freedom per node, irrespective of the dimensionality of the problem. This new degree of freedom,
ûcor,i, is assigned to the corrector solution, which is updated during corrector iterations, while the
initial multiscale basis functions obtained in Section 4.1 stay unchanged during corrector iterations.
Due to the additional corrector degree of freedom, we establish the final corrector solution as an
additional multiscale basis function, which consists of components in x- and y-directions.

This strategy has a number of implications. On the one hand, the number of degrees of freedom
in the MsFEM analysis with multiscale basis functions is larger. With the corrector solution being
an individual basis function, linear dependencies become possible, for instance if the corrector
solution is zero, and algorithms need to be put in place to suitably catch and mitigate these cases.
In addition, establishing corrector solutions as individual basis functions is likely to affect the
conditioning of the system. On the other hand, as the initial multiscale basis functions form a
partition of unity, this strategy maintains a partition of unity at all times.

Despite many potentially problematic properties, we still advertise the second strategy in the
scope of the present work. On the one hand, we will show in the next section that the iterative
corrector scheme based on additional corrector degrees of freedom converges significantly faster
than the corrector scheme based on corrector distribution, since the latter in general does not find an
optimal weighting. The smaller number of iterations typically outweighs the increase in the number
of basis functions in the coarse-scale MsFEM discretization by a significant margin. On the other
hand, although the fine-mesh discretizations can carry a huge number of degrees of freedom, the
system size of the coarse-scale MsFEM analysis with multiscale basis functions and the system size
of the associated local corrector problems are both relatively small. Therefore, we can always make
use of a direct solver efficiently, so that the dependence on conditioning is practically eliminated.

4.3. Local imposition of Dirichlet constraints at embedded surfaces
Cut-cell finite element methods approximate the solution of boundary value problems using

non-boundary-fitted meshes [57, 58]. An essential requirement is the variational imposition of
Dirichlet boundary conditions at embedded surfaces that arbitrarily cut through finite elements
[59–65]. In the scope of this paper, we briefly outline a straightforward variant of an embedded
multiscale finite element method that is based on the extension of a penalty method [66]. We
will leverage this capability in Section 5.4 for the analysis of a microCT-based vertebra bone with
trabecular microstructure, whose outer surface does not align with a structured coarse-scale mesh.

The variational form of the equilibrium equation with the penalty term that enforces Dirichlet
boundary conditions can be written as∫

Ω

(D : ∇su) : ∇sδu dΩ + β

∫
ΓD

u · δu dΓ =

∫
Ω

f · δu dΩ +

∫
ΓN

t · δu dΓ + β

∫
ΓD

g · δu dΓ

(70)

where δu is the virtual displacement vector, g is the displacement data given on the Dirichlet
boundary ΓD, t is the traction vector on the Neumann boundary ΓN , and β is the penalty parameter.

We assume that the Dirichlet boundary ΓD cuts through a structured mesh of coarse-scale finite
elements. Based on (70), multiscale basis functions φix and φiy in elements Ωi that are cut by the
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(a) (b) (c)

u = 1

Figure 13: Imposing Dirichlet data at embedded surfaces: (a) a coarse-scale quadrilateral element with an embedded
Dirichlet constraint (dashed curve), (b) one of the multiscale basis functions, (c) the bubble part of the solution.

global Dirichlet boundary are the solutions of the following variational statements,∫
Ωi

(D : ∇sφix) : ∇sδφix dΩ + β

∫
ΓD,i

φix · δφix dΓ = 0 (71)∫
Ωi

(D : ∇sφiy) : ∇sδφiy dΩ + β

∫
ΓD,i

φiy · δφiy dΓ = 0 (72)

where δφ denotes test functions and ΓD,i is an embedded surface that is part of the Dirichlet
boundary of the global problem. At the element interfaces ∂Ωi, we impose simple boundary
constraints based on standard nodal basis functions as described in Section 4.1, such that we can
determine the multiscale basis functions from (71) and (72).

The bubble part of the multiscale solution in each coarse-scale element that is cut by the global
Dirichlet boundary is the solution of the following variational statement,∫

Ωi

(D : ∇sub) : ∇sδub dΩ + β

∫
ΓD,i

ub · δub dΓ =∫
Ωi

f · δub dΩ +

∫
ΓN,i

t · δub dΓ + β

∫
ΓD,i

g · δub dΓ (73)

with homogeneous boundary conditions on element interfaces ∂Ωi. In case there is an embedded
Neumann boundary ΓN,i, the expression (73) involves the corresponding traction integral.

Figure 13 illustrates multiscale basis functions and bubble solutions with penalty terms. For
clarity of exposition, we consider a 2D Laplace example with a homogeneous material coefficient
of a = 1 and a penalty parameter β = 104. Figure 13a plots the domain of one coarse-scale element
with an embedded Dirichlet boundary, where the solution should be enforced to be u = 1. The
coarse-scale element is complemented by a fine-scale mesh of 100× 100 elements to numerically
solve for the multiscale basis functions analogous to (71) and (72) and the bubble part of the
solution analogous to (73). In Fig. 13b, we plot one of the multiscale basis functions. We see that
it is forced to zero on the embedded boundary by the penalty term, while its values on element
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(a) (b)

Figure 14: 2D Laplace example: (a) random material distribution on the coarse grid mesh (5 × 5 elements), (b)
reference solution on the fine-scale mesh (200× 200 elements).

interfaces correspond to a standard nodal basis function. In Fig. 13c, we observe that within the
element domain, the bubble part of the multiscale solution is forced to comply with the Dirichlet
data by the penalty term in (73), while its value is zero on the element interfaces. Despite the jump
at the element interfaces, this formulation is simple and provides the same fast convergence to the
fine-mesh solution when integrated into the corrector scheme. We emphasize again that this is
a straightforward variant of embedded multiscale analysis, which serves as the basis for further
investigations in current and future research.

5. Numerical examples

In this section, we illustrate the effectiveness of MsFEM enhanced with our iterative corrector
scheme in terms of accuracy and computational efficiency by a number of benchmark problems that
represent multiscale scenarios with unclear sale separation. These include a Laplace problem with
a highly oscillatory coefficient, an advection-diffusion problem with strong local solution gradients,
an L-shaped elastic specimen with randomly distributed Young’s modulus and a microCT-based
vertebra bone characterized by complex trabecular microstructure.

5.1. Laplace equation with a highly oscillatory coefficient
As a first example, we consider the Laplace problem (1) on a unit square domain [0, 1]2 with

f = 0 and Dirichlet boundary conditions u(x, 0) = sin(π, x) and u(x, 1) = u(0, y) = u(1, y) = 0.
Figure 14a plots the material coefficient, a(x), that is randomly distributed and highly oscillatory.
It is sampled on a four-node quadrilateral mesh of element size h = 1/128 and linearly interpolated
between nodes. Figure 14b plots the fine-mesh solution obtained with standard FEM and 200× 200
four-node quadrilateral elements that will serve as a reference in the following.

To assess the efficiency of our corrector scheme, we compare the solutions of three different
methods: (i) standard FEM on a coarse mesh, (ii) MsFEM without the corrector scheme, and (iii)
MsFEM with our corrector scheme. All three methods use a coarse mesh with 5 × 5 four-node
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(a) (b) (c)

Figure 15: Solutions obtained on a 5× 5 coarse-scale quadrilateral mesh with (a) standard FEM, (b) MsFEM without
corrector scheme, and (c) MsFEM with the corrector scheme. Note that the solution in (a) is visualized on triangles due
restrictions in our visualization tool. The color in (b) and (c) denotes different element domains.

quadrilateral elements shown in Fig. 14a. In addition, the MsFEM schemes use a fine mesh of
40× 40 elements within each coarse-scale element, such that the underlying fine-mesh resolution
corresponds to 200× 200 elements.

Figure 15 illustrates the solutions obtained with the three methods on the coarse-scale mesh.
We can see in Fig. 15a that standard FEM is entirely unable to capture fine-scale oscillations. The
MsFEM solution without the corrector scheme in Fig. 15b is able to represent fine-scale solution
components inside the element domains. We clearly observe, however, that there is an error on the
element interfaces and on the boundary of the domain. Since we use linear interpolations between
coarse-scale nodes as local boundary conditions for the multiscale basis functions, we can only
interpolate linearly on element interfaces. The MsFEM results in Fig. 15b highlight the important
role that local boundary conditions of multiscale basis functions play for the accuracy of MsFEM.
The MsFEM solution with our corrector scheme plotted in Fig. 15c demonstrates that our approach
is able to overcome the accuracy limit at element interfaces, enabling communication between the
fine-scale systems in each coarse-scale element. We can see in Fig. 15c that the corrected MsFEM
solution fully captures the fine-scale oscillations both inside the element domains, on local element
interfaces and on the boundary of the global domain. We also emphasize that the complete fine-scale
solution is fully recovered, which cannot be achieved by standard homogenization methods.

Figure 16 illustrates the convergence of MsFEM with the corrector scheme to the fully resolved
fine-mesh solution with increasing number of iterations and for different mesh sizes. The domain is
discretized by a series of meshes with 5× 5, 10× 10, 20× 20, and 40× 40 coarse-scale elements.
At the same time, we fix the fine-scale discretization to 200 × 200 elements such that in each
coarse-scale element, we have 40×40, 20×20, 10×10, and 5×5 fine-scale elements, respectively.
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Figure 16a plots the relative error with respect to the fine-mesh solution computed as

Relative error =
‖ū− ufine

FEM‖2

‖ufine
FEM‖2

(74)

where ‖ ·‖2 is the L2 norm, and ū and ufine
FEM are the solutions obtained by MsFEM and by fine-mesh

FEM, respectively. We observe that the multiscale solutions rapidly converge to the solution of
the fully resolved fine mesh irrespective of the ratio between the coarse-scale mesh size H and the
fine-scale mesh size h.

The first points of the curves represent the error of MsFEM with linear boundary conditions
on element interfaces. It is interesting to note that when we refine the coarse mesh from 5× 5 to
40 × 40 elements, and thus reduce the constraints on the fine-mesh, we do not see a significant
decrease of the error. This phenomenon is due to the so-called resonance effect [28]. Its impact on
the convergence can be summarized as

‖ū− ufine
FEM‖2 = O

(
H2 + ε/H

)
(75)

where ε is the characteristic length of the fine scale represented by the fine-scale mesh. When
the coarse-scale mesh size H is close to ε (but still H > ε), the error terms that depend on ε/H
dominate the total error. When we apply the corrector scheme, we can significantly reduce this
error after each iteration.

The corrector scheme can be seen as a fixed-point iteration scheme. We can therefore examine
the rate of convergence of the iterative corrector scheme with the help of the following expression,

lim
q→∞

‖ūq+1 − ufine
FEM‖2

‖ūq − ufine
FEM‖

ρ
2

= λ (76)

where ūq and ūq+1 denote the solution at the q-th and (q+ 1)-th iteration, and the exponent ρ is the
order of convergence. An iterative scheme converges with the order ρ when λ <∞ at all times. In
our case, it is easy to check from the results shown in Fig. 16 that this holds for ρ = 1, but not for
ρ = 2. Therefore, as expected, our scheme is first order.

Figure 16b plots the norm of the residual vector that drives the corrector procedure and can
therefore be seen as a direct indicator of error. We observe that the norm of the residual vector
rapidly decreases to zero (machine accuracy). This is confirmed by Fig. 17 that plots the magnitude
of the residual on the domain in the first three iterations. We can see that the corrector scheme
effectively decreases the residual within a few iterations. Note that the residual is nonzero only at
the element interfaces.

5.2. Advection-diffusion with strong local solution gradients
In the second example, we consider the advection-diffusion equation,

a(x) · ∇u(x)−∇ · (D∇u(x)) = 0 (77)

on a quarter of an annular domain [67]. Figure 18a illustrates the problem domain, defines the
boundary conditions, and provides values for all problem parameters. We assume a flow field a(x)
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Figure 16: Convergence of MsFEM with the corrector scheme with increasing number of iterations and for different
mesh sizes; (a) with respect to the fully resolved fine-mesh solution, (b) in terms of the norm of the residual vector.

(a) First iteration (b) Second iteration (c) Third iteration

Figure 17: Residual force magnitude in different iterations.

with tangential velocity aθ = ω r and radial velocity ar = 0. The Péclect number of this problem is
Pe = 10. The concentration u = 1 on the inflow boundary creates boundary and internal layers.
The solution by standard FEM with a fine mesh resolution of 200× 200 four-node quadrilateral
elements and 40, 401 degrees of freedom is shown in Fig. 18b.

For our MsFEM computations, we consider a coarse mesh with 20× 20 elements and only 441
degrees of freedom. We find multiscale basis functions by numerically solving

a(x) · ∇φi(x)−∇ · (D∇φi(x)) = 0 (78)

on each element domain, where φi is the multiscale basis function of node i. We use linear
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Figure 18: Advection-diffusion with strong solution gradients in an annular section.

larc

lj

Fine node j

Node i

Figure 19: Local imposition of global Dirichlet data on multiscale basis functions of a coarse element.

interpolations between coarse-scale nodes as the initial local boundary conditions for the multiscale
basis functions. In Fig. 19, we illustrate the imposition of local boundary conditions on multiscale
basis functions of a coarse element. When computing the multiscale basis function at node i, we
determine nodal values Nj at fine-scale nodes j located at the curved edge as

Nj = 1− lj
larc

(79)

where larc and lj are the arclength of the corresponding side and the arclength from the coarse-scale
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Node 1 Node 2 Node 3 Node 4

Figure 20: Multiscale basis functions for the advection-diffusion problem, plotted on one of the coarse-scale elements.
We observe that they incorporate the advection effect, supporting stable MsFEM analysis on coarse-scale meshes.

node i to the fine-scale node j, respectively. The procedure in (79) demonstrates that as part of
our corrector scheme, we can impose any boundary condition, which guarantees conforming basis
functions for the initial multiscale basis. The corrector scheme can correct these boundary conditions
later through iterations. We note that for geometries with more complex curved boundaries, a
mapping algorithm that is more general than (79) is required.

Figure 20 plots the resulting multiscale basis functions of one of the coarse-scale elements. We
observe that the multiscale basis functions incorporate the advection effect due to the advection
term in (78). Therefore, the multiscale basis functions yield a stable solution on the coarse-scale
mesh, while standard FEM leads to spurious oscillations. The incorporation of the advection effect
can be perceived of as a stabilization procedure, constituting another link to variational multiscale
and stabilized finite element methods [68–70].

The corrector scheme can be applied to all nodes of the coarse mesh. We can see from the
fine-mesh solution in Fig. 18b, however, that we only need the fine resolution in high-gradient
regions. In other areas, the initial multiscale basis functions of the coarse-scale mesh can provide
sufficient accuracy. To identify multiscale basis functions for which correction is required, we can
use the residual as an error indicator. The residual is readily available as it is computed as part of
the corrector scheme. This gives rise to the following adaptive strategy. We compute the 2-norm of
the discrete residual vector |r| for each corrector node and only solve corrector problems which
have |r| > tolerance. In this particular problem, we set the tolerance to 0.001.

Figures 21 and 22 illustrate the support of the corrected multiscale basis functions and the
magnitude of the residual, respectively, in the first three iterations of the corrector scheme. We
observe that the adaptive scheme based on the residual automatically chooses high-residual regions
which naturally correspond to high-gradient regions, where the accuracy needs to be improved.
In addition, the error is reduced significantly after each iteration. We note that in standard FEM,
common adaptivity techniques are: (i) generating an adaptive mesh in advance (which requires
prior knowledge about solution characteristics), or (ii) creating adaptive meshes on the fly (which is
complicated in in terms of implementation and parallelization). Our approach offers an attractive
alternative that elegantly circumvents these challenges.
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(a) First iteration (b) Second iteration (c) Third iteration

Figure 21: Adaptive corrector regions (plotted in red) in the first three iterations, selected based on the 2-norm of the
local residual vector in each potential corrector region.

(a) First iteration (b) Second iteration (c) Third iteration

Figure 22: Magnitude of the residual.

5.3. L-shaped specimen with randomly distributed Young’s modulus
To illustrate the effectiveness of MsFEM and our corrector scheme for linear elasticity, we

consider the L-shaped elastic specimen shown in Fig. 23. The material properties of the L-shaped
specimen are described by a constant Poisson’s ratio of ν = 0.3 and a randomly distributed
Young’s modulus that is illustrated in Fig. 23a. Global Dirichlet data and the coarse-scale mesh
that corresponds to 20 four-node quadrilateral elements along each main direction are shown in
Fig. 23b. Each coarse-scale element contains a local fine mesh of 10× 10 four-node quadrilateral
elements such that the equivalent fine mesh corresponds to 200 elements in each main direction.
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Figure 23: Heterogeneous distribution of Young’s modulus, dimensions, global boundary conditions, and coarse-scale
mesh size of the L-shaped specimen.

(a) (b)

Figure 24: L-shaped specimen: (a) Total displacements and (b) von Mises stresses obtained with MsFEM.

Figure 24 plots the MsFEM solution fields in terms of total displacements and von Mises stress.
We observe that the effect of the material variability on the von Mises stress is significant. Standard
homogenization methods cannot take into account this effect at the same level of accuracy, since
the material variability is not sufficiently separated from the global length scale. An interesting side
note is that regions of increased stress select paths of increased stiffness to form a truss-like pattern.
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Figure 25: Comparison of MsFEM with the additional corrector degree of freedom and MsFEM with weighted
corrector distribution in terms of convergence of the relative error of the solution and the norm of the residual.

In the following, we demonstrate that in our corrector scheme, adding a corrector degree of
freedom is computationally superior to the weighted distribution of the corrector onto the vector
multiscale basis functions. To this end, we employ MsFEM and the corrector scheme with each
approach, introduced in Section 4.1. Figure 25 plots the convergence of the MsFEM solution with
respect to the number of iterations for both options. We note that we adopt again the fine-mesh
solution obtained with standard FEM as a reference. We clearly observe that the MsFEM solution
obtained with a separate corrector degree of freedom converges significantly faster than the MsFEM
solution obtained with the weighted corrector distribution. This indicates that the split as defined
in (67) is far from optimal for elasticity. In this example, the number of degrees of freedom for
MsFEM with weighted corrector distribution is 682, while for MsFEM with corrector degrees
of freedom it amounts to 1,023. With respect to the fully resolved fine mesh that carries 60,802
degrees of freedom, this increase in degrees of freedom is negligible and compensated for by far
by the reduction in iterations. We therefore recommend to use an additional corrector degree of
freedom at each coarse-scale node.

5.4. MicroCT-based stress analysis of a vertebra
Our final example addresses MsFEM analysis of heterogeneous bone structures. To this end,

we consider a vertebral body given by microCT data that has been separated from the surrounding
imaging data with the help of robust variational segmentation technology [71]. Figure 26a shows
a segmented CT slice, illustrating the available image resolution that captures the trabecular
microstructure of the vertebra. Stacking slices on top of each other, we construct a volumetric pixel
(voxel) model of the vertebral body, illustrated in Fig. 26b. The spacing corresponds to the pixel
spacing ∆x = ∆y = 0.1465 mm in each slice and the distance ∆z = 0.3 mm between slices. One of
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(a) (b)

Figure 26: Image-based representation of a vertebra: (a) slices of segmented CT scans and (b) voxel reconstruction
of the three-dimensional geometry. The mesh that identifies each voxel with one hexahedral element serves as our
fine-mesh reference.

the most common methods for the direct analysis of imaging data is the voxel finite element method,
which identifies each voxel as a linear hexahedral element [72–77]. For our vertebra sample, the
hexahedral mesh that corresponds to the voxel model of Fig. 26b consists of 8,435,574 degrees of
freedom. While this fine-scale voxel mesh fully resolves the effect of the trabecular microstructure,
it requires significant memory and computing time.

MsFEM combined with our corrector scheme constitutes an opportunity to reduce the computa-
tional cost, while achieving the same accuracy as the full-resolution voxel FEM. Figure 27a plots
the coarse-scale mesh for the MsFEM analysis that consists of 11,817 nodes. With one additional
corrector degree of freedom per node, the total number of degrees of freedom of the coarse-scale
problem amounts to 47,268. On the fine scale, we use the same voxel elements as voxel FEM. They
align with the coarse-scale mesh such that 10× 10× 5 voxel elements are covered by one coarse
element (see Fig. 27b). Hence, one coarse-scale element includes 500 fine-scale elements. We note
that MsFEM in this form directly operates on the voxel data and does not require the (potentially
labor-intensive) generation of a boundary-fitted finite element mesh. As a consequence, it enables
the same seamless integration of voxel data into analysis as standard voxel FEM.

Although bone, in general, is an anisotropic material [78], it has been shown and experimentally
verified that in the case of vertebral simulations, an isotropic material model is a reasonable
approximation [79–82]. In the voxel representation of the vertebra, we can therefore assume that
each voxel is associated with two material parameters (Young’s modulus E, Poisson’s ratio ν),
where voxels with bone material carry (10 GPa, 0.3) [83, 84] and void voxels carry (10−5 GPa, 0.3)
[85, 86]. The trabecular microstructure is implicitly represented by the stiffness variation from
one voxel to the next. This is illustrated in Fig. 27c that plots voxels with bone material for one
coarse-scale element. The small stiffness value in void voxels guarantees that their effect on the
mechanical response of the vertebra is negligible. At the same time, this effectively prevents a
singular stiffness matrix in case of single voxels with bone material that are disconnected from the
main body. We note that we remove all coarse-scale elements from the initial mesh that do not
contain at least one voxel with bone material.

32



(a) (b) (c)

Figure 27: Image-based discretization of the vertebra: (a) complete coarse-scale mesh, (b) voxel mesh in one coarse-
scale element, and (c) voxel elements with bone material, encoding the trabecular microstructure at the given CT
resolution. We note that the voxel elements in (b) and (c) have been rotated for better visualization.

Given vertical
displacement.

Fully fixed.

Figure 28: Dirichlet boundary data are imposed variationally on the upper and lower loading surfaces.

To illustrate the effectiveness of our corrector scheme for this application, we carry out a virtual
compression test of the vertebra, for which we fix the displacements at the bottom surface and
apply a uniform downward vertical displacement of 1 mm at the top surface. The global boundary
conditions illustrated in Fig. 28 are imposed variationally on embedded explicit triangulations of the
upper and lower vertebra surfaces, based on the embedded penalty method outlined in Section 4.3.
We note that these explicit triangulations were obtained as part of our variational segmentation
process [71]. We use the same fine-scale voxel mesh and the same global Dirichlet boundary data
imposed over the same triangulated top and bottom surfaces in the full-resolution voxel FEM and
the MsFEM computations. We can therefore expect that MsFEM leads to exactly the same results
as the voxel FEM, given the former achieves the full fine-mesh accuracy.

For visualization purposes, the solution fields described by the multiscale basis are projected
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(a) (b)

Figure 29: Von Mises stress in the trabecular microstructure: (a) initial MsFEM result and (b) after 10 corrector
iterations (the coarse-scale MsFEM mesh has approx. 45,000 dofs).

(b)

Figure 30: Von Mises stress in the trabecular microstructure, computed with full voxel FEM (8.5 million dofs).

back on the voxel representation and plotted voxel by voxel across a vertical plane that cuts through
the center of the vertebral body. Figures 29a and 29b plot the von Mises stresses in the vertebral
body obtained with MsFEM without correction and with MsFEM and ten corrector iterations,
respectively. We observe a significant difference between the initial uncorrected solution and the
solution after a few iteration steps. Figure 30 plots the von Mises stress results obtained with
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full-resolution voxel FEM. When we compare the MsFEM results with results obtained with
voxel FEM, we can see that MsFEM with iterative correction leads to stresses that are virtually
indistinguishable from the fine-mesh reference.

We conclude that MsFEM with our iterative corrector scheme achieves the full fine-mesh
accuracy of the voxel FEM. At the same time, it reduces the computational cost of voxel FEM,
in particular if the multiscale basis functions can be pre-computed in parallel and re-used several
times. For example, MsFEM (approx. 45,000 degrees of freedom) could be used for real-time
parametric studies, for instance to determine the maximum stress for a large number of different
loading conditions, reaching the same accuracy as full-resolution voxel FEM (approx. 8.5 million
degrees of freedom) at any point in the microstructure. In the present case, corrector iterations are
carried out for each coarse-scale element until the global norm of the residual reaches machine
accuracy. We emphasize that in practical engineering computations, one or two corrector iterations
carried out in a few critical elements are sufficient to guarantee fine-scale high-fidelity accuracy.

6. Summary, conclusions and outlook

While many multiscale finite element (MsFEM) schemes can handle up to 1,000 times more
elements than standard FEM with the same amount of memory [26, 28], their accuracy often remains
affected by constraints at coarse-scale element interfaces. In this paper, we presented a corrector
scheme that enables MsFEM to provide the best possible fine-mesh accuracy, while preserving its
core computational advantages. Its main idea is to incorporate the fine-mesh solution information
into multiscale basis functions on element interfaces through iterations. We showed analytically
that the residual of the multiscale solution is the optimal choice to drive the iterative correction
procedure and that its solution will converge to the global fine-mesh result of a full-resolution
discretization. The corrector scheme thus enables communication between fine-scale systems in
coarse-scale elements. Since the corrector scheme only operates on local domains, it is well-suited
for parallel computing. To avoid race conditions due to overlapping corrector regions, we proposed
its implementation using non-overlapping node patterns that can be parallelized individually.

We extended our approach to vector field problems, focusing on elasticity. To updated multiscale
basis functions, corrector solutions must be distributed, since at each node there are multiple basis
functions, but only one corrector solution. To overcome this issue, we introduced the concept of
an additional corrector degree of freedom at each coarse-scale node, thus completely avoiding a
distribution of the corrector solution. The local corrector solutions represent additional multiscale
basis functions that are updated during the iterative procedure. In addition, we also discussed a
straightforward variant to impose Dirichlet constraints on embedded surfaces in the context of
MsFEM and the corrector scheme.

We presented several numerical examples, including a 2D Laplace equation with a highly
oscillatory coefficient, an advection-diffusion problem with strong local solution gradients, and
an elasticity problem with randomly distributed Young’s modulus. In all examples, the iterative
procedure converges rapidly to the fine-mesh solution irrespective of the ratio between coarse mesh
size H and fine mesh size h. We also observed that our approach can iteratively eliminate the
resonance effect. In addition, we showed that the corrector scheme can be naturally applied in
an adaptive way to improve the accuracy of any specific regions of interest. In particular, since it
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is driven by residuals, our scheme enables automatic adaptivity without further error estimation
steps. We also observed that applying the concept of corrector degrees of freedom in vector field
problems preserves the same fast convergence of the iterative scheme that we had observed in scalar
problems, where multiscale basis functions can be directly updated by corrector solutions.

We finally applied our MsFEM approach with local correction for microCT-based stress analysis
of a vertebra with complex trabecular microstructure This example highlighted the potential of
MsFEM for effective imaging-driven analysis of heterogeneous materials with random microstruc-
ture and unclear scale separation. We showed that the coarse-scale MsFEM mesh can handle the
full-resolution vertebra problem with only 45,000 degrees of freedom, while the standard voxel
FEM requires 8.5 million degrees of freedom. A comparison of the solution fields, however,
revealed that MsFEM with simple linear constraints on element interfaces and the full-resolution
voxel FEM produce solutions with significant differences in stresses. We demonstrated that with
a few iterations, our corrector approach is able to restore the full accuracy with respect to the
reference, illustrated by voxel-wise stress concentrations at coarse-scale element interfaces that are
practically indistinguishable from the voxel FEM result.

In the future, we will extend MsFEM with iterative correction to nonlinear problems, where we
anticipate several significant advantages. First, MsFEM with residual-driven correction enables the
fully accurate simulation of localization up to the fine mesh size h. This is for example crucial for
accurately tracing cracks that advance across coarse-scale element interfaces. Second, we anticipate
that the iterative corrector algorithm presented in this paper can be merged synergistically with the
Newton-Raphson algorithm in such a way that iterative correction does not increase the overall
computational cost of nonlinear MsFEM. A core issue to be addressed is how to maintain the
orthogonality of multiscale basis functions, corrector basis functions, and bubble solutions.
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Appendix A. Multiscale finite element discretization and implementation

In the following, we briefly discuss some more details on the discretization process in MsFEM,
udsing the two-dimensional Laplace equation and the multiscale discretization shown in Fig. 1 as
an illustrative example.

Appendix A.1. Approximation of bubble part and multiscale basis functions
A finite element approximation of the bubble part ub of the solution can be computed by solving

the local boundary value problem (6) and (7) for each coarse-scale element. The fine mesh in
each coarse-scale element domain consists of a set of m basis functionsN (x) = {Ni,p(x)}mi=1 of
polynomial degree p. We can represent (6) and (7) in variational form as∫

Ωi

∇vh(x) · a(x)∇uhb (x) dΩ = 0 (A.1)

where the bubble part ub and weighting functions are discretized as

uhb (x) =
m∑
i=1

Ni,p(x)ûbi (A.2)

vh(x) =
m∑
i=1

Ni,p(x)v̂i (A.3)

with ûbi and v̂i being the coefficients of discrete bubble solution and the test functions. Taking into
account the homogeneous boundary conditions (7), the finite element problem (A.1) can be locally
solved for ûi for each coarse-scale element.

In the same way, a finite element approximation of the multiscale basis functions φi at node i of
the coarse-scale mesh can be computed by solving (8) with suitable boundary conditions for each
coarse-scale element. We recall that different options for choosing boundary conditions have been
briefly discussed in Section 2.2. We can write (8) in variational form,∫

Ωi

∇vh(x) · a(x)∇φhi (x) dΩ = 0 (A.4)

where vh are weighting functions (A.3) and the multiscale basis function are discretized by the
fine-mesh basis as

φhi (x) =
m∑
j=1

Nj,p(x) dij (A.5)

with discrete coefficients dij . We emphasize again that computing the solutions of (A.1) and (A.4)
are entirely local tasks that can be accomplished independently on each coarse-scale element. This
part of the MsFEM procedure that can therefore be efficiently parallelized is often referred to as
offline step, inspired by its conceptual similarity to model order reduction.
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Appendix A.2. Implementation of the multiscale solution procedure
With the offline step completed, the multiscale solution uHms(x) and the corresponding weighting

functions vms(x) can be written in terms of the multiscale basis as

uHms(x) =
n∑
i=1

φhi (x)ûmsi (A.6)

vms(x) =
n∑
i=1

φhi (x)v̂msi (A.7)

where ûmsi and v̂msi are corresponding discrete coefficients. When we substitute (A.7) and (A.6)
into (9) and use the inner product defined in (11), we can find uHms(x) by solving

Kmsûms = fms (A.8)

where the multiscale stiffness matrixKms =
(
Kms
ij

)
and the multiscale force vector fms =

(
fmsij

)
are defined as

Kms
ij =

∫
Ω

∇φhi (x) · a(x)∇φhj (x) dΩ (A.9)

fmsi =

∫
Ω

f(x)φhi (x)dΩ (A.10)

When we substitute (A.5) into (A.9), we can compute the multiscale stiffness matrix Kms
ij as

Kms
ij =

n∑
k=1

n∑
l=1

dik

∫
Ω

∇Nk,p(x) · a(x)∇Nl,p(x) dΩ djl (A.11)

Following the exposition in [26], we can compute the global stiffness matrixKms by assembling
stiffness matrices of the fine-scale mesh in ne coarse-scale elements:

Kms =
ne

A
i=1
Kc,i with Kc,i = DiK

f,iDT
i (A.12)

and Kf,i =
(
Kf,i
kl

)
, Kf,i

kl =

∫
Ωi

∇Nk,p(x) · a(x)∇Nl,p(x) dΩ (A.13)

The matrix of coefficientsD = (dij) is constructed such that its ith row consists of the fine-mesh
representation of the ith multiscale basis function and is the number of coarse-scale elements. We
emphasize that the approach in (A.12) re-uses the fine-scale stiffness matricesKf,i that have been
previously computed for the determination of the multiscale basis functions via (A.4).

The coarse-scale element stiffness matrixKc,i can also be computed directly from each fine-
scale element without prior assembly ofKf,i. To this end, we further splitKc,i in (A.12) into

Kc,i = DiK
f,iDT

i =

mi∑
j=1

Di,jK
f,i
j D

T
i,j (A.14)
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where mi is the number of fine-scale elements in the ith coarse-scale element, Kf,i
j is the local

stiffness matrix of the j th fine-scale element in the ith coarse-scale element, and Di,j is a matrix
which contains the fine-scale mesh information corresponding to the j th fine-scale element. We
note that the approach (A.14) might have advantages over (A.12) in terms of parallelization on
modern hybrid computing architectures.

We can apply the same approach to compute the global multiscale force vector fms as

fms =
ne

A
i=1
f c,i with f c,i = Dif

f,i or f c,i =

mi∑
j=1

Di,jf
f,i
j (A.15)

and f f,i =
(
f f,ij

)
, f f,ij =

∫
Ωi

Nj,pf(x) dΩ (A.16)

The solution uHms fully represents the fine-mesh solution of the a(x)-harmonic part of the
complete solution in each coarse-scale element. It can therefore be projected back onto the fine
mesh, for instance for visualization purposes. With identities (A.5) to (A.6), we find

uHms(x) =
ne∑
i=1

mi∑
j=1

Nj,p(x)dijû
ms
i =

mi∑
j=1

Nj,p(x)

(
ne∑
i=1

dijû
ms
i

)
=

mi∑
j=1

Nj,p(x)ûj (A.17)

such that û = (ûi) = DT ûms (A.18)

The coefficients ûi represent the fine-mesh approximation of the multiscale solution and can be
obtained by simply multiplying the matrix DT with coarse-scale coefficients. We recall that the
final multiscale solution (12) requires the addition of the bubble part ub.
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Appendix B. Identifying corrector patterns on general unstructured meshes

Algorithm 1: Finding corrector patterns
Result: All nodes are assigned to a set of k patterns

1 Set pattern index k=1;
2 for i = 1→ numberOfNodes do
3 if Node i does not belong to an existing pattern then
4 Create a new pattern k;
5 Node i belongs to pattern k;
6 for j = i+1→ numberOfNodes do
7 if node j has already assigned to an existing pattern then
8 continue in next iteration;
9 end

10 if support of basis function at node j has no overlap with support of basis
functions at any other node in pattern k then

11 Node j belongs to pattern k;
12 end
13 end
14 end
15 Increment pattern index k++;
16 end
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with the p- and B-spline versions of the Finite Cell Method. Computational Mechanics, 50(4):445–478, 2012.

[67] D. Schillinger, L. Dede’, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, and T.J.R. Hughes. An isogeometric
design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary
methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 249-250:116–
150, 2012.

[68] T.J.R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet–to–Neumann formulation, subgrid scale
models, bubbles and the origins of stabilized methods. Computer methods in applied mechanics and engineering,
127(1-4):387–401, 1995.

[69] Y. Bazilevs, V.M. Calo, J. A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-
based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied
Mechanics and Engineering, 197:173–201, 2007.

43



[70] V.M. Calo, E.T. Chung, Y. Efendiev, and W.T. Leung. Multiscale stabilization for convection-dominated diffusion
in heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 304:359–377, 2016.

[71] T. Gangwar, J. Calder, T. Takahashi, J.E. Bechtold, and D. Schillinger. Robust variational segmentation of 3d
bone ct data with thin cartilage interfaces. Medical Image Analysis, 47:95–110, 2018.
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