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             a b s t r a c t

                  Variable selection plays a fundamental role in high-dimensional data analysis. Various
                    methods have been developed for variable selection in recent years. Well-known examples

                     are forward stepwise regression (FSR) and least angle regression (LARS), among others.
                         These methods typically add variables into the model one by one. For such selection

                        procedures, it is crucial to find a stopping criterion that controls model complexity. One of
                         the most commonly used techniques to this end is cross-validation (CV)which, in spite of its

                    popularity, has two major drawbacks: expensive computational cost and lack of statistical
                    interpretation. To overcome these drawbacks, we introduce a flexible and efficient test-

                     based variable selection approach that can be incorporated into any sequential selection
                         procedure. The test, which is on the overall signal in the remaining inactive variables,

                       is based on the maximal absolute partial correlation between the inactive variables and
                       the response given active variables. We develop the asymptotic null distribution of the

                           proposed test statistic as the dimension tends to infinity uniformly in the sample size. We
                               also show that the test is consistent. With this test, at each step of the selection, a new

                       variable is included if and only if the -value is below some pre-defined level. Numericalp

                      studies show that the proposed method delivers very competitive performance in terms of
               variable selection accuracy and computational complexity compared to CV.

           © 2018 Elsevier Inc. All rights reserved.

 1. Introduction

                       Thanks to technological advancement, high-dimensional data are now prevalent in science. Unfortunately, traditional

                                techniques such as ordinary least squares cannot be applied directly to these high-dimensional settings, where the number of

                                   variables is typically much larger than the sample size. Furthermore, it is often the case that only a few candidate predictors
                                    are truly relevant to the response [ ]. In other words, the inherent high-dimensional model is sparse. It is then crucial to5

                  identify such variables, whence the important problem of variable selection arises.
                               In the context of linear regression, various variable selection procedures have been intensively investigated in the past

                                decades. One example is forward stepwise regression (FSR); see [ ] for a review. Another well-known example is the least13

                             absolute shrinkage and selection operator (LASSO) proposed by Tibshirani [ ]. The LASSO is a sparse regularized least19
               squares method for linear regression, which imposes the L1                penalty on regression coefficients. Efron et al. [ ] proposed4

                                  the least angle regression (LARS) method, which can compute efficiently the entire solution path of the LASSO with respect
                                            to the tuning parameter. As shown in [ ], LARS is also less greedy than FSR, and the solution paths of LARS and LASSO are4
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                                 piecewise linear. Many other sparse penalized methods have been proposed in the literature, e.g., the Dantzig selector [ ]3

               and the smoothly clipped absolute deviation (SCAD) penalty [ ].6

                            The variable selection methods discussed above usually involve a penalty parameter which controls the complexity of

                             the resulting model. In practice, cross-validation (CV) is a commonly used technique for selecting the penalty parameter.

                            However, CV is computationally inefficient. Moreover, it is based on minimizing in-sample prediction errors, and thus does

                                not have a clear inferential meaning. Besides CV, another class of model selection approaches is based on hypothesis testing.
                     For example, [ ] and [ ] focused on testing the regression coefficients globally.10 22

                         Other testing schemes have been implemented adaptively in sequential selection procedures. For example, Lockhart

                                    et al. [ ] proposed the covariance test statistic for the LASSO. Another example is the truncated Gaussian (TG) test [ ]16 20

                             developed for LARS, FSR and LASSO. While these methods are specifically designed for particular variable selection

                                      procedures, Fithian et al. [ ] introduced a general framework for testing the goodness of fit that applies to FSR, LARS and7

                                      LASSO. However, their tests are developed separately for FSR and LARS (LASSO). In addition, the method of Fithian et al. [ ]7

                     requires MCMC sampling for the null distribution, which can be time consuming.

                             For LARS, FSR and LASSO, test-based approaches are applicable because these procedures are sequential in nature:

                                      typically, only one variable is added into the model at each step (though the LASSO can sometimes include steps in which
                                   variables are dropped). Therefore, tests can be conducted at each step of the selection procedure. One can further develop

                     some stopping criterion based on the -values associated with these hypothesis tests.p

                                  Another common feature of these procedures is that at each step, a variable is selected if, among all inactive variables,

                                   it has the largest absolute sample correlation with the current residuals, i.e., the difference between the response and its

                                 estimates from the previous step. However, such a large sample correlation can be spurious. Indeed in situations where the

                                number of predictors is large compared to the sample size, it may happen that the response is theoretically independent

                                         from all of them and yet some of these predictors appear to be highly correlated with the response simply by chance. This

                                 phenomenon can be particularly severe in high-dimensional problems. As mentioned, e.g., by Fan et al. [ ], the maximal5

                                    correlation observed in a sample of fixed size between a response and independent covariates can be close to 1 if then
          number of such covariates is sufficiently large.p

                               In this paper, we introduce an efficient high-dimensional test-based variable selection method. We focus on the variable

                               selection problem under the sparse linear model setting. Motivated by the spurious correlation issue discussed above, we

                                construct a test statistic based on the maximal absolute sample partial correlation between the inactive covariates and the

                                 response conditioning on the active covariates at each step of the procedure. Our null hypothesis assumes that the remaining

                                   variables are conditionally independent of the response given the active variables. Based on the null distribution of the test

                                     statistic, we can detect whether there exist important covariates for the response in the inactive set. We further develop a

       stopping criterion from the -values.p

                 There are three key advantages to the proposed method, namely:

                                (i) The method is flexible: the proposed tests and stopping criterion can be incorporated into any sequential selection

               procedure, such as the aforementioned LARS, LASSO and FSR.

                        (ii) The method is much more computationally efficient than CV, especially when is large.p

                                 (iii) The method can accommodate arbitrarily large , since the asymptotic null distribution of the test statistic isp

           developed as uniformly in .p→∞ n

                                This paper is organized as follows. In Section , we formulate the null hypothesis and introduce the corresponding2.1

                                     test statistic for the proposed method. In Sections and , we discuss the asymptotic null distribution and power of2.2 2.3

                               our test statistic with independent covariates, respectively, and we extend the results for equally correlated covariates in

                                 Section . In Section , we introduce the permutation test for covariates with arbitrary correlation structure. In Section ,2.4 2.5 3

                           we incorporate our hypothesis testing approach into sequential variable selection procedures. In Section , we demonstrate4

                                the performance of the new method through three simulation studies and a microarray data study. Proofs and additional

             simulation results are given in the Online Supplement.

           2. Global test to control spurious correlation

           2.1. Global null for testing significant variables

     Consider the linear model

   Y = X⊤     β + ε, (1)

            where is the response variable, (Y X = X1      , . . . ,Xp)
⊤            is a -dimensional covariate vector, (p β = β1      , . . . , βp)⊤    is the unknown

                           coefficient vector which may be sparse, and is a random noise from (0ε N , σ 2    ) with σ 2            unknown. For now we assume thatX

                              is from a -dimensional Gaussian distribution with some unknown covariance matrix . We will discuss the non-Gaussianp Σ

             case in the numerical studies. Let (y = y1      , . . . ,yn)
⊤  and xj  = (x1j      , . . . , xnj)

⊤           respectively stand for the vectors of independent

      observations from andY Xj            , with 1 .j ∈ { , . . . ,p}
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                                       For variable selection problems, the primary goal is to recover the support set of , which is the index set of non-zeroβ

         components of the coefficient, denoted M
∗                           . Suppose we are given a candidate set , which includes the indices of allM

                           selected variables, and that we want to know whether there are remaining important covariates in M          . We then need to test

H0  :M∗    ⊆M. (2)

                             The following proposition demonstrates that under and the Gaussian assumption, we can convert the above(1)

                        hypothesis into the problem of testing the conditional independence between and theY Xj      s with j ∈M .

           Proposition 1. XSuppose that = (X1      , . . . ,Xp)
⊤                   has a multivariate Gaussian distribution and the response Y is generated from

                          the linear model . If is a subset of p , then(1) M {1, . . . , } M
∗                  ⊆M if and only if Y is independent of all Xj      s for j ∈M conditional

 on X .

                     Proposition 1 (2)guarantees that testing is equivalent to the following null hypothesis:

H0    : Given X          , Y Xis independent of all j      s for j ∈M  . (3)

                                Unless the noise is very strong, the correlation between an important covariate and the response should be stronger

                                  than the maximal spurious correlation. In fact, many existing variable selection methods, such as the LASSO and FSR, select
                               variables that maximize the absolute marginal correlation between the covariates and the response or the current residuals.

                                Moreover, it is easy and efficient to obtain the maximal absolute correlation, even if the dimension is high. Therefore,p
                                studying the distribution of the maximal absolute correlation under the null hypothesis can help discover true important(3)

         covariates among the candidate predictor variables.
                      We cannot directly test based on the correlation between and(3) Y Xj              because they can be both correlated with Xi for

                                some . In classical regression, the partial correlation is commonly used to test conditional independence given ai ∈ M

                               controlling variable. Motivated by that observation, we develop our test statistic based on the sample partial correlation
 between {Xj    : ∈j M         } and conditioning onY X        . We first regress {Xj    : ∈j M       } and ontoY X      , respectively; we then

       obtain the regression residual vectors

rj    = −(I P )xj     , j ∈M        , r = −(I P  ) (4)y,

 where P  = X (X⊤ X ) X⊤               is the projection onto the column space of X    . Here X         consists of the columns of indexedX
                                by and a vector column of 1s, so that all residual vectors have zero mean, andM A      denotes the Moore–Penrose pseudo-

                         inverse of a matrix . We then compute the maximal absolute sample correlation betweenA {rj    : ∈j M         } and . In this way,r

         we define our test statistic as

R  = max
{ : ∈j j }

|corr(r j    , ,r)| (5)

where corr(rj               , r r) is the Pearson sample correlation between j            and . Note that the distribution ofr R         depends on and ,n p, s

                   but for simplicity we omit them in the notation for R      . Since both r j             and have zero mean, we can writer

R  = max
{ : ∈j j }

|⟨rj  , r⟩|
∥r j∥∥ ∥r

,

                          where is the inner product of two vectors and represents the⟨· ·⟩, ∥ · ∥ L2              norm. Moreover, note that our test statistic does
                      not depend on the mean and variance of the covariates or the response.

                                        To gain insight into the proposed test statistic, we start from a special case where . The properties of the PearsonM = ∅
                                   sample correlation have been intensively studied under the classical setting . In particular, it has been shown thatn p>

 when Xj             and are independent Gaussian random variables,Y |corr(Xj   , Y )|2                 ∼ [ − ]B 1/ ,2 (n 2)/2 ; see, e.g., [ ]. Therefore, the17
   magnitude of each corr(Xj                    , Y R) cannot be too large. However, by taking maxima,               will be larger as increases. In fact, forp

            a fixed sample size , under ,n (3) R                              can get close to 1 as ; see, e.g., [ ]. The phenomenon of irrelevant covariatesp → ∞ 5

                              being highly correlated with the response is referred to as ‘‘spurious correlation’’, which challenges variable selection and
                          may lead to false scientific discoveries. Thus it is important to study the distribution of R      , especially for high-dimensional

problems.
                              In what follows, we discuss the asymptotic null distribution (Section ) and power (Section ) of2.2 2.3 R  respectively for

       the situation where the Xj                          s are independent random variables. We discuss the situation where the covariates are dependent

   in Section .2.4

                2.2. Null distribution of the test statistic with independent covariates

                            The limiting distribution of the maximal absolute sample correlation has been investigated recently under the assumption
                                     of independent Gaussian covariates; see Theorem II.4 in [ ]. The latter paper focuses on the global null hypothesis that21 Y

       is independent of the Xj                                      s, which is a special case of with . We expand the results to a more general setting and(3) M = ∅
                                derive the exact asymptotic distribution of the proposed test statistic under , as described in the following theorem(3)
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                                        Theorem 1. Suppose we observe a random sample of size n from the linear model and we further assume that the X(1) j  s are

                          independent. Let be a candidate set with cardinality s n and RM | | =M < − 2        be defined as in . Define(5)

         a p n s p s( , , ) 1 (= − − )− − −2/(n s 2)            c p n s b p n s( , , ), ( , , ) =
2

    n s− − 2
  ( )p s− − − −2/(n s 2)    c p n s( , , ),

        where c p n s( , , ) 2= { −1          ( 2) 1 2 ( 2) 2n s− − B[ / , n s− − / ]     1 ( )− p s− − − −2/(n s 2)}2 ( 2)/ n s− −             is a correction factor with s t beingB( , )
                       the Beta function. Then under the null hypothesis , for all x ,(3) ∈

lim
p→∞

sup
n s≥ +3

Pr
R2      − a p( , ,n s)

   b p n s( , , )
 < x  − Fn s, ( )x  = 0,

where

Fn s,   ( ) expx = −  1−
2

    n s− − 2
x

( 2) 2n s− − /

1  x ≤
    n s− − 2

2
 + 1  x >

    n s− − 2

2
 . (6)

                                       Remark 1. The convergence in is with respect to instead of , making it possible to test models where .Theorem 1 p n p n≫
                         Therefore, the proposed test statistic is applicable to high-dimensional or ultra-high-dimensional problems. In addition, the

                     convergence is uniform for any 3, and thus ensures finite-sample performance.n s≥ +

                                   With the results in , we can further compute the -value associated with the null hypothesis . LetTheorem 1 p (3) r denote
      the observed value of R          . Then the -value ofp R    for is(3)

p r(     ) 1= − Fn s,

r      − a p( , ,n s)

   b p n s( , , )
 , (7)

 with Fn s,                               as specified in . If the -value is small, it is likely that at least one variable fromTheorem 1 p {Xj    : ∈j M  } is correlated
                               with the response. Therefore we can construct a stopping criterion based on -values in sequential selection procedures. Wep

           will provide a detailed discussion in Section .3
                                  Our test statistic can be connected to the conventional -test for testing whether the population correlation is zero. Thet

         t t r-statistic is defined as =      ( 2) (1n− / − r 2                    ), where is the Pearson sample correlation between two Gaussian randomr
                              variables. Motivated by that connection, we also develop a maximal -statistic corresponding to the proposed test statistict

R        . The maximal -statistic ist

T =
    ( 2)n s− − R2

  1− R2
 . (8)

                            Analogous to the results in , we derive next the asymptotic null distribution ofTheorem 1 T .

                    Corollary 1. Consider the same setting as in , and let TTheorem 1                      be defined as in . Then, for all x , uniformly for any(8) ∈
    n s ,≥ + 3

lim
p→∞

Pr
T −    a p n s( , , )

   b p n s( , , )
 < x  = Fn s, ( )x ,

where     a p n s( , , ) =
√

               { − − } { − }(n s 2) (a p, ,n s) / 1 a p( , ,n s) ,                  b p n s n s a p n s a p n s( , , ) (= [ − −2) ( , , ) 1{ − ( , , )}]−1/2      with a p n s( , , )
       given in , and FTheorem 1 n s,    ( )x as in (6).

                     Our simulation results show that the difference between -values obtained fromp R  and T    is negligible. Moreover,
                 when the covariates are correlated, the null distribution of R                is easier to approximate, which will be discussed in

                 Section . Therefore we develop our test-based procedure with2.4 R   instead of T .

         2.3. Asymptotic power with independent covariates

                              In this section, we still focus on independent Gaussian covariates. We analyze the asymptotic power of R  by considering

     the following alternative hypothesis:

H1      : Conditionally on X             , there exists at least one j ∈M          such that is correlated withY Xj  . (9)

                                 In the following theorem we show that under , the asymptotic power of the proposed test statistic(9) R  is 1.

                         Theorem 2. Suppose we have the linear model and assume that the X(1) j              s are independent Gaussian variables. Then under the

                   alternative hypothesis , as p n and n , R(9) ln / → 0 →∞ Pr{  ≥ xα    ( )p n s, , |H1       } −→ 1, where xα            ( )p n s, , is the critical value of

H0
     at significance level .α

                                  Theorem 2 shows the consistency of our dependency test based on the proposed test statistic when at least one covariate

                 is correlated with the response under the linear model setting.
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                  2.4. Null distribution of the test statistic with equally correlated covariates

                    In we have derived the exact asymptotic distribution ofTheorem 1 R            under when the covariates are independent(3)
       Gaussian variables. When the Xj                            s have an arbitrary correlation structure, it is difficult to obtain similar results. We can point

                              to some results in classical extreme-value theory; see, e.g., Chapter 3.8 in [ ]. In particular, if9 U1      , . . . ,Un   is a stationary
                         Gaussian sequence with zero expectation and unit variance, then the limiting distribution of Wn  = max(U1     , . . .,Un  ) only
           depends on the limiting behavior of rm    /ln( ), wherem rm  = E(UiUi m+         ) is the correlation between Ui  and Ui m+      . Note that due

       to the stationarity assumption, rm                         does not change with respect to . More specifically, if there is another zero-mean, unit-i
       variance stationary Gaussian sequence U ′

1
     , . . . ,U ′n                      that has equal pairwise correlation ( ), and ( ) ln( ) has the samer r= n r n / n

     limiting form as rm    /ln( ), thenm W ′
n  = max(U ′

1
    , . . .,U ′n              ) has the same asymptotic distribution as Wn       when . Inspiredn →∞

                    by that result, we focus on analyzing the null distribution of R  when X1      , . . . ,Xp        are equally correlated, i.e., corr(Xi  , Xj   ) = ρ
                with 1 ( 1) 1 for all .− / p − ≤ ≤ρ i j̸=

                   Without loss of generality, we assume that each of the Xj                    s has zero mean and unit variance. Under the equal correlation
               assumption, it is well known that we can decompose Xj                into a linear combination of iid standard Gaussian random variables

Z1      , . . . ,Zp  , i.e.,

Xj =    1− ρ Z j  + hρ

1
√

p

p

i=1

Zi  , (10)

 where hρ  = {
√

      1 ( 1)+ p− ρ −
√

  1− ρ}/
√

                              p p p s X. In fact, we can also replace by − in such that each of(10) { j    : ∈j M }
                             is decomposed into a linear combination of iid Gaussian random variables. However, under high-dimensional sparsep s−

                                 model settings, . Hence the two decompositions are almost the same. For computational simplicity, we consider usingp s≫
       p p sinstead of − .

 Let zj  = (zj1      , . . . , zjn)⊤         be independent samples ofn Zj and r̃j    = −(I P )zj          be the residuals from projecting zj  onto the
     column space of X         . It follows from that(10)

rj =   1− ρ r̃j  + hρ

1
√
p

p

i=1

r̃ i.

   Hence we have

⟨rj   , r⟩ =    1− ⟨ρ r̃j    , r⟩ + hρ p
−1/2

p

i=1

r̃i ,

 where rj          and are defined as in .r (4)
       Recall that by assumption, var(Zj   ) var(= Xj          ) 1. Thus conditioning on= X    , we have

∥rj∥2 d ∼ χ 2
n s− −1  , ∥r̃j∥2 d ∼ χ 2

n s− −1  , ∥p−1/2

p

i=1

r̃i∥2 d ∼ χ 2
n s− −1 .

          For moderately large , we can approximaten corr(rj     , r) = ⟨rj  , /r⟩ (∥rj  ∥∥ ∥r ) by

corr(rj    , r) ≈   1− ρ corr(r̃ j     , r)+ hρ corr p−1/2

p

i=1

r̃i, .

             Taking the maximum on both sides, we find

max
{ : ∈j j }

corr(rj    , r) ≈   1 max− ρ 
{ : ∈j j }

corr(r̃j     , r)+ hρcorr p
−1/2

p

i=1

r̃i,  . (11)

                   Under the null hypothesis , note that ((3) r = I P−       ) (y = I P−    ) and thusε r̃j     = −(I P )zj  is conditionally

      independent of givenr X                    for all 1 . Hence the variablesj ∈ { , . . . , p} {|corr( r̃j  , r)|2    : ∈j M      } are independently distributed
              as 1 2 ( 2) 2 conditioning onB[ / , n s− − / ] X              . Furthermore, from a property of the normal distribution,

p−1/2

p

i=1

Zi

d
     ∼ N (0, .1)

        Thus the conditional distribution of |corr(p−1/2 p

i=1
r̃i  , r)|2  given X                   is also 1 2 ( 2) 2 . Therefore, the two termsB[ / , n s− − / ]

                     on the right-hand side of have corresponding exact distributions. Letting(11) f1  , f2        be the densities of max{ : ∈j j }corr( r̃j  , r)

and corr(p−1/2 p

i=1r̃ i        , r), respectively, we have

f1       ( )x p n s; , , = p x f| | B(x2  ; n, s)
  1 sign( )+ x FB (x2  ; n, s)

2

p s− −1

 , f2    ( )x n s; , = |x f| B(x
2  ; n, ,s)

 where fB     ( ) andx n s; , FB                            ( ) are the density and the cumulative distribution function of 1 2 ( 2) 2 , respectively.x n s; , B[ / , n s− − / ]
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             It is known that when , max(p → ∞ Z1     , . . ., Zp    ) and Z1     + · · · + Zp            are independent; see, e.g., [ ]. With asymptotic14

     independence, the density f3       ( ) of maxx p n s; , , { : ∈j j }corr( r̃j                    , ,r) can be approximated, for all z ∈ [0 1], by

f3      ( )z p n s; , , ≈
∞

−∞
f̃1   ( )z x− f̃2  ( ) (12)x dx,

with f̃1   ( )x = ρ−1/2 f1(ρ−1/2      x p n s; , , ) and f̃2   ( )x = f2(x h/ ρ  ; n, /s) hρ                    . In practice, can be estimated by the average of pairwiseρ

       correlations among the covariates. Let

U  = max
{ : ∈j j }

corr(rj    , ,r) V   = − min
{ : ∈j j }

corr(r j  , .r)

   Note that R  = max(U  , V    ), where U  and V            have identical distributions, but are not independent.
        Due to the dependence between U  and V              , it is difficult to derive the distribution of R      and the corresponding -valuep

     when we use R                         as the test statistic. One possible way to tackle this problem is to take U  or V        as the test statistic instead.
                                 However, the resulting test might not be powerful enough. For example, when the true model is Y X= − 1     + ε, it is difficult

                       to reject the null hypothesis based on the null distribution of(3) U               . Similarly, if the true model is Y X= 1     + ε, then using
V                  as the test statistic might be unable to detect X1                         . However, note that if the null hypothesis does not hold, i.e., there are

       important variables remaining in M                   , it can be expected that the tail probability of R             will be very small. It can then be

 approximated by

Pr (R  ≥ x)  ≈ Pr (U  ≥ x)  + Pr (V  ≥ x)   = 2 Pr (U  ≥ x)  . (13)

 Since Pr (R  ≥ x)  ∈ [Pr (U  ≥ x)   , 2 Pr (U  ≥ x)      ] always holds, if 2 Pr (U  ≥ x)    is small, Pr (R  ≥ x)      will also be very

                            small, which implies that the null hypothesis may be rejected. Therefore we can compare 2 Pr (U  ≥ x)   with a pre-specified
            constant to determine which test statistic,c R  or U                  to use. In general, we propose to compute the -value correspondingp

         to in the following way:(3)

 p = Pr(R  ≥ x)   ≈ 2 Pr (U  ≥ x)   if 2 Pr (U  ≥ x)  ≤ c,

Pr(U  ≥ x1) otherwise,
(14)

    where andx x1          represent the observed value of R  and U    , respectively, and

Pr (U  ≥ t) ≈
∞

t

f3    ( )z p n s; , , dz.

                               The constant is essentially a parameter balancing the accuracy and conservatism of the resulting -value. Specifically, ifc p c

                is too small, the -value is then computed fromp U                       , which can be too conservative; if is too large, the approximation inc
                                       (13) will be invalid. Our numerical studies indicate that so long as is relatively small, the performance of our method willc

                            not be affected much. Thus we set 0 01 throughout the numerical studies in Section .c = . 4

   2.5. Permutation test

                                 In the previous subsection, we mentioned when the correlation structure of the covariates is unknown, we can still obtain

                                the -value approximately using the proposed asymptotic distributions. In fact, the -value can also be computed using thep p
                           permutation test, which is a well-known resampling procedure that has many applications. A permutation test is applicable

                               if the samples are exchangeable when the null hypothesis holds. In fact, under certain assumptions, the exchangeability
     condition can be satisfied.

   Remark 2. Suppose ˜                            y yis a random permuted sample from and we obtain the test statistic as R ( ˜       y X, ). If is independentY

             of the covariates, i.e., , thenβ = 0 R (˜              y X, ) has the same distribution as R .

                                 To conduct the permutation test, at each step of the sequential selection, we randomly permute the observations of andY

                                    obtain a new sample. Then we can compute the test statistic based on the new sample. The permutations are implemented

                                    repeatedly, and the -value is obtained by the ranking of the original test statistic among the permuted test statistics overp
                            the total number of permutations. We further illustrate the permutation test step by step as below:

                                 1. At Step , we shuffle the observations of at random times and obtain the permuted samplek Y Q Y ( )q  = (y
q

1
     , . . . ,y

q
n  ) for

         q Q∈ {1, . . . , }.
           2. Compute the corresponding test statistic R

q    for each Y ( )q            , and compare the test statistic R    obtained from the

  original .Y

         3. Suppose the rank of R  among R1      , . . . ,R
Q  is rk                      . Then the -value of the permutation test can be written asp

pk  = rk  /Q .

                               Recall that our goal is to use the distribution information to provide guidance for sequential selection procedures. In what

                           follows, we introduce a test-based variable selection procedure by applying the results obtained in Section .2
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         3. Sequential testing for variable selection

       3.1. Testing-based variable selection procedure

                                   For sequential selection procedures, it is crucial to find a stopping criterion. In other words, at each step of a particular
                               selection procedure, we want to know whether there are remaining important covariates in the inactive set. Therefore,

                                   we propose to conduct the dependence test introduced in the previous section correspondingly at each step and stop the
                          procedure once we accept the null hypothesis. This leads to a test-based variable selection approach.

                           Suppose we are at Step ( 1) of a sequential selection procedure, and letk k ≥ Ak−1          denote the active set that includes
                             the indices of selected variables from the previous step. We want to emphasize that here Ak−1          is fixed given the data. In

       contrast, we use the notation Âk−1                               ( ) to denote the index set for sampling from the data, which is random. Then oneX, Y
                                needs to know whether the remaining inactive covariates are all uncorrelated with the response, which is equivalent to
         testing with(3) M A= k−1            under the Gaussian assumption. Note that A0              = ∅ =when k 1. More specifically, we consider

           the following null hypothesis at Step :k

H
( )k
0      : Conditioning on X

k−1
    , Y Xand j        are independent for ∀j ̸∈ Ak−1  . (15)

                     We note here that the proposed testing in Section conditions on2 X
k−1

   , where Ak−1          is non-random, rather than on both

X
k−1

and Âk−1      ( )X, Y = Ak−1                             . However, below are a few justifications for using the proposed test in the model selection
procedure.

                                        1. The main purpose of using the test in Section is to control the entry of variables with spurious partial correlation in2
                                      the selection process. The ultimate goal is to assist the selected model in having good properties on FP, FN and MSE. In
                               this regard, the problem is essentially different from post-selection inference [ , ], where the aim is to obtain valid7 20

                              conclusions for scientific discoveries. The simulation and real data studies in Section demonstrate the good model4
         selection properties of the proposed procedure.

                                 2. In the Online Supplement, we compare the empirical distributions of the unconditional test statistic in Section and2
                        the conditional ones through extensive simulations. We find that the difference is very small.

                                    3. The unconditional test provides a valid -value at the first step of model selection to prevent any spurious variablesp

                                  from entering the model when For later steps, our test provides a good approximation of spurious correlationβ = 0.
control.

                                  Based on the above considerations, we propose to incorporate the test in Section in the sequential selection procedure.2
                          The procedure is detailed below. Under , the corresponding test statistic can be written as(15)

R( )k  = max
j j: ∈ c

k−1

|corr(r
( )k
j

 , r( )k
 ) (16)|,

where

r
( )k
j    = −(I P

k−1
)xj  , r ( )k    = −(I P

k−1
)y

 with P
k−1

                            defined in the similar way as in Section . Note that when 1, we have2.1 k = r
(1)
j  = x j− x̄j1n  , where x̄j    is the mean

 of x j  and 1n              is an -dimensional vector of 1s sincen P
0  = 1 n1

⊤
n    /n. Similarly r(1)     reduces to y− ¯ y 1n .

                             From , we can see that when the covariates are independent, the -value ofTheorem 1 p R( )k     converges to a uniform
                               distribution on the unit interval, (0 1), under null hypothesis . This conclusion is formally stated below.U , (15)

                                      Corollary 2. Suppose we have a linear model as in andwe assume that the covariates are independent Gaussian variables. Let(1)
x ( )k               be the observed value of the test statistic R( )k                    as defined in . Then thep-value can be obtained from p x(16) ( ( )k   ) 1= −Fn k, −1(x

( )k ).
             Under the null hypothesis , we have p x(15) ( ( )k          ) (0 1)U , as p .→∞
                                   We omit the proof because it follows directly from . suggests that it is possible and reasonable to useTheorem 1 Corollary 2

       the proposed test statistic R( )k                    when the covariates are independent Gaussian variables. For dependent covariates, although
                                     we do not have similar theoretical results for the distribution of the -value, we can use the approximation described inp

                               Section to obtain the -value. Our numerical studies demonstrate that such an approximation can work well.2.4 p
                                Thus far we have discussed how to construct our dependency tests sequentially.Now we introduce our test-based variable
                                 selection method. In each step of the selection procedure, we compute the current test statistic and the corresponding

                                 p p-value, and stop the selection when the -value exceeds a pre-defined level . More specifically, our method is implementedγ
     in the following way.

             1. Set the active set to be A0  = ∅.

                      2. (a) In the th step ( 1), compute the residualsk k ≥ r
( )k
j    = −(I P

k−1
)xj  and r( )k    = −(I P

k−1
     ) for each inactivey

 covariate Xj                  and the response, respectively. Then derive the test statistic R ( )k   as in .(16)
       (b) Compute the -valuep p k                   as in for independent covariates and for dependent covariates.(7) (14)

   3. If pk                  ≤ ≤ −γ and k n 2, update the active set Ak                       and get the estimates of using the same approach as the originalβ
         selection procedure; otherwise, terminate the procedure.
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 Table 1

                   Testing-based LARS procedure applied to the prostate cancer data. For each
                     step, we report the variable selected by LARS, the active set k−1    in null hy-

                     pothesis and the -value obtained from our testing approach. The step-(15) p

                  wise -value is calculated before the selected variable enters the candidatep

model.

         Step Variable selected Active set k p-value

   0 0.0000∅
     1 lcavol 1 0.0010
      2 lweight 1, 2 0.0791
       3 svi 1, 2, 5 0.0645

        4 lbph 1, 2, 5, 4 0.2996
         5 pgg45 1, 2, 5, 4, 8 0.9482
          6 age 1, 2, 5, 4, 8, 3 0.7591
           7 lcp 1, 2, 5, 4, 8, 3, 6 0.5681
           8 gleason 1, 2, 5, 4, 8, 3, 6, 7

                                      In the above procedure, the stopping criterion in Step 3 involves a constant level . Here we do not provide a specificγ
                                       value of , because the choice of an appropriate should depend on the goal of the selection, which might vary in differentγ γ

                                      contexts. More specifically, if we aim to detect important variables other than losing any information, we could set a large .γ

                                        However, if we want to avoid false discoveries, we should choose a small . We will illustrate the effect of by simulationγ γ

                                        examples in Section . In practice, we also need to determine which null distribution to use in order to obtain the -value.4 p

                                     As mentioned in Section , we first compute the average of the pairwise sample correlation among the covariates, say2.4 ρ̂,

                                 to estimate . Ifρ |ρ̂ < .| 0 01, we use to compute the -value; otherwise we apply instead.(7) p (14)
                               Our method conducts a sequence of hypothesis tests adaptively until the null hypothesis is accepted. Moreover, at(15)

                                       each step we perform the dependency test before adding the next variable into the active set, which stands alone from the

                                original variable selection procedure. Hence the proposed method essentially adds (or drops in the LASSO path) the variables
                                     one by one in the same order as in the original sequential selection approach. This property makes our method very flexible

                because it can be incorporated into any sequential selection procedure.

       3.2. Prostate cancer data example

                               In Section , we have discussed how to implement our test-based variable selection approach in sequential selection3.1

                                      procedures. To better illustrate how our method works, we apply it to the prostate cancer data, which has been well studied

                                  in the literature [ ]. This dataset contains 97 observations and eight predictor variables, of which 67 are training samples.19

                                     The study goal is to predict the logarithm of prostate-specific antigen level ( ) of men who were about to receive a radicallpsa

prostatectomy.
                                     We incorporate our approach into LARS and perform the variable selection on the training data. At each LARS step, we

                                        obtain the variable that enters into the model, the corresponding active set as well as the -value. As the average of pairwisep

                                          correlation is about 0.3, we use to compute the -value. The results are reported in . It must be pointed out that(14) p Table 1

                      the -value is not associated with each variable, but the inactive setp A
c
k−1              at each selection step. For example, the -valuep

                                      0.0010 at Step 1 means that given the selected variable , there is strong evidence that there is at least one importantlcavol
         variable in the inactive set Ac

1
                                 . If one sets the constant level described in Section to be 0.1, the selected variables areγ 3.1

                                    lcavol lweight svi lbph, and ; if is increased to 0.5, there is one more variableγ added into the final model.

   4. Numerical studies

                                     In this section, we explore the performance of our method in terms of both simulation and real data studies. We

                             incorporate the proposed approach into sequential selection procedures and compare the results with that using 10-fold

               CV to conduct model selection for each particular procedure.

   4.1. Simulation study

                             In our simulation experiments, we consider three sequential selection procedures: LARS, LASSO and FSR. When our

                         test-based approach is incorporated into a particular procedure, we denote the corresponding variable selection method

                                as LARS-Corr. Similarly we use the notations LASSO-Corr and FSR-Corr to represent our methods integrated with LASSO and
                              FSR, respectively. In addition, we perform permutation tests in each of these three variable selection procedures and denote

                             the corresponding methods by LARS-Perm, LASSO-Perm and FSR-Perm, respectively. For comparison, we use 10-fold CV in

                               LARS, LASSO and FSR to implement model selection. We represent these three CV-based methods by LARS-CV, LASSO-CV

                                   and FSR-CV. We also perform the truncated Gaussian tests in the sequential selection procedures LARS and FSR, denoted as

                               LARS-TG, FSR-TG, respectively. For permutation tests, we implement 500 permutations. Due to space limit, we only present
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 Table 2

                                                  Results for simulated with 0 and 2. For each method, we report the average MSE, FN, FP and computational time over 100 replicationsExample 1 ρ = σ =
                                                (with standard errors given in parentheses). For our approaches, we show the results with 0 01 0 05 0 2 0 5 in the stopping criterion described inγ = . , . , . , .

                                                 Section . For each sequential selection procedure, we highlight the smallest MSE and run time in bold font. One can see that the performance of the3.1

                 proposed method is competitive to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 4.35 (0.05) 0.00 (0.00) 1.85 (0.32) 28.37 (0.15)

                 LARS-Perm 0.01 0.00 (0.00) 0.01 (0.01) 5.70 (0.04)4.05 (0.03)

                 LARS-Perm 0.05 4.08 (0.03) 0.00 (0.00) 0.10 (0.04) 5.82 (0.07)

                 LARS-Perm 0.2 4.15 (0.04) 0.00 (0.00) 0.40 (0.08) 6.29 (0.13)
                 LARS-Perm 0.5 4.36 (0.05) 0.00 (0.00) 2.04 (0.41) 8.70 (0.58)

                 LARS-Corr 0.01 0.00 (0.00) 0.00 (0.00) 0.76 (0.02)4.05 (0.03)

                 LARS-Corr 0.05 4.07 (0.03) 0.00 (0.00) 0.08 (0.03) 0.70 (0.01)

                 LARS-Corr 0.2 4.13 (0.04) 0.00 (0.00) 0.32 (0.08) 0.83 (0.02)
                 LARS-Corr 0.5 4.33 (0.05) 0.00 (0.00) 1.44 (0.22) 1.03 (0.05)

                 LARS-TG 0.01 10.22 (0.08) 1.99 (0.01) 0.00 (0.00) 12.16 (0.12)
                 LARS-TG 0.05 9.89 (0.13) 1.90 (0.03) 0.00 (0.00) 12.17 (0.12)

                 LARS-TG 0.2 8.89 (0.23) 1.62 (0.06) 0.01 (0.01) 12.41 (0.14)
                 LARS-TG 0.5 6.85 (0.26) 0.97 (0.08) 0.23 (0.06) 12.31 (0.13)

               LASSO-CV 4.70 (0.06) 0.00 (0.00) 4.78 (0.70) 39.74 (0.58)

                 LASSO-Perm 0.01 4.07 (0.03) 0.00 (0.00) 0.00 (0.00) 5.67 (0.04)
                 LASSO-Perm 0.05 4.08 (0.03) 0.00 (0.00) 0.03 (0.02) 5.72 (0.06)
                 LASSO-Perm 0.2 4.17 (0.04) 0.00 (0.00) 0.40 (0.09) 6.31 (0.14)

                 LASSO-Perm 0.5 4.36 (0.05) 0.00 (0.00) 1.76 (0.32) 8.35 (0.45)

                 LASSO-Corr 0.01 0.00 (0.00) 0.00 (0.00) 0.70 (0.01)4.07 (0.03)

                 LASSO-Corr 0.05 4.08 (0.03) 0.00 (0.00) 0.02 (0.01) 0.70 (0.00)

                 LASSO-Corr 0.2 4.13 (0.03) 0.00 (0.00) 0.25 (0.06) 0.83 (0.02)
                 LASSO-Corr 0.5 4.34 (0.04) 0.00 (0.00) 1.46 (0.24) 1.07 (0.07)

                                          the results for LARS and LASSO here, while the results for FSR are shown in the Online Supplement since they lead to similar
conclusions.

Let ˆ   β = (β̂1     , . . . ,β̂p)⊤                        denote the estimated coefficient vector. We evaluate the variable selection accuracy by two

                   quantities: False Negatives (FN) and False Positives (FP), respectively defined as

 FN =
p

j=1

1( β̂j    = ×0) 1(βj    ̸= =0) and FP

p

j=1

1(β̂j    ̸= ×0) 1(βj  = 0),

        where denotes an indicator function.1

                                We consider three simulated examples to generate the response variable. For the first two examples, the covariate vector
                             X is generated from a -dimensional Gaussian distribution (0 ) with correlation matrix (p N , Σ Σ = ρ i j,        ). For the third example,

                                 we aim to assess the robustness of our procedure, and therefore we generate independent covariates and random noise from
                                 a central Student’s distribution with 5 degrees of freedom. Throughout the simulation experiments, we fix 2000. Wet p =

                                   generate 100 simulated datasets with 200 observations from each model. In each replication, given a set of selectedn =
                                variables, we refit a linear model and calculate the out-of-sample mean squared errors (MSE) using an independent test

                       dataset with 500 observations. The details of the simulation examples are as follows.

                          Example 1. We generate the response from the following sparse linear model 3Y = X1  − 1.5X2  + 2X3     + ε, where the
           covariates have equal pairwise correlation, i.e., ρi j,  = corr(X i  , Xj                       ) for all . We set 0 for independent covariates= ρ i j̸= ρ =

                                      and 0 3 for dependent covariates. We also consider 2 for strong signal and 6 for weak signal.ρ = . σ = σ =

                                   Example 2. We demonstrate that when the covariates do not have equal pairwise correlations, we can still apply our
                             approach using the approximated null distribution discussed in Section . We simulate data from 22.4 Y = X1+· · ·+2X10 +ε,

 where ρi j,  = 0.5| − |i j                             for and 3. We also consider a more difficult covariance structure, wherei j̸= σ = ρi j,  = 0.9| − |i j  . The

             detailed results are discussed in the Online Supplement.

                                    Example 3. We demonstrate that our method performs well when the Gaussian assumption is not satisfied. To this end, we

                     consider the same linear relationship as in , i.e., 3Example 1 Y = X1  − 1.5X2  + 2X3         + σ ε, but the Xj       s and are generatedε

                                         independently from the Student’s distribution with 5 degrees of freedom. We set 4 and 8 to make the signal tot σ = σ =
         noise ratio comparable with .Example 1

                              The results for the three simulated examples are summarized in – . In LARS-Corr, LASSO-Corr, permutation andTables 2 8
                                    truncated Gaussian tests-based methods, we take 0 01 0 05 0 2 0 5 . Based on the simulation results, we can drawγ ∈ { . , . , . , . }

   the following conclusions.
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 Table 3

                                                    Results for simulated with 0 and 6. The format of the table is the same as . In general, the performance of the proposed methodExample 1 ρ = σ = Table 2
              is competitive to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 41.33 (0.48) 1.24 (0.09) 0.82 (0.23) 27.31 (0.14)

                 LARS-Perm 0.01 40.33 (0.39) 1.40 (0.07) 0.03 (0.02) 3.88 (0.11)
                 LARS-Perm 0.05 40.05 (0.40) 1.25 (0.07) 0.14 (0.04) 4.23 (0.13)
                 LARS-Perm 0.2 1.01 (0.06) 0.48 (0.08) 5.06 (0.17)39.88 (0.41)

                 LARS-Perm 0.5 41.31 (0.49) 0.75 (0.06) 1.99 (0.33) 7.66 (0.50)

                 LARS-Corr 0.01 40.37 (0.38) 1.42 (0.07) 0.02 (0.01) 0.44 (0.02)

                 LARS-Corr 0.05 40.10 (0.39) 1.27 (0.07) 0.13 (0.04) 0.47 (0.02)

                 LARS-Corr 0.2 39.90 (0.41) 1.02 (0.06) 0.47 (0.09) 0.61 (0.03)
                 LARS-Corr 0.5 41.26 (0.48) 0.78 (0.06) 1.60 (0.20) 0.97 (0.06)

                 LARS-TG 0.01 43.57 (0.36) 2.11 (0.03) 0.01 (0.01) 12.86 (0.22)
                 LARS-TG 0.05 43.26 (0.34) 2.06 (0.03) 0.02 (0.02) 13.07 (0.23)
                 LARS-TG 0.2 42.48 (0.32) 1.91 (0.04) 0.05 (0.03) 13.03 (0.22)
                 LARS-TG 0.5 41.70 (0.36) 1.53 (0.06) 0.43 (0.08) 13.11 (0.22)

               LASSO-CV 42.33 (0.54) 1.16 (0.08) 1.94 (0.60) 35.52 (0.24)

                 LASSO-Perm 0.01 41.21 (0.38) 1.56 (0.06) 0.01 (0.01) 3.58 (0.11)

                 LASSO-Perm 0.05 40.34 (0.36) 1.28 (0.06) 0.09 (0.04) 4.14 (0.13)
                 LASSO-Perm 0.2 40.10 (0.38) 1.02 (0.06) 0.43 (0.08) 4.97 (0.17)
                 LASSO-Perm 0.5 41.46 (0.45) 0.76 (0.07) 1.73 (0.24) 7.23 (0.39)

                 LASSO-Corr 0.01 41.30 (0.38) 1.58 (0.06) 0.01 (0.01) 0.39 (0.01)

                 LASSO-Corr 0.05 40.36 (0.36) 1.30 (0.06) 0.06 (0.03) 0.47 (0.02)
                 LASSO-Corr 0.2 1.02 (0.06) 0.39 (0.08) 0.61 (0.02)40.00 (0.38)

                 LASSO-Corr 0.5 41.41 (0.44) 0.80 (0.06) 1.49 (0.18) 0.88 (0.04)

 Table 4

                                                     Results for simulated with 0 3 and 2. The format of the table is the same as . In general, the performance of the proposedExample 1 ρ = . σ = Table 2
               method is competitive to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 4.52 (0.06) 0.00 (0.00) 4.72 (0.86) 28.31 (0.24)

                 LARS-Perm 0.01 0.00 (0.00) 0.04 (0.02) 5.23 (0.04)4.06 (0.03)

                 LARS-Perm 0.05 4.07 (0.03) 0.00 (0.00) 0.07 (0.03) 5.26 (0.05)
                 LARS-Perm 0.2 4.13 (0.04) 0.00 (0.00) 0.33 (0.09) 5.62 (0.12)
                 LARS-Perm 0.5 4.51 (0.09) 0.00 (0.00) 7.64 (2.81) 15.61 (3.85)

                 LARS-Corr 0.01 4.08 (0.03) 0.00 (0.00) 0.10 (0.03) 0.54 (0.01)

                 LARS-Corr 0.05 4.09 (0.03) 0.00 (0.00) 0.16 (0.04) 0.55 (0.01)

                 LARS-Corr 0.2 4.14 (0.03) 0.00 (0.00) 0.47 (0.08) 0.57 (0.01)
                 LARS-Corr 0.5 4.29 (0.04) 0.00 (0.00) 1.84 (0.36) 0.76 (0.04)

                 LARS-TG 0.01 8.46 (0.05) 2.00 (0.00) 0.00 (0.00) 10.97 (0.03)
                 LARS-TG 0.05 8.33 (0.07) 1.95 (0.02) 0.00 (0.00) 11.02 (0.04)
                 LARS-TG 0.2 7.79 (0.12) 1.72 (0.05) 0.00 (0.00) 11.12 (0.05)
                 LARS-TG 0.5 6.95 (0.16) 1.35 (0.07) 0.05 (0.03) 11.09 (0.04)

               LASSO-CV 4.73 (0.06) 0.00 (0.00) 6.69 (0.83) 38.05 (0.53)

                 LASSO-Perm 0.01 0.00 (0.00) 0.00 (0.00) 5.67 (0.04)4.07 (0.03)

                 LASSO-Perm 0.05 4.08 (0.03) 0.00 (0.00) 0.03 (0.02) 5.72 (0.06)
                 LASSO-Perm 0.2 4.17 (0.04) 0.00 (0.00) 0.40 (0.09) 6.31 (0.14)
                 LASSO-Perm 0.5 4.36 (0.05) 0.00 (0.00) 1.76 (0.32) 8.35 (0.45)

                 LASSO-Corr 0.01 4.11 (0.03) 0.00 (0.00) 0.09 (0.03) 0.55 (0.01)

                 LASSO-Corr 0.05 4.12 (0.03) 0.00 (0.00) 0.15 (0.04) 0.56 (0.01)
                 LASSO-Corr 0.2 4.17 (0.03) 0.00 (0.00) 0.37 (0.06) 0.59 (0.01)

                 LASSO-Corr 0.5 4.30 (0.04) 0.00 (0.00) 1.58 (0.32) 0.76 (0.03)

                       First, the test-based methods LARS-Corr and LASSO-Corr outperform the corresponding CV-based methods respectively
                                  for all scenarios, and the improvement of performance for our methods is more substantial when the signal is strong. Second,

                                     when the covariates are not equally correlated, our approach can still work well using as an approximation for the(12)
                         null distribution. Third, although LARS-Perm and LASSO-Perm have comparable performance to LARS-Corr and LASSO-Corr,

                                   respectively, they carry more computational costs. In addition, note that the permutation test can have much larger FP in
                               some scenarios (e.g., LARS-Perm in – ). Fourth, although the truncated Gaussian tests have smaller false positives,Tables 4 5
                                          their power is not very large. Therefore, the false negatives are still quite large even when 0 5. As a result, the predictionγ = .
                              errors are not well controlled. Finally, throughout the simulation experiments, the computational time of our methods drops

           dramatically compared with CV and permutation test.
                                          From – , one can see that our methods can control FN and FP by choosing a proper value of . We illustrateExamples 1 3 γ

                                          how the performance changes as the value of varies for two scenarios in . This figure shows that as increases, theγ Fig. 1 γ



                    S. Gong et al. / Journal of Multivariate Analysis 166 (2018) 17I31 27

 Table 5

                                                     Results for simulated with 0 3 and 6. The format of the table is the same as . In general, the performance of the proposedExample 1 ρ = . σ = Table 2
               method is competitive to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 41.89 (0.51) 1.38 (0.07) 2.40 (0.76) 29.13 (0.24)

                 LARS-Perm 0.01 40.66 (0.31) 1.88 (0.04) 0.02 (0.01) 2.65 (0.06)
                 LARS-Perm 0.05 40.59 (0.37) 1.70 (0.06) 0.31 (0.13) 3.25 (0.21)
                 LARS-Perm 0.2 42.83 (0.57) 1.33 (0.08) 5.82 (2.05) 10.89 (2.67)
                 LARS-Perm 0.5 48.02 (0.94) 0.90 (0.08) 25.78 (5.17) 37.59 (6.84)

                 LARS-Corr 0.01 40.61 (0.31) 1.77 (0.05) 0.01 (0.01) 0.26 (0.02)

                 LARS-Corr 0.05 40.34 (0.30) 1.62 (0.06) 0.10 (0.03) 0.32 (0.03)

                 LARS-Corr 0.2 1.41 (0.06) 0.23 (0.05) 0.44 (0.05)39.95 (0.33)

                 LARS-Corr 0.5 40.39 (0.37) 1.25 (0.06) 1.03 (0.28) 0.56 (0.05)

                 LARS-TG 0.01 42.21 (0.42) 2.11 (0.03) 0.00 (0.00) 11.47 (0.06)
                 LARS-TG 0.05 41.73 (0.37) 2.03 (0.03) 0.09 (0.06) 11.46 (0.06)
                 LARS-TG 0.2 41.46 (0.37) 1.91 (0.04) 0.29 (0.09) 11.46 (0.06)
                 LARS-TG 0.5 41.45 (0.35) 1.66 (0.05) 1.22 (0.20) 11.82 (0.08)

               LASSO-CV 42.26 (0.54) 1.36 (0.07) 2.58 (0.73) 39.07 (0.56)

                 LASSO-Perm 0.01 41.21 (0.38) 1.56 (0.06) 0.01 (0.01) 3.58 (0.11)

                 LASSO-Perm 0.05 40.34 (0.36) 1.28 (0.06) 0.09 (0.04) 4.14 (0.13)
                 LASSO-Perm 0.2 1.02 (0.06) 0.43 (0.08) 4.97 (0.17)40.10 (0.38)

                 LASSO-Perm 0.5 41.46 (0.45) 0.76 (0.07) 1.73 (0.24) 7.23 (0.39)
                 LASSO-Corr 0.01 41.38 (0.39) 1.82 (0.05) 0.22 (0.15) 0.23 (0.01)

                 LASSO-Corr 0.05 40.90 (0.40) 1.60 (0.06) 0.36 (0.17) 0.28 (0.02)
                 LASSO-Corr 0.2 40.62 (0.40) 1.45 (0.06) 0.46 (0.17) 0.43 (0.04)
                 LASSO-Corr 0.5 40.75 (0.43) 1.25 (0.06) 1.18 (0.32) 0.55 (0.05)

          (a) 6 and 0.σ = ρ =

          (b) 6 and 0 3.σ = ρ = .

                                                     Fig. 1. Performance of LARS-Corr and LARS-CV in simulated with (a) 6 and 0 and (b) 6 and 0 3. In LARS-Corr, andExample 1 σ = ρ = σ = ρ = .

                                                    γ . , . , . , . , . , . , .∈ {0 01 0 05 0 1 0 2 0 3 0 4 0 5}. For all three panels, the solid curve corresponds to LARS-Corr and the dashed curve corresponds to LARS-CV. In the

                                                   first panel of (a) and (b), the red curves represent FN while the blue ones represent FP. (For interpretation of the references to color in this figure legend,
                 the reader is referred to the web version of this article.)

                                    FP of our methods has an increasing trend while the FN will decrease. Furthermore, our approach always outperforms CV in
             terms of MSE and computational time as varies.γ
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 Table 6

                                               Results for simulated . The format of the table is the same as . One can see that the performance of the proposed method is competitiveExample 2 Table 2
          to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 10.78 (0.14) 0.00 (0.00) 4.04 (0.50) 27.25 (0.19)

                 LARS-Perm 0.01 9.57 (0.09) 0.04 (0.02) 0.04 (0.02) 14.76 (0.11)
                 LARS-Perm 0.05 9.61 (0.09) 0.02 (0.01) 0.18 (0.07) 14.95 (0.15)
                 LARS-Perm 0.2 9.85 (0.11) 0.01 (0.01) 0.59 (0.12) 15.69 (0.19)
                 LARS-Perm 0.5 10.51 (0.13) 0.01 (0.01) 2.60 (0.36) 18.24 (0.52)

                 LARS-Corr 0.01 9.56 (0.09) 0.02 (0.01) 0.11 (0.06) 1.73 (0.01)

                 LARS-Corr 0.05 0.01 (0.01) 0.12 (0.07) 1.74 (0.02)9.55 (0.08)

                 LARS-Corr 0.2 9.77 (0.09) 0.01 (0.01) 0.52 (0.12) 1.80 (0.03)
                 LARS-Corr 0.5 10.25 (0.13) 0.01 (0.01) 3.67 (1.88) 2.40 (0.37)

                 LARS-TG 0.01 12.36 (0.14) 1.98 (0.02) 0.00 (0.00) 12.38 (0.15)
                 LARS-TG 0.05 12.32 (0.14) 1.95 (0.03) 0.02 (0.01) 12.24 (0.13)
                 LARS-TG 0.2 11.83 (0.10) 1.75 (0.04) 0.10 (0.04) 12.41 (0.13)
                 LARS-TG 0.5 11.51 (0.11) 1.48 (0.05) 0.45 (0.10) 12.46 (0.14)

               LASSO-CV 12.02 (0.12) 0.00 (0.00) 10.41 (0.84) 40.09 (0.30)

                 LASSO-Perm 0.01 0.02 (0.01) 0.03 (0.02) 14.68 (0.09)9.57 (0.08)

                 LASSO-Perm 0.05 9.61 (0.08) 0.01 (0.01) 0.14 (0.07) 14.86 (0.12)
                 LASSO-Perm 0.2 10.02 (0.13) 0.01 (0.01) 1.25 (0.45) 16.60 (0.76)
                 LASSO-Perm 0.5 10.75 (0.15) 0.01 (0.01) 3.59 (0.61) 19.33 (0.78)

                 LASSO-Corr 0.01 0.01 (0.01) 0.09 (0.06)9.57 (0.08) 1.72 (0.01)

                 LASSO-Corr 0.05 9.65 (0.09) 0.01 (0.01) 0.33 (0.17) 1.76 (0.03)
                 LASSO-Corr 0.2 9.90 (0.11) 0.01 (0.01) 1.01 (0.43) 1.87 (0.08)

                 LASSO-Corr 0.5 10.4 (0.14) 0.01 (0.01) 2.56 (0.51) 2.17 (0.09)

 Table 7

                                                      Results for simulated with 4. The format of the table is the same as . One can see that the performance of the proposed method isExample 3 σ = Table 2
            competitive to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 17.65 (0.21) 0.00 (0.00) 2.15 (0.37) 26.57 (0.23)

                 LARS-Perm 0.01 16.25 (0.13) 0.02 (0.01) 0.00 (0.00) 5.74 (0.05)
                 LARS-Perm 0.05 16.28 (0.13) 0.01 (0.01) 0.04 (0.03) 5.81 (0.07)
                 LARS-Perm 0.2 16.64 (0.15) 0.00 (0.00) 0.43 (0.10) 6.26 (0.16)
                 LARS-Perm 0.5 17.49 (0.24) 0.00 (0.00) 3.58 (1.96) 10.65 (2.68)

                 LARS-Corr 0.01 0.02 (0.01) 0.00 (0.00) 0.93 (0.02)16.25 (0.13)

                 LARS-Corr 0.05 16.28 (0.13) 0.01 (0.01) 0.04 (0.03) 0.88 (0.01)

                 LARS-Corr 0.2 16.61 (0.15) 0.00 (0.00) 0.39 (0.09) 1.04 (0.04)
                 LARS-Corr 0.5 17.26 (0.19) 0.00 (0.00) 1.27 (0.21) 1.21 (0.06)

                 LARS-TG 0.01 38.07 (0.57) 2.00 (0.03) 0.00 (0.00) 12.00 (0.06)
                 LARS-TG 0.05 37.71 (0.56) 1.95 (0.04) 0.02 (0.02) 12.02 (0.06)
                 LARS-TG 0.2 36.69 (0.50) 1.80 (0.05) 0.04 (0.03) 11.95 (0.05)
                 LARS-TG 0.5 34.24 (0.57) 1.24 (0.08) 0.51 (0.14) 12.30 (0.09)

               LASSO-CV 18.16 (0.24) 0.00 (0.00) 3.27 (0.49) 44.60 (0.51)

                 LASSO-Perm 0.01 16.44 (0.13) 0.03 (0.02) 0.02 (0.01) 5.70 (0.05)
                 LASSO-Perm 0.05 16.41 (0.11) 0.01 (0.01) 0.06 (0.02) 5.77 (0.06)
                 LASSO-Perm 0.2 16.65 (0.14) 0.00 (0.00) 0.34 (0.09) 6.10 (0.13)
                 LASSO-Perm 0.5 17.42 (0.21) 0.00 (0.00) 3.21 (1.94) 11.66 (4.35)

                 LASSO-Corr 0.01 0.02 (0.01) 0.00 (0.00) 1.07 (0.02)16.37 (0.12)

                 LASSO-Corr 0.05 16.41 (0.11) 0.01 (0.01) 0.05 (0.02) 1.00 (0.02)

                 LASSO-Corr 0.2 16.64 (0.14) 0.00 (0.00) 0.33 (0.09) 1.03 (0.03)

                 LASSO-Corr 0.5 17.22 (0.17) 0.00 (0.00) 1.08 (0.19) 1.08 (0.04)

                              For independent cases, we also evaluate the performance of the proposed method using the maximal -statistic describedt

                                        in . We find that the performance of our method with the maximal -statistic is only slightly better than that with the(8) t

                                   maximal absolute correlation as the test statistic. Hence we do not include the detailed simulation results for the maximal

     t-statistic in this paper.

      4.2. A microarray data study

                          We use a cardiomyopathy microarray dataset to demonstrate the performance of our method for high-dimensional

                                 problems. These data were previously analyzed in [ , , ]. The aim of this study is to determine the most influential genes12 15 18

                                  for a G protein-coupled receptor (Ro1) in mice. The dataset contains gene expression levels of 6320 genes on 30 specimens,
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 Table 8

                                                      Results for simulated with 8. The format of the table is the same as . One can see that the performance of the proposed method isExample 3 σ = Table 2
            competitive to CV and is more computationally efficient.

         Methods MSE FN FP Timeγ

               LARS-CV 76.59 (0.97) 1.62 (0.10) 0.97 (0.30) 25.94 (0.08)

                 LARS-Perm 0.01 73.71 (0.71) 1.78 (0.06) 0.00 (0.00) 3.03 (0.09)
                 LARS-Perm 0.05 72.04 (0.74) 1.43 (0.07) 0.07 (0.04) 3.62 (0.12)
                 LARS-Perm 0.2 1.15 (0.07) 0.41 (0.10) 4.47 (0.18)71.75 (0.77)

                 LARS-Perm 0.5 74.19 (0.94) 0.93 (0.07) 3.39 (1.95) 8.68 (2.54)

                 LARS-Corr 0.01 73.72 (0.76) 1.76 (0.06) 0.01 (0.01) 0.43 (0.02)

                 LARS-Corr 0.05 72.23 (0.74) 1.50 (0.07) 0.03 (0.02) 0.55 (0.02)

                 LARS-Corr 0.2 71.99 (0.78) 1.19 (0.07) 0.38 (0.09) 0.71 (0.03)
                 LARS-Corr 0.5 73.61 (0.80) 0.93 (0.07) 1.22 (0.15) 1.07 (0.05)

                 LARS-TG 0.01 125.93 (1.84) 2.47 (0.05) 0.01 (0.01) 12.11 (0.08)
                 LARS-TG 0.05 124.84 (1.82) 2.35 (0.05) 0.04 (0.02) 12.26 (0.10)
                 LARS-TG 0.2 124.42 (1.78) 2.25 (0.05) 0.15 (0.05) 12.26 (0.10)
                 LARS-TG 0.5 124.51 (1.72) 2.00 (0.06) 0.55 (0.10) 12.29 (0.09)

               LASSO-CV 72.70 (1.26) 1.49 (0.11) 1.06 (0.42) 40.59 (0.30)

                 LASSO-Perm 0.01 73.83 (0.76) 1.71 (0.07) 0.01 (0.01) 3.05 (0.10)

                 LASSO-Perm 0.05 72.33 (0.72) 1.43 (0.08) 0.07 (0.03) 3.53 (0.12)
                 LASSO-Perm 0.2 72.21 (0.72) 1.19 (0.08) 0.34 (0.08) 4.22 (0.18)
                 LASSO-Perm 0.5 74.24 (0.85) 0.95 (0.07) 3.14 (1.93) 10.46 (4.80)

                 LASSO-Corr 0.01 73.91 (0.79) 1.71 (0.07) 0.02 (0.01) 0.51 (0.02)

                 LASSO-Corr 0.05 72.60 (0.74) 1.49 (0.07) 0.03 (0.02) 0.53 (0.02)
                 LASSO-Corr 0.2 1.19 (0.08) 0.31 (0.08) 0.71 (0.03)72.09 (0.72)

                 LASSO-Corr 0.5 73.83 (0.77) 0.98 (0.07) 1.18 (0.16) 1.01 (0.05)

 Table 9

                                    The average MSE and computational time over 100 replications (with standard errors given in parentheses) for LARS-Corr, LARS-Perm, LARS-TG, LARS-CV,
                                        LASSO-Corr, LASSO-Perm, LASSO-CV, FSR-Corr, FSR-Perm, FSR-TG and FSR-CV on the gene expression data. For test-based approaches, is set as 0.05, 0.1γ

   and 0.2 respectively.

             Methods MSE Time Methods MSE Timeγ γ

                 LARS-CV 0.63 (0.04) 1.48 (0.02) FSR-CV 0.91 (0.16) 0.78 (0.04)

                     LARS-Perm 0.05 0.60 (0.05) 1.81 (0.19) FSR-Perm 0.05 0.62 (0.05) 1.44 (0.04)
                     LARS-Perm 0.1 0.59 (0.05) 2.62 (0.35) FSR-Perm 0.1 0.63 (0.05) 1.65 (0.06)
                     LARS-Perm 0.2 0.59 (0.04) 5.78 (0.62) FSR-Perm 0.2 0.67 (0.05) 2.22 (0.20)

                     LARS-Corr 0.05 0.58 (0.05) FSR-Corr 0.05 0.61 (0.05)0.44 (0.01) 0.41 (0.01)

                     LARS-Corr 0.1 0.55 (0.05) 0.53 (0.02) FSR-Corr 0.1 0.48 (0.02)0.60 (0.05)

                     LARS-Corr 0.2 0.58 (0.03) FSR-Corr 0.2 0.51 (0.02)0.53 (0.04) 0.60 (0.05)

                     LARS-TG 0.05 0.74 (0.05) 3.42 (0.03) FSR-TG 0.05 0.72 (0.05) 2.94 (0.02)

                     LARS-TG 0.1 0.72 (0.05) 3.52 (0.03) FSR-TG 0.1 0.71 (0.05) 3.01 (0.02)
                     LARS-TG 0.2 0.66 (0.05) 3.56 (0.03) FSR-TG 0.2 0.65 (0.05) 3.04 (0.02)

       LASSO-CV 0.59 (0.04) 1.98 (0.02)

         LASSO-Perm 0.05 0.60 (0.05) 1.47 (0.05)
         LASSO-Perm 0.1 0.57 (0.05) 3.21 (0.60)

         LASSO-Perm 0.2 0.54 (0.04) 7.84 (0.99)

         LASSO-Corr 0.05 0.58 (0.05) 0.41 (0.01)

         LASSO-Corr 0.1 0.55 (0.05) 0.49 (0.02)
         LASSO-Corr 0.2 0.55 (0.03)0.53 (0.04)

                         in which the response variable is the expression level of Ro1 and the covariates Xj           are the expression levels of the remaining
    p = 6319 genes.

                           As in simulation studies, we perform all the methods, i.e., LARS-Corr, LASSO-Corr, FSR-Corr, LARS-Perm, LASSO-Perm,

                                 FSR-Perm, LARS-TG, FSR-TG, LARS-CV, LASSO-CV and FSR-CV on the dataset. For CV-based methods, we use 5-fold CV to
                                 implement model selection. As the average of pairwise correlations among covariates is close to 0 (less than 0.003), we

                               use the null distribution for independent covariates in our test-based approaches. Since the correlation structure of the
                               covariates in the gene expression data is different from iid Gaussian random variables, we also implement the permutation

                                  tests incorporated into LARS, LASSO and FSR correspondingly. In addition, we consider 0 05 0 1 0 2 for LARS-Corr,γ ∈ { . , . , . }
                         LASSO-Corr, FSR-Corr, LARS-Perm, LASSO-Perm, FSR-Perm, LARS-TG and FSR-TG. In the experiment, 100 replications are

                                       conducted. For each replication, we randomly select 20 samples as the training data, and the remaining 10 as test data to

   obtain out-of-sample MSE.
                                      We report the average of MSE and computational time with standard errors in . One can see that our test-basedTable 9

                           methods using theoretical distribution have better prediction accuracy than CV-based ones. While permutation test has

                              competitive performance for MSE, it has the most expensive computational cost among all methods. On the contrary,
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                     (a) Stepwise -value and MSE. (b) Most frequently identified genes and MSE.p

                                                  Fig. 2. Performance of LARS-Corr applied to the microarray data. (a) Average -value and MSE with one standard error bars for the first 15 steps of LARS-p

                                          Corr over 100 replications. (b) 8 most frequently identified genes by LARS-Corr and the out-of-sample MSE corresponding to the model consists of the first

          k ∈ {1 8 genes., . . . , }

                                  compared with CV as well as permutation test, the computational expenses of our test-based approaches are reduced for all

     three sequential selection procedures.

                                    To better demonstrate the performance of our test-based approach, we show a stepwise plot and an overall MSE plot for

                                          LARS-Corr as in . illustrates the stepwise -value and MSE for the first 15 steps of LARS-Corr. Here the out-Fig. 2 Fig. 2(a) p

                                       of-sample MSE at Step is with respect to the model containing variables selected by the first LARS steps. Note that suchk k

                                  models might vary through 100 replications, resulting in relatively large standard errors for MSE. By the one standard error

                                    rule, implies that a candidate model of size 3 would be preferable. Moreover, we also summarize the most frequentlyFig. 2(a)

                                       identified genes out of 100 replications and sort by frequency from high to low. shows the eight most frequentlyFig. 2(b)

                                    identified genes that are selected at least 10 times over 100 replications, as well as the out-of-sample MSE corresponding to

                                         the model containing the first genes with 1 8 . Among the eight genes, Msa.2877.0 was also identified in [ , ],k k ∈ { , . . . , } 12 15

                              and Msa.2134.0 was discovered in [ ]. Overall, our variable selection method is effective in identifying potential scientific15

discoveries.

 5. Discussion

                              In this paper, we propose a test-based variable selection approach in the context of high-dimensional linear regression

                                model with Gaussian covariates. We first formulate the null hypothesis, where we assume that the response is uncorrelated

                                   with all of the remaining covariates given a set of selected variables. We also propose the maximal absolute sample partial

                             correlation statistic and discuss its asymptotic null distribution and power. We then incorporate the distribution information

                               with sequential selection procedures. We use three simulated examples and one real data analysis to demonstrate that

                         compared with CV-based procedure, the proposed method can perform variable selection effectively and efficiently.

                              Our proposed method involves sequential hypothesis testing. Therefore, instead of using a constant test level , oneγ

                                 can consider multiple testing methods, such as the false discovery rate (FDR) control [ ], which provides flexible test2

                                 levels and meaningful probability statements of the selected model. However, due to the adaptive nature of the sequential

                               selection procedures, classical FDR control methods cannot be applied directly. There are some recent papers for sequential

                                    testing [ , , ]. However, the approaches in [ , ] are known to control the marginal FDR instead of the FDR. In contrast, [ ]1 8 11 1 8 11

                                        assumes that the -values corresponding to the null hypotheses are iid (0 1), which does not usually hold in our setting.p U ,

                    We plan to investigate our procedure along this direction in future work.
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